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Bayesian inference of gravitational wave signals is subject to systematic error due to modeling
uncertainty in waveform signal models coined approximants. A growing collection of approximants are
available which use different approaches and make different assumptions to ease the process of model
development. We provide a method to marginalize over the uncertainty in a set of waveform approximants
by constructing a mixture-model multiwaveform likelihood. This method fits into existing workflows
by determining the mixture parameters from the per-waveform evidence, enabling the production of
marginalized combined sample sets from independent runs.
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I. INTRODUCTION

Numerical relativity simulations of binary black hole
mergers solve the full Einstein equations numerically and
thus provide the most accurate predictions for the gravi-
tational wave signal from compact binary coalescence
(CBC) events [1–4]. These simulations are computationally
demanding and the requirement by stochastic parameter
estimation methods (see, e.g., [5–10]) to rapidly generate
the waveform at an arbitrary point within the prior space
makes their direct use impractical, except in grid-based
methods [9–11] where the simulations can be precomputed.
To remedy this, a growing collection of rapidly computable
waveform approximants for CBC signals have been devel-
oped [12–33], some of which are tuned to the numerical
relativity simulations.
Typically, inference workflows proceed by first identi-

fying a set of waveforms relevant to the expected signal
based on the signal characteristics identified by the search
pipelines (see Ref. [34] for an overview of the search
process). Then, inference is run for each waveform result-
ing in a set of posterior samples [5]. Differences between
the inferred posteriors for each waveform are understood
to be due to the systematic differences in the waveform
approximants; to create a set of results which are robust to
these systematic waveform uncertainty, the naive-mixing
method (used in, e.g., [34,35]) is to combine equal numbers

of samples from the posterior of each waveform into a
single combined dataset [36].
The choice to combine equal numbers of samples from

multiple waveforms constitutes an equal-weighted proba-
bility on the waveform approximants. In the absence of
additional information, this may appear to be the only
choice. However, there exists additional information in the
quality of the waveform fit to the data: Intuitively the idea
presented in this work is to weight the samples by the
computed posterior evidence. In Sec. II, by treating the set
of approximants as a mixture model, we show how the fit of
the waveforms themselves to the data can be used to infer
the appropriate mixing fraction and combine samples.
In Sec. III, we discuss the effect of uncertainty on the
evidence estimates and in Sec. IV we provide a toy model
to help build intuition. We demonstrate that this method
reduces waveform uncertainty by running an injection and
recovery simulation in Sec. V and apply the method to
GW150914 [37] in Sec. VI. We conclude with a discussion
in Sec. VII.

II. METHOD

Given a set of N waveforms fwlg with equivalently
defined model parameters θ, our goal is to compute
Pðθjd; fwlgÞ, the posterior distribution conditional on both
the data d and the set of waveforms. First, let us associate
to each waveform a hypothesis Hl that the data were
generated with the lth waveform; the hypothesis includes
prior choices for the model parameters θ.
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To obtain the likelihood for some data d, we assume
that the hypotheses are exhaustive such that 1 ¼P

l PðHljd; θ; fξgÞ where fξg is a set of prior-probability
hyperparameters for each hypothesis, ξl ≡ PðHljfξgÞ. For
unitarity, we require ξN ¼ 1 −

P
N−1
l¼0 ξl. The likelihood

can now be written as a mixture model with mixing
parameters ξl:

Pðdjθ; fξgÞ ¼
X
l

PðdjHl; θÞξl: ð1Þ

This multiwaveform likelihood can be used in place of the
usual likelihood (see, e.g., Veitch et al. [5]) to perform
multiwaveform inference. [Note that, if used in practice,
computing the likelihood for each waveform serially will
slow down the per-likelihood compute time; the compu-
tation of PðdjHl; θÞ should instead be parallelized to
reduce the overall compute time.]
While the multiwaveform likelihood is simple to imple-

ment, it does not fit into the typical existing workflows
described above. The solution is to first run inference for
each waveform independently, then infer the posterior
mixing fraction

