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When dealing with highly accurate modeling of time and frequency transfers into arbitrarily moving
dielectrics medium, it may be convenient to work with Gordon’s optical spacetime metric rather than the
usual physical spacetime metric. Additionally, an accurate modeling of the geodesic evolution of
observable quantities (e.g., the range and the Doppler) requires us to know the reception or the emission
time transfer functions. In the physical spacetime, these functions can be derived to any post-Minkowskian
orders through a recursive procedure. In this work, we show that the time transfer functions can be
determined to any order in Gordon’s optical spacetime as well. The exact integral forms of the gravitational,
the refractive, and the coupling contributions are recursively derived. The expression of the time transfer
function is given within the postlinear approximation assuming a stationary optical spacetime covered with
geocentric celestial reference system coordinates. The light-dragging effect due to the steady rotation of the
neutral atmosphere of the Earth is found to be at the threshold of visibility in many experiments involving
accurate modeling of the time and frequency transfers.
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I. INTRODUCTION

In geometrical optics, the concept of light rays is
introduced as curves whose tangents coincide with the
direction of propagation of an electromagnetic wave [1]. In
this approximation, refraction operates at two different
levels. First, it causes the phase velocity of the electro-
magnetic wave to slow down or speed up while crossing a
region of higher or lower refractivity, respectively.
Secondly, light rays tend to bend toward regions of higher
refractivity. These outcomes produce an excess path delay
and a geometric delay in the light time. Depending on the
context, these two effects must be either thoroughly
modeled or precisely measured while designing highly
accurate experiments involving time and frequency trans-
fers in the presence of a refractive medium.
In many fields of astronomy such as planetary physics,

astrometry, metrology, geodesy, fundamental physics, or
even cosmology, we can think of situations where refrac-
tivity plays a significant role in the time and frequency
transfers. For instance, we mention that ground-based
astrogeodetic techniques operating for the realization of
the international terrestrial reference frame (ITRF) are
currently limited by errors in modeling the group delay
during the signal propagation through the Earth’s atmos-
phere [2–6]. We also mention the cases of atmospheric
radio occultations [7–12] and atmospheric stellar occulta-
tion experiments [13,14]. Indeed, both techniques aim at
determining a refractivity profile toward an occulting

atmosphere from precise measurements of an a priori
known frequency (usually given in the frame at rest with
the emitter) and from an accurate modeling of the fre-
quency transfer in the presence of the occulting refractive
medium. To an even higher degree of accuracy, we can cite
experiments involving frequency transfers between distant
atomic clocks via a ground-ground free-space optical
(FSO) link [15–17], space-ground FSO link [18,19], and
optical fiber links [20–22]. Finally, let us emphasize that in
the context of cosmology, it has been shown that the
accumulated effect of an artificial refractivity over the
distance-redshift relation perfectly fits the Hubble curve
of type Ia supernovae data in the framework of a non-
accelerating cosmological model [23]. All these examples
highlight how important refraction can be in highly accurate
experiments involving time and frequency transfers.
In the past, two independent theoretical formalisms

have been introduced, namely, Gordon’s optical metric
and the time transfer functions. On one side, Gordon’s
metric allows one to handle refraction in curved spacetime;
on the other side, the time transfer functions formalism
handles theoretical problems related to the time and fre-
quency transfers in curved spacetime. In this work, we
intend to combine the two formalismswhich are discussed in
turn in the next paragraphs.
In the early 1920s, Gordon introduced [24] a useful

theoretical tool to study light refraction caused by an
arbitrarily moving fluid dielectric medium, namely,
Gordon’s optical metric. In this work, he showed that in
the presence of a fluid whose electromagnetic properties
are described by a permittivity ϵðxÞ and a permeability*adrien.bourgoin@unibo.it
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μðxÞ, any solutions to the macroscopic Maxwell’s equa-
tions can be looked at indifferently either in the usual
physical spacetime fitted with the metric tensor, or in an
artificial optical spacetime fitted with Gordon’s metric.
Conveniently, in the optical spacetime and within the
geometric optics approximation, by means of a slightly
different set of Maxwell’s equations, the electromagnetic
properties of the fluid medium are reduced to their vacuum
values, that is to say ϵðxÞ ¼ ϵ0 and μðxÞ ¼ μ0. In other
words, in the physical spacetime, the interaction between
the electromagnetic field and the dielectric fluid medium
must be carefully modeled, whereas in the optical space-
time this interaction is implicitly accounted for in the
vacuum limit of the macroscopic version of Maxwell’s
equations. Consequently, within the geometric optics
approximation, light rays propagate into the dielectrics
medium along null geodesic lines of the optical spacetime.
At the same time, theoretical problems dealing with the

deflection of light rays or the frequency transfer require us
to know the function relating the (coordinate) time transfer
to the coordinate time at the reception and to the spatial
coordinates of the reception and the emission points.
Such a function is called a reception time transfer function.
Obliviously, an emission time transfer function can be
introduced as well. The formalism which aims at determin-
ing the time transfer functions was first introduced by Linet
and Teyssandier [25] relying on the theory of the world
function developed by Synge [26]. General expansions of
the world function and the time transfer functions were first
proposed by Le Poncin-Lafitte et al. [27], and then a
simplified recursive approach, based on the determination
of time delay functions instead of Synge’s world function,
was presented by Teyssandier and Le Poncin-Lafitte [28].
The usefulness of the time transfer function formalism
lies in the fact that it spares one the trouble of explicitly
solving the null geodesic equation which usually leads
to heavy calculations beyond the post-Minkowskian
regime (see, e.g., [29–33] for explicit resolution of the
null geodesic equation in the linearized weak field limit
and see, e.g., [34–36] for resolution in the post-post
Minkowskian approximation). Indeed, assuming that the
emission and reception points events are linked by a null
geodesic path (quasi-Minkowskian path approximation),
the time transfer functions formalism achieves a complete
resolution of the time and frequency transfers to any post-
Minkowskian order by means of an algorithmic resolution
method [28]. For this reason, this formalism is currently
one of the most powerful theoretical tools to derive the time
and frequency transfers along null geodesics of the curved
physical spacetime.
The scope of this paper is to generalize the formalism of

the time transfer functions to optical spacetime. The aim is
to provide a recursive method allowing one to solve
theoretical problems related to the propagation of light
in the presence of an arbitrarily moving refractive medium.

This work is organized as follows. In Sec. II, we present
the notations and conventions used throughout this paper.
Section III is a short reminder about the use of Gordon’s
metric in relativistic geometrical optics. In this section, we
derive the optical counterpart of the scalar Eikonal equation
(fundamental equation of geometrical optics) which is at
the basis of the demonstration which follows. Section IV
is a recall about the time transfer functions formalism.
In Sec. V, by applying a method initially proposed by
Teyssandier and Le Poncin-Lafitte [28], we show that
working in optical spacetime induces the fact that the time
transfer functions can be decomposed into three compo-
nents that we call the gravitational, the refractive, and the
coupling time transfer functions. In Sec. VI, we present the
general expansion of the three contributions. In Sec. VII,
we illustrate the method by computing the time transfer
function of an optical spacetime describing Earth’s rotating
atmosphere in the geocentric celestial reference system
(GCRS) within the postlinear approximation. Finally, we
discuss the importance of taking into account the light-
dragging effect in the future generation of data reduction
software.

II. NOTATIONS AND CONVENTIONS

In this work, the metric of spacetime is denoted by g and
its signature is ðþ;−;−;−Þ. The optical metric (also called
Gordon’s metric) is denoted by ḡ.
We suppose that spacetime is covered with some global

coordinate system ðxμÞ ¼ ðx0; xiÞ. We put x0 ¼ ct with c
being the speed of light in a vacuum and t being the
coordinate time. Greek indices run from 0 to 3 and Latin
indices run from 1 to 3.
Straight bold letters (e.g., x) and italic bold letters

(e.g., x) denote 3-vectors and 4-vectors, respectively.
The 3-vector x can also be characterized by an ordered
triple of coordinate values xi. Similarly, the 4-vector x can
be characterized by an ordered quadruple of coordinate
values xμ. The components of the 4-vector x can be denoted
abstractly by x ¼ ðx0;xÞ. When the 4-vector is a separation
vector between the origin of the coordinate system and a
point event x, we make no distinction between the point
event and the separation vector. Thus, we associate the
point event x with the components x ¼ ðx0;xÞ.
Einstein’s summation convention on repeated indices

is used for expressions like aibi as well as for expressions
like AμBμ. The ordinary Euclidean norm of x is denoted
as jxj and is defined as jxj ¼ ðδijxixjÞ1=2 where δij is the
Kronecker delta. The maximum absolute value of the
component Aμν is denoted as jAμνjmax. The 3-dimensional
antisymmetric Levi-Civita tensor is denoted as eijk.
For the sake of legibility, we employ ðfÞx or ½f�x instead

of fðxÞ whenever necessary. When a quantity fðxÞ is
to be evaluated at two point events xA and xB, we employ
ðfÞA=B to denote fðxAÞ and fðxBÞ, respectively. The partial
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differentiation with respect to coordinates xμ is denoted
∂μ. The physical and the optical covariant differentiations
with respect to xμ are denoted as ∇μ and ∇̄μ, respectively.
Given a scalar function fðxÞ, we have the relation
∇̄μf ¼ ∇μf ¼ ∂μf.
Throughout the paper, we assume the presence of an

arbitrarily moving fluid dielectric medium filling a finite
domain D of spacetime. We call wðxÞ the unit 4-velocity
vector of a point event x belonging to a fluid element of the
optical medium. The expression of wðxÞ is given by

wðxÞ≡ dx
ds

; ð1Þ

where the spacetime interval ds is defined by

ds2 ¼ gμνðxÞdxμdxν: ð2Þ

We call ξiðxÞ the coordinate 3-velocity vector of the
point event x belonging to a fluid element of the optical
medium. Its expression is given by

ξiðxÞ≡ wi

w0
¼ 1

c
dxi

dt
: ð3Þ

Finally, G is the Newtonian gravitational constant.

III. RELATIVISTIC GEOMETRICAL OPTICS

We assume the presence of a fluid optical medium filling
D. Additionally, we consider for simplicity that the fluid’s
electromagnetic properties are linear, isotropic, nondisper-
sive, and can be summarized by two scalar functions,
namely, the permittivity ϵðxÞ and the permeability μðxÞ.
These two quantities completely determine the refractive
properties of the optical medium through the following
relationship:

nðxÞ≡ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðxÞμðxÞ

p
; ð4Þ

where n is the index of refraction of the medium.
When x ∉ D, the permittivity and the permeability

reduce to their vacuum values ϵðxÞ ¼ ϵ0 and μðxÞ ¼ μ0,
respectively. Thus, considering that c≡ ðϵ0μ0Þ−1=2, the
index of refraction becomes nðxÞ ¼ 1. By subtracting its
vacuum value from the index of refraction, we obtain the
refractivity

NðxÞ≡ nðxÞ − 1; ð5Þ

which is obviously null in a vacuum.
In the physical spacetime, the evolution of an electro-

magnetic phenomenon occurring in the presence of an
optical medium is usually described by the macroscopic
version of Maxwell’s equations. These equations are
separated into two distinct sets involving a covariant

antisymmetric tensor Fμν called the electromagnetic field
tensor (or Faraday tensor), and a contravariant antisymmet-
ric tensor Bμν called the electromagnetic field excitation
tensor (or Maxwell tensor), respectively. The macroscopic
version of Maxwell’s equations are given by [37,38]

∂ ½σFμν� ¼ 0; ð6aÞ

∇μBμν ¼ jν; ð6bÞ

where jðxÞ is a 4-vector denoting the free charge density
current. The square brackets denote the complete antisym-
metrization of the enclosed indices.
The first equation (6a) allows one to postulate the

existence of a covector field AμðxÞ, such that the electro-
magnetic field tensor Fμν can be locally written as the
rotational of the covector field, that is

Fμν ¼ Ref∂μAν − ∂νAμg: ð7Þ

The second equation (6b) cannot be used alone to
fully determine the six independent components of the
electromagnetic field excitation tensor Bμν. In addition, it
does not provide a way to determine the components of
the electromagnetic field tensor Fμν which yet governs the
motion of particles through the Lorentz force. Therefore,
Maxwell’s equations must be supplemented with constit-
utive relations.
For an arbitrarily moving medium of permittivity ϵðxÞ

and permeability μðxÞ the covariant constitutive relation-
ships are given by [37]

Bμνwν ¼ ϵc2Fμνwν; ð8aÞ

μB½μνwσ� ¼ F½μνwσ�: ð8bÞ

Equations (8) can be written as a single relationship
involving Bμν, Fμν, and wðxÞ. Indeed, as initially shown by
Gordon [24], when dealing with problems of electromag-
netic waves propagating into dielectrics, it is convenient to
introduce an optical spacetime in which refractivity is
considered as a spacetime curvature. Gordon’s metric (or
optical metric) is defined by

ḡμν ≡ gμν þ γμν; γμν ¼ −
�
1 −

1

n2

�
wμwν; ð9aÞ

with inverse

ḡμν ≡ gμν þ κμν; κμν ¼ ðn2 − 1Þwμwν: ð9bÞ

Making use of Eq. (9b), one can see that Eqs. (8) are
summarized within the single following relation [24]:

μBμν ¼ F̄μν; ð10Þ
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where the optical metric has been used to raise covariant
indices of Fαβ, that is

F̄μν ≡ ḡμαḡνβFαβ: ð11Þ

It is now possible to express Maxwell’s equation in the
optical spacetime. Because the covariant components of the
electromagnetic field tensor are equivalents in both space-
times [39], the first pair of Maxwell’s equations (6a)
remains unchanged. The optical form of the second pair
(6b) is obtained after substituting for Bμν from Eq. (10)
while introducing the optical covariant derivative [23].
After a little algebra, we find

∇̄μ

� ffiffiffi
ϵ

μ

r
F̄μν

�
¼ ffiffiffiffiffi

ϵμ
p

jν: ð12Þ

Equation (12) is perfectly equivalent to Eq. (6b)
equipped with the constitutive relations (8). While working
in the optical spacetime, Eq. (12) allows one to find F̄μν

and Eq. (11) allows one to express the components of the
electromagnetic field tensor in the physical spacetime.
Hereafter, we work in the optical spacetime where the
light propagation into the dielectric medium is simply
given by the vacuum limit of the macroscopic version of
Maxwell’s equations (no free density current, i.e., jν ¼ 0).
In this work, we consider geometrical optics approxi-

mation, so we assume that the 4-potential covector AμðxÞ of
a traveling quasimonochromatic wave possesses an expan-
sion of the form [1]

