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We present 48 further examples, in addition to the 10 identified in [1], of ghost-and-tachyon-free critical
cases of parity-conserving Poincaré gauge theories of gravity (PGTþ) that are also power-counting
renormalizable (PCR). This is achieved by extending the range of critical cases considered. Of the new
PCR theories, seven have 2 massless degrees of freedom (d.o.f.) in propagating modes and a massive 0− or
2− mode, eight have only 2 massless d.o.f., and 33 have only massive mode(s). We also clarify the
treatment of nonpropagating modes in determining whether a theory is PCR.
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In a recent paper [1], we presented a systematic method
for identifying the ghost-and-tachyon-free critical cases of
parity-preserving gauge theories of gravity and applied it to

parity-preserving Poincaré gauge theory (PGTþ). The
gravitational free-field Lagrangian for this theory may be
written as [2]
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where the field strengths are

RAB
μν ¼ 2ð∂ ½μAAB

ν� þ AA
E½μAEB

ν�Þ; ð2Þ
T A

μν ¼ 2ð∂ ½μbAν� þ AA
E½μbEν�Þ; ð3Þ

in which hAμ is the translational gauge field, bAμ is its
inverse, such that bAμhBμ ¼ δAB and bAμhAν ¼ δνμ, and
AAB

μ ¼ −ABA
μ is the gauge field corresponding to Lorentz

transformations. Greek indices denote the coordinate
frame, and Latin capital indices correspond to the local
Lorentz frame. In our analysis, we linearized the gauge
fields and decomposed the h field into its symmetric and
antisymmetric parts s and a, respectively, to obtain a
quadratic Lagrangian, which we then decomposed into

LF ¼
X
J;P;i;j

aðJPÞijζ̂† · P̂ðJPÞij · ζ̂ ð4Þ

using the spin projection operators (SPOs) P̂ðJPÞij [3–5].
Please see Sec. II of [1] for a description of our notation. If
any of the matrices aðJPÞ is singular, then the theory
possesses gauge invariances. One may fix these gauges by
deleting rows and columns of the a matrices such that they
become nonsingular; the elements of the resulting matrices
are usually denoted by bijðJPÞ. The requirement that a
theory is free from ghosts and tachyons places conditions
on the bmatrices; we traverse all critical cases to determine
which (if any) satisfy these conditions.
In this way, in [1], we found 450 critical cases that are

free from ghosts and tachyons, of which we identified 10
that are also power-counting renormalizable (PCR). The
key quantity for determining whether a theory is PCR is the
propagator,

D̂ ¼
X
J;P;i;j

b−1ij P̂ðJPÞij: ð5Þ

In particular, if the b matrices contain no elements linking
any of the A, s, and a fields, then it is straightforward to
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obtain the propagators for these fields separately from D̂.
The original PCR criterion used in [2] requires the
propagator of the A field to decay at least as quickly as
k−2 at high energy, and those of the s and a fields to fall off
at least as k−4. By contrast, the alternative PCR criterion
used in [1] also permits the presence of nonpropagating
fields (for which the propagator decays no faster than ∼k0),
since these should completely decouple from the rest of the
theory; we will compare these two criteria further below.
Moreover, in [1], we restricted our PCR considerations to
those cases for which the b matrices are diagonal, such that
there are no mixing terms between the A, s, and a fields in
the gauge-fixed Lagrangian and so the physical interpre-
tation is straightforward. Indeed, with this restriction, the
high-energy behaviors of the propagators are equivalent to
those of the corresponding diagonal elements in the b−1

matrices.
In this paper, we extend our search to include those cases

for which the b matrices are block diagonal, with each
block containing only one field. This clearly includes our
previous study as a special case, but increases considerably
the number of cases under consideration, while again
ensuring that there are no mixing terms in the gauge-fixed
Lagrangian.1 It is worth noting that, even in this more
general case, the behavior of the propagators at high energy
goes as the highest power of the corresponding elements in
the b−1 matrices. Moreover, in the PGTþ cases we consider,
any nondiagonal block of a b matrix that does not mix
fields is always the only block in the matrix, contains only
the A field, and has size 2 × 2. Moreover, these blocks
occur only in the 1− or 1þ sector and have the following
form:

b ¼
�
rk2 þ ðxþ 4yÞ −

ffiffiffi
2
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−
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2
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�
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where x, y, and r are real linear combinations of the
parameters in the Lagrangian. Hence, the element with the

highest power of k in b−1 is always a diagonal element.
Note that when xþ y ¼ 0 and r, x, y ≠ 0, the element with
the highest power in b−1 goes as k2, not k−2, even though
the highest power in b is also k2. This is a similar case to
that summarized in Eqs. (1.2)–(1.4) of [6]. Since there is no
pole in the determinant detðbÞ ¼ −18x2 in this case, there
is no propagating mode in this sector.
Our main result is that, in addition to the 10 PCR cases

found in [1], this new search yields a further 48 cases that
are PCR. For completeness, we list all 58 cases (old and
new) in Tables I–IV, in which the old cases are indicated
with an asterisk followed by the old number of the case as
given in [1]. Tables I and II summarize the seven cases with
both massless and massive modes, all of which are new and
have 2 massless degrees of freedom (d.o.f.) in propagating
modes and a massive 0− or 2− mode. Tables III and IV
summarize the 12 cases with only massless modes, of
which eight are new and contain only 2 massless d.o.f.
Finally, Tables V and VI summarize the 39 cases with only
massive modes, of which 33 are new. For each set of tables,
the first lists the various conditions for each critical case,
and the second lists the “particle content” in terms of the
diagonal elements in the b−1 matrix of each spin-parity
sector in the sequence f0−; 0þ; 1−; 1þ; 2−; 2þg.
Since we adopt the PCR criterion in [1], which differs

from the original criterion used in [2] by allowing the
presence of nonpropagating fields, it is worth discussing
further the status of such fields in the determination of
whether a theory is PCR. We begin by noting that an
important consequence of allowing the existence of non-
propagating fields is that whether some critical cases obey
our PCR criterion may depend on the choice of gauge
fixing. For example, in the spin-parity sector 0þ in Case 8,
the a matrix is

að0þÞ ¼

A s s0
B@

2t3 −2i
ffiffiffi
2

p
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2

p
kt3 4k2t3 0

0 0 0

1
CA ; ð7Þ

TABLE I. Parameter conditions for the PC renormalizable critical cases that are ghost and tachyon free and have both massless and
massive propagating modes. The parameters listed in “Additional conditions” must be nonzero to prevent the theory becoming a
different critical case.

No. Critical condition Additional conditions No-ghost-and-tachyon condition

1 r1;
r3
2
− r4; t1; t3; λ ¼ 0 r2; r3; 2r3 þ r5; r3 þ 2r5; t2 t2 > 0; r2 < 0; r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

2 r1;
r3
2
− r4; t1; λ ¼ 0 r2; r1 − r3; 2r3 þ r5; r1 þ r3 þ 2r5; t2; t3 t2 > 0; r2 < 0; r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

3 r1; r3; r4; t1 þ t2; t3; λ ¼ 0 r2; r1 þ r5; 2r1 þ r5; t1; t2 r2 < 0; r5 < 0; t1 < 0
4 r2; r1 − r3; r4; t1 þ t2; t3; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t1; t2 t1 > 0; r1 þ r5 < 0; r1 < 0
5 r2; r1 − r3; r4; t2; t1 þ t3; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t1; t3 r5 > 0; 2r1 þ r5 > 0; t1 > 0; r1 < 0
6 r1; 2r3 − r4; t1 þ t2; t3; λ ¼ 0 r2; r1 − r3; r1 − 2r3 − r5; 2r3 þ r5; t1; t2 r2 < 0; 2r3 þ r5 < 0; t1 < 0
7 r2; 2r1 − 2r3 þ r4; t1 þ t2; t3; λ ¼ 0 r1; r1 − r3; r1 − 2r3 − r5; 2r3 þ r5; t1; t2 t1 > 0; r1 < 0; 2r3 þ r5 < r1

1We note that this extension therefore does not include
Einstein-Cartan theory.
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TABLE II. Particle content of the PC renormalizable critical cases that are ghost and tachyon free and have both massless and massive
propagating modes. All of these cases have 2 massless d.o.f. in propagating modes and also a massive mode. The column “b sectors”
describes the diagonal elements in the b−1 matrix of each spin-parity sector in the sequence f0−; 0þ; 1−; 1þ; 2−; 2þg. Here and in
Tables IV and VI it is notated as φn

v or φn
l , where φ is the field, −n is the power of k in the element in the b−1 matrix when k goes to

infinity, v means massive pole, and l means massless pole. If n ¼ ∞, it represents that the diagonal element is zero. If n ≤ 0, the field is
not propagating. The “j” notation denotes the different form of the elements of the b−1 matrices in different choices of gauge fixing, and
the “&” connects the diagonal elements in the same b−1 matrix. The superscript “N” represents that there is nonzero off-diagonal term in
the b−1 matrix.

No. Massless mode d.o.f. Massive mode b sectors

1 2 0− fA2
v;×; A2

l ; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×; A2

l g
2 2 0− fA2

v; A0js2l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×; A2

l g
3 2 0− fA2

v;×; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g
4 2 2− fA0;×; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2

v; A0js2l g
5 2 2− f×; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN; A2
v; A0js2l g

6 2 0− fA2
v; A2

l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g
7 2 2− fA0; A2

l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g

TABLE III. Parameter conditions for the PC renormalizable critical cases that are ghost and tachyon free and have only massless
propagating modes. The cases found previously in [1] are indicated with an asterisk followed by its original numbering.

No. Critical condition Additional condition No-ghost-and-tachyon condition

8 r2; r1 − r3; r4; t1; t2; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t3 r1ðr1 þ r5Þð2r1 þ r5Þ < 0
�19 r2; r1 − r3; r4; t1; t2; t3; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5 r1ðr1 þ r5Þð2r1 þ r5Þ < 0
�310 r1; r2;

r3
2
− r4; t1; t2; t3; λ ¼ 0 r3; 2r3 þ r5; r3 þ 2r5 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

�411 r1;
r3
2
− r4; t1; t2; t3; λ ¼ 0 r2; r3; 2r3 þ r5; r3 þ 2r5 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

12 r1; r2;
r3
2
− r4; t1; t3; λ ¼ 0 r3; 2r3 þ r5; r3 þ 2r5; t2 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

�213 r2; 2r1 − 2r3 þ r4; t1; t2; t3; λ ¼ 0 r1; r1 − r3; r1 − 2r3 − r5; 2r3 þ r5 r1ðr1 − 2r3 − r5Þð2r3 þ r5Þ > 0

14 r1; r2;
r3
2
− r4; t1; t2; λ ¼ 0 2r3 − r4; 2r3 þ r5; r4 þ r5; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

15 r1; r2;
r3
2
− r4; t1; λ ¼ 0 r3; 2r3 þ r5; r3 þ 2r5; t2; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

16 r1;
r3
2
− r4; t1; t2; λ ¼ 0 r2; r3; 2r3 þ r5; r3 þ 2r5; t3 r3ð2r3 þ r5Þðr3 þ 2r5Þ < 0

17 r1; r2; r3; r4; t1 þ t2; t3; λ ¼ 0 r1 þ r5; 2r1 þ r5; t1; t2 r5 < 0; t1 ≠ 0
18 r1; r2; r3; r4; t2; t1 þ t3; λ ¼ 0 r1 þ r5; 2r1 þ r5; t1; t3 r5 > 0; t1 ≠ 0
19 r1; r2; 2r3 − r4; t1 þ t2; t3; λ ¼ 0 r1 − r3; r1 − 2r3 − r5; 2r3 þ r5; t1; t2 r3 < − r5

2
; t1 ≠ 0

TABLE IV. Particle content of the PC renormalizable critical cases that are ghost and tachyon free and have only massless propagating
modes. All of these cases have 2 massless d.o.f. of propagating mode. The cases found previously in [1] are indicated with an asterisk
followed by its original numbering.

No. Massless mode d.o.f. b sectors

8 2 f×; A0js2l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; A2
l ; A

2
l ;×g

�19 2 f×;×; A2
l ; A

2
l ; A

2
l ;×g

�310 2 f×;×; A2
l ; A

2
l ;×; A

2
l g

�411 2 fA2
l ;×; A

2
l ; A

2
l ;×; A

2
l g

12 2 fA0;×; A2
l ; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×; A2
l g

�213 2 f×; A2
l ; A

2
l ; A

2
l ; A

2
l ;×g

14 2 f×; A0js2l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; A2
l ;×; A

2
l g

15 2 fA0; A0js2l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×; A2

l g
16 2 fA2

l ; A
0js2l ; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞN; A2

l ;×; A
2
l g

17 2 fA0;×; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g
18 2 f×; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN; A0; A0js2l g
19 2 fA0; A2

l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g
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which is singular, indicating the presence of gauge invar-
iances. One may render this matrix nonsingular by deleting
rows and columns in two different ways, corresponding to
two different gauge fixings, which in this case correspond
simply to keeping either the first or the second column and
row. If one chooses to keep only the second row and
column, then this sector contains only an s field, with a
propagator that goes as ∼k−2 at high energy, which thus
violates both our alternative PCR criterion and the original
one. Conversely, if one chooses to retain only the first
column and row, then the 0þ spin-parity sector contains
only a nonpropagating A field, which we contend is
harmless and thus satisfies our alternative PCR criterion,
while violating the original one. The conclusions regarding
PCR are therefore gauge dependent.

Overall, we take the view that a theory is PCR if one can
find a gauge in which it satisfies our PCR criterion,
irrespective of the existence of other gauge choices in
which the PCR criterion is violated. The rationale for this
view is that a theory should describe the same physics
independently of which gauge one adopts. Thus, if one uses
a particular gauge to make a physical prediction, then one
should, in principle, be able to draw the same physical
conclusion in any other gauge, although most often not in
such a transparent manner.
We therefore consider the 0þ sector of Case 8 to satisfy

our PCR criterion, whereas it violates the original one in
[2]. Moreover, although the total propagator for a field is
the sum of the propagators across all sectors, it cannot
satisfy either PCR condition if that same condition is

TABLE V. Parameter conditions for the PC renormalizable critical cases that are ghost and tachyon free and have only massive
propagating modes. The cases found previously in [1] are indicated with an asterisk followed by its original numbering.

No. Critical condition Additional conditions No-ghost-and-tachyon condition

20 r1; r3; r4; r5; λ ¼ 0 r2; t1; t2; t1 þ t2; t3; t1 þ t3 t2 > 0; r2 < 0

21 r1; r3; r4; r5; t1 þ t2; λ ¼ 0 r2; t1; t2; t3; t1 þ t3 r2 < 0; t1 < 0

22 r1; r3; r4; r5; t1 þ t3; λ ¼ 0 r2; t1; t2; t1 þ t2; t3 t2 > 0; r2 < 0

23 r1; r3; r4; r5; t1 þ t2; t1 þ t3; λ ¼ 0 r2; t1; t2; t3 r2 < 0; t1 < 0

24 r1; r3; r4; t1; λ ¼ 0 r2; r1 þ r5; 2r1 þ r5; t2; t3 t2 > 0; r2 < 0
�525 r1; r3; r4; r5; t1; λ ¼ 0 r2; t2; t3 t2 > 0; r2 < 0
�626 r1; r3; r4; r5; t1; t3; λ ¼ 0 r2; t2 t2 > 0; r2 < 0

27 r1;
r3
2
− r4;

r3
2
þ r5; t1; t3; λ ¼ 0 r2; r3; t2 t2 > 0; r2 < 0

28 r1; r3; r4; t1; t3; λ ¼ 0 r2; r5; t2 t2 > 0; r2 < 0

29 r1 − r3; r4; 2r1 þ r5; t1; λ ¼ 0 r1; r2; r1 þ r5; t2; t3 t2 > 0; r2 < 0
�730 r1 − r3; r4; 2r1 þ r5; t1; t3; λ ¼ 0 r1; r2; t2 t2 > 0; r2 < 0
�831 r1; 2r3 − r4; 2r3 þ r5; t1; t3; λ ¼ 0 r2; r3; t2 t2 > 0; r2 < 0

32 r1; r3; r4; r5; t3; λ ¼ 0 r2; t1; t2; t1 þ t2 t2 > 0; r2 < 0

33 r1; r3; r4; r5; t1 þ t2; t3; λ ¼ 0 r2; t1; t2 r2 < 0; t1 < 0

34 r1; 2r3 − r4; t1; t3; λ ¼ 0 r2; r3; 2r3 þ r5; t2 t2 > 0; r2 < 0
�935 r1;

r3
2
− r4; 2r3 þ r5; t1; t3; λ ¼ 0 r2; r3; t2 t2 > 0; r2 < 0

�1036 2r1 − 2r3 þ r4; 2r3 þ r5; t1; t3; λ ¼ 0 r1; r2; r1 − r3; t2 t2 > 0; r2 < 0

37 r1;
r3
2
− r4; 2r3 þ r5; t1; λ ¼ 0 r2; 2r3 − r4; t2; t3 t2 > 0; r2 < 0

38 r1; 2r3 − r4; 2r3 þ r5; t3; λ ¼ 0 r2; r1 − r3; t1; t2; t1 þ t2 t2 > 0; r2 < 0

39 r1; 2r3 − r4; 2r3 þ r5; t1 þ t2; t3; λ ¼ 0 r2; r1 − r3; t1; t2 r2 < 0; t1 < 0

40 r1; r4 þ r5; t1; t3; λ ¼ 0 r2; r3 − 2r4; 2r3 − r4; t2 t2 > 0; r2 < 0

41 r1;
r3
2
− r4;

r3
2
þ r5; t1; λ ¼ 0 r2; 2r3 − r4; t2; t3 t2 > 0; r2 < 0

42 r1; r3; r4; t1 þ t2; λ ¼ 0 r2; r1 þ r5; 2r1 þ r5; t1; t2; t3; t1 þ t3 t3 > 0; r2 < 0; r5 < 0; t1 < 0; t1 þ t3 < 0

43 r1; r3; r4; t1 þ t3; λ ¼ 0 r2; r1 þ r5; 2r1 þ r5; t1; t2; t1 þ t2; t3 r5 > 0; t2 > 0; t1 þ t2 > 0; r2 < 0; t1 < 0

44 r2; r1 − r3; r4; t1 þ t2; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t1; t2; t3; t1 þ t3 t1 > 0; r1 < 0; r1 þ r5 < 0; t3ðt1 þ t3Þ > 0

45 r2; r1 − r3; r4; t1 þ t3; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t1; t2; t1 þ t2; t3 r5>0;2r1þr5>0;t1>0;t1þt2>0;r1<0;t2<0

46 r1 − r3; r4; 2r1 þ r5; t1 þ t3; λ ¼ 0 r1; r2; r1 þ r5; t1; t2; t1 þ t2; t3 t1 > 0; t2 > 0; r1 < 0; r2 < 0

47 r1; r2; r3; r4; t1 þ t2; λ ¼ 0 r1 þ r5; 2r1 þ r5; t1; t2; t3; t1 þ t3 r5 < 0; t1t3ðt1 þ t3Þ > 0

48 r1; r2; r3; r4; t1 þ t3; λ ¼ 0 r1 þ r5; 2r1 þ r5; t1; t2; t1 þ t2; t3 r5 > 0; t1t2ðt1 þ t2Þ < 0

49 r1; r3; r4; t1 þ t2; t1 þ t3; λ ¼ 0 r2; r1 þ r5; 2r1 þ r5; t1; t2; t3 r2 < 0; t1 < 0

50 r2; r1 − r3; r4; r1 þ r5; t1 þ t2; λ ¼ 0 r1; 2r1 þ r5; t1; t2; t3; t1 þ t3 t1 > 0; r1 < 0

51 r2; r1 − r3; r4; 2r1 þ r5; t1 þ t3; λ ¼ 0 r1; r1 þ r5; t1; t2; t1 þ t2; t3 t1 > 0; r1 < 0

52 r2; r1 − r3; r4; t1 þ t2; t1 þ t3; λ ¼ 0 r1; r1 þ r5; 2r1 þ r5; t1; t2; t3 t1 > 0; r1 < 0

53 r2; r1 − r3; r4; r1 þ r5; t1 þ t2; t1 þ t3; λ ¼ 0 r1; 2r1 þ r5; t1; t2; t3 t1 > 0; r1 < 0

54 r2; r1 − r3; r4; 2r1 þ r5; t1 þ t2; t1 þ t3; λ ¼ 0 r1; r1 þ r5; t1; t2; t3 t1 > 0; r1 < 0

55 r2; r1 − r3; r4; r1 þ r5; t1 þ t2; t3; λ ¼ 0 r1; t1; t2 t1 > 0; r1 < 0

56 r2; r1 − r3; r4; 2r1 þ r5; t2; t1 þ t3; λ ¼ 0 r1; t1; t3 t1 > 0; r1 < 0

57 r1 − r3; r4; 2r1 þ r5; t2; t1 þ t3; λ ¼ 0 r1; r2; t1; t3 t1 > 0; r1 < 0

58 r2; 2r1 − 2r3 þ r4; r1 − 2r3 − r5; t1 þ t2; t3; λ ¼ 0 r1; r1 − r3; t1; t2 t1 > 0; r1 < 0
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violated by the propagator in any sector individually. This
occurs since the high-energy asymptotic behavior is deter-
mined by the term(s) with the highest power, unless they
cancel out, but the SPO decomposition guarantees that such
cancellations cannot happen if k2 ≠ 0, which is the case we
are considering here. Thus, Case 8 as a whole violates the

original PCR criterion in [2] because of the nature of the 0þ
sector, whereas one finds that it satisfies our alternative
PCR criterion, and is hence listed in Tables III and IV.
We now explain why this does not, in fact, lead to a

contradiction. If one chooses to keep only the first column
and row in (7), the resulting b−1 matrix is clearly

TABLE VI. Particle content of the PC renormalizable critical cases that are ghost and tachyon free and have only massive propagating
modes. The cases found previously in [1] are indicated with an asterisk followed by its original numbering. Note that there are typos of
the b sectors of Cases 30 and 31 (old numbers 7 and 8) in [1].

No. Massive mode b sectors

20 0− fA2
v; A0js2l ; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞN; ðA0 & A0ÞNjðA0 & a2l ÞN; A0; A0js2l g

21 0− fA2
v; A0js2l ; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞN; ðA∞ & A0ÞNjðA∞ & a2l ÞN; A0; A0js2l g

22 0− fA2
v; A0js2l ; ðA∞ & A0ÞNjðA∞ & s2l ÞNjðA∞ & a2l ÞN; ðA0 & A0ÞNjðA0 & a2l ÞN; A0; A0js2l g

23 0− fA2
v; A0js2l ; ðA∞ & A0ÞNjðA∞ & s2l ÞNjðA∞ & a2l ÞN; ðA∞ & A0ÞNjðA∞ & a2l ÞN; A0; A0js2l g

24 0− fA2
v; A0js2l ; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞN; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×;×g
�525 0− fA2

v; A0js2l ; A0js2l ja2l ; A0ja2l ;×;×g
�626 0− fA2

v;×;×; A0ja2l ;×;×g
27 0− fA2

v;×;×; ðA2
l & A0

l ÞNjðA2
l & a2l ÞN;×; A2

l g
28 0− fA2

v;×; A2
l ; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×;×g
29 0− fA2

v; A0js2l ; ðA2
l & A0

l ÞNjðA2
l & s2l ÞNjðA2

l & a2l ÞN; A0ja2l ; A2
l ;×g

�730 0− fA2
v;×; A2

l ; A
0ja2l ; A2

l ;×g
�831 0− fA2

v; A2
l ;×; A

0ja2l ;×;×g
32 0− fA2

v;×; A0js2l ja2l ; ðA0 & A0ÞNjðA0 & a2l ÞN; A0; A0js2l g
33 0− fA2

v;×; A0js2l jA2
l ; ðA∞ & A0ÞNjðA∞ & a2l ÞN; A0; A0js2l g

34 0− fA2
v; A2

l ; A
2
l ; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×;×g
�935 0− fA2

v;×; A2
l ; A

0ja2l ;×; A2
l g

�1036 0− fA2
v; A2

l ; A
2
l ; A

0ja2l ; A2
l ;×g

37 0− fA2
v; A0js2l ; ðA2

l & A0
l ÞNjðA2

l & s2l ÞNjðA2
l & a2l ÞN; A0ja2l ;×; A2

l g
38 0− fA2

v; A2
l ; A

0js2l ja2l ; ðA0 & A0ÞNjðA0 & a2l ÞN; A0; A0js2l g
39 0− fA2

v; A2
l ; A

0js2l ja2l ; ðA∞ & A0ÞNjðA∞ & a2l ÞN; A0; A0js2l g
40 0− fA2

v; A2
l ;×; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×; A2
l g

41 0− fA2
v; A0js2l ; A0js2l ja2l ; ðA2

l & A0
l ÞNjðA2

l & a2l ÞN;×; A2
l g

42 0−; 1− fA2
v; A0js2l ; ðA2

v & A0
vÞNjðA2

v & s2vlÞNjðA2
v & a2vlÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g

43 0−; 1þ fA2
v; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA2

v & A0
vÞNjðA2

v & a2vlÞN; A0; A0js2l g
44 1−; 2− fA0; A0js2l ; ðA2

v & A0
vÞNjðA2

v & s2vlÞNjðA2
v & a2vlÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2

v; A0js2l g
45 1þ; 2− fA0; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA2

v & A0
vÞNjðA2

v & a2vlÞN; A2
v; A0js2l g

46 0−; 2− fA2
v; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA0 & A0ÞNjðA0 & a2l ÞN; A2

v; A0js2l g
47 1− fA0; A0js2l ; ðA2

v & A0
vÞNjðA2

v & s2vlÞNjðA2
v & a2vlÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g

48 1þ fA0; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA2
v & A0

vÞNjðA2
v & a2vlÞN; A0; A0js2l g

49 0− fA2
v; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A0; A0js2l g

50 2− fA0; A0js2l ; ðA0 & A0ÞNjðA0 & s2l ÞNjðA0 & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g

51 2− fA0; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA0 & A0ÞNjðA0 & a2l ÞN; A2
v; A0js2l g

52 2− fA0; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g

53 2− fA0; A0js2l ; ðA∞ & A0ÞNjðA∞ & s2l ÞNjðA∞ & a2l ÞN; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g

54 2− fA0; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; ðA∞ & A0ÞNjðA∞ & a2l ÞN; A2
v; A0js2l g

55 2− fA0;×; A0js2l ja2l ; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g

56 2− f×; A0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; A0ja2l ; A2
v; A0js2l g

57 2− fA2
l ; A

0js2l ; ðA∞ & A−2ÞNjðA∞ & s0l ÞNjðA∞ & a0l ÞN; A0ja2l ; A2
v; A0js2l g

58 2− fA0; A2
l ; A

0js2l ja2l ; ðA∞ & A−2ÞNjðA∞ & a0l ÞN; A2
v; A0js2l g
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b−1ð0þÞ ¼
�

1

2t3

�
; ð8Þ

so the field in this sector is not propagating, and the
corresponding propagator is ∼k0 at high energy. The key
point, however, is that there is no dynamical term in the
Lagrangian for the field corresponding to (8). Thus, one can
integrate out this nonpropagating field in the path integral,
which is equivalent to substituting for it in the Lagrangian
using its classical equation of motion obtained by varying
the nonpropagating field. This is most transparently
achieved by first introducing polarization basis vectors
to decompose the fields and the SPOs, as discussed in
Appendix A. One then expands the fields in terms of these
basis vectors,

jAi ¼
X

J;P;i;m

PĀi;JP;mji; JP;mi; ð9Þ

from which one obtains the relation

P̂jiðJPÞjAi ¼ Āi;JP;mjj; JP;mi: ð10Þ

The Lagrangian corresponding to the 0þ sector then
becomes

Lð0þÞ ¼ t3Ā2
1;0þ;0; ð11Þ

and the equation of motion is simply Ā1;0þ;0 ¼ 0, so one can
simply ignore this sector. One might alternatively use the
Lagrangian containing the source current here, so that the
equation of motion becomes 2t3Ā1;0þ;0 ¼ j̄1;0þ;0, where
j̄1;0þ;0 is appropriate expansion of the source current in
the polarization. Since we are considering only free-field
theories, however, the source currents can themselves be
due only to the gauge fields and thus at least quadratic.
Hence, these source currents can only affect the fields to the
next order, so we can neglect them in the linearized
Lagrangian.
The 1− sector of Case 8 can also contain nonpropagating

fields. The a matrix for this sector is

að1−Þ¼2

A A s a0
BBB@

3k2ðr1þr5Þþ2t3
ffiffiffi
2

p
t3 −i

ffiffiffi
2

p
kt3 i

ffiffiffi
2

p
kt3ffiffiffi

2
p

t3 t3 −ikt3 ikt3

i
ffiffiffi
2

p
kt3 ikt3 k2t3 −k2t3

−i
ffiffiffi
2

p
kt3 −ikt3 −k2t3 k2t3

1
CCCA
;

which is singular as a result of gauge invariances. One
may render the matrix nonsingular and thereby fix the
gauge by, for example, choosing the first two rows and
columns to form the corresponding b matrix, in which
case the sector contains a propagating A particle and a
nonpropagating A particle with some mixing term. The
resulting determinant is

det½bð1−Þ� ¼ 4

3
ðr1 þ r5Þt3k2; ð12Þ

so there can only be massless modes in this sector. Using
the expansion (10) to reconstruct the Lagrangian corre-
sponding to the 1− sector, one obtains

Lð1−Þ ¼ −
X1
m¼−1

fĀ1;1−;m½−3ðr1 þ r5Þ∂2 þ 2t3�Ā1;1−;m

þ2
ffiffiffi
2

p
t3Ā1;1−;mĀ2;1−;m þ t3Ā2

2;1−;mg: ð13Þ

Hence, it is clear that there is a propagating Ā1;1−;m field that
is mixed with a Ā2;1−;m field without a dynamical term. One
can thus integrate out the latter field using its classical
equation of motion,

Ā2;1−;m ¼ −
ffiffiffi
2

p
Ā1;1−;m; ð14Þ

and the Lagrangian becomes

Lð1−Þ ¼ −
X1
m¼−1

fĀ1;1−;m½−3ðr1 þ r5Þ∂2�Ā1;1−;mg: ð15Þ

This is consistent with there being no massive mode in this
sector. Furthermore, one finds that the effect of integrating
out the nonpropagating fields in the 0þ and 1− sectors in
Case 8 is the same as setting t3 to zero, and all the b
matrices become exactly the same as those of Case 9.
Hence, at least in the free-field case we are considering, in
which the gauge fields do not couple to external matter
fields, Case 8 and 9 are actually describing the same theory.
Moreover, since Case 9 may be shown to satisfy Sezgin’s
original PCR criterion in [2], there is thus no contradiction
in Case 8 satisfying our alternative PCR criterion. Indeed,
the alternative criterion allows us to identify Case 8 as PCR,
which would be missed using the original PCR criterion.
For all Cases 1–58, one may similarly check whether,

after integrating out the nonpropagating fields, the remain-
ing fields are consistent with the particle contents that their
determinants of b matrices indicate. Because all the b
matrices containing nonpropagating terms in these cases
are in the form of (6), one can perform this check by
examining only all the “special cases” of the form (6)
(including the critical cases and those with the parameters
making any of the elements zero). We find that all of them
are consistent.
Moreover, as onemight expect, onemay show that similar

equivalences as Case 8 and 9 exist between other cases. For
example, one may further demonstrate in the manner out-
lined above that: Case 2 is equivalent toCase 1;Cases 12, 14,
and 15 are equivalent to Case 10; Case 16 is equivalent to
Case 11; Case 25 is equivalent to Case 26; Case 29 is
equivalent to Case 30; Case 37 is equivalent to Case 35; and
Case 41 is equivalent to Case 27. Unfortunately, it is not so
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straightforward to establish the equivalences among the
other cases. For the critical cases we do not list in this paper,
we anticipate that there will similarly be some groups of
equivalent cases in the above sense, provided they do not
couple to external matter fields, so that onemay simplify the
“tree” of critical cases. We leave this analysis for future
work. Nonetheless, we do find that after integrating out all
the nonpropagating fields in Cases 1–58, all the resulting
theories satisfy the original PCR condition. Hence, allowing
for nonpropagating fields does not violate this criterion in
practice.
In conclusion, we have found 48 further critical cases of

