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The Earth’s geoid is one of the most essential and fundamental concepts to provide a gravity field-related
height reference in geodesy and associated sciences. To keep up with the ever-increasing experimental
capabilities and to consistently interpret high-precision measurements without any doubt, a relativistic
treatment of geodetic notions (including the geoid) within Einstein’s theory of general relativity is
inevitable. Building on the theoretical construction of isochronometric surfaces and the so-called redshift
potential for clock comparison, we define a relativistic gravity potential as a generalization of (post-)
Newtonian notions. This potential exists in any stationary configuration with rigidly corotating observers,
and it is the same as realized by local plumb lines. In a second step, we employ the gravity potential to
define the relativistic geoid in direct analogy to the Newtonian understanding. In the respective limit, the
framework allows to recover well-known (post-) Newtonian results. For a better illustration and proper
interpretation of the general relativistic gravity potential and geoid, some particular examples are
considered. Explicit results are derived for exact vacuum solutions to Einstein’s field equation as well
as a parametrized post-Newtonian model. Comparing the Earth’s Newtonian geoid to its relativistic
generalization is a very subtle problem, but of high interest. An isometric embedding into Euclidean three-
dimensional space is an appropriate solution and allows a genuinely intrinsic comparison. With this
method, the leading-order differences are determined, which are at the mm level.
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I. INTRODUCTION

The ever-increasing technological capabilities allow us to
perform gravity and clock measurements with incredible
accuracy. On the one hand, high-precision satellite missions
such as GRACE/GRACE-FO allow to deduce properties of
the Earth’s gravity field, its changes on various time scales,
and the investigation of underlying phenomena [1–3]. On the
other hand, Earth-bound clock comparison networks or
portable optical atomic clocks are used in the framework
of chronometric geodesy [4–7]. One of the central notions that
is to be determined by such geodetic measurements is the
Earth’s geoid—its mathematical figure as the German math-
ematician C.F. Gauss has termed it. Geoid determination with
high accuracy is necessary for, e.g., national and global height
systems and is related to various applications such as GNSS.
To thoroughly explain the outcome of contemporary and

future geodetic missions at the cutting edge of available
accuracy, we have to keep up at the theoretical level.

Consequently, geodetic notions and concepts must be
developed within a relativistic theory of gravity. The best
available framework, consistent with all tests, is Einstein’s
theory [8]. Therefore, it is our goal to generalize known
geodetic concepts and define all notions intrinsically within
general relativity. To consistently interpret high-precision
measurements without any doubt, a relativistic derivation
of geodetic notions within general relativity and beyond
post-Newtonian gravity is inevitable. This is true in
particular for the conceptual formulation of relativistic
geodesy and model building in a top-down approach.
In this work, we define a relativistic gravity potential,

which generalizes the Newtonian one. It exists for any
stationary configuration1 with observers on isometric con-
gruences, i.e., observers who rigidly corotate with the Earth.
Its definition is based on the philosophy of Bjerhammar
[9,10] and Soffel et al. [11] as well as results on the
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1By configuration, we mean a spacetime model for the Earth’s
exterior.
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time-independent redshift potential in Ref. [12]. It allows us
to define and generalize geodetic notions such as the geoid in
an intrinsic general relativistic manner andwith well-defined
weak-field limits. Moreover, it can be used to calculate the
outcome of redshift and acceleration measurements, and it is
realized by clock comparison as well as the determination of
local plumb lines.
One significant result is the direct comparison of the

conventional Newtonian geoid and its relativistic generali-
zation. Such a comparison is of relevance for geodesy, but
involves a lot of subtle points. In particular, there is some
gauge freedom in the choice of constants, different appli-
cable conventions, and the more crucial geometrical prob-
lem of comparing objects that live in different geometries.
We show how to perform this comparison using an
isometric embedding and different conventions.
The structure of this work is as follows. We start with a

short recapitulation of the conventional geoid and results in
the literature in Sec. II. After introducing the relativistic
gravity potential in Sec. III, it is employed to give a
definition of the general relativistic geoid in direct analogy
to the Newtonian case. We show how the potential can be
used to express clock comparison as well as acceleration
measurements between observers on the Earth’s surface.
Our definition of the geoid is such that it is the surface
which is locally orthogonal to plumb lines and coincides
with the surface of vanishing mutual redshifts of standard
clocks on Killing congruences. Therefore, different mea-
surements can contribute to its realization in data fusion.
In Sec. III E, the definitions are applied to some particular

spacetime examples for illustration of the concepts and
proper interpretation. A first-order parametrized post-
Newtonian metric is used to show that results in the literature
are embedded into the present framework. Exact expressions
for the Schwarzschild spacetime, the quadrupolar Erez-
Rosen spacetime, general asymptotically flat Weyl metrics,
and the Kerr spacetime are derived as well. