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General expansion of time transfer functions in optical spacetime
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When dealing with highly accurate modeling of time and frequency transfers into arbitrarily moving
dielectrics medium, it may be convenient to work with Gordon’s optical spacetime metric rather than the
usual physical spacetime metric. Additionally, an accurate modeling of the geodesic evolution of
observable quantities (e.g., the range and the Doppler) requires us to know the reception or the emission
time transfer functions. In the physical spacetime, these functions can be derived to any post-Minkowskian
orders through a recursive procedure. In this work, we show that the time transfer functions can be
determined to any order in Gordon’s optical spacetime as well. The exact integral forms of the gravitational,
the refractive, and the coupling contributions are recursively derived. The expression of the time transfer
function is given within the postlinear approximation assuming a stationary optical spacetime covered with
geocentric celestial reference system coordinates. The light-dragging effect due to the steady rotation of the
neutral atmosphere of the Earth is found to be at the threshold of visibility in many experiments involving
accurate modeling of the time and frequency transfers.
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I. INTRODUCTION

In geometrical optics, the concept of light rays is
introduced as curves whose tangents coincide with the
direction of propagation of an electromagnetic wave [1]. In
this approximation, refraction operates at two different
levels. First, it causes the phase velocity of the electro-
magnetic wave to slow down or speed up while crossing a
region of higher or lower refractivity, respectively.
Secondly, light rays tend to bend toward regions of higher
refractivity. These outcomes produce an excess path delay
and a geometric delay in the light time. Depending on the
context, these two effects must be either thoroughly
modeled or precisely measured while designing highly
accurate experiments involving time and frequency trans-
fers in the presence of a refractive medium.

In many fields of astronomy such as planetary physics,
astrometry, metrology, geodesy, fundamental physics, or
even cosmology, we can think of situations where refrac-
tivity plays a significant role in the time and frequency
transfers. For instance, we mention that ground-based
astrogeodetic techniques operating for the realization of
the international terrestrial reference frame (ITRF) are
currently limited by errors in modeling the group delay
during the signal propagation through the Earth’s atmos-
phere [2-6]. We also mention the cases of atmospheric
radio occultations [7—12] and atmospheric stellar occulta-
tion experiments [13,14]. Indeed, both techniques aim at
determining a refractivity profile toward an occulting
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atmosphere from precise measurements of an a priori
known frequency (usually given in the frame at rest with
the emitter) and from an accurate modeling of the fre-
quency transfer in the presence of the occulting refractive
medium. To an even higher degree of accuracy, we can cite
experiments involving frequency transfers between distant
atomic clocks via a ground-ground free-space optical
(FSO) link [15-17], space-ground FSO link [18,19], and
optical fiber links [20-22]. Finally, let us emphasize that in
the context of cosmology, it has been shown that the
accumulated effect of an artificial refractivity over the
distance-redshift relation perfectly fits the Hubble curve
of type Ia supernovae data in the framework of a non-
accelerating cosmological model [23]. All these examples
highlight how important refraction can be in highly accurate
experiments involving time and frequency transfers.

In the past, two independent theoretical formalisms
have been introduced, namely, Gordon’s optical metric
and the time transfer functions. On one side, Gordon’s
metric allows one to handle refraction in curved spacetime;
on the other side, the time transfer functions formalism
handles theoretical problems related to the time and fre-
quency transfers in curved spacetime. In this work, we
intend to combine the two formalisms which are discussed in
turn in the next paragraphs.

In the early 1920s, Gordon introduced [24] a useful
theoretical tool to study light refraction caused by an
arbitrarily moving fluid dielectric medium, namely,
Gordon’s optical metric. In this work, he showed that in
the presence of a fluid whose electromagnetic properties
are described by a permittivity ¢(x) and a permeability
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u(x), any solutions to the macroscopic Maxwell’s equa-
tions can be looked at indifferently either in the usual
physical spacetime fitted with the metric tensor, or in an
artificial optical spacetime fitted with Gordon’s metric.
Conveniently, in the optical spacetime and within the
geometric optics approximation, by means of a slightly
different set of Maxwell’s equations, the electromagnetic
properties of the fluid medium are reduced to their vacuum
values, that is to say e(x) = ¢y and p(x) = pg. In other
words, in the physical spacetime, the interaction between
the electromagnetic field and the dielectric fluid medium
must be carefully modeled, whereas in the optical space-
time this interaction is implicitly accounted for in the
vacuum limit of the macroscopic version of Maxwell’s
equations. Consequently, within the geometric optics
approximation, light rays propagate into the dielectrics
medium along null geodesic lines of the optical spacetime.

At the same time, theoretical problems dealing with the
deflection of light rays or the frequency transfer require us
to know the function relating the (coordinate) time transfer
to the coordinate time at the reception and to the spatial
coordinates of the reception and the emission points.
Such a function is called a reception time transfer function.
Obliviously, an emission time transfer function can be
introduced as well. The formalism which aims at determin-
ing the time transfer functions was first introduced by Linet
and Teyssandier [25] relying on the theory of the world
function developed by Synge [26]. General expansions of
the world function and the time transfer functions were first
proposed by Le Poncin-Lafitte et al. [27], and then a
simplified recursive approach, based on the determination
of time delay functions instead of Synge’s world function,
was presented by Teyssandier and Le Poncin-Lafitte [28].
The usefulness of the time transfer function formalism
lies in the fact that it spares one the trouble of explicitly
solving the null geodesic equation which usually leads
to heavy calculations beyond the post-Minkowskian
regime (see, e.g., [29-33] for explicit resolution of the
null geodesic equation in the linearized weak field limit
and see, e.g., [34-36] for resolution in the post-post
Minkowskian approximation). Indeed, assuming that the
emission and reception points events are linked by a null
geodesic path (quasi-Minkowskian path approximation),
the time transfer functions formalism achieves a complete
resolution of the time and frequency transfers to any post-
Minkowskian order by means of an algorithmic resolution
method [28]. For this reason, this formalism is currently
one of the most powerful theoretical tools to derive the time
and frequency transfers along null geodesics of the curved
physical spacetime.

The scope of this paper is to generalize the formalism of
the time transfer functions to optical spacetime. The aim is
to provide a recursive method allowing one to solve
theoretical problems related to the propagation of light
in the presence of an arbitrarily moving refractive medium.

This work is organized as follows. In Sec. II, we present
the notations and conventions used throughout this paper.
Section III is a short reminder about the use of Gordon’s
metric in relativistic geometrical optics. In this section, we
derive the optical counterpart of the scalar Eikonal equation
(fundamental equation of geometrical optics) which is at
the basis of the demonstration which follows. Section IV
is a recall about the time transfer functions formalism.
In Sec. V, by applying a method initially proposed by
Teyssandier and Le Poncin-Lafitte [28], we show that
working in optical spacetime induces the fact that the time
transfer functions can be decomposed into three compo-
nents that we call the gravitational, the refractive, and the
coupling time transfer functions. In Sec. VI, we present the
general expansion of the three contributions. In Sec. VII,
we illustrate the method by computing the time transfer
function of an optical spacetime describing Earth’s rotating
atmosphere in the geocentric celestial reference system
(GCRS) within the postlinear approximation. Finally, we
discuss the importance of taking into account the light-
dragging effect in the future generation of data reduction
software.

II. NOTATIONS AND CONVENTIONS

In this work, the metric of spacetime is denoted by g and
its signature is (+, —, —, —). The optical metric (also called
Gordon’s metric) is denoted by g.

We suppose that spacetime is covered with some global
coordinate system (x*) = (x, x'). We put x* = ¢t with ¢
being the speed of light in a vacuum and ¢ being the
coordinate time. Greek indices run from O to 3 and Latin
indices run from 1 to 3.

Straight bold letters (e.g., x) and italic bold letters
(e.g., x) denote 3-vectors and 4-vectors, respectively.
The 3-vector x can also be characterized by an ordered
triple of coordinate values x’. Similarly, the 4-vector x can
be characterized by an ordered quadruple of coordinate
values x*. The components of the 4-vector x can be denoted
abstractly by x = (x%, x). When the 4-vector is a separation
vector between the origin of the coordinate system and a
point event x, we make no distinction between the point
event and the separation vector. Thus, we associate the
point event x with the components x = (x%, x).

Einstein’s summation convention on repeated indices
is used for expressions like a'b’ as well as for expressions
like A*B,. The ordinary Euclidean norm of x is denoted
as |x| and is defined as |x| = (5;;x'x/)"/? where &;; is the
Kronecker delta. The maximum absolute value of the
component A, is denoted as |A,, |- The 3-dimensional
antisymmetric Levi-Civita tensor is denoted as e/,

For the sake of legibility, we employ (f), or [f], instead
of f(x) whenever necessary. When a quantity f(x) is
to be evaluated at two point events x, and xg, we employ
(f)asp to denote f(x,) and f(xp), respectively. The partial
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differentiation with respect to coordinates x* is denoted
d,. The physical and the optical covariant differentiations

with respect to x* are denoted as V,, and v,,, respectively.
Given a scalar function f(x), we have the relation
V.f=V,f=0,f.

Throughout the paper, we assume the presence of an
arbitrarily moving fluid dielectric medium filling a finite
domain D of spacetime. We call w(x) the unit 4-velocity
vector of a point event x belonging to a fluid element of the
optical medium. The expression of w(x) is given by

dx

W =5, (1)

where the spacetime interval ds is defined by
ds? = g, (x)dx#dx”. (2)

We call & (x) the coordinate 3-velocity vector of the
point event x belonging to a fluid element of the optical
medium. Its expression is given by

. o1dy
f=r5=0 ©

Finally, G is the Newtonian gravitational constant.

III. RELATIVISTIC GEOMETRICAL OPTICS

We assume the presence of a fluid optical medium filling
D. Additionally, we consider for simplicity that the fluid’s
electromagnetic properties are linear, isotropic, nondisper-
sive, and can be summarized by two scalar functions,
namely, the permittivity e¢(x) and the permeability p(x).
These two quantities completely determine the refractive
properties of the optical medium through the following
relationship:

e(x)u(x), (4)

where n is the index of refraction of the medium.

When x € D, the permittivity and the permeability
reduce to their vacuum values e(x) = ¢y and u(x) = py,
respectively. Thus, considering that ¢ = (eou)~"/?, the
index of refraction becomes n(x) = 1. By subtracting its
vacuum value from the index of refraction, we obtain the
refractivity

N(x)=n(x) -1, (5)

which is obviously null in a vacuum.

In the physical spacetime, the evolution of an electro-
magnetic phenomenon occurring in the presence of an
optical medium is usually described by the macroscopic
version of Maxwell’s equations. These equations are
separated into two distinct sets involving a covariant

antisymmetric tensor F,, called the electromagnetic field
tensor (or Faraday tensor), and a contravariant antisymmet-
ric tensor B* called the electromagnetic field excitation
tensor (or Maxwell tensor), respectively. The macroscopic
version of Maxwell’s equations are given by [37,38]

3[01’”4 = O, (63)
V,B" = j, (6b)

where j(x) is a 4-vector denoting the free charge density
current. The square brackets denote the complete antisym-
metrization of the enclosed indices.

The first equation (6a) allows one to postulate the
existence of a covector field A,(x), such that the electro-
magnetic field tensor F,, can be locally written as the
rotational of the covector field, that is

F, =Re{0,A,—0,A,}. (7)

The second equation (6b) cannot be used alone to
fully determine the six independent components of the
electromagnetic field excitation tensor B**. In addition, it
does not provide a way to determine the components of
the electromagnetic field tensor F,,, which yet governs the
motion of particles through the Lorentz force. Therefore,
Maxwell’s equations must be supplemented with constit-
utive relations.