PGTþ that are both PCR and free of ghosts and tachyons.
This is achieved by extending the range of critical cases
considered beyond those investigated in [1], which previ-
ously identified 10 such theories. In future work, we plan to
investigate all these theories further, but especially those that
possess massless propagating particles, by considering their
phenomenology in the context both of cosmological and
compact object solutions. Note that while a theory may pass
our PCR criterion, this is no guarantee that the theory is
renormalizable, and this would take independent investiga-
tion and the inclusion of interactions. Indeed, it is shown in
[7,8] that linearizing a theory can change its structure
qualitatively, so that the degrees of freedom and gauge
invariances may differ. One must therefore perform a full
nonlinear analysis to determine whether this is the case for
the theories considered here. We have also clarified the role
played by nonpropagating modes in determining whether a
theory is PCR.We illustrate this issue further inAppendixB,
where we demonstrate the methods used in this paper in the
more familiar and much simpler cases of the Proca and
Stueckelberg theories for a massive spin-1 particle.
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APPENDIX A: POLARIZATION BASIS VECTORS

Assuming kA ¼ ðk0; 0; 0; k3Þ, we define the polarization
basis vectors for four-vectors as

ϵAð1−;1Þ ¼
1ffiffiffi
2

p

0
BBB@

0

1

i

0

1
CCCA; ϵAð1−;−1Þ ¼

1ffiffiffi
2

p

0
BBB@

0

−1
i

0

1
CCCA;

ϵAð1−;0Þ ¼
1

k

0
BBB@

k3

0

0

k0

1
CCCA; ϵAð0þ;0Þ ¼

1

k

0
BBB@

k0

0

0

k3

1
CCCA: ðA1Þ

The basis vectors satisfy the orthonormal and completeness
conditions,

ϵ�AðJP1
1
;m1Þ

ϵA;ðJP2
2
;m2Þ ¼ P1δJ1;J2δP1;P2

δm1;m2
; ðA2Þ

X
J;P;m

PϵAðJP;mÞϵ
�
B;ðJP;mÞ ¼ δAB: ðA3Þ

For the higher rank tensors, we can apply the addition
rules for angular momentum. For example, a (2,0)-tensor
fAB can be decomposed as

fAB ∈ ð0þ ⊕ 1−Þ⊗ ð0þ ⊕ 1−Þ
¼ ð0þ ⊗ 0þÞ⊕ ð0þ ⊗ 1−Þ⊕ ð1− ⊗ 0þÞ⊕ ð1− ⊗ 1−Þ
¼ 0þ ⊕ 1− ⊕ 1− ⊕ ð0þ ⊕ 1þ ⊕ 2þÞ: ðA4Þ

The polarization basis is obtained using Clebsch-
Gordan coefficients.2 For example, some basis elements
ϵABðJP1

1
;J

P2
2
;J0P0 ;mJ0 Þ

for JP1

1 ⊗ JP2

2 are

ϵABð1−;1−;2þ;þ2Þ ¼ϵAð1−;1Þ⊗ϵBð1−;1Þ;

ϵABð1−;1−;2þ;þ1Þ ¼
1ffiffiffi
2

p ðϵAð1−;1Þ⊗ϵBð1−;0ÞþϵAð1−;0Þ⊗ϵBð1−;1ÞÞ: ðA5Þ

Moreover, one can decompose any (2,0) tensor into
fAB ¼ sAB þ aAB, where s is symmetric and a is antisym-
metric. One observes from the Clebsch-Gordan coefficients
table that the 2þ and 0þ sectors are symmetric in A and B,
whereas the 1þ sector is antisymmetric. One may thus
make a linear combination of the two 1− sectors to obtain a
symmetric sector and an antisymmetric sector,

ϵABðsym;1−;mÞ ≡
1ffiffiffi
2

p ðϵABð0þ;1−;1−;mÞ þ ϵABð1−;0þ;1−;mÞÞ; ðA6Þ

ϵABðant;1−;mÞ ≡
1ffiffiffi
2

p ðϵABð0þ;1−;1−;mÞ − ϵABð1−;0þ;1−;mÞÞ: ðA7Þ

Hence, we can conclude that the symmetric part of (A4) is
2þ ⊕ 1− ⊕ 0þ ⊕ 0þ, which has 5þ3þ1þ1¼10 degrees
of freedom, and the antisymmetric part is 1þ ⊕ 1−, which
has 3þ 3 ¼ 6 degrees of freedom, all as expected.
One can similarly decompose the AABC fields, which are

antisymmetric on A and B, into

AABC ∈ ð1þ ⊕ 1−Þ ⊗ ð0þ ⊕ 1−Þ
¼ 1þ ⊕ ð0− ⊕ 1− ⊕ 2−Þ ⊕ 1− ⊕ ð0þ ⊕ 1þ ⊕ 2þÞ:
¼ 0− ⊕ 0þ ⊕ 2ð1−Þ ⊕ 2ð1þÞ ⊕ 2− ⊕ 2þ;

2We adopt the notation of the Particle Data Group, which can
be found at http://pdg.lbl.gov/2008/reviews/clebrpp.pdf.
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for which the basis is straightforwardly constructed follow-
ing an analogous approach to that illustrated above.
The bases for higher rank tensors satisfy similar ortho-

normality and completeness conditions to (A2) and (A3),

ϵ�αði1;JP11 ;m1Þ
ϵ
α;ði2;JP22 ;m2Þ ¼ P1δi1;i2δJ1;J2δP1;P2

δm1;m2
; ðA8Þ

X
i;j;P;m

ðPϵαði;JP;mÞϵ
�
β;ði;JP;mÞÞ ¼ Iαβ; ðA9Þ

where i is the label of the basis in the spin sector JP, as there
might be more than one basis in a sector. The α and β
indices are shorthand for some generic indices, such
as α ¼ A1A2…An.
We can write the basis vectors together with its corre-

sponding column vector ea indicating the field (see (10) in
[1]) in bra-ket notation ji; JP;mi, and the SPOs in [1] are
related with those polarization basis vectors by

P̂ijðJPÞ ¼
X
m

ji; JP;mi h j; JP;mj: ðA10Þ

Note that the bras and kets here do not denote a quantum
state, but are used merely to denote the field decomposition
in a straightforward manner. We are taking inspiration
from [9,10] in this section.

APPENDIX B: PROCA AND
STUECKELBERG THEORIES

In this Appendix, we illustrate the methods used in this
paper in the context of the more familiar and much simpler
Proca and Stueckelberg theories.
Proca theory contains a massive vector field Bμ and has

the free-field Lagrangian,

LPr¼−
1

4
ð∂μBν−∂νBμÞð∂μBν−∂νBμÞþ1

2
m2BμBμ; ðB1Þ

with m > 0, which has no gauge freedoms. The corre-
sponding SPOs are

Pð0þÞ ¼ B�
ρ

Bμ

ðΩμρÞ ; Pð1−Þ ¼ B�
ρ

Bμ

ðΘμρÞ
;

ðB2Þ

where Ωμρ ¼ kμkρ=k2 and Θμρ ¼ ημρ − kμkρ=k2. The a
matrices of the theory are

að0þÞ ¼ B�
μ

Bμ

ðm2Þ ; að1−Þ ¼ B�
μ

Bμ

ð−k2 þm2Þ ; ðB3Þ

which are identical to the b matrices because there are no
gauge invariances and source constraints. Therefore, the 0þ

sector is nonpropagating and the 1− sector corresponds to a
k−2 propagator. Thus, Proca theory satisfies the alternative
PCR condition in [1], and hence we classify it as PCR.
Conversely, Proca theory clearly violates Sezgin’s origi-

nal PCR condition in [2]. Indeed, Proca theory is generally
considered to be non-PCR in the literature, because the
propagator is

DðkÞμν ¼
ημν −

kμkν
m2

k2 −m2
; ðB4Þ

so some components of it become ∼k0 when k2 → ∞ and
the offending term kμkν cannot be eliminated by the
renormalization procedure [11]. Using the polarization
basis method mentioned in the main text, however, we
can integrate out the nonpropagating 0þ part. The free
Lagrangian then becomes LPr with the condition ∂μBμ ¼ 0,
and the resulting propagator goes as k−2, so the theory
is PCR.
One may gain some insight into this apparent contra-

diction by noting that Proca theory may be considered as
a gauge-fixed version of a gauge theory, namely the
Stueckelberg theory, for which the Lagrangian is [12–14]

LSt ¼ −
1

4
ð∂μBν − ∂νBμÞð∂μBν − ∂νBμÞ þ 1

2
m2BμBμ

þ 1

2
∂μϕ∂μϕþmϕ∂μBμ ðB5Þ

and which possesses the gauge invariance,

B0
μ ¼ Bμ þ ∂μΛ; ϕ0 ¼ ϕþmΛ: ðB6Þ

The nonzero a matrices are

að0þÞ ¼ ϕ�

B�
μ

ϕ Bμ�
k2 −ikm
ikm m2

�
; ðB7Þ

að1−Þ ¼ B�
μ

Bμ

ð−k2 þm2Þ ; ðB8Þ

and the corresponding SPOs are

Pð0þÞ¼ ϕ�

B�
ρ

ϕ Bμ�
1 k̃μ

k̃ρ Ωμρ

�
; Pð1−Þ¼B�

ρ

Bμ

ðΘμρÞ ; ðB9Þ

where k̃μ ¼ kμ=
ffiffiffiffiffi
k2

p
. As might be expected, the matrix

að0þÞ is singular, with rank one, and so we can choose to
keep either the ϕ column/row or the B column/row. If we
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choose to keep B, then one recovers Proca’s theory. If we
instead choose to keep ϕ, then the b−1 matrices all go as
∼k−2 in the high-energy limit and the theory thus satisfies the
original PCR condition. Hence, Stueckelberg theory is PCR,

and so Proca theorymust also be PCR, since the two theories
are physically equivalent. Thus, our alternative PCR cri-
terion succeeds in identifying Proca theory as being PCR,
whereas the theory violates the original PCR criterion.
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