Aμ ¼ ½aμ þOðω−1Þ�eiωS : ð13Þ

Here S ðxÞ is the usual eikonal function which determines
the surfaces of the constant phase for the wave, aμðxÞ is the
complex covector amplitude varying slowly in comparison
toS ðxÞ, and ω is a bookkeeping parameter that we take to
be high during our manipulations [40].
Then substituting for Aμ from Eq. (13) into (7) allows

one to infer

Fμν ¼ Ref½iωfμν þOðω0Þ�eiωS g; ð14Þ

where fμνðxÞ represent the coordinates of the electromag-
netic field tensor amplitude, that is

fμν ¼ kμaν − kνaμ; ð15Þ

with kμ being the wave covector defined by

kμ ≡ ∂μS : ð16Þ

We can introduce the contravariant optical wave vector
such that

k̄μ ≡ ḡμνkν; ð17Þ

where the low index has been raised with the help of the
optical spacetime metric. We can directly check from the
inverse conditions ḡμσ ḡσν ¼ δνμ that the covariant coordi-
nates of the wave vector are identical in physical and optical
spacetimes; that is to say

k̄μ ¼ kμ: ð18Þ
Assuming that the 4-potential fulfills the Lorentz gauge

in the optical spacetime, that is

∇̄μĀμ ¼ 0; ð19Þ

where we introduced Āμ ≡ ḡμνAν, and we find

ḡμνkμaν ¼ 0 ð20Þ

within the geometrical optics approximation. This relation-
ship states the orthogonality between the optical wave
vector k̄ and the wave covector amplitude aμ.
Finally, the fundamental equations of geometrical optics

can be derived from the vacuum limit of the optical version
of Maxwell’s equations. We first determine the optical
electromagnetic field tensor by making use of Eqs. (11) and
(14). Then by taking the covariant derivative of F̄μν, we find

∇̄μF̄μν ¼ −Ref½ω2kμf̄μν þOðωÞ�eiωS g; ð21Þ

where we introduced f̄μν ≡ ḡμαḡνβfαβ. By substituting this
result into the vacuum limit of Eq. (12) and by restricting
ourselves to the geometrical optics order, we deduce

Refkμf̄μνg ¼ 0: ð22Þ

Then substituting for f̄μν from Eq. (15) into (22) and
considering (20), we finally deduce

ḡμνkμkν ¼ 0: ð23Þ

This is the fundamental equation of geometrical optics
expressed in optical spacetime. After inserting Eq. (16), we
infer that the phase S ðxÞ satisfies the well-known scalar
Eikonal equation

ḡμν∂μS ∂νS ¼ 0: ð24Þ
We close this section by showing that k̄ is a null vector

satisfying the geodesic equation for the optical metric.
From Eqs. (23) and (18), we easily infer

ḡμνk̄μk̄ν ¼ 0: ð25Þ

This relation shows that k̄ is indeed isotropic for the
optical metric ḡμν. Then we differentiate Eq. (23) with
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respect to xσ . Considering the symmetry of the components
of the optical metric together with Eq. (17), it becomes

k̄νð∇̄σkνÞ ¼ 0: ð26Þ

Making use of the definition (16), we infer ∇̄σkν ¼ ∇̄νkσ.
Finally, considering Eqs. (17) and (18), we deduce

ðk̄ν∇̄νÞk̄σ ¼ 0; ð27Þ

which states [together with Eq. (25)] that curves admitting
k̄ as a tangent vector are null geodesic lines of the optical
metric. In that respect, a null line which is the solution of
Eq. (27) can be interpreted as a ray of light whose tangent at
any point x is orthogonal to the surface of the constant
phase S ðxÞ [26].

IV. TIME TRANSFER FUNCTIONS FORMALISM

Let us consider a light ray Γ propagating in a region of
spacetime covered with some coordinate system ðxμÞ. Let
ðctA;xAÞ be the components of the point event xA. We
introduce CA, the curve of the parametric equations x ¼
xAðτÞ with τ being a parametrization of CA. Let us suppose
that the coordinate system is chosen such that CA is a
timelike worldline for any xA, which means that ∂=∂x0 is a
timelike vector field, that is to say g00 > 0 everywhere. Let
xA be the point event where Γ is emitted and let xB be the
point event of components ðctB;xBÞ where it is observed.
The quantity tB − tA is the (coordinate) travel time of the
light ray connecting the emission point event xA and the
reception point event xB. This quantity allows us to
introduce the time transfer functions T r;Γ and T e;Γ [27] as

tB − tA ≡ T r;ΓðxA; tB;xBÞ≡ T e;ΓðtA;xA;xBÞ: ð28Þ

We call T r;Γ the reception time transfer function and T e;Γ
the emission time transfer function associated with Γ.
As shown in [41], given a point event xB and a

spatial position xA, Γ is not unique in general. Thus, let
fΓ½σ�ðxA; xBÞgσ∈N be a family of light rays intersecting xB
and flowing from the different point events

x½σ�A ∈ CA; x½σ�A ¼ ðct½σ�A ;xAÞ: ð29Þ

For each Γ½σ�, there exists a reception time transfer function,
denoted by T r;Γ½σ� ðxA; tB;xBÞ, such that

tB − t½σ�A ¼ T r;Γ½σ� ðxA; tB;xBÞ ð30Þ

(the same reasoning works for the emission time transfer
function as well).
This fact shows that, in general, we cannot expect to find

a unique reception (or emission) time transfer function.
However, for a very particular type of null geodesics,

referred to as quasi-Minkowskians [41,42], it has been
shown that the reception (or the emission) time transfer
function, if it exists, can be uniquely determined [28].
Henceforth, we assume that Γ is a quasi-Minkowskian

light ray so that the corresponding time transfer functions
are indeed unique. In agreement with this assumption, we
suppose that the past null cone at xB intersects CA at one and
only one point xA. Therefore, we can rewrite Eq. (28) as

tB − tA ≡ T rðxA; tB;xBÞ≡ T eðtA;xA;xBÞ: ð31Þ

Hereafter, in order to shorten future notations, we
introduce the reception and the emission range transfer
functions being defined by

RrðxA; xBÞ≡ cT rðxA; tB;xBÞ; ð32aÞ

and

ReðxA;xBÞ≡ cT eðtA;xA;xBÞ: ð32bÞ

An important theorem (cf. Theorem 1 of [27]) states that
the covariant coordinates of the tangent vector are totally
known as soon as one of the time transfer functions (or
equivalently, one of the range transfer functions) is explic-
itly determined. Therefore, if we define

ðliÞA=B ≡
�
ki
k0

�
A=B

; ð33Þ

we have the following relationships:

ðliÞA ≡ ∂Rr

∂xiA ¼ ∂Re

∂xiA
�
1þ ∂Re

∂x0A
�

−1
; ð34aÞ

ðliÞB ≡ −
∂Rr

∂xiB
�
1 −

∂Rr

∂x0B
�

−1
¼ −

∂Re

∂xiB ; ð34bÞ

and

ðk0ÞB
ðk0ÞA

≡ 1 −
∂Rr

∂x0B ¼
�
1þ ∂Re

∂x0A
�

−1
: ð34cÞ

Consequently, Eqs. (34) completely solve theoretical
problems related to frequency transfer. Indeed, it is well
known that the instantaneous expression of the Doppler
shift along the null-geodesic path between the emitter and
the receiver can be expressed as [26]

νB
νA

≡ ðuμkμÞB
ðuμkμÞA

¼ ðu0k0ÞB
ðu0k0ÞA

ð1þ βiliÞB
ð1þ βiliÞA

; ð35Þ

where ðuÞA=B is the emitter/receiver’s unit 4-velocity
vectors being defined as
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ðuÞA=B ≡
�
dx
ds

�
A=B

; ð36Þ

with ds introduced in Eq. (2).
By definition, the 4-velocities satisfy the unity condition

ðgμνuμuνÞA=B ¼ 1, which implies

ðu0ÞA=B ¼ ðg00 þ 2g0iβi þ gijβiβjÞ−1=2A=B : ð37Þ

The quantities ðβiÞA=B in Eq. (35) represent the coordinates
of the emitter/receiver’s coordinate 3-velocity vectors and
are defined such that

ðβiÞA=B ≡
�
ui

u0

�
A=B

¼ 1

c

�
dxi

dt

�
A=B

: ð38Þ

It is then straightforward to determine the exact
expression of the instantaneous Doppler formulation in
terms of the range transfer functions [32,43,44]. Indeed,
after inserting Eqs. (34) and (37) into Eq. (35), we infer

νB
νA

¼ ðu0ÞB
ðu0ÞA

qB
qA

; ð39Þ

with

qA ¼ 1þ βiA
∂Rr

∂xiA ¼ 1þ ∂Re

∂x0A þ βiA
∂Re

∂xiA ; ð40aÞ

qB ¼ 1 −
∂Rr

∂x0B − βiB
∂Rr

∂xiB ¼ 1 − βiB
∂Re

∂xiB ; ð40bÞ

and

ðu0ÞB
ðu0ÞA

¼ ðg00 þ 2g0iβi þ gijβiβjÞ1=2A

ðg00 þ 2g0iβi þ gijβiβjÞ1=2B

: ð41Þ

From the fundamental equation of geometrical optics
[see Eq. (23)], we know that the covariant coordinates of
the 4-wave optical vector at point events xA or xB satisfy a
relation as follows:

ðḡμνkμkνÞA=B ¼ 0: ð42Þ

Then dividing by ½ðk0ÞA=B�2 and making use of Eqs. (31)–
(34), we infer the following theorem which generalizes
Theorem 1 of [28] to optical spacetime.
Theorem 1.— Within geometrical optics approximation,

the range transfer functions Rr and Re satisfy the follow-
ing Hamilton-Jacobi-like equations over the optical space-
time, namely:

ḡ00ðx0B −Rr;xAÞ þ 2ḡ0iðx0B −Rr;xAÞ
∂Rr

∂xiA
þ ḡijðx0B −Rr;xAÞ

∂Rr

∂xiA
∂Rr

∂xjA
¼ 0; ð43aÞ

and

ḡ00ðx0A þRe;xBÞ − 2ḡ0iðx0A þRe;xBÞ
∂Re

∂xiB
þ ḡijðx0A þRe;xBÞ

∂Re

∂xiB
∂Re

∂xjB
¼ 0; ð43bÞ

respectively.
This theorem is at the basis of the demonstration for

deriving the integral form of the range and then the time
transfer functions. Henceforth, in order to avoid repetitions,
we pursue the demonstration giving details only for the
reception time delay function. However, the same results
can be derived for the emission time delay function by
applying the exact same reasoning.

V. INTEGRAL FORM OF THE
TIME DELAY FUNCTIONS

Now let us assume that the physical spacetime metric
takes the following form

gμν ¼ ημν þ hμν ð44aÞ

throughout spacetime, where ημν is the Minkowski metric
and hμν is the gravitational perturbation. In Cartesian
coordinates, ημν ¼ diagðþ1;−1;−1;−1Þ. The contravar-
iant components of the physical spacetime metric can be
decomposed as

gμν ¼ ημν þ kμν; ð44bÞ

where the components kμν satisfy

kμν ¼ −ημαηβνhαβ − ημαhαβkβν: ð45Þ

Therefore, the optical spacetime metric (9a) can be
expressed as

ḡμν ¼ ημν þHμν; ð46aÞ

with the contravariant components

ḡμν ¼ ημν þ Kμν: ð46bÞ

Thus, the optical metric reduces to the sum of the flat
Minkowski metric plus a spacetime curvature contribution
which is given by
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Hμν ¼ hμν þ γμν; ð47aÞ

with the contravariant components

Kμν ¼ kμν þ κμν: ð47bÞ

From here we suppose that the curvature contribution is
small so that spacetime is mainly flat; that is to say

jhμνjmax ≪ jημνjmax; jγμνjmax ≪ jημνjmax: ð48Þ

In other words, we focus on the post-Minkowskian
approximation. Under this condition, we ensure that the
null geodesic path is quasi-Minkowskian.
The form of the optical metric in Eqs. (46) implies that

the reception and the emission range transfer functions can
be looked for according to the following expressions:

RrðxA; xBÞ ¼ jxB − xAj þ ΔðxA; xBÞ; ð49aÞ

and

ReðxA;xBÞ ¼ jxB − xAj þ ΞðxA;xBÞ; ð49bÞ

respectively. Following [28], we will call Δ=c the reception
time delay function and Ξ=c the emission time delay
function [45].
Now if we assume that the reception point event xB is

perfectly known, then we can regard its components tB and
xB as fixed parameters. Hence, the reception time delay
function becomes a function of the spatial components of
the emission point event xA [46]. Thus, if we now substitute
x to xA, the reception time delay function Δðx; xBÞ=c
uniquely defines the point event x−ðxÞ for the given set of
spatial components x, that is to say

x−ðxÞ ¼ ðx0B − jxB − xj − Δðx; xBÞ;xÞ: ð50Þ

Furthermore, assuming that the point event x− lies in the
vicinity of xB, we can determine the spatial variation of
the reception time delay function. Indeed, after inserting
Eqs. (49a) and (46b) into (43a) taken at x− instead of xA, we
deduce the following relationship [28]:

−2Ni∂iΔðx; xBÞ ¼ Ω−ðx−; xBÞ; ð51Þ

where N ¼ ðxB − xÞ=jxB − xj, and

Ω−ðx−; xBÞ ¼ ðK00 − 2K0iNi þ KijNiNjÞx−
þ 2ðK0i − KijNjÞx−∂iΔðx; xBÞ
þ ðηij þ KijÞx−∂iΔðx; xBÞ∂jΔðx; xBÞ: ð52Þ

Since x is a free variable, we follow [28] and choose for
convenience to focus on the case where x is varying along

the straight line segment connecting xA to xB, that is to say
x ¼ z−ðλÞ, where

z−ðλÞ ¼ xB − λRABNAB; 0 ≤ λ ≤ 1; ð53Þ

with RAB ¼ jxB − xAj and NAB ¼ ðxB − xAÞ=RAB. In that
respect, we also have the relation

N ¼ NAB: ð54Þ

We can now determine the integral form of the time delay
function by differentiating Δðz−ðλÞ; xBÞ with respect to λ.
Using Eq. (53), we can always write

d
dλ

Δðz−ðλÞ; xBÞ ¼ −RABNi
AB½∂iΔ�ðz−ðλÞ;xBÞ; ð55Þ

where ½∂iΔ�ðz−ðλÞ;xBÞ denotes the partial derivative of
Δðx; xBÞ with respect to xi taken at x ¼ z−ðλÞ. Then after
inserting Eqs. (51) and (54) into (55), we infer

d
dλ

Δðz−ðλÞ; xBÞ ¼
RAB

2
Ω−ðz̃−ðλÞ; xBÞ; ð56Þ

where the components of the point event z̃−ðλÞ are obtained
from Eq. (50) which states that z̃−ðλÞ ¼ x−ðz−ðλÞÞ. They
are explicitly written later on in Eq. (61).
By fixing the following boundary conditions:

Δðz−ð0Þ; xBÞ ¼ 0; ð57aÞ

Δðz−ð1Þ; xBÞ ¼ ΔðxA; xBÞ; ð57bÞ

which follow from the requirement that ΔðxB; xBÞ ¼ 0
when z−ð0Þ ¼ xB, we find

ΔðxA; xBÞ ¼
RAB

2

Z
1

0

Ω−ðz̃−ðλÞ; xBÞdλ: ð58Þ

Then insertion of Eq. (52) allows us to recover Theorem 2
of [28] which would be expressed here in terms of the
contravariant components Kμν instead of kμν ’s.
In principle, all machinery developed in [28] for com-

puting the delay functions could be applied directly using
the components Kμν. However, such an approach possesses
the inconvenience of hiding the role played by the different
components kμν and κμν during the determination of the
total delay functions.
Indeed, according to Eqs. (47) the curvature of the

optical spacetime is described simultaneously with the
help of the components hμν and γμν which might act on
different characteristic lengths [e.g., γμνðxÞ ¼ 0 for x ∉ D]
and might possess completely different orders of magnitude
a priori. Therefore, in order to disentangle the contribution
of each perturbation into the determination of the total
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delay, we must perform a complete separation between the
physical quantities in Eq. (58).
As might be seen from Eqs. (52) and (47b) such a

separation can be achieved when the total time delay
functions take the following forms:

ΔðxA;xBÞ¼ΔgðxA;xBÞþΔrðxA;xBÞþΔgrðxA;xBÞ; ð59aÞ

and

ΞðxA;xBÞ¼ΞgðxA;xBÞþΞrðxA;xBÞþΞgrðxA;xBÞ: ð59bÞ

The subscripts “g,” “r,” and “gr” refer to the gravitational,
the refractive, and the coupling contributions, respectively.

The gravitational and the refractive time delay functions
are expected to be driven by gravitational and refractive
perturbations, respectively. Instead, the coupling time delay
functions are expected to be of the order of the product of
both perturbations.
By substituting for ΔðxA; xBÞ from Eq. (59a) into

(58) and (52), and then by making use of the contra-
variant components of the optical and the physical
spacetime metrics [see Eq. (47b)], we deduce the
following theorem.
Theorem 2.— In the optical spacetime, the function Δ

introduced in Eq. (49a), can be decomposed as shown in
Eq. (59a) where each term in the summation satisfies an
integrodifferential equation

ΔgðxA; xBÞ ¼
RAB

2

Z
1

0

�
ðk00 − 2k0iNi

AB þ kijNi
ABN

j
ABÞz̃−ðλÞ þ 2ðk0i − kijNj

ABÞz̃−ðλÞ
�∂Δg

∂xi
�
ðz−ðλÞ;xBÞ

þ ðηij þ kijÞz̃−ðλÞ
�∂Δg

∂xi
∂Δg

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ; ð60aÞ

ΔrðxA; xBÞ ¼
RAB

2

Z
1

0

�
ðκ00 − 2κ0iNi

AB þ κijNi
ABN

j
ABÞz̃−ðλÞ þ 2ðκ0i − κijNj

ABÞz̃−ðλÞ
�∂Δr

∂xi
�
ðz−ðλÞ;xBÞ

þ ðηij þ κijÞz̃−ðλÞ
�∂Δr

∂xi
∂Δr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ; ð60bÞ

and

ΔgrðxA;xBÞ¼
RAB

2

Z
1

0

�
ðηijþkijþ κijÞz̃−ðλÞ

�∂Δgr

∂xi
∂Δgr

∂xj
�
ðz−ðλÞ;xBÞ

þ2ðk0iþ κ0i− ðkijþ κijÞNj
ABÞz̃−ðλÞ

�∂Δgr

∂xi
�
ðz−ðλÞ;xBÞ

þ ðkijÞz̃−ðλÞ
�∂Δr

∂xi
∂Δr

∂xj
�
ðz−ðλÞ;xBÞ

þ2ðk0i−kijNj
ABÞz̃−ðλÞ

�∂Δr

∂xi
�
ðz−ðλÞ;xBÞ

þðκijÞz̃−ðλÞ
�∂Δg

∂xi
∂Δg

∂xj
�
ðz−ðλÞ;xBÞ

þ2ðκ0i− κijNj
ABÞz̃−ðλÞ

�∂Δg

∂xi
�
ðz−ðλÞ;xBÞ

þ2ðηijþkijþ κijÞz̃−ðλÞ
�∂Δg

∂xi
∂Δr

∂xj þ
∂Δg

∂xi
∂Δgr

∂xj þ∂Δr

∂xi
∂Δgr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ:

ð60cÞ

The components of the point event z̃−ðλÞ are given by

z̃−ðλÞ ¼ ðx0B − λRAB − Δðz−ðλÞ; xBÞ; z−ðλÞÞ; ð61Þ

where z−ðλÞ is defined as in Eq. (53).
Following the exact same reasoning, we state a similar theorem for the emission time delay function. However, for the

emission case, the straight line segment connecting the emitter xA to the receiver xB is defined by [47]

zþðμÞ ¼ xA þ μRABNAB; 0 ≤ μ ≤ 1: ð62Þ

Then from the requirement that ΞðxA;xAÞ ¼ 0 when zþð0Þ ¼ xA, we can set the following boundary conditions:

ΞðxA; zþð0ÞÞ ¼ 0; ð63aÞ

ΞðxA; zþð1ÞÞ ¼ ΞðxA;xBÞ: ð63bÞ
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Hence, the theorem for the emission time delay function ΞðxA;xBÞ=c reads as follows.
Theorem 3.— In the optical spacetime, the function Ξ introduced in Eq. (49b), can be decomposed as shown in Eq. (59b)

where each term in the summation satisfies an integrodifferential equation

ΞgðxA;xBÞ ¼
RAB

2

Z
1

0

�
ðk00 − 2k0iNi

AB þ kijNi
ABN

j
ABÞz̃þðμÞ − 2ðk0i − kijNj

ABÞz̃þðμÞ
�∂Ξg

∂xi
�
ðxA;zþðμÞÞ

þ ðηij þ kijÞz̃þðμÞ
�∂Ξg

∂xi
∂Ξg

∂xj
�
ðxA;zþðμÞÞ

�
dμ; ð64aÞ

ΞrðxA;xBÞ ¼
RAB

2

Z
1

0

�
ðκ00 − 2κ0iNi

AB þ κijNi
ABN

j
ABÞz̃þðμÞ − 2ðκ0i − κijNj

ABÞz̃þðμÞ
�∂Ξr

∂xi
�
ðxA;zþðμÞÞ

þ ðηij þ κijÞz̃þðμÞ
�∂Ξr

∂xi
∂Ξr

∂xj
�
ðxA;zþðμÞÞ

�
dμ; ð64bÞ

and

ΞgrðxA;xBÞ ¼
RAB

2

Z
1

0

�
ðηij þ kij þ κijÞz̃þðμÞ

�∂Ξgr

∂xi
∂Ξgr

∂xj
�
ðxA;zþðμÞÞ

− 2ðk0i þ κ0i − ðkij þ κijÞNj
ABÞz̃þðμÞ

�∂Ξgr

∂xi
�
ðxA;zþðλÞÞ

þ ðkijÞz̃þðλÞ
�∂Ξr

∂xi
∂Ξr

∂xj
�
ðxA;zþðμÞÞ

− 2ðk0i − kijNj
ABÞz̃þðμÞ

�∂Ξr

∂xi
�
ðxA;zþðμÞÞ

þ ðκijÞz̃ðλÞ
�∂Ξg

∂xi
∂Ξg

∂xj
�
ðxA;zþðμÞÞ

− 2ðκ0i − κijNj
ABÞz̃þðμÞ

�∂Ξg

∂xi
�
ðxA;zþðμÞÞ

þ 2ðηij þ kij þ κijÞz̃þðμÞ
�∂Ξg

∂xi
∂Ξr

∂xj þ
∂Ξg

∂xi
∂Ξgr

∂xj þ ∂Ξr

∂xi
∂Ξgr

∂xj
�
ðxA;zþðμÞÞ

�
dμ:

ð64cÞ

The components of the point event z̃þðμÞ are
given by

z̃þðμÞ ¼ ðx0A þ μRAB þ ΞðxA; zþðμÞÞ; zþðμÞÞ; ð65Þ

where zþðμÞ is defined as in Eq. (62).
Theorems 2 and 3 generalize Theorems 2 and 3

of [28] for the optical spacetime. Indeed, in the limit
where refractivity vanishes, that is to say jκμνjmax → 0,
Theorems 2 and 3 of [28] are recovered.
From Eqs. (60), we see that the choice (59a) does achieve

the separation between the different physical quantities
entering the computation of the total time delay. As a matter
of fact, the right-hand sides of Eqs. (60a) and (60b) contain
purely gravitational and purely refractive quantities, respec-
tively. The right-hand side of Eq. (60c) regroups all terms
being a mixture of both.
However, as may be observed from the presence of the

total delay in Eq. (61), the expressions of the different
contributions are not fully independent but remain linked
via the path of integration. In the next section, we shall
further discuss this point and shall present a recursive
resolution method for determining the time delay functions
at any order.

VI. GENERAL EXPANSIONS OF THE TIME
DELAY FUNCTIONS

Because the line integrals in Eqs. (60) are taken along the
path z̃−ðλÞ for 0 ≤ λ ≤ 1, the time delay functions Δg=c,
Δr=c, and Δgr=c cannot be solved independently from each
other. Indeed, the total delay appearing in Eq. (61) depends
on the three functions as can be seen from the decom-
position (59a). Therefore, a systematic and recursive
resolution of Δ=c can only be achieved once the relative
contributions of Δg=c, Δr=c, and Δgr=c to the total time
delay are known.
In Sec. VI A, we first show how to determine the relative

importance between the different contributions. Thenwithin
the approximation of a quasi-Minkowskian path, we show
that the interdependence between each functionΔg,Δr, and
Δgr can always be rejected to the following order during the
resolution of Δ. This fact allows one to sort out the
occurrence of the different contributions within the deter-
mination of the total delay function (cf. Theorems 4 and 5).
In Sec. VI B, we assume that the refractive components of
the optical metric admit a series expansion in terms of a
parameter N0. Then we show that the refractive delay
functions can be determined to any order through a recursive
resolution method presented in Theorems 6 and 7. In
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Sec. VI C, we assume that the gravitational components of
the spacetime metric admit a post-Minkowskian expansion
(series expansion in ascending power of G). Then the
recursive method allowing one to determine the gravita-
tional delay expressions up to any order is presented in
Theorems 8 and 9. Finally in Sec. VI D, we determine the
coupling delay expressions up to any order within
Theorems 10 and 11.

A. Quasi-Minkowskian path regime

As shown in Theorems 2 and 3, the relative magnitude
between each contribution to the total time delay rely on the
line integrals of the gravitational and the refractive pertur-
bations. Generally speaking, if gravity acts all along the
light path Γ joining xA to xB, the refractive domain D is
localized in spacetime and it follows that the action of
refractivity remains bounded to a certain portion of Γ.
Therefore, in order to determine the relative contributions
of each time delay function, not only the relative magnitude
between the gravitational and refractive perturbations must
be known, but also the typical length scales over which
each perturbation acts. Henceforth, let l be the length of Γ
passing through D. For a Minkowskian path, we always
have l ≤ RAB whatever the size of D is.
From Eq. (49a) which has been formulated under

the assumption that the light path is quasi-Minkowskian,
we deduce Δ=RAB ≪ 1. This implies that Δg=RAB ≪ 1,
Δr=RAB ≪ 1, and Δgr=RAB ≪ 1. Considering that Δgr

represents the coupling contributions, its magnitude is
expected to be of the order

Δgr

RAB
∼
�
Δg

RAB

��
Δr

RAB

�
: ð66Þ

Therefore, we can first focus on the relative importance
between the gravitational and the refractive contributions.
To do so, let us introduce the parameter s defined by

s ¼
	
log10ðΔg=RABÞ
log10ðΔr=RABÞ



; ð67Þ

with bie denoting the operation of rounding to the nearest
integer of i. Hereafter, we intend to show that the expansion
pattern of the delay functions can totally be determined
once s is known. Indeed, s allows one to sort out the
occurrences of the gravitational and refractive terms in the
determination of the total delay functions.
Becausewe are only focusing on themain integer value of

s in Eq. (67), it is sufficient to get the first-order expressions
of Δg and Δr. Therefore, in Eqs. (60), line integrals can be
changed into line integrals along the Minkowskian path
between xA and xB by performing a Taylor series expansion
of κμνðz̃−ðλÞÞ and kμνðz̃−ðλÞÞ about the point event z−ðλÞ
whose components are given by

z−ðλÞ ¼ ðx0B − λRAB; z−ðλÞÞ: ð68Þ

Thus, opticalmetric components become an infinite series in
ascending power of the total time delay

kμν
�
z̃−ðλÞ;

Δðz−ðλÞ;xBÞ
RAB

�

¼ kμνðz−ðλÞÞþ
X∞
l¼1

ð−RABÞl
l!

�
Δðz−ðλÞ;xBÞ

RAB

�
l
½∂l

0k
μν�z−ðλÞ;

ð69aÞ

and

κμν
�
z̃−ðλÞ;

Δðz−ðλÞ;xBÞ
RAB

�

¼ κμνðz−ðλÞÞþ
X∞
l¼1

ð−RABÞl
l!

�
Δðz−ðλÞ;xBÞ

RAB

�
l
½∂l

0κ
μν�z−ðλÞ:

ð69bÞ

After inserting these expressions intoEqs. (60a) and (60b),
we infer that the zeroth-order terms in Eqs. (69), namely,
kμνðz−ðλÞÞ and κμνðz−ðλÞÞ, correspond to the first-order
determination of the gravitational and the refractive delays

Δð1Þ
g

RAB
¼ 1

2

Z
1

0

ðk00−2k0iNi
ABþkijNi

ABN
j
ABÞz−ðλÞdλ; ð70aÞ

and

Δð1Þ
r

RAB
¼ 1

2

Z
1

0

ðκ00 − 2κ0iNi
AB þ κijNi

ABN
j
ABÞz−ðλÞdλ: ð70bÞ

[Wewill seewithEqs. (114a) and (99a) that in the context of a
quasi-Minkowskian path, these equations can be further
simplified. But for now, let us pursue the discussion with
Eqs. (70)]. These equations can be inserted into Eq. (67) in
order to determine the value of s.
Now we shall discuss how the expansion pattern of the

delay functions can be inferred from s. Henceforth, we
consider the case s ∈ N>1 (the result will still be valid for
s ∈ N>0). In other words, we suppose that the refractive
perturbation is dominant with respect to the gravitational
one [48].
In order to simplify the next discussion, andwithout loss of

generality,we focus onorders ofmagnitude only. In addition,
we consider that the light path occurs in a sufficiently small
region of spacetimewhere themetric components donot vary
significantly. Thus, we deduce from Eqs. (70) that

Δð1Þ
g

RAB
∼ jkμνjmax;

Δð1Þ
r

RAB
∼

l
RAB

jκμνjmax: ð71Þ
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In order to keep track of the relative magnitude between
the gravitational and the refractive terms, we introduce a
dimensionless parameter denoted by ε and being of the
order of the dominant term, that is,

ε ¼ Δð1Þ
r

RAB
: ð72Þ

Thus, from Eqs. (71) and (67), we immediately infer

Δð1Þ
g

RAB
∼OðεsÞ: ð73Þ

Therefore, the first-order expression of the total delay is
driven by the refractive term only

Δð1ÞðxA; xBÞ ¼ Δð1Þ
r ðxA; xBÞ; ð74Þ

which means that

Δð1Þ

RAB
¼ ε; ð75Þ

when s > 1 in Eq. (67).
Let us take a look at the relation between metric compo-

nents. Equations (73), (72), and (71) allow us to deduce

jkμνjmax ∼OðεsÞ; l
RAB

jκμνjmax ∼OðεÞ: ð76Þ

At the same time, itmight be seen fromEqs. (60b), (69a), and
(74) that the second-order refractive delay is driven by terms
such as

l
RAB

jκμνjmax
Δð1Þ

RAB
;

Δð1Þ

RAB

Δð1Þ

RAB
;

which, according to Eqs. (75) and (76), are of the order of ε2.
Therefore, we conclude that the series expansion of the total
delay goes on like

ΔðlÞðxA; xBÞ ¼ ΔðlÞ
r ðxA; xBÞ ð77Þ

for 1 ≤ l < s.
The first occurrence of the gravitational contribution to

the total delay arises for l ¼ s as anticipated in Eq. (73).
Therefore, the sth-order expression of the total delay is
given by

ΔðsÞðxA; xBÞ ¼ ΔðsÞ
r ðxA; xBÞ þ Δð1Þ

g ðxA; xBÞ: ð78Þ

Then by looking at the first-order term in Eq. (69a), one
might see that the second-order expression of the gravita-
tional delay is proportional to

Δð2Þ
g ∼ jkμνjmax

Δð1Þ

RAB
ð79Þ

which, according to Eqs. (75) and (76), is of the order of
εsþ1. Additionally, after inserting Eqs. (69) into (60c), we
infer that the first-order expression of the coupling delay is
driven by terms such like

l
RAB

jκμνjmax
Δð1Þ

g

RAB
; jkμνjmax

Δð1Þ
r

RAB
;

Δð1Þ
r

RAB

Δð1Þ
g

RAB
;

which are of the order of εsþ1 too. Therefore, the (sþ 1)th-
order expression of the total delay is given by

Δðsþ1ÞðxA;xBÞ¼Δðsþ1Þ
r ðxA;xBÞþΔð2Þ

g ðxA;xBÞ
þΔð1Þ

gr ðxA;xBÞ: ð80Þ

A quick look at the second-order expression of the
coupling delay shows that it is driven by terms proportional
to εsþ2. Consequently, one deduces that

ΔðlÞðxA; xBÞ ¼ ΔðlÞ
r ðxA; xBÞ þ Δðl−sþ1Þ

g ðxA; xBÞ
þ Δðl−sÞ

gr ðxA; xBÞ; ð81Þ

for l ≥ sþ 1.
To sum up, within the quasi-Minkowskian regime, the

total delay satisfies Δ=RAB ≪ 1, so the line integrals in
Eqs. (60) are simplified into line integrals along the
Minkowskian path by performing a Taylor series expansion
about the point event z−ðλÞ. Then by considering the case
where the refractivity is the dominant effect all along the
light path Γ, it results that, in general, the total time delay
admits an expansion as follows:

ΔðxA; xBÞ ¼
X∞
l¼1

ΔðlÞðxA; xBÞ; ð82Þ

where the terms ΔðlÞ are proportional to εlRAB.
In that respect, the different contributions to the total

delay, namely, the refractive, the gravitational, and the
coupling delays, all admit series expansion as follows:

ΔrðxA; xBÞ ¼
X∞
l¼1

ΔðlÞ
r ðxA; xBÞ; ð83aÞ

ΔgðxA; xBÞ ¼
X∞
l¼1

ΔðlÞ
g ðxA; xBÞ; ð83bÞ

and

ΔgrðxA; xBÞ ¼
X∞
l¼1

ΔðlÞ
gr ðxA; xBÞ; ð83cÞ
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where the terms ΔðlÞ
r , ΔðlÞ

g , and ΔðlÞ
gr are of the order of

ΔðlÞ
r

RAB
∼OðεlÞ; ΔðlÞ

g

RAB
∼Oðεlþs−1Þ; ΔðlÞ

gr

RAB
∼OðεlþsÞ: ð84Þ

We recall that ε is of the order of l=RABjκμνjmax only for
a light path occurring in a sufficiently small region of
spacetime where the metric components do not vary
significantly. In general, it is given by Eq. (72).
By making use of the Heaviside step function

ΘðiÞ ¼
�
1 for i ≥ 0;

0 otherwise;
ð85Þ

we can write the terms ΔðlÞ in Eq. (82) as

ΔðlÞðxA; xBÞ ¼ ΔðlÞ
r ðxA; xBÞ þ Θðl − sÞΔðl−sþ1Þ

g ðxA; xBÞ
þ Θðl − s − 1ÞΔðl−sÞ

gr ðxA; xBÞ: ð86Þ

In the next two sections, according to the fact that the
light ray follows a quasi-Minkowskian path, we will
assume that the components κμν and kμν admit series
expansion in ascending power of parameters N0 and G,
respectively [see Eqs. (93) and (107)]. If this fact does not
change the pattern of the series expansions (82) and (83),
we should nevertheless, for completeness, specify that the
quasi-Minkowskian path is parametrized by the expansion
coefficients N0 and G. Therefore, by making use of
Eq. (86), we can state a theorem as follows.
Theorem 4.— Within the quasi-Minkowskian path

approximation, when the light path is parametrized by
N0 and G, the function Δ admits a series expansion as
follows:

ΔðxA; xB; N0; GÞ ¼
X∞
l¼1

ΔðlÞðxA; xBÞ; ð87Þ

with

ΔðlÞðxA; xBÞ ¼ ΔðlÞ
r ðxA; xBÞ þ Θðl − sÞΔðl−sþ1Þ

g ðxA; xBÞ
þ Θðl − s − 1ÞΔðl−sÞ

gr ðxA; xBÞ: ð88Þ

The parameter s ∈ N>0 is determined from Eq. (67) by
making use of the first-order expressions (99a) and (114a).
A similar reasoning works for the emission time delay

function as well. Indeed, the line integrals in Eqs. (64) can
be Taylor expanded about the point event zþðμÞ whose
components are given by

zþðμÞ ¼ ðx0A þ μRAB; zþðμÞÞ: ð89Þ

Then κμνðz̃þðμÞÞ and kμνðz̃þðμÞÞ become an infinite series
in ascending power of Ξ similarly to what has been done
in Eqs. (69).

Therefore, we end up with a similar expansion for Ξ than
for Δ and we state the following theorem.
Theorem 5.— Within the quasi-Minkowskian path

approximation, when the light path is parametrized by
N0 and G, the function Ξ admits a series expansion as
follows:

ΞðxA;xB; N0; GÞ ¼
X∞
l¼1

ΞðlÞðxA;xBÞ; ð90Þ

with

ΞðlÞðxA;xBÞ ¼ ΞðlÞ
r ðxA;xBÞ þ Θðl − sÞΞðl−sþ1Þ

g ðxA;xBÞ
þ Θðl − s − 1ÞΞðl−sÞ

gr ðxA;xBÞ: ð91Þ

The parameter s ∈ N>0 is determined from Eq. (67) by
making use of the first-order expressions (99a) and (114a).
Equipped with Theorems 2 to 5, we can now recursively

determine the integral form of each time delay function
in Eqs. (59).

B. The refractive time delay functions

We saw in Sec. V [cf. Eqs. (48)], that a quasi-
Minkowskian path implies small refractivities, that is to
say NðxÞ ≪ 1. Let N0 ¼ Nðx0Þ be the refractivity at a well-
chosen point event x0 ∈ D located on Γ.
If x0 is chosen so that N0 is the maximum value of the

refractivity along Γ, we can always write

NðxÞ ¼ N0

�
NðxÞ
N0

�
; NðxÞ ≤ N0: ð92Þ

Hence, considering a quasi-Minkowskian light path, it
follows that N0 ≪ 1. Therefore, we can always expand
the components κμν in ascending power of N0 such as

κμνðx; N0Þ ¼
X∞
l¼1

κμνðlÞðxÞ; ð93Þ

where κμνðlÞ ∝ ðN0Þl.
Considering that the wave vector is by definition a

covector [see Eq. (16)], the optical metric is intrinsically
defined for its contravariant components as seen from
Eq. (23). Therefore, the covariant components of the optical
metric are not needed a priori to solve the time and
frequency transfers. However, we provide their expressions
in Sec. VI A for completeness.
As discussed previously, line integrations in Eq. (60b)

are taken along the real light path z̃−ðλÞ for 0 ≤ λ ≤ 1.
Within the quasi-Minkowskian path regime, we saw in
Eq. (69b) that the metric components κμνðz̃−ðλÞÞ can be
expanded in ascending power of the total delay. In that
respect, the right-hand side of Eq. (69b) involves terms
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such as κμνðz−ðλÞÞ, where z−ðλÞ is given in Eq. (68). By
making use of Eq. (93), we immediately find

κμνðz−ðλÞ; N0Þ ¼
X∞
l¼1

κμνðlÞðz−ðλÞÞ: ð94Þ

Therefore, the general expansion of κμνðz̃−ðλÞÞ is
obtained after substituting for Δ and κμν from Eqs. (87)
and (94) into (69b), respectively. After some algebra, we
find a relation as follows:

κμνðz̃−ðλÞ; N0; GÞ ¼
X∞
l¼1

κ̂μν−ðlÞðz−ðλÞ; xBÞ; ð95Þ

where the quantities κ̂μν−ðlÞðz−ðλÞ; xBÞ are given by

κ̂μν−ð1Þðz−ðλÞ; xBÞ ¼ κμνð1Þðz−ðλÞÞ; ð96aÞ
and

κ̂μν−ðlÞðz−ðλÞ;xBÞ

¼ κμνðlÞðz−ðλÞÞþ
Xl−1
m¼1

Xm
n¼1

Φðm;nÞ
− ðz−ðλÞ;xBÞ

�∂nκμνðl−mÞ
ð∂x0Þn

�
z−ðλÞ

ð96bÞ

for l ≥ 2. The function Φðl;mÞ
− ðx; xBÞ, with l ≥ 1 and

1 ≤ m ≤ l, is called a reception function [28] and is defined
such that

Φðl;mÞ
− ðx; xBÞ ¼

ð−1Þm
m!

X
n1þ���þnm¼l−m

�Ym
d¼1

Δðndþ1Þðx; xBÞ
�
;

ð97Þ

with n1;…; nm ∈ N≥0. The summation in (97) is taken over
all sequences of n1 through nm such that the sum of all nm
is l −m.
Finally, by substituting for κμνðz̃−ðλÞÞ from Eq. (95) into

(60b), we infer the theorem which follows concerning the
refractive time delay function at reception.
Theorem 6.— In the optical spacetime, within the quasi-

Minkowskian path approximation, Δ admits the series
expansion introduced in Theorem 4, so the function Δr
is given by

ΔrðxA; xB; N0; GÞ ¼
X∞
l¼1

ΔðlÞ
r ðxA; xBÞ; ð98Þ

where

Δð1Þ
r ðxA; xBÞ ¼

RAB

2

Z
1

0

ðκ00ð1Þ − 2κ0ið1ÞN
i
AB þ κijð1ÞN

i
ABN

j
ABÞz−ðλÞdλ; ð99aÞ

Δð2Þ
r ðxA; xBÞ ¼

RAB

2

Z
1

0

�
ðκ̂00−ð2Þ − 2κ̂0i−ð2ÞN

i
AB þ κ̂ij−ð2ÞN

i
ABN

j
ABÞðz−ðλÞ;xBÞ þ 2ðκ0ið1Þ − κijð1ÞN

j
ABÞz−ðλÞ

�∂Δð1Þ
r

∂xi
�
ðz−ðλÞ;xBÞ

þ ηij
�∂Δð1Þ

r

∂xi
∂Δð1Þ

r

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ; ð99bÞ

and

ΔðlÞ
r ðxA; xBÞ ¼

RAB

2

Z
1

0

�
ðκ̂00−ðlÞ − 2κ̂0i−ðlÞN

i
AB þ κ̂ij−ðlÞN

i
ABN

j
ABÞðz−ðλÞ;xBÞ þ 2

Xl−1
m¼1

ðκ̂0i−ðmÞ − κ̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mÞ
r

∂xi
�
ðz−ðλÞ;xBÞ

þ ηij
Xl−1
m¼1

�∂ΔðmÞ
r

∂xi
∂Δðl−mÞ

r

∂xj
�
ðz−ðλÞ;xBÞ

þ
Xl−2
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−m−1

n¼1

�∂ΔðnÞ
r

∂xi
∂Δðl−m−nÞ

r

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð99cÞ

for l ≥ 3. The quantities κ̂μν−ðlÞðz−ðλÞ; xBÞ are defined in
Eqs. (96).
Applying the exact same reasoning, the analogous theo-

rem for the refractive time delay function at emission can be
stated as well. Line integrations in Eq. (64b) are taken along
the light path z̃þðμÞ for 0 ≤ μ ≤ 1. After Taylor expanding
the light path about the point event zþðμÞ [cf. Eq. (89)], the
right-hand side of Eq. (69b) involves terms such as
κμνðzþðμÞÞ. After making use of Eq. (93), we find

κμνðzþðμÞ; N0Þ ¼
X∞
l¼1

κμνðlÞðzþðμÞÞ: ð100Þ

The general expansion of κμνðz̃þðμÞÞ is obtained after
substituting for Ξ from Eq. (90) and for κμν from Eq. (100),
into (69b). After some algebra, we find

κμνðz̃þðμÞ; N0; GÞ ¼
X∞
l¼1

κ̂μνþðlÞðxA; zþðμÞÞ; ð101Þ
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where the quantities κ̂μνþðlÞðxA; zþðμÞÞ are given by

κ̂μνþð1ÞðxA; zþðμÞÞ ¼ κμνð1ÞðzþðμÞÞ; ð102aÞ

and

κ̂μνþðlÞðxA;zþðμÞÞ

¼ κμνðlÞðzþðμÞÞþ
Xl−1
m¼1

Xm
n¼1

Φðm;nÞ
þ ðxA;zþðμÞÞ

�∂nκμνðl−mÞ
ð∂x0Þn

�
zþðμÞ

ð102bÞ

for l ≥ 2. The function Φðl;mÞ
þ ðxA;xÞ, with l ≥ 1 and

1 ≤ m ≤ l, is called an emission function [28] and is
defined such that

Φðl;mÞ
þ ðxA;xÞ¼

1

m!

X
n1þ���þnm¼l−m

�Ym
d¼1

Ξðndþ1ÞðxA;xÞ
�
; ð103Þ

with n1;…; nm ∈ N≥0. The summation in Eq. (103) is taken
over all sequences of n1 through nm such that the sum of all
nm is l −m.
Finally, the theorem for the refractive time delay function

at emission is obtained after substituting for κμνðz̃þðμÞÞ
from Eq. (101) into (64b).
Theorem 7.— In the optical spacetime, within the quasi-

Minkowskian path approximation, Ξ admits the series
expansion introduced in Theorem 5, so the function Ξr is
given by

ΞrðxA;xB; N0; GÞ ¼
X∞
l¼1

ΞðlÞ
r ðxA;xBÞ; ð104Þ

where

Ξð1Þ
r ðxA;xBÞ ¼

RAB

2

Z
1

0

ðκ00ð1Þ − 2κ0ið1ÞN
i
AB þ κijð1ÞN

i
ABN

j
ABÞzþðμÞdμ; ð105aÞ

Ξð2Þ
r ðxA;xBÞ ¼

RAB

2

Z
1

0

�
ðκ̂00þð2Þ − 2κ̂0iþð2ÞN

i
AB þ κ̂ijþð2ÞN

i
ABN

j
ABÞðxA;zþðμÞÞ − 2ðκ0ið1Þ − κijð1ÞN

j
ABÞzþðμÞ

�∂Ξð1Þ
r

∂xi
�
ðxA;zþðμÞÞ

þ ηij
�∂Ξð1Þ

r

∂xi
∂Ξð1Þ

r

∂xj
�
ðxA;zþðμÞÞ

�
dμ; ð105bÞ

and

ΞðlÞ
r ðxA;xBÞ ¼

RAB

2

Z
1

0

�
ðκ̂00þðlÞ − 2κ̂0iþðlÞN

i
AB þ κ̂ijþðlÞN

i
ABN

j
ABÞðxA;zþðμÞÞ − 2

Xl−1
m¼1

ðκ̂0iþðmÞ − κ̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mÞ
r

∂xi
�
ðxA;zþðμÞÞ

þ ηij
Xl−1
m¼1

�∂ΞðmÞ
r

∂xi
∂Ξðl−mÞ

r

∂xj
�
ðxA;zþðμÞÞ

þ
Xl−2
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−m−1

n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðl−m−nÞ

r

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð105cÞ

for l ≥ 3. The quantities κ̂μνþðlÞðxA; zþðμÞÞ are defined in
Eqs. (102).
In the case where the components κμν represent the

leading perturbation [see Eq. (67)], it may be seen that the
expansion pattern in Theorems 6 and 7 is almost the same
as the one in Theorems 4 and 5 of [28]. Actually, if one
assumes that the gravitational components kμν are the
leading perturbations, one obtains quasisimilar theorems
than Theorems 4 and 5 of [28] (the difference would be in
the definition of the quantities k̂μνþðlÞ).

C. The gravitational time delay functions

Following [28], we suppose that the gravitational pertur-
bation terms hμν can be expressed as a post-Minkowskian
expansion, such as

hμνðx; GÞ ¼
X∞
l¼1

hðlÞμν ðxÞ: ð106Þ

The contravariant components are given by

kμνðx; GÞ ¼
X∞
l¼1

kμνðlÞðxÞ; ð107Þ

where the components kμνðlÞ can be recursively determined

using the following relationships:

kμνð1Þ ¼ −ημαηβνhð1Þαβ ; ð108aÞ

kμνðlÞ ¼ −ημαηβνhðlÞαβ −
Xl−1
m¼1

ημαhðmÞ
αβ kβνðl−mÞ ð108bÞ

for l ≥ 2.
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The right-hand side of Eq. (69a) involves terms such as
kμνðz−ðλÞÞ. Thus, by making use of Eq. (107), we find

kμνðz−ðλÞ; GÞ ¼
X∞
l¼1

kμνðlÞðz−ðλÞÞ; ð109Þ

where kμνðlÞ ∝ Gl.
Therefore, the general expansion of kμνðz̃−ðλÞÞ is

obtained after substituting for Δ and kμν from Eqs. (87)
and (109) into (69a), respectively. After some algebra, we
find the following expression:

kμνðz̃−ðλÞ; N0; GÞ ¼
X∞
l¼s

k̂μν−ðlÞðz−ðλÞ; xBÞ; ð110Þ

where the quantities k̂μν−ðlÞðz−ðλÞ; xBÞ are given for l ≥ s by
the following expressions:

k̂μν−ðsÞðz−ðλÞ; xBÞ ¼ kμνð1Þðz−ðλÞÞ; ð111aÞ

and

k̂μν−ðpsÞðz−ðλÞ;xBÞ

¼ kμνðpÞðz−ðλÞÞþ
Xp−1
m¼1

Xms

n¼1

Φðms;nÞ
− ðz−ðλÞ;xBÞ

�∂nkμνðp−mÞ
ð∂x0Þn

�
z−ðλÞ

ð111bÞ

for p ≥ 2, and

k̂μν−ðpsþqÞðz−ðλÞ; xBÞ

¼ þ
Xq
n¼1

Φðq;nÞ
− ðz−ðλÞ; xBÞ

�∂nkμνðpÞ
ð∂x0Þn

�
z−ðλÞ

þ
Xp−1
m¼1

Xmsþq

n¼1

Φðmsþq;nÞ
− ðz−ðλÞ; xBÞ

�∂nkμνðp−mÞ
ð∂x0Þn

�
z−ðλÞ

ð111cÞ

for p ≥ 1 and 1 ≤ q ≤ s − 1, where p and q are determined
from l using the following relationships:

p ¼ bl=sc; q ¼ l − ps; ð112Þ
with bic denoting the integer part of i.
By substituting for kμνðz̃−ðλÞÞ from Eq. (110) into (60a),

we infer the theorem which follows concerning the gravi-
tational time delay function at reception.
Theorem 8.— In the optical spacetime, within the quasi-

Minkowskian path approximation, Δ admits the series
expansion introduced in Theorem 4, so the function Δg

is given by

ΔgðxA; xB; N0; GÞ ¼
X∞
l¼1

ΔðlÞ
g ðxA; xBÞ; ð113Þ

where

Δð1Þ
g ðxA; xBÞ ¼

RAB

2

Z
1

0

ðk00ð1Þ − 2k0ið1ÞN
i
AB þ kijð1ÞN

i
ABN

j
ABÞz−ðλÞdλ; ð114aÞ

ΔðlÞ
g ðxA; xBÞ ¼

RAB

2

Z
1

0

ðk̂00−ðsþl−1Þ − 2k̂0i−ðsþl−1ÞN
i
AB þ k̂ij−ðsþl−1ÞN

i
ABN

j
ABÞðz−ðλÞ;xBÞdλ ð114bÞ

for 2 ≤ l ≤ s, and

ΔðlÞ
g ðxA;xBÞ¼

RAB

2

Z
1

0

�
ðk̂00−ðsþl−1Þ−2k̂0i−ðsþl−1ÞN

i
ABþ k̂ij−ðsþl−1ÞN

i
ABN

j
ABÞðz−ðλÞ;xBÞ

þ2
Xl−1
m¼s

ðk̂0i−ðmÞ− k̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mÞ
g

∂xi
�
ðz−ðλÞ;xBÞ

þηij
Xl−s
m¼1

�∂ΔðmÞ
g

∂xi
∂Δðl−s−mþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð114cÞ

for sþ 1 ≤ l ≤ 2s, and finally

ΔðlÞ
g ðxA; xBÞ ¼

RAB

2

Z
1

0

�
ðk̂00−ðsþl−1Þ − 2k̂0i−ðsþl−1ÞN

i
AB þ k̂ij−ðsþl−1ÞN

i
ABN

j
ABÞðz−ðλÞ;xBÞ

þ 2
Xl−1
m¼s

ðk̂0i−ðmÞ − k̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mÞ
g

∂xi
�
ðz−ðλÞ;xBÞ

þ ηij
Xl−s
m¼1

�∂ΔðmÞ
g

∂xi
∂Δðl−s−mþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

þ
Xl−s−1
m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−m
n¼1

�∂ΔðnÞ
g

∂xi
∂Δðl−s−m−nþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð114dÞ
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for l ≥ 2sþ 1. The quantities k̂μν−ðlÞðz−ðλÞ; xBÞ are defined

in Eqs. (111).
A similar reasoning allows us to state an analogous

theorem for the gravitational time delay function at emis-
sion. Indeed, the right-hand side of Eq. (64a) involves line
integrals along the light path z̃þðμÞ parametrized by
0 ≤ μ ≤ 1. After Taylor expanding the light path about
the point event zþðμÞ, the right-hand side of Eq. (69a)
involves terms such as kμνðzþðμÞÞ. Thus, by making use of
Eq. (107), we find

kμνðzþðμÞ; GÞ ¼
X∞
l¼1

kμνðlÞðzþðμÞÞ: ð115Þ

Then the general expansion of kμνðz̃þðμÞÞ is obtained
after substituting for Ξ from Eq. (87), and for kμν from
Eq. (115), into (69a). After some algebra, we find

kμνðz̃þðμÞ; N0; GÞ ¼
X∞
l¼s

k̂μνþðlÞðxA; zþðμÞÞ; ð116Þ

where the quantities k̂μνþðlÞðxA; zþðμÞÞ are given for l ≥ s by
the following expressions:

k̂μνþðsÞðxA; zþðμÞÞ ¼ kμνð1ÞðzþðμÞÞ; ð117aÞ

and

k̂μνþðpsÞðxA;zþðμÞÞ

¼kμνðpÞðzþðμÞÞþ
Xp−1
m¼1

Xms

n¼1

Φðms;nÞ
þ ðxA;zþðμÞÞ

�∂nkμνðp−mÞ
ð∂x0Þn

�
zþðμÞ

ð117bÞ
for p ≥ 2, and

k̂μνþðpsþqÞðxA; zþðμÞÞ

¼ þ
Xq
n¼1

Φðq;nÞ
þ ðxA; zþðμÞÞ

�∂nkμνðpÞ
ð∂x0Þn

�
zþðμÞ

þ
Xp−1
m¼1

Xmsþq

n¼1

Φðmsþq;nÞ
þ ðxA; zþðμÞÞ

�∂nkμνðp−mÞ
ð∂x0Þn

�
zþðμÞ

ð117cÞ
for p ≥ 1 and 1 ≤ q ≤ s − 1, where p and q are determined
from l using the relationships in Eq. (112).
By substituting for kμνðz̃−ðλÞÞ from Eq. (116) into (64a),

we infer the theorem which follows.
Theorem 9.— In the optical spacetime, within the quasi-

Minkowskian path approximation, Ξ admits the series expan-
sion introduced in Theorem 5, so the function Ξg is given by

ΞgðxA;xB; N0; GÞ ¼
X∞
l¼1

ΞðlÞ
g ðxA;xBÞ; ð118Þ

where

Ξð1Þ
g ðxA;xBÞ ¼

RAB

2

Z
1

0

ðk00ð1Þ − 2k0ið1ÞN
i
AB þ kijð1ÞN

i
ABN

j
ABÞzþðμÞdμ; ð119aÞ

ΞðlÞ
g ðxA;xBÞ ¼

RAB

2

Z
1

0

ðk̂00þðsþl−1Þ − 2k̂0iþðsþl−1ÞN
i
AB þ k̂ijþðsþl−1ÞN

i
ABN

j
ABÞðxA;zþðμÞÞdμ ð119bÞ

for 2 ≤ l ≤ s, and

ΞðlÞ
g ðxA;xBÞ ¼

RAB

2

Z
1

0

�
ðk̂00þðsþl−1Þ − 2k̂0iþðsþl−1ÞN

i
AB þ k̂ijþðsþl−1ÞN

i
ABN

j
ABÞðxA;zþðμÞÞ

− 2
Xl−1
m¼s

ðk̂0iþðmÞ − k̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mÞ
g

∂xi
�
ðxA;zþðμÞÞ

þ ηij
Xl−s
m¼1

�∂ΞðmÞ
g

∂xi
∂Ξðl−s−mþ1Þ

g

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð119cÞ

for sþ 1 ≤ l ≤ 2s, and finally

ΞðlÞ
g ðxA;xBÞ ¼

RAB

2

Z
1

0

�
ðk̂00þðsþl−1Þ − 2k̂0iþðsþl−1ÞN

i
AB þ k̂ijþðsþl−1ÞN

i
ABN

j
ABÞðxA;zþðμÞÞ

− 2
Xl−1
m¼s

ðk̂0iþðmÞ − k̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mÞ
g

∂xi
�
ðxA;zþðμÞÞ

þ ηij
Xl−s
m¼1

�∂ΞðmÞ
g

∂xi
∂Ξðl−s−mþ1Þ

g

∂xj
�
ðxA;zþðμÞÞ

þ
Xl−s−1
m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−m
n¼1

�∂ΞðnÞ
g

∂xi
∂Ξðl−s−m−nþ1Þ

g

∂xj
�
ðxA;zþðλÞÞ

�
dμ ð119dÞ
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for l ≥ 2sþ 1. The quantities k̂μνþðlÞðxA; zþðμÞÞ are defined
in Eqs. (117).
As a final remark, let us emphasize that Eqs. (99a) and

(114a) are independent of the total delay function.
Therefore, as mentioned previously, they can be used
directly in Eq. (67) for the determination of s.

D. The coupling time delay functions

All the basic ingredients needed for the establishment of
the general expansion of the coupling time delay functions
have been introduced in Secs. VI B and VI C. The general
expansions of the refractive and gravitational spacetime
perturbations are given in Eqs. (95) and (110), respectively.

Then the expansions of the reception time delay functions
can be found in Eqs. (87), (98), and (113).
Therefore, by substituting for κμνðz̃−ðλÞÞ and kμνðz̃−ðλÞÞ

from Eqs. (95) and (110) into (60c), respectively, we obtain
the theorem which follows.
Theorem 10.— In the optical spacetime, within the

quasi-Minkowskian path approximation, Δ admits the
series expansion introduced in Theorem 4, so the function
Δgr is given by

ΔgrðxA; xB; N0; GÞ ¼
X∞
l¼1

ΔðlÞ
gr ðxA; xBÞ; ð120Þ

where

ΔðlÞ
gr jl≥1ðxA; xBÞ ¼ RAB

Z
1

0

�
ηij

Xl

m¼1

�∂ΔðmÞ
r

∂xi
∂Δðl−mþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

þ
Xl

m¼1

ðκ̂0i−ðmÞ − κ̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mþ1Þ
g

∂xi
�
ðz−ðλÞ;xBÞ

þ
Xlþs−1

m¼s

ðk̂0i−ðmÞ − k̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðlþs−mÞ
r

∂xi
�
ðz−ðλÞ;xBÞ

�
dλ ð121aÞ

for l ≥ 1, and

ΔðlÞ
gr jl≥2ðxA; xBÞ ¼ ΔðlÞ

gr jl≥1ðxA; xBÞ þ RAB

Z
1

0

�
ηij

Xl−1
m¼1

�∂ΔðmÞ
r

∂xi
∂Δðl−mÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

þ
Xl−1
m¼1

ðκ̂0i−ðmÞ − κ̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mÞ
gr

∂xi
�
ðz−ðλÞ;xBÞ

þ
Xl−1
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−m
n¼1

�∂ΔðnÞ
r

∂xi
∂Δðl−m−nþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

þ 1

2

Xlþs−2

m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xlþs−m−1

n¼1

�∂ΔðnÞ
r

∂xi
∂Δðlþs−m−nÞ

r

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121bÞ

for l ≥ 2, and

ΔðlÞ
gr jl≥3ðxA; xBÞ ¼ ΔðlÞ

gr jl≥2ðxA; xBÞ þ RAB

Z
1

0

�Xl−2
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−m−1

n¼1

�∂ΔðnÞ
r

∂xi
∂Δðl−m−nÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121cÞ

for l ≥ 3, and

ΔðlÞ
gr jl≥sþ1ðxA; xBÞ ¼ ΔðlÞ

gr jl≥sðxA; xBÞ þ RAB

Z
1

0

�
ηij

Xl−s
m¼1

�∂ΔðmÞ
g

∂xi
∂Δðl−s−mþ1Þ

gr

∂xj
�
ðz−ðλÞ;xBÞ

þ
Xl−1
m¼s

ðk̂0i−ðmÞ − k̂ij−ðmÞN
j
ABÞðz−ðλÞ;xBÞ

�∂Δðl−mÞ
gr

∂xi
�
ðz−ðλÞ;xBÞ

þ
Xl−1
m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−m
n¼1

�∂ΔðnÞ
r

∂xi
∂Δðl−m−nþ1Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

þ 1

2

Xl−s
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−mþ1

n¼1

�∂ΔðnÞ
g

∂xi
∂Δðl−s−m−nþ2Þ

g

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121dÞ
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for l ≥ sþ 1, and

ΔðlÞ
gr jl≥sþ2ðxA; xBÞ ¼ ΔðlÞ

gr jl≥sþ1ðxA; xBÞ þ
RAB

2

Z
1

0

�
ηij

Xl−s−1
m¼1

�∂ΔðmÞ
gr

∂xi
∂Δðl−s−mÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

þ 2
Xl−2
m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−m−1

n¼1

�∂ΔðnÞ
r

∂xi
∂Δðl−m−nÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

þ 2
Xl−s−1
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−m
n¼1

�∂ΔðnÞ
g

∂xi
∂Δðl−s−m−nþ1Þ

gr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121eÞ

for l ≥ sþ 2, and

ΔðlÞ
gr jl≥sþ3ðxA;xBÞ¼ΔðlÞ

gr jl≥sþ2ðxA;xBÞþ
RAB

2

Z
1

0

�Xl−s−2
m¼1

ðκ̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−m−1

n¼1

�∂ΔðnÞ
gr

∂xi
∂Δðl−s−m−nÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121fÞ

for l ≥ sþ 3, and

ΔðlÞ
gr jl≥2sþ1ðxA; xBÞ ¼ ΔðlÞ

gr jl≥2sðxA; xBÞ þ RAB

Z
1

0

�Xl−s−1
m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−m
n¼1

�∂ΔðnÞ
g

∂xi
∂Δðl−s−m−nþ1Þ

gr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121gÞ

for l ≥ 2sþ 1, and finally

ΔðlÞ
gr jl≥2sþ2ðxA;xBÞ¼ΔðlÞ

gr jl≥2sþ1ðxA;xBÞþ
RAB

2

Z
1

0

�Xl−s−2
m¼s

ðk̂ij−ðmÞÞðz−ðλÞ;xBÞ
Xl−s−m−1

n¼1

�∂ΔðnÞ
gr

∂xi
∂Δðl−s−m−nÞ

gr

∂xj
�
ðz−ðλÞ;xBÞ

�
dλ ð121hÞ

for l ≥ 2sþ 2. The quantities k̂μν−ðlÞðz−ðλÞ; xBÞ and κ̂μν−ðlÞðz−ðλÞ; xBÞ are defined in Eqs. (111) and (96), respectively.

Applying the exact same reasoning, the analogous theorem for the coupling time delay function at emission can be stated.
Indeed, substituting for κμνðz̃þðμÞÞ from Eq. (101) and for kμνðz̃þðμÞÞ from Eq. (116) into (64c), we obtain the theorem
which follows.
Theorem 11.— In the optical spacetime, within the quasi-Minkowskian path approximation, Ξ admits the series

expansion introduced in Theorem 5, so the function Ξgr is given by

ΞgrðxA;xB; N0; GÞ ¼
X∞
l¼1

ΞðlÞ
gr ðxA;xBÞ; ð122Þ

where

ΞðlÞ
gr jl≥1ðxA;xBÞ ¼ RAB

Z
1

0

�
ηij

Xl

m¼1

�∂ΞðmÞ
r

∂xi
∂Ξðl−mþ1Þ

g

∂xj
�
ðxA;zþðμÞÞ

−
Xl

m¼1

ðκ̂0iþðmÞ − κ̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mþ1Þ
g

∂xi
�
ðxA;zþðμÞÞ

−
Xlþs−1

m¼s

ðk̂0iþðmÞ − k̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðlþs−mÞ
r

∂xi
�
ðxA;zþðμÞÞ

�
dμ ð123aÞ

for l ≥ 1, and

ΞðlÞ
gr jl≥2ðxA;xBÞ¼ΞðlÞ

gr jl≥1ðxA;xBÞþRAB

Z
1

0

�
ηij

Xl−1
m¼1

�∂ΞðmÞ
r

∂xi
∂Ξðl−mÞ

gr

∂xj
�
ðxA;zþðμÞÞ

−
Xl−1
m¼1

ðκ̂0iþðmÞ− κ̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mÞ
gr

∂xi
�
ðxA;zþðμÞÞ

þ
Xl−1
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−m
n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðl−m−nþ1Þ

g

∂xj
�
ðxA;zþðμÞÞ

þ1

2

Xlþs−2

m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xlþs−m−1

n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðlþs−m−nÞ

r

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123bÞ
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for l ≥ 2, and

ΞðlÞ
gr jl≥3ðxA;xBÞ ¼ ΞðlÞ

gr jl≥2ðxA;xBÞ þ RAB

Z
1

0

�Xl−2
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−m−1

n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðl−m−nÞ

gr

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123cÞ

for l ≥ 3, and

ΞðlÞ
gr jl≥sþ1ðxA;xBÞ¼ΞðlÞ

gr jl≥sðxA;xBÞþRAB

Z
1

0

�
ηij

Xl−s
m¼1

�∂ΞðmÞ
g

∂xi
∂Ξðl−s−mþ1Þ

gr

∂xj
�
ðxA;zþðμÞÞ

−
Xl−1
m¼s

ðk̂0iþðmÞ− k̂ijþðmÞN
j
ABÞðxA;zþðμÞÞ

�∂Ξðl−mÞ
gr

∂xi
�
ðxA;zþðμÞÞ

þ
Xl−1
m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xl−m
n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðl−m−nþ1Þ

g

∂xj
�
ðxA;zþðμÞÞ

þ1

2

Xl−s
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−mþ1

n¼1

�∂ΞðnÞ
g

∂xi
∂Ξðl−s−m−nþ2Þ

g

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123dÞ

for l ≥ sþ 1, and

ΞðlÞ
gr jl≥sþ2ðxA;xBÞ ¼ ΞðlÞ

gr jl≥sþ1ðxA;xBÞ þ
RAB

2

Z
1

0

�
ηij

Xl−s−1
m¼1

�∂ΞðmÞ
gr

∂xi
∂Ξðl−s−mÞ

gr

∂xj
�
ðxA;zþðμÞÞ

þ 2
Xl−2
m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xl−m−1

n¼1

�∂ΞðnÞ
r

∂xi
∂Ξðl−m−nÞ

gr

∂xj
�
ðxA;zþðμÞÞ

þ 2
Xl−s−1
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−m
n¼1

�∂ΞðnÞ
g

∂xi
∂Ξðl−s−m−nþ1Þ

gr

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123eÞ

for l ≥ sþ 2, and

ΞðlÞ
gr jl≥sþ3ðxA;xBÞ¼ΞðlÞ

gr jl≥sþ2ðxA;xBÞþ
RAB

2

Z
1

0

�Xl−s−2
m¼1

ðκ̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−m−1

n¼1

�∂ΞðnÞ
gr

∂xi
∂Ξðl−s−m−nÞ

gr

∂xj
�
ðxA;zþðμÞÞ

�
dμ; ð123fÞ

for l ≥ sþ 3, and

ΞðlÞ
gr jl≥2sþ1ðxA;xBÞ ¼ ΞðlÞ

gr jl≥2sðxA;xBÞ þ RAB

Z
1

0

�Xl−s−1
m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−m
n¼1

�∂ΞðnÞ
g

∂xi
∂Ξðl−s−m−nþ1Þ

gr

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123gÞ

for l ≥ 2sþ 1, and finally

ΞðlÞ
gr jl≥2sþ2ðxA;xBÞ¼ΞðlÞ

gr jl≥2sþ1ðxA;xBÞþ
RAB

2

Z
1

0

�Xl−s−2
m¼s

ðk̂ijþðmÞÞðxA;zþðμÞÞ
Xl−s−m−1

n¼1

�∂ΞðnÞ
gr

∂xi
∂Ξðl−s−m−nÞ

gr

∂xj
�
ðxA;zþðμÞÞ

�
dμ ð123hÞ

for l ≥ 2sþ 2. The quantities k̂μνþðlÞðxA; zþðμÞÞ and
κ̂μνþðlÞðxA; zþðμÞÞ are defined in Eqs. (117) and (102),
respectively.
Finally, from the gravitational, the refractive, and the

coupling components, we can now determine the time
delay expression up to the lth order by applying Theorem 4.
Then the expressions for the range and the time transfer
functions are determined from Eqs. (49a) and (32a),
respectively.

Let us emphasize that line integrals occurring in Eqs. (99),
(114), and (121) are now zeroth-order null geodesics with
parametric equations x ¼ z−ðλÞ. Similarly, Eqs. (105),
(119), and (123) are integrated along the zeroth-order null
geodesic path with parametric equations x ¼ zþðμÞ. This
specificity of the time transfer functions formalism consid-
erably simplifies the integrations and constitutes one of the
most important advantages with respect to an explicit
resolution of the null geodesic equation [25,27,28].
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The usefulness of the decomposition performed in
Eq. (59) becomes really apparent in stationary optical
spacetimes. Indeed when the coordinates ðxμÞ are chosen
so that the optical spacetime metric does not depend on x0,
it is seen that the series expansions in Eqs. (95) and (110)
reduce to

κμνðz̃−ðλÞ; N0; GÞ ¼
X∞
l¼1

κ̂μν−ðlÞðz−ðλÞ; xBÞ; ð124aÞ

kμνðz̃−ðλÞ; N0; GÞ ¼
X∞
l¼1

k̂μν−ðlÞðz−ðλÞ; xBÞ; ð124bÞ

where

κ̂μνðlÞðz−ðλÞ; xBÞ ¼ κμνðlÞðz−ðλÞÞ; ð125aÞ

k̂μνðpsþqÞðz−ðλÞ; xBÞ ¼ δðqÞkμνðpÞðz−ðλÞÞ; ð125bÞ

respectively. We recall that p and q are determined from l
using Eq. (112). Hence, the different theorems can be
solved independently from each other. As a matter of fact,
theorems involving gravitational perturbation become in-
dependent of k̂μνðlÞ for any l which is not a multiple of s.

VII. APPLICATION TO STATIONARY OPTICAL
SPACETIME IN GEOCENTRIC CELESTIAL

REFERENCE SYSTEM

Let us now illustrate the method by determining the time
transfer function up to the postlinear approximation. We
investigate the light-dragging effect experienced by a signal
during its propagation inside a flowing media of non-null
refractivity. In the GCRS, the effect shows up at the
postlinear approximation. In the case where the motion
of the Earth’s atmosphere is mainly a steady rotation (e.g.,
in GCRS), we show that the light-dragging effect reduces to
a geometrical factor scaling the static atmospheric contri-
bution. During the computation, we never make use of an
a priori index of refraction profile in order to keep
equations as general as possible.

A. Notations and definitions

We consider that spacetime is covered with some global
coordinates ðxμÞ. We choose the coordinate system such
that the optical metric components are independent of x0. In
addition, the coordinate system shall be chosen in such a
way that it is convenient to model the outcomes of an
experiment taking place in the Earth’s close vicinity.
Therefore, we consider that ðxμÞ are the GCRS coordinates.
We recall that the GCRS is centered in the Earth’s center of
mass and is nonrotating with respect to distant stars. We
suppose that the domain D defines the spacetime bounda-
ries of the Earth’s neutral atmosphere. In that sense, D
draws a timelike tube in spacetime. The Earth’s atmosphere

is considered spherically symmetric and we suppose that it
is filled with a nondispersive fluid dielectric medium whose
refractive properties are independent of the component x0,
that is to say

nðxÞ ¼ 1þ NðxÞ: ð126Þ

We consider that the atmosphere is still in the reference
system rotating with the Earth; thus we assume that the unit
4-velocity vector is given in GCRS by

wμ ¼ w0ð1; ξiÞ; ð127Þ

where ξi is the coordinate 3-velocity vector of the fluid
dielectric medium. Hereafter, we assume that the 3-velocity
vector is given by the following expression:

ξiðxÞ ¼ ω⊕

c
eijkSj⊕x

k; ð128Þ

where ω⊕ is the magnitude of the Earth’s angular velocity
of rotation and S⊕ is the direction of the spin axis.
Moreover, we consider the case of a one-way transfer,

with the transmitter being right outside D and the receiver
being comoving with the fluid dielectrics medium, that is to
say at rest in the reference system rotating with the Earth. In
order to fix ideas for future discussion, let us assume that
the emitter is transmitting from the international space
station (ISS) at an altitude of h ≃ 400 km. Furthermore, let
us consider that the emitter is moving along the timelike
worldline CA with the unit 4-velocity vector uA defined by

uμA ¼ u0Að1; βiAÞ; ð129Þ

where βiA is the coordinate 3-velocity vector expressed
in GCRS coordinates. Similarly, we assume that the
receiver moves along the timelike worldline CB with the
unit 4-velocity vector uB defined by

uμB ¼ u0Bð1; βiBÞ; ð130Þ

where βiB is the coordinate 3-velocity vector expressed in
GCRS coordinates. For a receiver comoving with the
medium, we have

βiB ¼ ξiðxBÞ: ð131Þ

B. Expansion of the delay functions

The components of the physical spacetime metric
expressed in GCRS coordinates are given in [49]
[where the convention for the signature of spacetime is
ð−;þ;þ;þÞ and where the components Gαβ correspond to
our gμν]. By keeping terms in 1=c2, the first-order gravi-
tational perturbation reads as follows:
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hð1Þ00 ¼ −
2U
c2

; hð1Þ0i ¼ 0; hð1Þij ¼ −
2U
c2

δij; ð132aÞ

where the contravariant components are determined from
Eq. (108)

k00ð1Þ ¼
2U
c2

; k0ið1Þ ¼ 0; kijð1Þ ¼
2U
c2

δij: ð132bÞ

In these expressions, we restrict U to the monopole term
of the Newtonian gravitational potential of the Earth, that is

UðxÞ ¼ Gm⊕

jxj ; ð133Þ

where m⊕ is the mass of the Earth. In that respect, at the
level of the surface of the Earth, we find

jkμνð1Þjmax ∝
UðR⊕Þ
c2

∼ 10−10; ð134Þ

where R⊕ denotes the Earth’s equatorial radii.
Then according to [50], at the sea level an average parcel

of air possesses a refractivity NðR⊕Þ ≃ 3 × 10−4, so we
consider N0 ¼ NðR⊕Þ ∼ 10−4. Additionally, at the Earth’s
surface, the 3-velocity of the refractive medium expressed
in GCRS coordinates is jξiðR⊕Þjmax ∝ ω⊕R⊕=c ∼ 10−6.
Consequently, we can expand the refractive perturbation in
terms of the refractivity at the Earth’s surface and in the
approximation of small velocities. Therefore, it can be seen
that the first-order term of the refractive perturbation is
given by [see Eqs. (138a)]

jκμνð1Þjmax ∝ N0 ∼ 10−4: ð135Þ

At the same time, a typical measurement profile for the
neutral atmosphere using the global positioning system
meteorology occultations data [51] starts at l ≃ 100 km, so
that l=h ≃ 0.4. For observations at lower elevation than the
zenith direction, we can roughly take l=RAB ∼ 0.1. Then if
we consider that the light path is sufficiently small so that
the metric components vary slowly during the integration,
we can get a rough estimation of s by making use of
Eqs. (76). We quickly infer that s must satisfy the zeroth-
order following relation:

l
RAB

jκμνjmax ∼ ðjkμνjmaxÞ1=s: ð136Þ

Inserting numerical values, we deduce s ¼ 2. These results
can be double checked by inserting the first-order expres-
sions of the gravitational and refractive delays [see
Eqs. (142) and (143)] into Eq. (67).
In this application, we exclude third-order terms and

beyond, that is to say, all terms of the order of ε3 with
ε ∼ l=RABjκμνjmax ∼ 10−5. The meaning is that a postlinear

expression of the range transfer function neglects terms of
the order of ε3RAB. Therefore, the coupling terms which are
of third order are neglected too.
A look at Eqs. (9b) and (135) allows one to infer that the

time component of the 4-velocity vector of the fluid
dielectric medium must be known up to 10−5 in order to
account for all second-order terms. Considering that the
4-velocity of the medium must be a unit vector for the
spacetime metric gμν, we have the relation

w0 ¼ ðg00 þ 2g0iξi þ gijξiξjÞ−1=2: ð137Þ

Therefore, to sufficient accuracy, we can safely consider for
the rest of the application that w0 ¼ 1.
Hence, we end up with the following contravariant

components for the refractive perturbation:

κ00ð1Þ ¼ 2N; κ0ið1Þ ¼ 0; κijð1Þ ¼ 0; ð138aÞ

with the second order

κ00ð2Þ ¼ N2; κ0ið2Þ ¼ 2Nξi; κijð2Þ ¼ 0: ð138bÞ

Let us note that the cross component is non-null at the
postlinear approximation. It represents the light-dragging
effect due to the motion of the fluid dielectric medium in
GCRS coordinates.
Additionally, let us mention that the optical spacetime

is stationary as seen from Eqs. (132b) and (138). In that
respect, the emission or the reception time transfer func-
tions become identical. As a consequence, the distinction
between emission and reception functions is not relevant
anymore meaning that the time component at emission or
reception is no longer an independent variable [28]. Hence,
κ̂μνðlÞ and k̂μνðlÞ are now given by Eqs. (124) and (125) which

are independent of the total time delay. Therefore, the
refractive and the gravitational delays may be solved
independently from each other.
A straightforward application of Theorem 4 assuming

s ¼ 2 allows us to infer the expansion scheme of the total
time delay function

Δð1ÞðxA;xBÞ ¼ Δð1Þ
r ðxA;xBÞ; ð139aÞ

Δð2ÞðxA;xBÞ ¼ Δð2Þ
r ðxA;xBÞ þ Δð1Þ

g ðxA;xBÞ: ð139bÞ

Thus, we deduce the fact that the different contributions
in Eq. (59a) are given by

ΔgðxA;xBÞ ¼ Δð1Þ
g ðxA;xBÞ; ð140aÞ

ΔrðxA;xBÞ ¼ Δð1Þ
r ðxA;xBÞ þ Δð2Þ

r ðxA;xBÞ: ð140bÞ
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Then Theorems 6 and 8 together with Eqs. (138) and
(132b) allow us to determine the refractive and the
gravitational contributions up to the appropriate order.

C. Time transfer function and Doppler

Using the fact that spacetime is stationary, we first
focus on the gravitational time delay. By making use of
Theorem 8, we soon arrive at the well-known formula

ΔgðxA;xBÞ ¼
2RAB

c2

Z
1

0

Uðz−ðλÞÞdλ; ð141Þ

which leads after integration to the Shapiro delay [52]

ΔgðxA;xBÞ ¼
2Gm⊕

c2
ln

�
rA þ rB þ RAB

rA þ rB − RAB

�
: ð142Þ

We introduced the notations rA=B ¼ jxA=Bj.
The first-order refractive contribution is derived from

Theorem 6 and is given by

Δð1Þ
r ðxA;xBÞ ¼ RAB

Z
1

0

Nðz−ðλÞÞdλ: ð143Þ

We find almost similar expressions for the atmospheric
delay in [2–4,53] (commonly, when applied to the Earth’s
neutral atmosphere, the refractivity is defined within a
factor of 106 and is separated into hydrostatic and non-
hydrostatic components). The first main difference stands
in the path of integration in Eq. (143) which is performed
along the Euclidean line between the emitter and the
receiver even for nonzenithal observations. Instead, in
the literature [cf., e.g., Eqs. (2) and (3) of [4] ], the
atmospheric delay is usually computed at zenith, and then
mapping functions are used to convert the zenithal delay
into a delay in the line-of-sight direction as discussed in [4].
The other difference stands in the upper limit of integration.
However, considering that the refractive region is bounded
to the domainD of spacetime, the integration out ofD does
not contribute to the final results. In that respect, the
difference in the upper integration limit is only superficial.
The first-order refractive delay (143) is the well-known

excess path delay due to the change of the phase velocity
experienced by the signal during the crossing of the
dielectric medium. The geometric delay due to the refrac-
tive bending of the ray arises at the postlinear order as we
shall see in the next paragraph.
According to Theorem 6, the second order is given by

Δð2Þ
r ðxA;xBÞ ¼

RAB

2

Z
1

0

fðN2 − 4NξiNi
ABÞz−ðλÞ

− ½∂iΔ
ð1Þ
r ∂iΔ

ð1Þ
r �ðz−ðλÞ;xBÞgdλ: ð144Þ

The term ∂iΔ
ð1Þ
r is computed by differentiating Eq. (143)

with respect to xiA, that is to say

½∂iΔ
ð1Þ
r �ðx;xBÞ ¼ −

ðxB − xÞi
jxB − xj

Z
1

0

Nðy−ðμ;xÞÞdμ

þ jxB − xj
Z

1

0

μ½∂iN�y−ðμ;xÞdμ: ð145Þ

We have introduced

y−ðμ;xÞ ¼ ð1 − μÞxB þ μx; ð146Þ

which reduces to

y−ðμ; z−ðλÞÞ ¼ z−ðμλÞ ð147Þ

when x ¼ z−ðλÞ,
We can rearrange Eq. (144) by first noticing that the

light-dragging contribution can be further simplified.
Indeed, after making use of Eq. (128), it may be seen that

ðξiNi
ABÞz−ðλÞ ≡ ξiðxBÞNi

AB ð148Þ

which is obviously independent of λ. Then by substituting

for ∂iΔ
ð1Þ
r from Eq. (145) into (144) while accounting for

Eqs. (147) and (53), one can apply the following change of
variables μ0 ¼ μλ, and by integrating by parts the double
integrals, one infers the postlinear refractive order

Δð2Þ
r ðxA;xBÞ ¼ Δð2Þ

excðxA;xBÞ þ Δð2Þ
geoðxA;xBÞ

þ Δð2Þ
dragðxA;xBÞ; ð149Þ

where

Δð2Þ
excðxA;xBÞ ¼

RAB

2

Z
1

0

N2ðz−ðλÞÞð1þ ln λÞdλ; ð150aÞ

Δð2Þ
geoðxA;xBÞ ¼

RAB

2

Z
1

0

fλR2
AB½∂iN∂iN�z−ðλÞ

− 2RABNi
AB½N∂iN�z−ðλÞgλ ln λdλ; ð150bÞ

and

Δð2Þ
dragðxA;xBÞ ¼ DðxA;xBÞΔð1Þ

r ðxA;xBÞ; ð150cÞ

with DðxA;xBÞ being given by

DðxA;xBÞ ¼ −2ξiðxBÞNi
AB: ð151Þ

We have separated the postlinear approximation of the
refractive time delay function into three components. The
first one, namely, Eq. (150a), is the second-order correction
to the excess path delay (143). The second component, that
is, Eq. (150b), is the geometric delay which accounts for the
bending of the ray. These two components together with
Eq. (143) constitute the static part of the refractive time delay
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ΔstatðxA;xBÞ ¼ Δð1Þ
r ðxA;xBÞ þ Δð2Þ

excðxA;xBÞ
þ Δð2Þ

geoðxA;xBÞ; ð152Þ

namely, the refractive part of delay that would be measured
ormodeled in a frame comovingwith themedia. Instead, the
last term in Eq. (149), namely, Eq. (150c), is the delay due to
the dragging of light caused by the motion of the dielectric
medium. In that respect,DðxA;xBÞ is referred to as the light-
dragging factor.
Interestingly, one might see from Eq. (150c) that the

light-dragging contribution can be expressed as a geometric
factor scaling the first order of the static refractive part. This
fact is not a specificity of the postlinear approximation but
must hold true for higher order terms too. Indeed, it results
from the really specific form of the refractive components
κ0i which can always be written as

κ0i ¼ κ00ξi: ð153Þ

Therefore, because the scalar product ξiNi
AB is independent

of the path of integration for a steady rotating atmosphere,
the integration of κ0iNi

AB reduces to

ξiðxBÞNi
AB

Z
1

0

ðκ00Þz−ðλÞdλ; ð154Þ

where the integrated term corresponds to the static part of
the refraction.
Solving the line integrals in Eqs. (143), (150a), and

(150b) for a realistic index of refraction is not an easy task.
Moreover it is beyond the scope of this paper which aims at
introducing a recursive method allowing one to determine
the integral form of the time transfer functions up to any
order in optical spacetime. For this reason, we address the
effective resolution of the line integrals to future work.
Hereafter, we derive the range and the time transfer
function at the postlinear approximation.
From Eqs. (49a), and by making use of Eqs. (139), (149),

and (150c), we find

RðxA;xBÞ ¼ RAB þ ΔgðxA;xBÞ þ CðxA;xBÞΔð1Þ
r ðxA;xBÞ

þ Δð2Þ
excðxA;xBÞ þ Δð2Þ

geoðxA;xBÞ; ð155Þ

where we have introduced the factor CðxA;xBÞ being
defined such that

CðxA;xBÞ ¼ 1þDðxA;xBÞ: ð156Þ

According to previous discussions, we can rewrite
Eq. (155), within the same accuracy, such as

RðxA;xBÞ ¼ RAB þ ΔgðxA;xBÞ
þ CðxA;xBÞΔstatðxA;xBÞ: ð157Þ

The time transfer function can be directly obtained by
making use of Eq. (32a)

T ðxA;xBÞ ¼
1

c
½RAB þ ΔgðxA;xBÞ

þ CðxA;xBÞΔstatðxA;xBÞ�; ð158Þ

where we recall that Δstat is given in Eq. (152).
Let us emphasize how simple result (158) is. As a matter

of fact, the light-dragging effect is enclosed into a geo-
metrical factor scaling the static part of the refractive delay.
In addition, to derive (158) we never made use of an
a priori refractive profile; we only supposed a stationary
rotating optical medium. In comparison, a derivation of the
light-dragging effect using perturbation equations applied
to geometrical optics [54] requires heavier calculations
(where the integration must be performed along an hyper-
bolic path) highlighting the advantage of using the covar-
iant formalism developed so far. Indeed, in a covariant
theory, the light-dragging contribution is naturally taken
into account through the cross components of Gordon’s
metric.
From the range or the time transfer functions, we can

derive the expression of the frequency transfer within the
postlinear approximation as well. After inserting Eq. (157)
into (40), we deduce

qA ¼ 1 − βiAN
i
AB þ βiA

∂Δg

∂xiA þ β̂iA
∂Δstat

∂xiA þ βiA
∂D
∂xiA Δstat;

ð159aÞ

and

qB ¼ 1 − βiBN
i
AB − βiB

∂Δg

∂xiB − β̂iB
∂Δstat

∂xiB − βiB
∂D
∂xiB Δstat;

ð159bÞ

where we have introduced two artificial “dragging” coor-
dinate velocities defined by

β̂iA=B ¼ CðxA;xBÞβiA=B: ð160Þ

Most of the time, while modeling range and Doppler
observables in GCRS coordinates, the factor C is arbitrarily
fixed to C ¼ 1 (i.e., vanishing of the light-dragging factor).
In the next section, we investigate the resulting conse-
quences by discussing orders of magnitude and variabilities
due to the light-dragging contribution in the expressions of
the time and the frequency transfers.