For an arbitrarily moving medium of permittivity e(x)
and permeability u(x) the covariant constitutive relation-
ships are given by [37]

B*w, = ec*F"w,, (8a)
UBWo = Flpuwy. (8b)

Equations (8) can be written as a single relationship
involving B*, F,,, and w(x). Indeed, as initially shown by
Gordon [24], when dealing with problems of electromag-
netic waves propagating into dielectrics, it is convenient to
introduce an optical spacetime in which refractivity is
considered as a spacetime curvature. Gordon’s metric (or

optical metric) is defined by

_ 1
9w = G + Yuws Yw = — <1 - F) WuWy, (93)

with inverse

Jv = g"” + k", K = (n> = 1)wkw*.  (9b)

Making use of Eq. (9b), one can see that Eqgs. (8) are
summarized within the single following relation [24]:

pB® = Fr, (10)

064035-3



ADRIEN BOURGOIN

PHYS. REV. D 101, 064035 (2020)

where the optical metric has been used to raise covariant
indices of F4, that is

o= graghF (11)

It is now possible to express Maxwell’s equation in the
optical spacetime. Because the covariant components of the
electromagnetic field tensor are equivalents in both space-
times [39], the first pair of Maxwell’s equations (6a)
remains unchanged. The optical form of the second pair
(6b) is obtained after substituting for B* from Eq. (10)
while introducing the optical covariant derivative [23].
After a little algebra, we find

vﬂ<\/§Fﬂ”) = \Jeuj’. (12)

Equation (12) is perfectly equivalent to Eq. (6b)
equipped with the constitutive relations (8). While working
in the optical spacetime, Eq. (12) allows one to find F*
and Eq. (11) allows one to express the components of the
electromagnetic field tensor in the physical spacetime.
Hereafter, we work in the optical spacetime where the
light propagation into the dielectric medium is simply
given by the vacuum limit of the macroscopic version of
Maxwell’s equations (no free density current, i.e., j* = 0).

In this work, we consider geometrical optics approxi-
mation, so we assume that the 4-potential covector A, (x) of
a traveling quasimonochromatic wave possesses an expan-
sion of the form [1]

A, = la, + O(w7")]e”. (13)

Here .7 (x) is the usual eikonal function which determines
the surfaces of the constant phase for the wave, a,(x) is the
complex covector amplitude varying slowly in comparison
to . (x), and @ is a bookkeeping parameter that we take to
be high during our manipulations [40].

Then substituting for A, from Eq. (13) into (7) allows
one to infer

F;w = Re{[iwf;w + O(wO)]eti}’ (14)

where f,, (x) represent the coordinates of the electromag-
netic field tensor amplitude, that is

fuw = kya, —k,a (15)

u vl
with k, being the wave covector defined by
k,=0,5. (16)

We can introduce the contravariant optical wave vector
such that

B = g, (17)

where the low index has been raised with the help of the
optical spacetime metric. We can directly check from the
inverse conditions g,,§” = &, that the covariant coordi-
nates of the wave vector are identical in physical and optical
spacetimes; that is to say

k, = k,.

(18)

Assuming that the 4-potential fulfills the Lorentz gauge
in the optical spacetime, that is

V,Af =0, (19)
where we introduced A# = g*A,, and we find
d"k,a, =0 (20)

within the geometrical optics approximation. This relation-
ship states the orthogonality between the optical wave
vector k and the wave covector amplitude a,.

Finally, the fundamental equations of geometrical optics
can be derived from the vacuum limit of the optical version
of Maxwell’s equations. We first determine the optical
electromagnetic field tensor by making use of Egs. (11) and
(14). Then by taking the covariant derivative of F**, we find

V,F" = —Re{[0*k,f" + O(w)]e®”},  (21)

where we introduced f* = g**g’ S ap- By substituting this
result into the vacuum limit of Eq. (12) and by restricting
ourselves to the geometrical optics order, we deduce

Re{k,f*} = 0. (22)

Then substituting for f* from Eq. (15) into (22) and
considering (20), we finally deduce

Fk,k, = 0. (23)

This is the fundamental equation of geometrical optics
expressed in optical spacetime. After inserting Eq. (16), we
infer that the phase .’(x) satisfies the well-known scalar
Eikonal equation

770,50, = 0. (24)

We close this section by showing that k is a null vector
satisfying the geodesic equation for the optical metric.
From Egs. (23) and (18), we easily infer

Gukk = 0. (25)

This relation shows that k is indeed isotropic for the
optical metric g,,. Then we differentiate Eq. (23) with

064035-4



GENERAL EXPANSION OF TIME TRANSFER FUNCTIONS IN ...

PHYS. REV. D 101, 064035 (2020)

respect to x°. Considering the symmetry of the components
of the optical metric together with Eq. (17), it becomes

k(Y k,) = 0. (26)

Making use of the definition (16), we infer vgk,, = vbka.
Finally, considering Eqgs. (17) and (18), we deduce

(k*V,)ke =0, (27)

which states [together with Eq. (25)] that curves admitting
k as a tangent vector are null geodesic lines of the optical
metric. In that respect, a null line which is the solution of
Eq. (27) can be interpreted as a ray of light whose tangent at
any point x is orthogonal to the surface of the constant
phase . (x) [26].

IV. TIME TRANSFER FUNCTIONS FORMALISM

Let us consider a light ray I" propagating in a region of
spacetime covered with some coordinate system (x*). Let
(cty,x4) be the components of the point event x,. We
introduce C,, the curve of the parametric equations x =
x4 (7) with 7 being a parametrization of C4. Let us suppose
that the coordinate system is chosen such that C, is a
timelike worldline for any x,, which means that 9/9x is a
timelike vector field, that is to say ggy > 0 everywhere. Let
x4 be the point event where I" is emitted and let x be the
point event of components (c7g,Xz) where it is observed.
The quantity 7z — 7, is the (coordinate) travel time of the
light ray connecting the emission point event x, and the
reception point event xp. This quantity allows us to
introduce the time transfer functions 7, and 7, [27] as

tg—tx =T, r(Xa,15,Xp) =T, (1, Xa,Xp).  (28)

We call 7, the reception time transfer function and 7 , i
the emission time transfer function associated with I'.

As shown in [41], given a point event xp and a
spatial position x,, I" is not unique in general. Thus, let
{Tll (x4, x5)},en be a family of light rays intersecting xp
and flowing from the different point events

xk’] € Cy, xE’] = (Cl‘/[:],XA). (29)
For each I'?), there exists a reception time transfer function,
denoted by 7, (X4, 15, X), such that

tB - t.»[:] - T,«I‘:"] (XA, th XB) (30)

(the same reasoning works for the emission time transfer
function as well).

This fact shows that, in general, we cannot expect to find
a unique reception (or emission) time transfer function.
However, for a very particular type of null geodesics,

referred to as quasi-Minkowskians [41,42], it has been
shown that the reception (or the emission) time transfer
function, if it exists, can be uniquely determined [28].
Henceforth, we assume that I' is a quasi-Minkowskian
light ray so that the corresponding time transfer functions
are indeed unique. In agreement with this assumption, we
suppose that the past null cone at x intersects C, at one and
only one point x4. Therefore, we can rewrite Eq. (28) as

tg—ta =T (X4, 15, Xp) =T ,(ts, X4, X5).  (31)

Hereafter, in order to shorten future notations, we
introduce the reception and the emission range transfer
functions being defined by

7?'}*(XA’ xB) = CTF(XA’ Ig, XB)’ (328')

and
(32b)

Re(xa.Xp) = T (14, X4, Xp).

An important theorem (cf. Theorem 1 of [27]) states that
the covariant coordinates of the tangent vector are totally
known as soon as one of the time transfer functions (or
equivalently, one of the range transfer functions) is explic-
itly determined. Therefore, if we define

=) " (33)

we have the following relationships:

OR OR OR N\ !
1), = T e e 4
(li)a oxl,  ox, ( axg> - (4
OR OR N\ ! OR
Np=——T11- 4 =—_—"2 34b
(l)s D'y ( (9x%> D'y (34b)
and
(kO)B a,R'r aRe -l
T P L (34
G R S (4

Consequently, Egs. (34) completely solve theoretical
problems related to frequency transfer. Indeed, it is well
known that the instantaneous expression of the Doppler
shift along the null-geodesic path between the emitter and
the receiver can be expressed as [26]

o (uko)p (14 L)
s Wk, AL, Y

S
—

where (u),/p is the emitter/receiver’s unit 4-velocity
vectors being defined as
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wia=(5), . (36)

with ds introduced in Eq. (2).
By definition, the 4-velocities satisfy the unity condition
(guuu”) s 5 = 1, which implies

()48 = (900 + 29088 + gijﬁiﬂj)/_\/léz' (37)

The quantities (5°) 4 /g in Eq. (35) represent the coordinates
of the emitter/receiver’s coordinate 3-velocity vectors and
are defined such that

. ut 1 /dxt
B am = (m)m e (E) oY

It is then straightforward to determine the exact
expression of the instantaneous Doppler formulation in
terms of the range transfer functions [32,43,44]. Indeed,
after inserting Eqs. (34) and (37) into Eq. (35), we infer

0
vp_ () ds (39)
va  (4”)4qa

with

- OR OR, . OR
= 1 ! .r - 1 ¢ ! 'e 4
CIA +ﬁA axg + 8_)(2 +/7)A axz ) ( Oa)
OR . OR . OR
:1__}’_ ! .r:1_ ! ~e 4Ob
qs ox) Py ox P o, (40b)
and
(1)p _ (900 + 2908 + 98B (41
(u®) (900 + 290:8' + 9,5 )1]9/2

From the fundamental equation of geometrical optics
[see Eq. (23)], we know that the covariant coordinates of
the 4-wave optical vector at point events x, or xp satisfy a
relation as follows:

(gﬂykﬂkv)A/B =0. (42)

Then dividing by [(ko),,5]* and making use of Eqs. (31)-
(34), we infer the following theorem which generalizes
Theorem 1 of [28] to optical spacetime.

Theorem 1.— Within geometrical optics approximation,
the range transfer functions R, and R, satisfy the follow-
ing Hamilton-Jacobi-like equations over the optical space-
time, namely:

_ o OR,
goo(x% - Rr’ XA) + 290l(x% - Rrv XA) B i
XA
y OR,O0R
g/ (x0 — T — 4
F PG = Rex) G D=0 (43a)
and
_ o R,
goo(x?x + Res XB) - 2901(')(2 + Rw XB) 8 i
XB
. OR,OR
+ 770 + R, x ez =0, 43b
P+ Reonn) 5o (43)

respectively.

This theorem is at the basis of the demonstration for
deriving the integral form of the range and then the time
transfer functions. Henceforth, in order to avoid repetitions,
we pursue the demonstration giving details only for the
reception time delay function. However, the same results
can be derived for the emission time delay function by
applying the exact same reasoning.

V. INTEGRAL FORM OF THE
TIME DELAY FUNCTIONS

Now let us assume that the physical spacetime metric
takes the following form

Guv = My + h/w (443)

throughout spacetime, where 7, is the Minkowski metric

and h,, is the gravitational perturbation. In Cartesian

coordinates, #,, = diag(+1,—1,—1,—1). The contravar-

iant components of the physical spacetime metric can be
decomposed as

v =" + k", (44b)
where the components k¥ satisfy
ki = —n* "ﬂﬂyhaﬁ —n" "haﬂkﬂ”- (45)

Therefore, the optical spacetime metric (9a) can be
expressed as

g/w = rhw + H[ll/’ (463)
with the contravariant components
g =" + K, (46b)

Thus, the optical metric reduces to the sum of the flat
Minkowski metric plus a spacetime curvature contribution
which is given by
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H/w = h/w + Yuws (478')
with the contravariant components
KW = k" + kv, (47b)

From here we suppose that the curvature contribution is
small so that spacetime is mainly flat; that is to say

|h/w|max < |77/w|max7 |ypw|max < |77;w|max' (48)

In other words, we focus on the post-Minkowskian
approximation. Under this condition, we ensure that the
null geodesic path is quasi-Minkowskian.

The form of the optical metric in Egs. (46) implies that
the reception and the emission range transfer functions can
be looked for according to the following expressions:

R, (X4, xp) = |Xp — X4| + A(X4. Xp), (49a)

and

Re(xa, Xp) = [Xp = X4 + E(xa.Xp).  (49b)
respectively. Following [28], we will call A/c the reception
time delay function and E/c¢ the emission time delay
function [45].

Now if we assume that the reception point event xp is
perfectly known, then we can regard its components ¢z and
xp as fixed parameters. Hence, the reception time delay
function becomes a function of the spatial components of
the emission point event x, [46]. Thus, if we now substitute
X to X4, the reception time delay function A(x,xp)/c
uniquely defines the point event x_(x) for the given set of
spatial components X, that is to say

x_(x) = (x% — |x5 — x| = A(x, x3), X). (50)

Furthermore, assuming that the point event x_ lies in the
vicinity of xpz, we can determine the spatial variation of
the reception time delay function. Indeed, after inserting
Egs. (49a) and (46b) into (43a) taken at x_ instead of x4, we
deduce the following relationship [28]:

—2Nial'A(X,XB) - Q_(-x—st)v (51)

where N = (xp — x)/|xp — x|, and

Q. (x_.x5) = (K™ — 2KY%N' + KUNINT)_
+2(K% — KUN7), 0;A(x,xp)
+ (7 + KY), 0;:A(x,x5)0;A(x,x5). (52)

Since x is a free variable, we follow [28] and choose for
convenience to focus on the case where x is varying along

the straight line segment connecting x4 to Xp, that is to say
X = z_(4), where

Z_(ﬂ.) :XB_/lRABNABﬂ Osﬂs 1, (53)
with RAB = |XB - XA| and NAB = (XB — XA)/RAB' In that
respect, we also have the relation

N — NAB' (54)

We can now determine the integral form of the time delay
function by differentiating A(z_(4), xz) with respect to A.
Using Eq. (53), we can always write

d

ﬁA(Z—(A)’XB) = —RusNiyp[0:A](, (32> (35)

where [0;A](, (5, denotes the partial derivative of

A(x, xg) with respect to x' taken at X = z_(4). Then after
inserting Egs. (51) and (54) into (55), we infer

S A ()xn) =20 (2 ()5 (56)

where the components of the point event Z_(4) are obtained
from Eq. (50) which states that 7_(4) = x_(z_(4)). They
are explicitly written later on in Eq. (61).

By fixing the following boundary conditions:

A(z_(0), x5) = 0, (57a)

A(z_(1).xp) = A(x. xp), (57b)
which follow from the requirement that A(xp,xp) =0
when z_(0) = xp, we find

A(xy, xp) :% A 'O G (. xp)dh (58)

Then insertion of Eq. (52) allows us to recover Theorem 2
of [28] which would be expressed here in terms of the
contravariant components K* instead of k*’s.

In principle, all machinery developed in [28] for com-
puting the delay functions could be applied directly using
the components K**. However, such an approach possesses
the inconvenience of hiding the role played by the different
components k* and «x** during the determination of the
total delay functions.

Indeed, according to Egs. (47) the curvature of the
optical spacetime is described simultaneously with the
help of the components 4, and y,, which might act on
different characteristic lengths [e.g., y,,(x) = O for x & D]
and might possess completely different orders of magnitude
a priori. Therefore, in order to disentangle the contribution
of each perturbation into the determination of the total
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delay, we must perform a complete separation between the
physical quantities in Eq. (58).

As might be seen from Egs. (52) and (47b) such a
separation can be achieved when the total time delay
functions take the following forms:

A(Xp,xp) = Ay (X4, Xp) + Ar(X4,Xp) + Ay (Xa,Xp), (592)
and
E(XA,XB) = Eg(xA’XB) +Er(xAvXB) +Egr(xA,XB). (59b)

@ 9 “ ”

The subscripts “g, and “gr” refer to the gravitational,
the refractive, and the couphng contributions, respectively.
|

The gravitational and the refractive time delay functions
are expected to be driven by gravitational and refractive
perturbations, respectively. Instead, the coupling time delay
functions are expected to be of the order of the product of
both perturbations.

By substituting for A(xy,xgz) from Eq. (59a) into
(58) and (52), and then by making use of the contra-
variant components of the optical and the physical
spacetime metrics [see Eq. (47b)], we deduce the
following theorem.

Theorem 2.— In the optical spacetime, the function A
introduced in Eq. (49a), can be decomposed as shown in
Eq. (59a) where each term in the summation satisfies an
integrodifferential equation

A(iaxs) = %Ll{(koo 2K Ny + KNG N ) ) + 2060 = KINY ). ) F@iﬂ o))
+(u+mmﬂ{%igfh(%m}m, (60a)
N %Al{(’(ﬂo — 2k% N 4 KijNZBNfaB)z_(A) +2(k% - K’JN,{;B)Z ) [%} o)
+ (7 + k). [gﬁ gﬁj} " )}d/l, (60b)

and

R 1 . iy . 6A 8A . . . o 0A,,
Agr(xA,xB):ﬂA {(,71]+li+;<11) X0 [ ] . 2(k01+K0’—(k”-I-K”)N,{‘B)Z_W[ g] .

2 Ox' Ox/

0A,0A

ox'

; . 0A, . aA aA
i T r 0i Nz I
ij)“”[axi 8xf]<z u)x>+2(k —kIN)p)s_( L%C] e + (<), {ax 8x/] .

o [2]
TILOX | (13

X% —_ ARAB

where 7._(1) is defined as in Eq. (53).

+2(711]+klj +Kij)2_(ﬂ) |:

M@J@%M% y
Oxi O Oxi Ox | Oxi O Do)

(60c)

— A(z_(4), xp), 2_(2)), (61)

Following the exact same reasoning, we state a similar theorem for the emission time delay function. However, for the
emission case, the straight line segment connecting the emitter x, to the receiver xp is defined by [47]

z (4) = X5 + uRpNyp,

0<u<l. (62)

Then from the requirement that E(x4, x,4) = 0 when z_ (0) = x4, we can set the following boundary conditions:

B(x4,24(0)) =0,

B(xa.24(1))

(63a)

(63b)

E‘(XA’XB)'

064035-8
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Hence, the theorem for the emission time delay function E(x4, Xp)/c reads as follows.
Theorem 3.— In the optical spacetime, the function E introduced in Eq. (49b), can be decomposed as shown in Eq. (59b)
where each term in the summation satisfies an integrodifferential equation

= R ! i AT ij N j i ij nTJ
:‘g(anxB) = ﬁ/o {(koo - 2k° Nyp + kJNABijAB)ZJr(ﬂ) - 2(k0 - k]NIJAB)L(ﬂ)[

2

Lo 02,08,
+ (7 +K7); [—8xi —axj]( ( ))}dﬂ,
Xa.Zy (M

—_ Ryp [1 i ATi ij ATi j i ijnrJ
B (x4.Xp) = T/o {(KOO - 2«° Nyp + KJNABNIJAB)A(M - 2(’(0 - KJN,{AB)A(;;) {W} (

ii ij 8Er aEr
+ (n¥ +K])z+(u) [axi aij ( >)}dﬂ’
XpsZy (M

and

- Rag [V, i it i 02y OF
:grm,xB):TA {('1’+k’+'<’)z+<u)[ i

. 0=, 05,
+ (kl'l)h(ﬂ) [8xi I/

](XA-Z+(/4))
—2(k% — KN ), 8:$
ABJZ (M) | Hy

] (4,24 (W)

The components event

given by

of the point Z,(u) are

2o () = (X4 + pRap + E(xa. 24 (1)), 2. (1)), (65)

where z.,(u) is defined as in Eq. (62).

Theorems 2 and 3 generalize Theorems 2 and 3
of [28] for the optical spacetime. Indeed, in the limit
where refractivity vanishes, that is to say [k, — O,
Theorems 2 and 3 of [28] are recovered.

From Egs. (60), we see that the choice (59a) does achieve
the separation between the different physical quantities
entering the computation of the total time delay. As a matter
of fact, the right-hand sides of Egs. (60a) and (60b) contain
purely gravitational and purely refractive quantities, respec-
tively. The right-hand side of Eq. (60c) regroups all terms
being a mixture of both.

However, as may be observed from the presence of the
total delay in Eq. (61), the expressions of the different
contributions are not fully independent but remain linked
via the path of integration. In the next section, we shall
further discuss this point and shall present a recursive
resolution method for determining the time delay functions
at any order.

Ox' Ox } (0.2 (8)

oi ingi ij
—2(K" = KINjp):, [&d](x 2 (u))HKJ)M {5)“' a"j]u 2.(0)

+ 2(7’]” + kl] + K‘ij)z+<ﬂ) |:

0=,

ox' } (ea24 (1)

(64a)

OE,
502, (1)

(64b)

G

Ox'! } (0.2 (1)

- Z(kOi + K'Oi - (klj + Kij)NﬁB)ZJF(ﬂ) |:

0=, 0=, 0=,

0=, OF,
ox' Ox/

0=, OE,,
ox' Ox/

o=, 08,
+ 3 lr “j] }d/,t.
X' OX | (4 2, ()

(64c)

VI. GENERAL EXPANSIONS OF THE TIME
DELAY FUNCTIONS

Because the line integrals in Egs. (60) are taken along the
path Z_(4) for 0 < 1 < 1, the time delay functions A,/c,
A;/c,and A, /c cannot be solved independently from each
other. Indeed, the total delay appearing in Eq. (61) depends
on the three functions as can be seen from the decom-
position (59a). Therefore, a systematic and recursive
resolution of A/c can only be achieved once the relative
contributions of A,/c, A;/c, and A, /c to the total time
delay are known.

In Sec. VI A, we first show how to determine the relative
importance between the different contributions. Then within
the approximation of a quasi-Minkowskian path, we show
that the interdependence between each function A,, A, and
A,, can always be rejected to the following order during the
resolution of A. This fact allows one to sort out the
occurrence of the different contributions within the deter-
mination of the total delay function (cf. Theorems 4 and 5).
In Sec. VI B, we assume that the refractive components of
the optical metric admit a series expansion in terms of a
parameter N,. Then we show that the refractive delay
functions can be determined to any order through a recursive
resolution method presented in Theorems 6 and 7. In
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Sec. VIC, we assume that the gravitational components of
the spacetime metric admit a post-Minkowskian expansion
(series expansion in ascending power of G). Then the
recursive method allowing one to determine the gravita-
tional delay expressions up to any order is presented in
Theorems 8 and 9. Finally in Sec. VID, we determine the
coupling delay expressions up to any order within
Theorems 10 and 11.

A. Quasi-Minkowskian path regime

As shown in Theorems 2 and 3, the relative magnitude
between each contribution to the total time delay rely on the
line integrals of the gravitational and the refractive pertur-
bations. Generally speaking, if gravity acts all along the
light path I" joining x, to xp, the refractive domain D is
localized in spacetime and it follows that the action of
refractivity remains bounded to a certain portion of T
Therefore, in order to determine the relative contributions
of each time delay function, not only the relative magnitude
between the gravitational and refractive perturbations must
be known, but also the typical length scales over which
each perturbation acts. Henceforth, let £ be the length of I
passing through D. For a Minkowskian path, we always
have £ < R, whatever the size of D is.

From Eq. (49a) which has been formulated under
the assumption that the light path is quasi-Minkowskian,
we deduce A/R,p < 1. This implies that A,/Ryp < 1,
Ar/Ryp <1, and Ay /Rup < 1. Considering that A,
represents the coupling contributions, its magnitude is
expected to be of the order

Apgr ~ (i) (i) (66)
Rap \Rap/ \Rap
Therefore, we can first focus on the relative importance

between the gravitational and the refractive contributions.
To do so, let us introduce the parameter s defined by

_ rogw(Ag/RAB)-‘
log o(Ar/Rap) 7

(67)

with || denoting the operation of rounding to the nearest
integer of i. Hereafter, we intend to show that the expansion
pattern of the delay functions can totally be determined
once s is known. Indeed, s allows one to sort out the
occurrences of the gravitational and refractive terms in the
determination of the total delay functions.

Because we are only focusing on the main integer value of
s in Eq. (67), it is sufficient to get the first-order expressions
of A, and A,. Therefore, in Eqgs. (60), line integrals can be
changed into line integrals along the Minkowskian path
between x, and xg by performing a Taylor series expansion
of k*(2_(1)) and k*(Z_(4)) about the point event z_(4)
whose components are given by

2-(4) = (xp = ARysp.2-(4)). (68)

Thus, optical metric components become an infinite series in
ascending power of the total time delay

)

! (69a)
and
Al

RAB< IR

(69b)

After inserting these expressions into Egs. (60a) and (60b),
we infer that the zeroth-order terms in Eqgs. (69), namely,
k*(z_(A)) and x**(z_(A)), correspond to the first-order
determination of the gravitational and the refractive delays

(1
Ay’ 1
RjB 5 /0 (K% =2k N,y + kUNY s N ). ydA, (70a)

and

Agl) _ 1/1(K00
Rag 2o

[We will see with Egs. (114a) and (99a) that in the context of a
quasi-Minkowskian path, these equations can be further
simplified. But for now, let us pursue the discussion with
Egs. (70)]. These equations can be inserted into Eq. (67) in
order to determine the value of s.

Now we shall discuss how the expansion pattern of the
delay functions can be inferred from s. Henceforth, we
consider the case s € N (the result will still be valid for
s € Nop). In other words, we suppose that the refractive
perturbation is dominant with respect to the gravitational
one [48].

In order to simplify the next discussion, and without loss of
generality, we focus on orders of magnitude only. In addition,
we consider that the light path occurs in a sufficiently small
region of spacetime where the metric components do not vary
significantly. Thus, we deduce from Egs. (70) that

— 2K%NE , + KfngBNQB)Z_Wd,L (70b)

Aél) Ar(l)

~ |kﬂv|max’

NR—AB Klwlmax' (71)

Rap Rap
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In order to keep track of the relative magnitude between
the gravitational and the refractive terms, we introduce a
dimensionless parameter denoted by & and being of the
order of the dominant term, that is,

£=—. (72)
Thus, from Egs. (71) and (67), we immediately infer

(1)
A

£ ~0(e). (73)
RAB

Therefore, the first-order expression of the total delay is
driven by the refractive term only

A“)(XA’XB) = AEI)(XA,XB), (74)
which means that
A
_ = {;‘, 75
R (75)

when s > 1 in Eq. (67).
Let us take a look at the relation between metric compo-
nents. Equations (73), (72), and (71) allow us to deduce

L] ~ Oe). (76)

T | ~ O(e%),
o ~ 0. -

Atthe same time, it might be seen from Egs. (60b), (69a), and
(74) that the second-order refractive delay is driven by terms
such as

A A
Ry Rap’

% A

U =
R Ry

which, according to Egs. (75) and (76), are of the order of 2.
Therefore, we conclude that the series expansion of the total
delay goes on like

AD(x4, xp) = AEI)(XAJB) (77)
forl <I<s.

The first occurrence of the gravitational contribution to
the total delay arises for / = s as anticipated in Eq. (73).
Therefore, the sth-order expression of the total delay is
given by

AV (x4, x5) = A (x4, 35) + AY (X4, x5). (78)
Then by looking at the first-order term in Eq. (69a), one
might see that the second-order expression of the gravita-
tional delay is proportional to

A
kv 79
~ I (79)

which, according to Egs. (75) and (76), is of the order of
1. Additionally, after inserting Egs. (69) into (60c), we
infer that the first-order expression of the coupling delay is
driven by terms such like

AL A
Ry Rap’

(1) (1)
4 o] Ag | Ar
RA max R max RAB

which are of the order of ¢! too. Therefore, the (s + 1)th-
order expression of the total delay is given by

A (x40 x5) =AY (x4,x5) + AP (x4.5)
+A«(élr)(XA,XB)- (80)

A quick look at the second-order expression of the
coupling delay shows that it is driven by terms proportional
to 572, Consequently, one deduces that

A (xA,xB) + A (- ‘H)(XA,xB)

(XA’XB) (81)

AW (Xp.Xxp) =
+ Agr

for [ >s+ 1.

To sum up, within the quasi-Minkowskian regime, the
total delay satisfies A/R,p < 1, so the line integrals in
Eqs. (60) are simplified into line integrals along the
Minkowskian path by performing a Taylor series expansion
about the point event z_(4). Then by considering the case
where the refractivity is the dominant effect all along the
light path T, it results that, in general, the total time delay
admits an expansion as follows:

XA,.XB ZA (XA,XB (82)

=1

where the terms A() are proportional to 'R 5.

In that respect, the different contributions to the total
delay, namely, the refractive, the gravitational, and the
coupling delays, all admit series expansion as follows:

A(xy,xp) = ZA (X4, xp), (83a)
Ag(X4.xp) = Z Ag)(xAva)v (83b)
=1
and
Ay (X4, xp) = Z AE(;IF)(XAva)’ (83c)

N
Il
=
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where the terms Aﬁl), A(gl), and Agr) are of the order of

0 () (1)

Ap A Agf
( ) g N(9<8l+s—l)’ g ~O(€l+s). (84)

Rap Rap Rap
We recall that ¢ is of the order of £/R ,5|k*"| . Only for

a light path occurring in a sufficiently small region of
spacetime where the metric components do not vary
significantly. In general, it is given by Eq. (72).

By making use of the Heaviside step function

) 1 fori>0,
e(i) = .
0 otherwise,

we can write the terms A() in Eq. (82) as

(85)

= A" (x4, x5) + O(1 = )AL ™ (x4, xp)
+0O(I-s—1)AL™ (86)

A<l> (XA7 .X'B)
(X4.Xp).

In the next two sections, according to the fact that the
light ray follows a quasi-Minkowskian path, we will
assume that the components x** and k** admit series
expansion in ascending power of parameters N, and G,
respectively [see Egs. (93) and (107)]. If this fact does not
change the pattern of the series expansions (82) and (83),
we should nevertheless, for completeness, specify that the
quasi-Minkowskian path is parametrized by the expansion
coefficients Ny and G. Therefore, by making use of
Eq. (86), we can state a theorem as follows.

Theorem 4.— Within the quasi-Minkowskian path
approximation, when the light path is parametrized by
Nqo and G, the function A admits a series expansion as
follows:

00
E A XA’xB

=1

A(xy, x5, Ny, G (87)

with

A (x4, x5) = A (x4, x5) + O(1 = )AL (x4, xp)

+0(I—s5— DAL (x4, xp). (88)

The parameter s € N, is determined from Eq. (67) by
making use of the first-order expressions (99a) and (114a).
A similar reasoning works for the emission time delay
function as well. Indeed, the line integrals in Egs. (64) can
be Taylor expanded about the point event z,(u) whose
components are given by
24 (n) = (x4 + uRpp. 2, (). (89)
Then x**(Z, (1)) and k**(Z, (1)) become an infinite series
in ascending power of E similarly to what has been done
in Egs. (69).

Therefore, we end up with a similar expansion for = than
for A and we state the following theorem.

Theorem 5.— Within the quasi-Minkowskian path
approximation, when the light path is parametrized by

Ny and G, the function E admits a series expansion as
follows:

E(XA’XB’N()’G) = ZEU)()CA9XB)’ (90)
=1
with
B (x4, xp) = <1) (xa.x5) +O(I - S>E(Z Hl)(xA, X3)
+ 01— 5= DEY (x4, xp). (91)

The parameter s € Ny is determined from Eq. (67) by
making use of the first-order expressions (99a) and (114a).

Equipped with Theorems 2 to 5, we can now recursively
determine the integral form of each time delay function
in Egs. (59).

B. The refractive time delay functions

We saw in Sec. V [cf. Egs. (48)], that a quasi-
Minkowskian path implies small refractivities, that is to
say N(x) < 1. Let Ny = N(xg) be the refractivity at a well-
chosen point event x, € D located on I'.

If x is chosen so that N is the maximum value of the
refractivity along I', we can always write

=)

Hence, considering a quasi-Minkowskian light path, it
follows that Ny < 1. Therefore, we can always expand
the components ¥* in ascending power of N such as

(o]
K" (x, Ny) :E

where k{j) o< (No)".

Considering that the wave vector is by definition a
covector [see Eq. (16)], the optical metric is intrinsically
defined for its contravariant components as seen from
Eq. (23). Therefore, the covariant components of the optical
metric are not needed a priori to solve the time and
frequency transfers. However, we provide their expressions
in Sec. VI A for completeness.

As discussed previously, line integrations in Eq. (60b)
are taken along the real light path Z_(4) for 0 <A< 1.
Within the quasi-Minkowskian path regime, we saw in
Eq. (69b) that the metric components «**(Z_(4)) can be
expanded in ascending power of the total delay. In that
respect, the right-hand side of Eq. (69b) involves terms

N(x) <Ny (92)

(93)
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such as k**(z_(4)), where z_(4) is given in Eq. (68). By
making use of Eq. (93), we immediately find

K" (z Z K ( (94)

Therefore, the general expansion of x*(Z_(4)) is
obtained after substituting for A and x** from Eqgs. (87)
and (94) into (69b), respectively. After some algebra, we
find a relation as follows:

K.;w ( ]\70 ,

ZK"” (z-(4 (95)

where the quantities & D(l) (z_(1), xp) are given by

for [ >2. The function ®/")(x,xz), with [>1 and
1 < m < [, is called a reception function [28] and is defined
such that

with ny, ..., n,, € Nyo. The summation in (97) is taken over
all sequences of n; through n,, such that the sum of all n,,
sl —

Fmally, by substituting for **(Z_(4)) from Eq. (95) into
(60b), we infer the theorem which follows concerning the
refractive time delay function at reception.

’2{”(1)(2— (4).xp) = K’(lf) (z-(4)), (96a) Theorem 6.— In the optical spacetime, within the quasi-
Minkowskian path approximation, A admits the series
and expansion introduced in Theorem 4, so the function A,
(e (1).xp) is given by
va
S 0" Kli-m) A N Al 08
BTN 50w A a0 =38 sy, 09
m=1 n=1 (0x7) 2. (2) =1
(96b) where
J
(1) Rag [ 00 0i pJi i ari A
At (X4, xp) ~ 2 ), (k1) = 201 Niyp + K1) NapNap)._1)d4, (99a)
A<2)( >_% ! (AOO — 2RO Nl _|_Alj Ni Nj ) +2( 0i _ .iJ Nj ) 8A£1)
v (XaXp) =7 A K_(2) = “X_0)!Va —2)tYABVAB) (z_ (1) .xp) Ky =KmNaB)= ) | (- )xg)
OA; OA;
+ 1 {8}6 8x/] }dfl, (99b)
(z-(4).xp)
and
- (I=m)
l RAB ! ~ ~0i i ~ij i j — ~0i ~ij j aAr
Ar' (x4, xp) = 2 (K(l(zl) - 2K9(1)NAB +K—j(1)NABNjAB>(Z_(/1),xB) +2 71("9(,,,) - K_j(m)Nf;B)(z_(/l),xE) o o o)
-1 (m) (I—m) -2 I-m—1 (n) (I-m—n)
iy OA; OA; i OA; OA;
+n” |:—i g ] + 2 R ) ey { AT ] }dﬁ (99¢)
Lot 0 e )y m; e = Lox 0 [
for 1 > 3. The quantities K” ( _(A),xg) are defined in K (2 Z ”) 2. (u (100)

Egs. (96).

Applying the exact same reasoning, the analogous theo-
rem for the refractive time delay function at emission can be
stated as well. Line integrations in Eq. (64b) are taken along
the light path Z_ (u) for 0 < p < 1. After Taylor expanding
the light path about the point event z_ (¢) [cf. Eq. (89)], the
right-hand side of Eq. (69b) involves terms such as
k" (z,(u)). After making use of Eq. (93), we find

The general expansion of x**(Z(u)) is obtained after
substituting for = from Eq. (90) and for ¥** from Eq. (100),
into (69b). After some algebra, we find

[Se]

KMD( NO’ Z

=1

) (s 2 (), (101)
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where the quantities & 0 (x4,24(n)) are given by

R (a2 () = K (), (1022)

-1 m 9
(e )+ 3D e, )| >]
m=1 n=1 (ax ) +(w)

(102b)

for 1>2. The function @\ (x4.x), with > 1 and
1<m<1, is called an emission function [28] and is
defined such that

EEI)(XA’XB)

EI(‘Z) (xA’ XB)

o= o=
+ r]l] |: l'i rj :| }d,bl,
Ox' O [, 2. ()
and

'Eq(”l) (an XB) =

" aaﬁ""”]
(xa.z (u

ij .= =t
i — [ ox' Ox/
m=1 =1

for 1> 3. The quantities K (xs.2,(n)) are defined in
Egs. (102).

In the case where the components x* represent the
leading perturbation [see Eq. (67)], it may be seen that the
expansion pattern in Theorems 6 and 7 is almost the same
as the one in Theorems 4 and 5 of [28]. Actually, if one
assumes that the gravitational components k*¥ are the
leading perturbations, one obtains quasisimilar theorems
than Theorems 4 and 5 of [28] (the difference would be in

the definition of the quantities IAcf‘:(l)).

C. The gravitational time delay functions

Following [28], we suppose that the gravitational pertur-
bation terms £, can be expressed as a post-Minkowskian
expansion, such as

Rag (1] . i i N Do l, G
= T/o {(K(J)ro(z) - ZKU( )NAB +K J( )NABNAB)(XA.Z+(;1)) - 2(K(()1) - K(jl)NﬁxB>z+(u) {W

Rap (! ~00 R0 N ij Ni NJ
N (R = 28 () Nig + R () NasNap) (e .,

=2
Alj
+ E a2

m 1 mHn
PRI DS {H: )] (103

“ny+e4n,=l-m td=1

withnq, ..., n,, € N5o. The summation in Eq. (103) is taken
over all sequences of n, through n,, such that the sum of all
n, isl—m

Finally, the theorem for the refractive time delay function
at emission is obtained after substituting for «**(Z, (u))
from Eq. (101) into (64b).

Theorem 7.— In the optical spacetime, within the quasi-
Minkowskian path approximation, Z admits the series
expansion introduced in Theorem 5, so the function Z, is

given by
E (x4 x5.No.G) = Y& (xa.xp),  (104)
=1
where
Rag [/ 00 0i a7 i oari Al
= T A (K(l) - 2K(1)NAB + K(I)NABNAB)Z+(/4)dM’ (1053.)
855')}
(xa.24 (1)
(105b)
= 1 —(l—m)
0=
-2 m = KL Nas) e, >>[ o ]
o R L FPN)
l—m—1 (I-m-n
B_r 0=,
Z [ 71} }d/,t (105¢)
= R (PR)
ho(x.G) =Y i (x). (106)
=1
The contravariant components are given by
e (x, G) = ki (x), (107)

where the components k’(‘l") can be recursively determined
using the following relationships:

Kt = = hl) (108a)
-1
k/u/ _ nﬂ(znﬁuh( ) Z 77”(’}1,;; kﬁu (108]3)

m=1

for [ > 2.
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The right-hand side of Eq. (69a) involves terms such as
k#(z_(A)). Thus, by making use of Eq. (107), we find

k(2 Z (109)
where ki) o G
Therefore, the general expansion of k**(Z_(1)) is

obtained after substituting for A and k¥ from Eqgs. (87)
and (109) into (69a), respectively. After some algebra, we
find the following expression:

[se]

k(Z_(A).No.G) = R (2o

I=s

(4),xp),  (110)

where the quantities k" ”(l)(z_ (1), xp) are given for [ > s by
the following expressions:

for p > 2, and

(111c)

forp>1land1 < g <s—1,where p and g are determined
from [ using the following relationships:

p=1[l/s],

with || denoting the integer part of i.
By substituting for &#*(Z_(1)) from Eq. (110) into (60a),
we infer the theorem which follows concerning the gravi-

qg=1-ps, (112)

ke ”(S)(Z_ (4),xp) = k’<‘1”) (z_(2)), (I11a)  tational time delay function at reception.
Theorem 8.— In the optical spacetime, within the quasi-
and Minkowskian path approximation, A admits the series
expansion introduced in Theorem 4, so the function A,
K g (2-(4).xp) is given by
, p—1 ms a”k/(’;_m> 0 l
_kﬂ +ZZ(I) ms,n (Z )[W] Ag(XA’-vaNOv ZA XA,)CB (113)
m=1n=1 ( )C) z_(A) =1
(111b) where
|
Ay = Ran [T o0 _ g0 Ni kT NN, d 114
g (XA’xB)—T A ( (1) ~ 2Ky Nag T Ky Nag As)z_(/l) ) (114a)
A _Ran [ oo 2R L Nig + K7 NN dz 114b
g XA’XB)—T ; (kZ(s1m1) = 2kZ (i) Nyp + Z(s+i-1yVan W) (= (2).xs) ( )
for2 <1<s, and
() Rap (1] 400 #0i i 7 i i
Ag (XA7xB):T ; (kZ(sim1) = 2k (o yNap T 62 oy N asNas) (o (2) )
aA(l—Wl) oA m 8Al s—m+1)
01 j g i g g
+2Z (K o Nan) (e ()m{ o ] +mz[ o = } }dﬂ (114c)
(z_(2).xp) m=1 (z_(2).xp)
for s +1 <1< 2s, and finally
() Rag [ /200 720i i 2ij i A7
Ay’ (X4, xp) = N (KZ(orim) = 2k oy Nag + K2 oy NasNag) ()
8A(l_m> aAl s—m+1)
2SS Vi [ ] oS [T
Lo L (2 (1) x2)
I—s—1 I—s—m (n) (I=s—m—n+1)
i 0Ay” OA
ij g g
+ 2 R wan D [ I R—w ] . >}‘” (114d)

m=s n=1
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for 1 > 2s + 1. The quantities k” (
in Egs. (111).

A similar reasoning allows us to state an analogous
theorem for the gravitational time delay function at emis-
sion. Indeed, the right-hand side of Eq. (64a) involves line
integrals along the light path Z,(u) parametrized by
0 <u < 1. After Taylor expanding the light path about
the point event z, (u), the right-hand side of Eq. (69a)
involves terms such as k**(z (u)). Thus, by making use of
Eq. (107), we find

0
v _ E
k’u Z+ = Z+

Then the general expansion of k**(Z,(u)) is obtained
after substituting for E from Eq. (87), and for &** from
Eq. (115), into (69a). After some algebra, we find

kW/(ZJr No, i

_(4),xp) are defined

(115)

(116)

XA’Z+ 1)),

where the quantities l%’_‘:( ) (xa. 24 (u)) are given for [ > s by

the following expressions:

R ey (iaszs (1)

-1 ms aﬂk/”’ .,
Z+(/’l +leq)m”1 XA,Z+(/4))|:< p) :|Z (m

(117b)
for p > 2, and

/Adf(pﬁq) (xa. 24 (1)

o) k()
=+ 3000 a2 ) | »

n=1
—1 ms+q ankﬂl/
; S (1 g (o >>[ )}
le W (ax) )

(117c)

forp>1land1 < g <s—1,where p and g are determined
from [ using the relationships in Eq. (112).

By substituting for &**(Z_(1)) from Eq. (116) into (64a),
we infer the theorem which follows.

Theorem 9.— In the optical spacetime, within the quasi-
Minkowskian path approximation, E admits the series expan-
sion introduced in Theorem 5, so the function E, is given by

R (eas 22 () = K5 (24 (1), (117a) B (14 X5 No.G) = > B (x4 %), (118)
=1
and where
=y —Ran 100 _op0i Ni kT NN d 119
=g (xAvXB)*T 0 ( (1) ~ #KyNas T K1) Nap AB)z. (0 - (119)
=) _ Ryp [! 700 240 Ni R Ni N d 119
B’ (x4, Xp) =7 ) ( H(si-1) T 2R (- Nap T +(s+i-1)"" AB AB)(XA-Z+(/4)) H ( )
for2 <1<s, and
=0 _ Rap [! ]’%00 ka Ni kl] N N]
By’ (x4, Xp) ~ A ( +(s+1-1) (s+i-1)1Vap T (s+1-1)"VAB AB)(xA (1))
l . 8E(l_m) a_‘ 8_.1 s—m+1)
-23 @R Mol [ ] P[] e e
(xp.24 (1)) (xazy(n)
for s +1 <1< 2s, and finally
';'(1)( )_RAB ! (I’%OO _2/’%01‘ Ni +/’%ij Ni Nj )
=g (X4, Xp ~ . +(s+1-1) +(s+i-1)"VAB +(s+1=1)"VAB"V AB) (x5,2, (1))
aE(!—m) 8_. 8_.1 s—m+1)
) k()l NIJAB)(x ( ))|: g i :| +’71] |: g i :|
Z SO ] (2 ) Z ! (¥.24 (1))
I—s—1 lsma 8lsmn+1)
ij —g =
LT L R i
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for 1 > 2s + 1. The quantities l%’_f(l) (x4, 24 (1)) are defined

in Egs. (117).

As a final remark, let us emphasize that Eqgs. (99a) and
(114a) are independent of the total delay function.
Therefore, as mentioned previously, they can be used
directly in Eq. (67) for the determination of s.

D. The coupling time delay functions

All the basic ingredients needed for the establishment of

Then the expansions of the reception time delay functions
can be found in Egs. (87), (98), and (113).

Therefore, by substituting for k**(Z_(4)) and k**(Z_(1))
from Egs. (95) and (110) into (60c), respectively, we obtain
the theorem which follows.

Theorem 10.— In the optical spacetime, within the
quasi-Minkowskian path approximation, A admits the
series expansion introduced in Theorem 4, so the function
A, is given by

the general expansion of the coupling time delay functions B > )
have been introduced in Secs. VIB and VIC. The general Ag (X4, xp. No. G) = ; Agf (X4.x5),  (120)
expansions of the refractive and gravitational spacetime B
perturbations are given in Egs. (95) and (110), respectively. where
|
m) (I=m+1) l (I-m=+1)
) B 1 OA aA i A,
Agr [151 (X4, Xp) —RABA {'7’21[ o 76;& - +”; NAB)( D) [T e
I+s—1 . . ) aA(l+s—m)
1 _ 15 ] r
+ ; (k—(m) k—(m)NAB)(Z_(/l),xB) |: 8xi :| (2 (D) oxa) }d/1 (1218')
for 1> 1, and
-1 (m) (I-m)
0 (1) e OA; OAg
A r ) - A r ) R 7 - ;
ot |1>2(Xa, XB) or |11 (X4, X5) + ABA {’1 2 [ PR P
-1 (I=m)
OAg;
+ NQB)( T }
r; Lo i)
-1 n) I—-m—n+1)
(')A 0A
e o ]
mZ:: Z A (RO
1 I+s=2 I+s—m—1 aA(n) aA(H»s—m—n)
ij T r
+§ (k (’”))(Z—(’{)J‘E) - |: Oxi O/ :| }d/l (121b)
=5 n=1 (z_(2).xp)
for 1> 2, and
n n 1 (12 I-m—1 8A(n) aAgl m—n)
Ayl ,Xp) = Agf : R (&Y I di 121
er |13 (Xa. Xp) er 122(Xa. xp) + ABA {; E) nz: { O Ol ]<Z(l)-xB>} (121c)
for 1 >3, and
I—s m) (I—s—m+1)
i i ; 0A AA! .
AR g1 (%4 X5) = A |15y (X4, x5) + RAB/ {’1’ [ g 5 }
m=1 (z-(4).x5)
-1 (I—m)
. : A
0i i ar
+ Z(k - k_J(m)szé\B)(z,(l),xB) |: Oxt :|
m=s (Z—WJCB)
-1 I-m (n) (I-m—n+1)
Ap 0A;” OA
+ (kY(m))(Z_(ﬁ) |: B i ga Jj :|
m=s X X (z-(2).xp)
1 I-s I—s—m+1 aA(n) 8A(l—s—m—n+2)
~lj g g
+§ZI(K—(W!))(Z (4).xp) — |: Oxi Ox ](z " )}d/l (lZId)
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forl>s+1, and

I=s5—1 m) (I—s—m)
(1) _ A Rag 1] NGNS
Agr |is12(Xa Xp) = Agr [15541(Xa. X5) + A {’7] Zl { Ox! Ox/ (- (2)ox2)

-2 I-m—1 (l m—n)
i OA ) oA
+ 2 Z(k_(m))(z_(/l),xB) |: 6}(' 8Xj :| (e () xa)

m=s n=1
I-s—1 —s—m (I—s—m—n+1)
i 8A ) OAL r
+2 > R () [ 8 ] }dfl (121e)
e I Ox! (- (2).32)
for 1> s+2, and
I—s—2 I—s—m—1 (I-s—m—n)
! I R 1 AL AL
Af(;r)|lZS+3(XA’xB>:Aér)|12s+2(XA’xB)+%/ { ( )-) Z { g ) Ox/ 2 (121f)
0 m=1 n=1 (z_(2).xp)
for 1> s+ 3, and
| ; 1 l—s—l I—s—m 8A aAlrs m—n+1)
Aéf>|122s+l(XA7xB) :Aér)|122s(XAva)+RABA { )Xs) Z : O o ) di  (121g)
m=s n=1 z_(1),xp
for 1 > 2s + 1, and finally
I—5—2 I—s—m—1 (l-s—m—n)
! 1 i AL ¢ VoA "
Az‘(§r>|1225+2(XAva):Aé’r)llZZs-&-l(XA’xB / {Z(k] { g - OxJ L W )}d}“ (121h)
n=1 z_(1),xp

for 1 > 2s + 2. The quantities IAC’:”U) (z_(4),xp) and K’w ( _(4),xp) are defined in Egs. (111) and (96), respectively.

Applying the exact same reasoning, the analogous theorem for the coupling time delay function at emission can be stated.
Indeed, substituting for x**(Z, (1)) from Eq. (101) and for k**(Z, (u)) from Eq. (116) into (64¢), we obtain the theorem
which follows.

Theorem 11.— In the optical spacetime, within the quasi-Minkowskian path approximation, Z admits the series
expansion introduced in Theorem 5, so the function By, is given by

Egr(xa, X5, No, G) ZE (4. Xp). (122)
where
/ —(m) a—(l-m+1) 1 —(I-m+1)
) Lo OB: " 0By (R0 At/ j OBy
Sgr |lzl(anXB) = RAB/ {’71 [—17] +(m) NAB) XA.Zs T 9.
0 n; Oxt O [ Zl ) R P
I+s—1 o o= (I+s m)
20 2ij J =r
- Z (K ) = KLy NAB) (0., () [T} » (,,))}dﬂ (123a)
for 1> 1, and

-1 m) a:(l—m)
—(l —(l i —gr
=W atsnxn) = roxo) - [0S [ G|

1

- a:(l—m) Z lZm a a (I-m—n+1)
N O®Y R N e [ - ] Y R e ) [ R }
ag o T TABT S N OaT p (a2 (1)
1 s—2 z +s—m— a—-r 8_ (I4-s—m—n)
I S Z [ - L ())}dﬂ (123b)
m=s n=1 Xp.Zy(p
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for 1> 2, and

n 0 (=2 I-m—1 GEE”) 8Eélr—m—n)
Epr |153(xa. Xp) = Egr [152(%a, X) +RABA { (k-&{(m))(xA,h(ﬂ)) Z [ Oxi TL ( ))}d/‘ (123¢c)
m=1 n=1 XA.Zy (|
for 1 >3, and
_a _a 1 i'l—s 8._. a_‘l s—m+1)
:‘x(gf)|12s+l(xA’xB)_:‘ér)|12s(xA’xB)+RAB/() {”J — 8;' Ox/
m=1 (XA 2, (u))
-1 —(I-m) [—m (I-m—n+1)
. . . o= oE™ o=l
0i i J gr lj T g
_z::s k _k ) NAB)(XA@(M) [ Ox! ](XA@ (w)) +Z k XA e nz:; { ]m,u(y))
1 I-s I—s—m+1 aE(n) aE(I—s—m—n+2)
= (f<” I [ T } }dﬂ (123d)
2= e ; Ox Ox/ (4224 ()
forl>s+1, and
Rap [—s—1 augr auglr s—m)
~gr |1>s+2(xA» Xp) = ~gr |l>s+1(xAv Xp) +—— / {77” Qa7
; ox' O J
I-m—1 —(n) q=(l-m—n)
08" 08
+2) (&K ) e [ L ]
;s R B 2 R PO )
[—s—1 I—s—m (I—s—m—n+1)
g ('L
+2 “f ) (e (o [ g . ] }d/,t (123e)
Z R o/ (50,2 (1)
forl>s+2, and
[—5—2 I—s—m—1 (I-s—m—n)
(1 (I R N g . ) 95! .
dLS;r)|lzs+3(anXB) :dér)hzsu(xAvXB) +$/ { (Kj (xa.z Z { g ) Ox/ ] }dﬂ’ (1231)
0 m=1 n=1 (xa,z4 (1))
for 1 >s+3, and
I-s—1 I—s—m (I=s—m—n+1)
E(glr)|1>2 1(Xa.Xp) = Ez(;lr)|z>2 (xa.Xp) +RAB/1 Z (]A‘ij ) Z 3—g 8~ ' du (123g)
225+ >2s 0 | & +(m)/ (xa.24 (1)) — i Ox/ (eats ()
for 1 > 2s + 1, and finally
_a _ R l-s=2 lsmlaara_‘lrsmn)
B |2y (4 X8) = B iz (4. %) +57 / { R ) one, 0 Z T 2
m=s n= Xp.Z o (p

for 1>2s+2 The quantities lAc’f(l) (xp,z4 (1)) and
k’i”(l)(xA,ZJr(,u)) are defined in Egs. (117) and (102),
respectively.

Finally, from the gravitational, the refractive, and the
coupling components, we can now determine the time
delay expression up to the /th order by applying Theorem 4.
Then the expressions for the range and the time transfer
functions are determined from Egs. (49a) and (32a),
respectively.

Let us emphasize that line integrals occurring in Egs. (99),
(114), and (121) are now zeroth-order null geodesics with
parametric equations x = z_(1). Similarly, Egs. (105),
(119), and (123) are integrated along the zeroth-order null
geodesic path with parametric equations x = z_ (u). This
specificity of the time transfer functions formalism consid-
erably simplifies the integrations and constitutes one of the
most important advantages with respect to an explicit
resolution of the null geodesic equation [25,27,28].
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The usefulness of the decomposition performed in
Eq. (59) becomes really apparent in stationary optical
spacetimes. Indeed when the coordinates (x#) are chosen
so that the optical spacetime metric does not depend on x°,
it is seen that the series expansions in Egs. (95) and (110)

reduce to

PN, G) = SR (e (B)ox), (1240)
=1
B (2. NouG) = SR (- (Dx). (1240)
=1
where
B (D)) =K@ (D), (125)
B (2 ()xm) = B(g)K (2_(2)),  (125b)

respectively. We recall that p and ¢ are determined from /
using Eq. (112). Hence, the different theorems can be
solved independently from each other. As a matter of fact,
theorems involving gravitational perturbation become in-

dependent of lch(‘l”) for any / which is not a multiple of s.

VII. APPLICATION TO STATIONARY OPTICAL
SPACETIME IN GEOCENTRIC CELESTIAL
REFERENCE SYSTEM

Let us now illustrate the method by determining the time
transfer function up to the postlinear approximation. We
investigate the light-dragging effect experienced by a signal
during its propagation inside a flowing media of non-null
refractivity. In the GCRS, the effect shows up at the
postlinear approximation. In the case where the motion
of the Earth’s atmosphere is mainly a steady rotation (e.g.,
in GCRS), we show that the light-dragging effect reduces to
a geometrical factor scaling the static atmospheric contri-
bution. During the computation, we never make use of an
a priori index of refraction profile in order to keep
equations as general as possible.

A. Notations and definitions

We consider that spacetime is covered with some global
coordinates (x*). We choose the coordinate system such
that the optical metric components are independent of x°. In
addition, the coordinate system shall be chosen in such a
way that it is convenient to model the outcomes of an
experiment taking place in the Earth’s close vicinity.
Therefore, we consider that (x*) are the GCRS coordinates.
We recall that the GCRS is centered in the Earth’s center of
mass and is nonrotating with respect to distant stars. We
suppose that the domain D defines the spacetime bounda-
ries of the Earth’s neutral atmosphere. In that sense, D
draws a timelike tube in spacetime. The Earth’s atmosphere

is considered spherically symmetric and we suppose that it
is filled with a nondispersive fluid dielectric medium whose
refractive properties are independent of the component x°,
that is to say
n(x) =1+ N(x). (126)
We consider that the atmosphere is still in the reference
system rotating with the Earth; thus we assume that the unit
4-velocity vector is given in GCRS by
wh = wO(1, &), (127)
where & is the coordinate 3-velocity vector of the fluid
dielectric medium. Hereafter, we assume that the 3-velocity
vector is given by the following expression:
il _ PR ikl Lk
E(x) =—"eV"Skx (128)
c
where wg, is the magnitude of the Earth’s angular velocity
of rotation and Sg is the direction of the spin axis.
Moreover, we consider the case of a one-way transfer,
with the transmitter being right outside D and the receiver
being comoving with the fluid dielectrics medium, that is to
say at rest in the reference system rotating with the Earth. In
order to fix ideas for future discussion, let us assume that
the emitter is transmitting from the international space
station (ISS) at an altitude of & ~ 400 km. Furthermore, let
us consider that the emitter is moving along the timelike
worldline C, with the unit 4-velocity vector u, defined by
y = (1. 41). (129)
where fi, is the coordinate 3-velocity vector expressed
in GCRS coordinates. Similarly, we assume that the
receiver moves along the timelike worldline Cp with the
unit 4-velocity vector up defined by
uy = up(1. ). (130)
where f85 is the coordinate 3-velocity vector expressed in
GCRS coordinates. For a receiver comoving with the
medium, we have

Py = & (xp). (131)

B. Expansion of the delay functions

The components of the physical spacetime metric
expressed in GCRS coordinates are given in [49]
[where the convention for the signature of spacetime is
(=, +., +. +) and where the components G4 correspond to
our g,,]. By keeping terms in 1/c?, the first-order gravi-
tational perturbation reads as follows:
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2U
a0 _

(1) 2U
. h)) =
00 6'2

hi}) =0, § == "z6. (1322)

ijo

where the contravariant components are determined from
Eq. (108)

kOO _ == kO

L 2U
=0, ki =

() ="20; (132b)

)

In these expressions, we restrict U to the monopole term
of the Newtonian gravitational potential of the Earth, that is

_Gmg

U(x)

= , (133)

x|
where myg, is the mass of the Earth. In that respect, at the
level of the surface of the Earth, we find

U(Rg)

(1) Imax P ~ 1071,

(134)

where Rg denotes the Earth’s equatorial radii.

Then according to [50], at the sea level an average parcel
of air possesses a refractivity N(Rg) ~3 x 107, so we
consider Ny = N(Rg) ~ 107*. Additionally, at the Earth’s
surface, the 3-velocity of the refractive medium expressed
in GCRS coordinates is |&'(Rg)|max < @gRg/c ~ 1075
Consequently, we can expand the refractive perturbation in
terms of the refractivity at the Earth’s surface and in the
approximation of small velocities. Therefore, it can be seen
that the first-order term of the refractive perturbation is
given by [see Egs. (138a)]

|Kﬁ/)|maxo<N0N10_4' (135)

At the same time, a typical measurement profile for the
neutral atmosphere using the global positioning system
meteorology occultations data [51] starts at £ ~ 100 km, so
that £/h ~ 0.4. For observations at lower elevation than the
zenith direction, we can roughly take /R p ~ 0.1. Then if
we consider that the light path is sufficiently small so that
the metric components vary slowly during the integration,
we can get a rough estimation of s by making use of
Egs. (76). We quickly infer that s must satisfy the zeroth-
order following relation:

4
R—AB |KW|max ~ (|kﬂy|max)1/s'

(136)
Inserting numerical values, we deduce s = 2. These results
can be double checked by inserting the first-order expres-
sions of the gravitational and refractive delays [see
Egs. (142) and (143)] into Eq. (67).

In this application, we exclude third-order terms and
beyond, that is to say, all terms of the order of & with
£~ /Rug|k" | nax ~ 107>. The meaning is that a postlinear

expression of the range transfer function neglects terms of
the order of £3R 5. Therefore, the coupling terms which are
of third order are neglected too.

A look at Egs. (9b) and (135) allows one to infer that the
time component of the 4-velocity vector of the fluid
dielectric medium must be known up to 107> in order to
account for all second-order terms. Considering that the
4-velocity of the medium must be a unit vector for the
spacetime metric g,,, we have the relation

w0 = (goo + 290:&" + gijiifi)_l/z- (137)
Therefore, to sufficient accuracy, we can safely consider for
the rest of the application that w® = 1.

Hence, we end up with the following contravariant
components for the refractive perturbation:

K??) = 2N, K?f) =0, Kl(]l) =0, (138a)
with the second order
K?g) = N2, K(()é) = 2N&, szz) =0. (138b)

Let us note that the cross component is non-null at the
postlinear approximation. It represents the light-dragging
effect due to the motion of the fluid dielectric medium in
GCRS coordinates.

Additionally, let us mention that the optical spacetime
is stationary as seen from Eqgs. (132b) and (138). In that
respect, the emission or the reception time transfer func-
tions become identical. As a consequence, the distinction
between emission and reception functions is not relevant
anymore meaning that the time component at emission or
reception is no longer an independent variable [28]. Hence,
12}(‘1”) and lAc’(‘l”) are now given by Egs. (124) and (125) which
are independent of the total time delay. Therefore, the
refractive and the gravitational delays may be solved
independently from each other.

A straightforward application of Theorem 4 assuming
s = 2 allows us to infer the expansion scheme of the total
time delay function

AD(x,4.x5) = AV (x4, x5), (139a)

AP (x4, xp) = AEZ)(XA’ Xp) + Az(;l)(xm xp). (139b)

Thus, we deduce the fact that the different contributions
in Eq. (59a) are given by

Ag(x4.x5) = A (x4, Xp), (140a)

Ar(x4,Xp) = AEI)(XAv Xp) + AEZ)(XAy Xp). (140b)
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Then Theorems 6 and 8 together with Eqgs. (138) and
(132b) allow us to determine the refractive and the
gravitational contributions up to the appropriate order.

C. Time transfer function and Doppler

Using the fact that spacetime is stationary, we first
focus on the gravitational time delay. By making use of
Theorem 8, we soon arrive at the well-known formula

2R p

Ag(}"A’ XB) = 2

/ "Ula_()di, (141)
0

which leads after integration to the Shapiro delay [52]

2G R
Ay(Xq. Xp) = mﬂ?ln("””l“L AB). (142)

c? ra+rp—Rap

We introduced the notations 74,5 = |X4/p|.
The first-order refractive contribution is derived from
Theorem 6 and is given by

A (%4 X5) = Ryg / Ne()dn (143)

We find almost similar expressions for the atmospheric
delay in [2-4,53] (commonly, when applied to the Earth’s
neutral atmosphere, the refractivity is defined within a
factor of 10° and is separated into hydrostatic and non-
hydrostatic components). The first main difference stands
in the path of integration in Eq. (143) which is performed
along the Euclidean line between the emitter and the
receiver even for nonzenithal observations. Instead, in
the literature [cf., e.g., Eqgs. (2) and (3) of [4]], the
atmospheric delay is usually computed at zenith, and then
mapping functions are used to convert the zenithal delay
into a delay in the line-of-sight direction as discussed in [4].
The other difference stands in the upper limit of integration.
However, considering that the refractive region is bounded
to the domain D of spacetime, the integration out of D does
not contribute to the final results. In that respect, the
difference in the upper integration limit is only superficial.

The first-order refractive delay (143) is the well-known
excess path delay due to the change of the phase velocity
experienced by the signal during the crossing of the
dielectric medium. The geometric delay due to the refrac-
tive bending of the ray arises at the postlinear order as we
shall see in the next paragraph.

According to Theorem 6, the second order is given by

Rup [ -

AEZ)(XA’XB) = %A {(v? —4N51N23)z_(1)
1 1

— [0 9,8 (1)) 2. (144)

The term 8,»A§]) is computed by differentiating Eq. (143)
with respect to x/,, that is to say

—x) [l
a.aM] :—M/ N(y_(4,x))d
[ ](.B) |XB—X| 0 (y (/’l )) U

Flxa x| [ uloN) g (145)
We have introduced
y-(u.X) = (1 = p)Xp + px, (146)
which reduces to
y-(u.2_(2)) = z_(p4) (147)

when x = z_(4),

We can rearrange Eq. (144) by first noticing that the
light-dragging contribution can be further simplified.
Indeed, after making use of Eq. (128), it may be seen that

(giN,iLlB)z_(/l) = fi(XB)NZB (148)

which is obviously independent of A. Then by substituting

for 9;A" from Eq. (145) into (144) while accounting for
Egs. (147) and (53), one can apply the following change of
variables i/ = uA, and by integrating by parts the double
integrals, one infers the postlinear refractive order

AP (x4, x5) = AZL (x4, X5) + Alh(X4. Xp)

+ Al (X4.Xp). (149)
where
AR xaxs) =32 [T N2 )1+ 2t (1500
Aéa)(XAvXB) = %AI{ARiB[aiNaiN]Z(A)
— 2RpNi5[NO,N], ;}2In2d2,  (150b)
and
Afii)lg(XAv xg) = D(xy, XB)AEI)(XA, X3), (150c)
with D(x,,Xp) being given by
D(x4,Xp) = =28 (xp)N}yp. (151)

We have separated the postlinear approximation of the
refractive time delay function into three components. The
first one, namely, Eq. (150a), is the second-order correction
to the excess path delay (143). The second component, that
is, Eq. (150b), is the geometric delay which accounts for the
bending of the ray. These two components together with
Eq. (143) constitute the static part of the refractive time delay
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A (X4, Xp) = A£1)<XAa Xp) + Af(ti)C("Av Xp)

+ AR (X4, Xp), (152)
namely, the refractive part of delay that would be measured
or modeled in a frame comoving with the media. Instead, the
last term in Eq. (149), namely, Eq. (150c), is the delay due to
the dragging of light caused by the motion of the dielectric
medium. In that respect, D(x,4, X ) is referred to as the light-
dragging factor.

Interestingly, one might see from Eq. (150c) that the
light-dragging contribution can be expressed as a geometric
factor scaling the first order of the static refractive part. This
fact is not a specificity of the postlinear approximation but
must hold true for higher order terms too. Indeed, it results
from the really specific form of the refractive components
«% which can always be written as

K0 = x0¢i, (153)
Therefore, because the scalar product & N', 5 is independent
of the path of integration for a steady rotating atmosphere,
the integration of k%N’ , reduces to

. . 1
£ (xp)Ni / (K), 2. (154)

where the integrated term corresponds to the static part of
the refraction.

Solving the line integrals in Egs. (143), (150a), and
(150b) for a realistic index of refraction is not an easy task.
Moreover it is beyond the scope of this paper which aims at
introducing a recursive method allowing one to determine
the integral form of the time transfer functions up to any
order in optical spacetime. For this reason, we address the
effective resolution of the line integrals to future work.
Hereafter, we derive the range and the time transfer
function at the postlinear approximation.

From Egs. (49a), and by making use of Egs. (139), (149),
and (150c), we find

)(XAs Xp)

(155)

R(x4,Xp) = Rap + Ag(X4, Xp) + C(Xy, XB)AEI

+ Agg)c(XA, xp) + AézeZJ(XAv Xg).

where we have introduced the factor C(x4,Xp) being
defined such that

C(x4.Xp) = 1+ D(x,4.Xp). (156)

According to previous discussions, we can rewrite
Eq. (155), within the same accuracy, such as

R(x4,Xp) = Rap + Ay (X4, Xp)

+ C(Xa, Xp) Ay (X4, X).  (157)

The time transfer function can be directly obtained by
making use of Eq. (32a)

1
T (X4, Xp) = - [Rap + Ag(X4,Xp)

+ C(XAva)AStat(XAvXB)L (158)
where we recall that Ay, is given in Eq. (152).

Let us emphasize how simple result (158) is. As a matter
of fact, the light-dragging effect is enclosed into a geo-
metrical factor scaling the static part of the refractive delay.
In addition, to derive (158) we never made use of an
a priori refractive profile; we only supposed a stationary
rotating optical medium. In comparison, a derivation of the
light-dragging effect using perturbation equations applied
to geometrical optics [54] requires heavier calculations
(where the integration must be performed along an hyper-
bolic path) highlighting the advantage of using the covar-
iant formalism developed so far. Indeed, in a covariant
theory, the light-dragging contribution is naturally taken
into account through the cross components of Gordon’s
metric.