ξ̂l ≡ PðHljdÞ ¼
Z

dθPðHl; θjdÞ; ð2Þ

where we use a “hat” to distinguish ξ̂l as the posterior
mixing fraction for theHl model. The set fξ̂g sums to unity
and can be used to determine the mixing weights which
should be applied to posterior samples PðθjHl; dÞ. If an
equal-weighted prior probability is assigned to each wave-
form, then

ξ̂l ¼ ZlP
jZj

; ð3Þ

where

Zl ≡ PðdjHlÞ ¼
Z

dθPðdjHl; θÞPðθjHlÞ ð4Þ

is the per-waveform evidence.
For each individual waveform, we run inference and

produce posterior samples. Then, instead of combining the
samples equally, we combine them with weights given by
Eq. (3). This yields a combined set of samples appropri-
ately marginalized over the set of input waveforms. It is
worth stating that this is not the same as marginalizing over
waveform uncertainty in general: Only uncertainty condi-
tional on the input set of waveforms is captured.
This method of combining samples can be used when

different waveform hypotheses imply different priors on
the model parameters. This can be seen in Eq. (4), where
the model-parameter prior, PðθjHlÞ, is conditional on the

waveform hypothesis Hl. Because of this feature, samples
from seemingly different waveform types can be combined,
provided they refer to the same set of underlying model
parameters, but with a differing prior. For example, if w1 is
a waveform including the tidal deformability parameters,
λ1, λ2, this can be combined with samples from w2, if w1

and w2 are equivalent when the tidal deformability param-
eters tend to zero. In this case, the prior on the tidal
deformability parameters for w2 are Dirac delta functions
with peaks at zero.

III. UNCERTAIN MIXING FRACTIONS

The method outlined in Sec. II assumes that the mixing
fractions can be calculated exactly. In practice, for gravi-
tational wave signals, we do not have a closed-form
expression for Eq. (4). Instead, we estimate the evidence
and posterior distribution using stochastic sampling meth-
ods [5–10]. These typically yield an estimated log-evidence
with some uncertainty (usually expressed as an uncertainty
on the log-evidence). For a discussion on how this is
derived for the DYNESTY sampler used in this work, see
Speagle [38].
If the log-uncertainty is sufficiently small with respect to

the differences between log-evidence, it can of course be
neglected. However, in cases where this is not true, care
must be taken: Ignoring the log-evidence uncertainty will
result in an overly constrained posterior.
To include the uncertainty on the log-evidence in the

mixing process, first we must define the distribution
of evidence. For the DYNESTY sampler, we show in the
Appendix that logðZÞ ∼ NormalðlogZ0; σlogðZÞÞ; i.e., the
log-evidence is normally distributed with the mean given
by the estimated log-evidence logZ0 and standard deviation
given by the estimated uncertainty σlogðZÞ.
With an appropriate parametric form of the distribution

of evidence, we then combine samples by the following
process: (a) Draw a set of evidence for each waveform from
their estimated distribution; (b) calculate the weights from
Eq. (3); (c) apply the weights when drawing a sample
from the combined set of samples. This process is then
repeated until a sufficient number of samples are drawn for
the mixed posterior. Removing step (a) of course reduces
the operation to that defined in Sec. II and is appropriate
if the uncertainty on the evidence is sufficiently small.
What effect does uncertainty in the evidence calculations

have on the mixed posterior? To investigate this question,
we perform a simple numerical experiment: We draw two
sets of posterior samples from PðθjAÞ ∼ Normalð−1; 1Þ
and PðθjBÞ∼Normalð1;1Þwhere θ is an arbitrary unknown
variable which we wish to estimate and A and B arbitrarily
label the posterior from two waveforms. We then defined
that logðZA=ZBÞ ¼ 1, but that each of the log-evidence
themselves have a normally distributed uncertainty with
standard deviation σlogðZÞ ¼ 5. Following the procedure
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outlined above, we mix the posteriors. The results are given
in Fig. 1 for both an uncertain mix where we include the
uncertainty on the evidence and certain mix where we
neglect that uncertainty.
Figure 1 illustrates that including the additional uncer-

tainty in the evidence produces a more conservative
estimate. The uncertain mix posterior is less skewed
to the B posterior than the certain mix. We note that
repeating the numerical experiment, but in a case where
logðZA=ZBÞ ¼ 0, i.e., the Bayes factor between the two
posteriors is equally weighted, we find that the uncertain
mixture and the certain mixture are indistinguishable for
any amount of uncertainty in the evidence.
This numerical study suggests it is prudent to include

the effects of uncertainty in the evidence estimates using
the procedure outlined above. This adds little computa-
tional complexity, provided it is easy to sample from the
distribution of evidence.

IV. TOY MODEL

To help understand the method about the method, we
describe here a simple toy model consisting of a sinusoidal
function with a linearly varying angular frequency

yðtÞ ¼ sin
�
ωtþ 1

2
_ωt2

�
: ð5Þ

We then define two waveforms consisting of a choice for
the rate of change of angular frequency:

wA → _ω ¼ 0; ð6Þ

wB → _ω ¼ 0.1: ð7Þ

We simulate data consisting of waveform wB with
Gaussian noise of known standard deviation σ ¼ 0.01.
We then apply inference for wA and wB separately,

producing two disjoint posteriors (see Fig. 2). The goal
of this work is to present a method for combining samples
between waveforms. Given the binary choice between the
two toy-model waveforms, we have two options to do this.
We can mix the posteriors using the posterior mixing
fractions, Eq. (3), or we can apply the likelihood of Eq. (1)
directly and perform inference on the mixture model itself.
For the simulated data with σ ¼ 0.01, the Bayes factor

between the two waveforms is ZB=ZA ≈ 5: indicating a
preference for wB, but not overwhelmingly so. In Fig. 2, we
show the posterior distribution of the only unknown model
parameter ω for four cases (see caption). That the inference
when using only wA is biased is expected since the data
were simulated using wB. This case was specifically chosen
to illustrate the behavior when the data are not sufficiently
informative to rule out the erroneous waveform, ωB.
The results mixing the posteriors according to Eq. (3)

and applying the likelihood Eq. (1), to within the sampling
errors, demonstrate equivalent posteriors. This validates
that the mixing process is equivalent to direct inference.
The combined posterior in Fig. 2 (from either the mixing

or direct methods) is multimodal. This is a proper reflection
of the posterior uncertainty on the model parameter: Each
mode is inherently associated with a different model. This
is happening in this special case because the evidence are
not especially informative: The Bayes factor only demon-
strates a mild preference for ωB.
To help understand the behaviour of the method when the

Bayes factor is more informative about the relative evidence
between the models, in Fig. 3, we repeat the toy model of
Fig. 2, but decreasing the level of noise. In particular, we
reduce the standard deviation σ from 0.01 to 0.009. With this
modest decrease in the noise the Bayes factor is now 4 times

FIG. 1. A comparison of the mixed posterior for an arbitrary
parameter θ from two distributions when neglecting the evidence
uncertainty, certain mix, and when including it, uncertain mix,
using the procedure outlined in Sec. III.

FIG. 2. Posterior distribution of the angular frequency ω as a
relative offset compared to the simulated value ωs for each
waveform separately, and the set of both waveforms. The term
“mixed” refers to calculating the posterior mixing fraction using
Eq. (3); we apply the procedure in Sec. III to include the
numerical uncertainty on the estimated evidence. The term
“direct” refers to applying Eq. (1) directly. In the title, we give
the Bayes factor between the models and the numerical value of ξ̂
neglecting the uncertainty.
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more in favor of B than was the case for Fig. 2.
Correspondingly, the mixing fraction increases and the
posterior is now more weighted to the correct B mode.
Further decreasing the noise, the A mode is eventually (for
Bayes factor above ∼50 or so) entirely ruled out. On the
other hand, if we were to increase the level of noise, we
would see a more equal mixing between the two since the
evidence would favor neither one nor the other.

V. INJECTION AND RECOVERY

To demonstrate the utility of this method, we now run a
simple injection and recovery test. Aligned-spin signals
generated by the IMRPhenomD [21,39] waveform model are
added to simulated colored-Gaussian data from two detec-
tors (Hanford and Livingston) with Advanced LIGO design
sensitivity [40,41]. The data are simulated and analyzed
using the BILBY [8] Bayesian inference software. The
simulated source parameters are generated by random
draws from the prior (see Table I); repeated draws are
made until the network optimal signal-to-noise ratio
exceeds a threshold of 8, a typical search threshold.
For each simulated signal, we recover with either

IMRPhenomC [20] or IMRPhenomD. To probe the inherent
bias, we repeat this process on 500 simulated datasets and
perform a percentile-percentile (PP-test) (based on the work
of Cook et al. [42]). Graphically a PP-test is a plot of the
fraction of signals with the true parameter recovered to
within a credible interval against the credible interval itself
(we show an example later in Fig. 4). The PP-test is a useful
diagnostic for investigating bias: A pass in a PP-test verifies
that the posterior recovery is unbiased with respect to
the injections (i.e., the x% posterior intervals contain the
true values x% of the time). For any PP-test, a summary
statistic is obtained by first calculating a p-value from the
Kolmogorov-Smirnov test on each parameter separately,
then combining these using Fisher’s method. The resulting

set of p-values (for which the null hypothesis is that the
results are unbiased) are given in Table II.
For the case when the injection and recovery are

performed using the same waveform, as expected we find
a p-value indicating the posteriors are unbiased: This
demonstrates that in the absence of systematic differences
in the injections and recovery waveforms, the underlying
method (i.e., the generation of injection values and pos-
terior sampling) is unbiased.

FIG. 3. Repeating the toy simulation of Fig. 2 (see caption
for details), but with a smaller level of noise in the data: The
reduction in noise leads to more informative evidence estimates
and demonstrates the mixed posterior converging to the true value
while neglecting the erroneous model A.

TABLE I. Prior support for the source parameters. χ1;z and χ2;z
use the “z prior” [see Eq. (A7) of Lange et al. [10] ]; the
luminosity distance prior is PðdLÞ ∝ d2L; the inclination angle is
cosine distributed; the declination is sine distributed; all other
parameters are uniformly distributed. The geocentric time tc is
given relative to the simulated trigger time.

Parameter Prior support

Chirp mass M 25 – 100 M⊙
Mass ratio q 0.125–1
Primary spin χ1;z −0.9 – 0.9
Secondary spin χ2;z −0.9 – 0.9
Lum. distance dl 0.1–5 Gpc
Inclination θJN 0 – π rad
Right asc. α 0 – 2π rad
Declination δ −π=2 – π=2 rad
Polarization angle ψ 0 – π rad
Phase ϕ 0 – 2π rad
Geocentric time tc −0.1 – 0.1 s

FIG. 4. We simulate 500 IMRPhenomD signals in advanced-
LIGO design sensitivity noise [40]. Parameter estimation is
performed on all simulated datasets using both the IMRPhenomD

and IMRPhenomC waveforms and the resulting samples are mixed
using the informed-mixture method, i.e., with mixture parameters
calculated from Eq. (3). This figure shown the PP-test diagnostic
plot applied to the 500 mixed posteriors.
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On the other hand, when the recovery waveform
(IMRPhenomC) differs from the injection, the p-value is
small, indicating the results are biased. Per-parameter
analysis indicates that it is the merger time, mass ratio,
and chirp mass parameters which fail the test. The cause for
this, systematic differences between waveforms, is well
understood and expected [43].
The true signal in the simulated dataset is IMRPhenomD.

However, we now consider the case when we have
uncertainty about which waveform best approximates the
signal. Using the method described in Sec. II, the set
of posterior samples conditional on both waveforms is
obtained by mixing together samples from the IMRPhenomC

and IMRPhenomD recovery with a mixing fraction given by the
ratio of their evidence to the total evidence, Eq. (3).
Repeating this for each simulated data segment, we apply
the PP-test to the resulting samples; the PP-test plot itself is
given in Fig. 4 and the combined p-value is labeled as
“informed mix” in Table II. The results are biased, but to a
substantially lesser extent than for IMRPhenomC alone.
That the p-value indicates a bias for the informed-

mixture biased is unsurprising since the PP-test is only
expected to pass when the data generation exactly matches
the assumptions of the model-fitting software [42]; in this
case we have introduced additional uncertainty to the
model fitting.
Mixing the samples according to Eq. (3) is the better

thing to do, given uncertainty about the waveform. The
Gravitational Wave Transient Catalogue [34] used the
naive-mixing method, combining equal numbers of pos-
terior samples from multiple waveforms. We implement
this “naive-mix” method and apply it to the set of samples
from each individual waveform. The resulting p-value is
smaller than the informed mix, indicative of a greater
degree of bias. Nevertheless, it demonstrates that for cases
where the waveforms make highly similar predictions (a
statement that can be quantified by a Bayes factor between
them), the naive-mixing method is reasonable, but should
only be used when the evidence calculations are infeasible.
We have investigated here the typical case for advanced-

era CBC detections in which both waveforms perform
reasonably well in fitting the data (see the next section for a
demonstration). Had the set of injections (or sensitivity of
the simulated instruments) been such that the differences in

waveforms were more apparent, the informed mixing
fraction would preference the injected waveforms and
mix the posterior samples accordingly. As an example,
consider the case where two waveforms (wA and wB) are
applied and each produces a set of 104 posterior samples.
For the probability of including any samples from wB

to be less than 1, ξ̂ < 10−4, which implies the Bayes factor
between them must be ZA=ZB ≲ 10−4. For such a case, the
posterior samples would (almost) all be drawn from wA. If
repeated in a PP-test, the informed-mixture method would
be unbiased, but the naive-mixture method would not.

VI. APPLICATION TO GW150914

To apply the method in practice, we run Bayesian
inference on the first-observed binary black hole coales-
cence, GW150914 [35,37,41]. This system has been well
studied and posterior samples are available [34,35], but
the evidence are not. These original analyses used both
precessing and nonprecessing waveform approximants.
Here, as an illustrative example of the effect of wave-
form-approximant mixing only, we perform analysis for
three nonprecessing waveform approximants, IMRPhenomC

[20], IMRPhenomD [21,39], and SEOBNRv4_ROM [24]. The
analysis is done using BILBY [8] on data from the
Gravitational Wave Open Science Center [44,45] following
the methodology described in Appendix B of Ref. [34].
The evidence computed for each waveform can be used

to construct Bayes factors

ln

�
ZIMRPhenomD

ZSEOBNRv4 ROM

�
¼ 0.02� 0.5 ð8Þ

and

ln

�
ZIMRPhenomD

ZIMRPhenomC

�
¼ 0.5� 0.5: ð9Þ

These results confirm what is known in the literature
(see, e.g., [35,46]): GW150914 and other events seen in
the first and second observing runs of LIGO and Virgo are
not sufficiently loud to decisively distinguish waveform
approximants.
The mixing fractions for these three approximants,

applying Eq. (3), are 0.24, 0.39, and 0.38 for the
IMRPhenomC, IMRPhenomD, and SEOBNRv4_ROM waveforms
respectively. To illustrate the effect of the mixing, in Fig. 5,
we plot the posterior probability density for the detector-
frame chirp mass from the three aligned-spin waveform
approximants and the mixture. Of the three waveforms,
IMRPhenomC has the smaller evidence and only a quarter of
the samples are drawn from this posterior: As a result, the
mixture is closer to the IMRPhenomD and SEOBNRv4_ROM

posteriors.

TABLE II. Table of combined p-values calculated for each
injection-recovery test case. Combinations are made over the full
set of parameters in Table I, except the geocentric time which has
known systematic shifts between waveforms.

Injection Recovery p-value

IMRPhenomD IMRPhenomD 0.45
IMRPhenomD IMRPhenomC <0.01
IMRPhenomD Informed mix 0.045
IMRPhenomD Naive mix 0.0092
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Because the difference in evidence between the wave-
forms is small, as demonstrated by the Bayes factors in
Eq. (8) and (9), the informed-mixing method will yield
results similar to those produced by the naive-mixing
method. With future detections, when the data are more
informative about features in the waveform approximants,
we strongly recommend that the informed-mixing method
be applied when combining samples to ensure the results
properly reflect the posterior uncertainty.