D. Light-dragging magnitude and variability

In GCRS coordinates, the velocity of the fluid medium at
xB is given by Eq. (128), that is
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ξiðxBÞ ¼
ω⊕rB
c

eijkSj⊕n
k
B; ð161Þ

where nB ¼ xB=rB. For a ground-based receiver, we have
rB ¼ R⊕ and the light-dragging factor becomes

DðxA;xBÞ ¼ −
2ω⊕R⊕

c
ðS⊕ × nBÞ · NAB: ð162Þ

Thus, the maximum value of D is about

2ω⊕R⊕

c
≃ 3.099 × 10−6: ð163Þ

A typical value of the static refractive delay in the zenith
direction is approximately 2.5 m and can reach 15 m for an
elevation angle of 10° [5,6]. Therefore, the light-dragging
contribution to the time transfer is expected to remain lower
that 0.05 mm in GCRS coordinates. However, for experi-
ments whose data are mainly analyzed in the barycentric
celestial reference system (BCRS), the velocity of
the media possesses an orbital component which is of
the order of 30 km s−1. Thus, the maximum value of D
becomes of the order of 2 × 10−4, and the dragging
contribution can reach 3 mm in BCRS coordinates.
Experiments such as satellite or lunar laser ranging are

currently operating at the millimeter and centimeter levels
of precision on range measurements [55–57]. Therefore,
the light-dragging effect is just below the threshold of
visibility on both experiments. However, as may be inferred
from Eq. (162), the effect is mainly suppressed in the
case of a round-trip light path. In other words, it might
play a significant role only for one-way and three-way
configurations.
From Eq. (145), considering a slowly varying refractiv-

ity, we can infer that

∂Δstat

∂xiA ∼
l

RAB
N0Ni

AB ∼ 10−5Ni
AB;

hence

βiA
∂Δstat

∂xiA ∼ 10−5ðβiANi
ABÞ: ð164Þ

Therefore, for a one-way frequency transfer experiment, the
static atmospheric contribution relative to the classical
effect ðβiANi

ABÞ, represents roughly 1 part in 105.
Then the contribution due to the dragging velocity in

Eqs. (159) is approximately given by

β̂iA
∂Δstat

∂xiA ∼ 10−5ðβ̂iANi
ABÞ: ð165Þ

Making use of Eqs. (160) and (163), one infers that, in
GCRS coordinates, the light-dragging contribution (term

proportional toD) represents 1 part in 106 and 1 part in 1011

relative to the static atmospheric effect and to the classical
effect, respectively. If we take a look at orders of magnitude
in BCRS coordinates, the light-dragging contribution
relative to the static atmospheric effect reaches 1 part in
104 and 1 part in 109 relative to the classical effect.
Therefore, for typical spacecraft’s velocities of 10−5 and
10−4 in GCRS and BCRS coordinates, respectively, one
infers that the effect of the light-dragging contribution
produces a fractional frequency change of the order of 1
part in 1016 in GCRS coordinates and 1 part in 1013 in
BCRS coordinates. For one-way radio links, these frac-
tional frequency changes translate into radio signal
frequencies at the level of 1 μHz for X=Ka bands and
0.1 μHz for S bands in GCRS coordinates. In BCRS
coordinates, the frequencies of the radio signal due to
the dragging of light should arise at 1 mHz for X=Ka bands
and 0.1 mHz for S bands. The correspondence in terms of
velocity precision in the Doppler is at the level of 0.01 and
10 μms−1 in GCRS and BCRS coordinates, respectively.
Past and future space missions such as Cassini [58–60],

BepiColombo [61,62], or JUICE [63] have reached or will
reach the level of 1 μms−1 for the Doppler. Therefore, the
light-dragging effect is clearly at the threshold of visibility
in Doppler observables and should be modeled in data
reduction software in the near future.
In order to understand what could be the signature of an

unaccounted light-dragging effect, let us now focus on the
computation of the time variability of DðxA;xBÞ. For a
ground-based instrument, the spatial coordinates expressed
in an Earth centered frame are given by xB ¼ ðR⊕;ϕB; λBÞ,
where ϕB is the latitude and λB the longitude of the
instrument on the surface of the Earth. The variable
part in Eq. (162) is better understood if we introduce
ða; e; ι;Ω;ω; fÞ denoting the set of Keplerian elements of
the emitter. In GCRS coordinates the direction nA of the
emitter is given for instance in Eq. (3.42) of [64]. Then the
expression of the light-dragging factor reads as follows:

D¼ 2ω⊕R⊕

c
að1−e2Þ

RAB

cosϕB

ð1þecosfÞ
×fsinΩ½I− cosðFþþPþÞþ Iþ cosðF−þP−Þ�
− cosΩ½I− sinðFþþPþÞþ Iþ sinðF−þP−Þ�g; ð166Þ

where we have set

I� ¼ ð1� cos ιÞ=2; ð167aÞ

and

F� ¼ f � ω⊕t; P� ¼ ω� λB: ð167bÞ

Considering a quasicircular orbit (e ≪ 1), we have rA ¼
aþOðeÞ and
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f ¼ nðt − t0Þ þOðeÞ; ð168Þ

where t0 is the time of perigee passage and where n is the
mean motion being given by Kepler’s third law

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
Gm⊕

a3

r
: ð169Þ

Therefore, the magnitude of D oscillates with frequencies
n� ω⊕ around zero and 10−4 (maximum amplitude of the
orbital barycentric velocity) in GCRS and BCRS coordi-
nates, respectively. The peak to peak amplitude is of the
order of 10−6 in both reference systems. In the limit case
where lima→∞n ¼ 0, the same magnitudes oscillate at
diurnal frequency.
Consequently, while modeling the time and frequency

transfers using Eqs. (158) and (159) in GCRS or BCRS
coordinates, the fact of imposing C ¼ 1 (or equivalently
D ¼ 0) leads to an unaccounted contribution which may
lead to systematic errors for instance in the estimations of
the spacecraft velocity [considering Eq. (160)] or in the
receiver coordinates (considering that diurnal signatures
mainly concern ground-based stations). This last example
could be particularly relevant for ground-based techniques
operating within the international Earth rotation and refer-
ence system service (IERS) for which an error in the
estimation of the station coordinates can result in a bias in
the determination of the ITRF.

VIII. CONCLUSION

This paper generalizes the algorithmic approach intro-
duced in [28] by making the time transfer functions
formalism applicable in optical spacetime. The main results
stand in Theorems 4–11 which allow one to determine
the integral form of the time transfer functions up to any
order. The great benefit of using the time transfer func-
tions formalism relies on the fact that all integrals in
Theorems 6–11 are line integrals taken along the zeroth-
order null geodesic path between the emitter and the
receiver, independently of the order being considered.
In optical spacetime, the method requires us to know the

order of magnitudes of both the gravitational and the
refractive perturbations. Then one can deduce the integer
parameter s from Eq. (67) and use Theorems 4 and 5 in
order to determine the general expansion of the total time
delay functions. The different components are the gravi-
tational, the refractive, and the coupling contributions.
Each of them is determined recursively making use of
Theorems 7–11. We emphasize that these theorems have
been derived assuming (i) a post-Minkowskian expansion
and (ii) a general expansion in terms of an arbitrary
refractivity N0. Both choices are motivated by the quasi-
Minkowskian path regime which is assumed throughout
the paper.

We have illustrated the method by determining the
integral form of the time transfer function up to the
postlinear approximation. We have considered the case
of a one-way transfer between a low orbit emitter and a
receiving station on the Earth’s surface. We have shown
that the time and frequency transfers are both impacted by
the light-dragging effect due to the motion of the atmos-
phere, as seen from a frame which is not comoving with the
flowing optical media. With respect to other methods (e.g.,
[54]), we have highlighted the great advantage of the
covariant formalism developed in this paper which natu-
rally takes into account the effect of the dragging of light. In
addition, we have shown that the light-dragging contribu-
tion is independent of the refractive profile which is
considered. At the end of the day, the dragging component
reduces to a geometrical factor which scales the static part
of the atmospheric time delay (where the term “static”
refers to the delay which would be measured in a frame
comoving with the refractive medium). Concerning the
frequency transfer, we have shown that the light-dragging
contribution scales the coordinate velocities of both the
emitter and the receiver resulting in the introduction of
artificial dragging coordinate velocities. Finally, we have
discussed the necessity, in the near future, for taking into
account the dragging of light in data reduction software
modeling the time and frequency transfers within GCRS or
BCRS coordinates.
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APPENDIX: GENERAL EXPANSION OF γμν

The covariant components of γμν are determined from the
inverse conditions which lead to the following implicit
expression:

γμν ¼ −gμαgβνκαβ − gμακαβγβν: ðA1Þ

Usually, assuming that γμν ¼ fðnÞwμwν with fðnÞ being a
sought function of the index of refraction and using
Eq. (9b), we infer Eq. (9a). However, the situation slightly
changes if we expand the contravariant components κμν as
is done in Eq. (93).
At the same time, we have assumed that the physical

spacetime metric, which is given in Eq. (44a), satisfies a
post-Minkowskian expansion [see Eq. (106). Thus, con-
sidering that the refractive components are the dominant
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order according to Eq. (67) for s ∈ N>0, we deduce that the
covariant components γμν satisfy the following expansion:

γμνðx; N0; GÞ ¼
X∞
l¼1

γðlÞμν ðxÞ; ðA2Þ

where the quantities γðlÞμν can be recursively determined from
Eq. (A1), that is

γð1Þμν ¼ −ημαηβνκ
αβ
ð1Þ; ðA3aÞ

γðqÞμν ¼ −ημαηβνκ
αβ
ðqÞ − ημα

Xq−1
m¼1

καβðmÞγ
ðq−mÞ
βν ðA3bÞ

for 2 ≤ q ≤ s, and

γðsþ1Þ
μν ¼−ημαηβνκ

αβ
ðsþ1Þ−2ημακ

αβ
ð1Þh

ð1Þ
βν −ημα

Xs
m¼1

καβðmÞγ
ðs−mþ1Þ
βν ;

ðA3cÞ

γðsþqÞ
μν ¼ −ημαηβνκ

αβ
ðsþqÞ − 2ημακ

αβ
ðqÞh

ð1Þ
βν

− ημα
Xsþq−1

m¼1

καβðmÞγ
ðs−mþqÞ
βν − hð1Þμα

Xq−1
m¼1

καβðmÞγ
ðq−mÞ
βν

ðA3dÞ

for 2 ≤ q ≤ s, and

γð2sþ1Þ
μν ¼−ημαηβνκ

αβ
ð2sþ1Þ− 2ημακ

αβ
ðsþ1Þh

ð1Þ
βν

− 2ημακ
αβ
ð1Þh

ð2Þ
βν −hð1Þμα κ

αβ
ð1Þh

ð1Þ
βν − ημα

X2s
m¼1

καβðmÞγ
ð2s−mþ1Þ
βν

−hð1Þμα

Xs

m¼1

καβðmÞγ
ðs−mþ1Þ
βν ; ðA3eÞ

and

γð2sþqÞ
μν ¼ −ημαηβνκ

αβ
ð2sþqÞ − 2ημακ

αβ
ðqÞh

ð2Þ
βν

− 2ημακ
αβ
ðsþqÞh

ð1Þ
βν − hð1Þμα κ

αβ
ðqÞh

ð1Þ
βν

− ημα
X2sþq−1

m¼1

καβðmÞγ
ð2sþq−mÞ
βν − hð1Þμα

Xsþq−1

m¼1

καβðmÞγ
ðsþq−mÞ
βν

− hð2Þμα

Xq−1
m¼1

καβðmÞγ
ðq−mÞ
βν ðA3fÞ

for 2 ≤ q ≤ s, and

γðpsþ1Þ
μν ¼−ημαηβνκ

αβ
ðpsþ1Þ−2ημα

Xp−1
m¼0

καβðmsþ1Þh
ðp−mÞ
βν

−
Xp−1
m¼1

hðp−mÞ
μα

Xm−1

n¼0

καβðnsþ1Þh
ðm−nÞ
βν −ημα

Xps
m¼1

καβðmÞγ
ðpsþ1−mÞ
βν

−
Xp−1
m¼1

hðp−mÞ
μα

Xms

n¼1

καβðnÞγ
ðmsþ1−nÞ
βν ðA3gÞ

for p ≥ 3, and finally

γðpsþqÞ
μν ¼ −ημαηβνκ

αβ
ðpsþqÞ − 2ημα

Xp−1
m¼0

καβðmsþqÞh
ðp−mÞ
βν

−
Xp−1
m¼1

hðp−mÞ
μα

Xm−1

n¼0

καβðnsþqÞh
ðm−nÞ
βν

− ημα
Xpsþq−1

m¼1

καβðmÞγ
ðpsþq−mÞ
βν

−
Xp−1
m¼0

hðp−mÞ
μα

Xmsþq−1

n¼1

καβðnÞγ
ðmsþq−nÞ
βν ðA3hÞ

for p ≥ 3 and 2 ≤ q ≤ s, where p and q are determined
from l using Eqs. (112).
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