From the range or the time transfer functions, we can
derive the expression of the frequency transfer within the
postlinear approximation as well. After inserting Eq. (157)
into (40), we deduce

0A D
qa —l_ﬁANAB +ﬁA8 ,g+ﬂA as,tat+ﬁA8 , Agars

(159a)
and

A OA oD
gg=1- ﬂBNZB ﬂga—,_ﬁBa:t_ﬁBa, stat>

(159b)

where we have introduced two artificial “dragging” coor-
dinate velocities defined by
i;fA/B = C(x4, XB)ﬁZ/B- (160)
Most of the time, while modeling range and Doppler
observables in GCRS coordinates, the factor C is arbitrarily
fixed to C = 1 (i.e., vanishing of the light-dragging factor).
In the next section, we investigate the resulting conse-
quences by discussing orders of magnitude and variabilities

due to the light-dragging contribution in the expressions of
the time and the frequency transfers.

D. Light-dragging magnitude and variability

In GCRS coordinates, the velocity of the fluid medium at
xp is given by Eq. (128), that is
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& (xp) = 2L elikShn, (161)

where ny = xz/rp. For a ground-based receiver, we have
rg = Rg and the light-dragging factor becomes

D(x4,Xp) = — - (Sg xnp)-Nyp. (162)
Thus, the maximum value of D is about
2wgR
2207 - 3099 x 1076, (163)
¢

A typical value of the static refractive delay in the zenith
direction is approximately 2.5 m and can reach 15 m for an
elevation angle of 10° [5,6]. Therefore, the light-dragging
contribution to the time transfer is expected to remain lower
that 0.05 mm in GCRS coordinates. However, for experi-
ments whose data are mainly analyzed in the barycentric
celestial reference system (BCRS), the velocity of
the media possesses an orbital component which is of
the order of 30 kms~!. Thus, the maximum value of D
becomes of the order of 2 x 107, and the dragging
contribution can reach 3 mm in BCRS coordinates.

Experiments such as satellite or lunar laser ranging are
currently operating at the millimeter and centimeter levels
of precision on range measurements [55-57]. Therefore,
the light-dragging effect is just below the threshold of
visibility on both experiments. However, as may be inferred
from Eq. (162), the effect is mainly suppressed in the
case of a round-trip light path. In other words, it might
play a significant role only for one-way and three-way
configurations.

From Eq. (145), considering a slowly varying refractiv-
ity, we can infer that

aA?tat f 1 i
T NNy ~ 105N,
axg RAB 0 AB AB

hence

; OA —5(pi ATi
ﬂﬁ?;tN 107(B4Nyg).- (164)
XA

Therefore, for a one-way frequency transfer experiment, the
static atmospheric contribution relative to the classical
effect (B, N',,), represents roughly 1 part in 10°.

Then the contribution due to the dragging velocity in
Egs. (159) is approximately given by

3 8Asa —5( i ATi
ﬁAa—,-“N 10 S(ﬂANAB)- (165)
XA

Making use of Egs. (160) and (163), one infers that, in
GCRS coordinates, the light-dragging contribution (term

proportional to D) represents 1 partin 10° and 1 part in 10!!
relative to the static atmospheric effect and to the classical
effect, respectively. If we take a look at orders of magnitude
in BCRS coordinates, the light-dragging contribution
relative to the static atmospheric effect reaches 1 part in
10* and 1 part in 10° relative to the classical effect.
Therefore, for typical spacecraft’s velocities of 10~ and
10~* in GCRS and BCRS coordinates, respectively, one
infers that the effect of the light-dragging contribution
produces a fractional frequency change of the order of 1
part in 10'® in GCRS coordinates and 1 part in 10" in
BCRS coordinates. For one-way radio links, these frac-
tional frequency changes translate into radio signal
frequencies at the level of 1 uHz for X/Ka bands and
0.1 uHz for S bands in GCRS coordinates. In BCRS
coordinates, the frequencies of the radio signal due to
the dragging of light should arise at 1 mHz for X /Ka bands
and 0.1 mHz for S bands. The correspondence in terms of
velocity precision in the Doppler is at the level of 0.01 and
10 ums~! in GCRS and BCRS coordinates, respectively.

Past and future space missions such as Cassini [58-60],
BepiColombo [61,62], or JUICE [63] have reached or will
reach the level of 1 yms~! for the Doppler. Therefore, the
light-dragging effect is clearly at the threshold of visibility
in Doppler observables and should be modeled in data
reduction software in the near future.

In order to understand what could be the signature of an
unaccounted light-dragging effect, let us now focus on the
computation of the time variability of D(x,,x). For a
ground-based instrument, the spatial coordinates expressed
in an Earth centered frame are given by Xz = (Rg, ¢p. 1),
where ¢p is the latitude and Az the longitude of the
instrument on the surface of the Earth. The variable
part in Eq. (162) is better understood if we introduce
(a,e,1,Q,w, f) denoting the set of Keplerian elements of
the emitter. In GCRS coordinates the direction n, of the
emitter is given for instance in Eq. (3.42) of [64]. Then the
expression of the light-dragging factor reads as follows:

D_2a)@R@a(1—e2) cosp
¢ Rus (1+ecosy)
x {sinQ[I_cos(F +P,)+1,cos(F_+P_)]
—cosQ[I_sin(F, +P, )+, sin(F_+P_)]}, (166)
where we have set
I. = (1+cost)/2, (167a)
and
Fi :f:ta)@t, Pi:a):I:lB. (167b)

Considering a quasicircular orbit (e <« 1), we have ry =
a+ O(e) and
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f=n(t—1)+0O(e), (168)
where f is the time of perigee passage and where 7 is the
mean motion being given by Kepler’s third law

(169)

Therefore, the magnitude of D oscillates with frequencies
n + wg around zero and 10~* (maximum amplitude of the
orbital barycentric velocity) in GCRS and BCRS coordi-
nates, respectively. The peak to peak amplitude is of the
order of 107 in both reference systems. In the limit case
where lim,_ . n =0, the same magnitudes oscillate at
diurnal frequency.

Consequently, while modeling the time and frequency
transfers using Eqs. (158) and (159) in GCRS or BCRS
coordinates, the fact of imposing C =1 (or equivalently
D = 0) leads to an unaccounted contribution which may
lead to systematic errors for instance in the estimations of
the spacecraft velocity [considering Eq. (160)] or in the
receiver coordinates (considering that diurnal signatures
mainly concern ground-based stations). This last example
could be particularly relevant for ground-based techniques
operating within the international Earth rotation and refer-
ence system service (IERS) for which an error in the
estimation of the station coordinates can result in a bias in
the determination of the ITRF.

VIII. CONCLUSION

This paper generalizes the algorithmic approach intro-
duced in [28] by making the time transfer functions
formalism applicable in optical spacetime. The main results
stand in Theorems 4—11 which allow one to determine
the integral form of the time transfer functions up to any
order. The great benefit of using the time transfer func-
tions formalism relies on the fact that all integrals in
Theorems 6-11 are line integrals taken along the zeroth-
order null geodesic path between the emitter and the
receiver, independently of the order being considered.

In optical spacetime, the method requires us to know the
order of magnitudes of both the gravitational and the
refractive perturbations. Then one can deduce the integer
parameter s from Eq. (67) and use Theorems 4 and 5 in
order to determine the general expansion of the total time
delay functions. The different components are the gravi-
tational, the refractive, and the coupling contributions.
Each of them is determined recursively making use of
Theorems 7-11. We emphasize that these theorems have
been derived assuming (i) a post-Minkowskian expansion
and (ii) a general expansion in terms of an arbitrary
refractivity Ny. Both choices are motivated by the quasi-
Minkowskian path regime which is assumed throughout
the paper.

We have illustrated the method by determining the
integral form of the time transfer function up to the
postlinear approximation. We have considered the case
of a one-way transfer between a low orbit emitter and a
receiving station on the Earth’s surface. We have shown
that the time and frequency transfers are both impacted by
the light-dragging effect due to the motion of the atmos-
phere, as seen from a frame which is not comoving with the
flowing optical media. With respect to other methods (e.g.,
[54]), we have highlighted the great advantage of the
covariant formalism developed in this paper which natu-
rally takes into account the effect of the dragging of light. In
addition, we have shown that the light-dragging contribu-
tion is independent of the refractive profile which is
considered. At the end of the day, the dragging component
reduces to a geometrical factor which scales the static part
of the atmospheric time delay (where the term ‘“static”
refers to the delay which would be measured in a frame
comoving with the refractive medium). Concerning the
frequency transfer, we have shown that the light-dragging
contribution scales the coordinate velocities of both the
emitter and the receiver resulting in the introduction of
artificial dragging coordinate velocities. Finally, we have
discussed the necessity, in the near future, for taking into
account the dragging of light in data reduction software
modeling the time and frequency transfers within GCRS or
BCRS coordinates.
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APPENDIX: GENERAL EXPANSION OF v,

The covariant components of y,,, are determined from the
inverse conditions which lead to the following implicit
expression:

Yiw = —Gua9p K = Guak™y . (A1)
Usually, assuming that y,, = f(n)w*w” with f(n) being a
sought function of the index of refraction and using
Eq. (9b), we infer Eq. (9a). However, the situation slightly
changes if we expand the contravariant components x** as
is done in Eq. (93).

At the same time, we have assumed that the physical
spacetime metric, which is given in Eq. (44a), satisfies a
post-Minkowskian expansion [see Eq. (106). Thus, con-
sidering that the refractive components are the dominant
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order according to Eq. (67) for s € N, we deduce that the
covariant components y,,, satisfy the following expansion:

)= i)

=1

7/41/ X, NO? (A2)

where the quantities y,(,l,,) can be recursively determined from

Eq. (Al), that is

Tha = Mg kD (A3a)
7 = Mk n,mZK Do (A3b)
for2 < g <s, and
v = =1kl = 20,k ) —nﬂaZK“ﬂ 7
(A3c)
vin = =gk, ) = 20,0k )

s+q-1
+
r];m Z Kaﬁ y[)’i " q

q—
q—m)
/"O’E :Kmyu

=1

(A3d)
for 2 < g <s, and
(2s+1) ap (1
Y = "NualpK (2¢+1) 277ﬂ(1K(3+1)h/}y
2s
ap 1.(2) (1/)’ afp  (2s—m+1)
= 2k () = MK = YKo
m=1
_h(l) : af  (s—m+1) A3
wt D Koty (A3e)
m=1
and

25+ aff 1 (2
yftl/ q> nﬂanﬂl/K(és+q) ZﬂﬂaK(/>h}}y)
& ) () ap (1)
= 25 q) Mg = Pua i) gy
2s5+q—1 2 (l)s+q—l 5 )
s+ m) a, s+q—m
~Nya Z K - _h;m K(r/n)yﬂy !
m=1
2w (-m)
= hya D K1 (A3f)
m=1
for2 < g <s, and
(ps+1) _ — plp=m)
s+1 m
7!5 MuallpK (ps+1 277;1052’( ms+1) ﬁz
p—1 . m 1-m)
(m—n ap s+1-m
S S i —maZK "
m=1 n=0
p—1 ms

(ms+1-n)
) pu " (A3g)

P

_Zh/(t
m=1

for p > 3, and finally

(ps+q) _
Y ﬂ#ai’]ﬂy ps+q 277/4aZKn,S+q ﬁu
p—1 » m—1 ;
af
=2l ) K
m=1 n=0
ps+q—1 )
(ps+q—m
~ Nya Z Km J//}L/
p—1 ms+q 1
PIUAD IR/ (A3h)
m=0 n=1

for p >3 and 2 < g <s, where p and ¢ are determined
from [/ using Eqs. (112).
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