VII. CONCLUSION AND OUTLOOK

The informed-mixing method presented here provides
an improvement on the naive-mixing method to combine
samples frommultiple waveforms by including information
from the estimated evidence about how well the waveforms
fit to the data. Ultimately, this should make it easier to
include multiple waveforms without concern about the
introduction of biases due to suboptimal combination of
posterior samples.
To use this optimal method for multiwaveform inference,

accurate estimation must be made of the waveform evi-
dence, Eq. (4). As such, the ability to properly handle
systematic uncertainty in the waveform is critically under-
pinned by the ability estimate the evidence. We encourage
future analyses of CBC systems to ensure evidence
estimates are calculated and reported. In Sec. III, we
outlined a procedure to include the uncertainty on these
evidence estimates into the mixing process.
The mixture-model method presented in this work was

discussed in the context of multiwaveform inference.
Another systematic uncertainty is in the estimate of the
power spectral density (PSD) used to characterize the
detector noise [47]. The state-of-the-art method (used
in the LIGO Scientific Collaboration and the Virgo
Collaboration [34]) involves applying the BayesLine

algorithm [48,49] which computes a posterior probability
distribution for possible PSDs, then using the median PSD in
parameter estimation analyses [50]. However, marginalizing
over the uncertainty, rather than making a point estimate of
the PSD is preferable. The methodology presented in Sec. II
can be applied to this problem. If multiple runs are
performed with differing draws from the BayesLine
posterior, Eq. (3) can be applied to calculate mixing fractions
with which to combine posteriors. This method of PSD
marginalization is suboptimal compared to the general
method of fitting both the PSD and source model simulta-
neously [50]; however it makes the problem of marginalizing
over PSD uncertainty embarrassingly parallel.
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APPENDIX: THE DISTRIBUTION OF
UNCERTAINTIES FROM DYNESTY

In this appendix, we demonstrate that the distribution of
log-evidence errors from the DYNESTY [38] nested sam-
pling package are normally distributed and conservatively
bounded by the estimated log-evidence uncertainty. We do
this using a one-dimensional problem. We cannot ensure
that the same behavior will occur in higher-dimensional
problems, that will require further testing. But, this inves-
tigation is designed to give some insight into a low-
dimensional case where repeated numerical calculations
are not computationally prohibitive.

FIG. 5. The posterior probability density for the detector-frame
chirp mass, M, in solar masses for three aligned-spin waveform
approximants and their mixture, applying Eq. (3) and the
procedure for including uncertainty in the evidence from Sec. III.
The same uniform prior on detector-frame chirp mass was applied
for all three individual waveform approximants.
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To test the sampler, consider the integral

Z ¼
Z

μmax

μmin

1ffiffiffiffiffiffi
2π

p exp−
μ2

2
1

μmax − μmin
dμ; ðA1Þ

which is the evidence for a Gaussian likelihood with x ¼ 0,
unknown mean μ, but known variance σ2 ¼ 1, and a
uniform prior on ½μmin; μmax�. If the uniform prior is
sufficiently wide with respect to the posterior support,
the integral is simply the Gaussian integral and hence the
evidence has the approximate closed-form solution

Z ≈
1

μmax − μmin
: ðA2Þ

Alternatively, Eq. (A1) can be estimated using stochastic
sampling software.
We use the DYNESTY sampler to compute the evidence and

repeat the calculation 500 times while varying the number of
live points used by the sampler (a quantity proportional to
the expected precision of the evidence estimate). In Table III,
we report summary statistics for the distribution of

f ¼ logZ þ logðμmax − μminÞ; ðA3Þ

the difference between the computed log-evidence and
the logarithm of Eq. (A2), the approximate closed-form
evidence.
That the mean values of Table III are small relative to

the typical errors indicates that the evidence themselves
are not substantially biased. That the first estimate of the
error σ0 is close to, but always greater than, the empiri-
cally measured value σðfÞ suggests that the initial
reported uncertainties on the evidence are conservative
upper estimates. Finally, that the normality test p-values
are all greater than a standard threshold of 0.05 indicates
that the distribution of f, and hence of logZ itself is
consistent with a normal distribution.
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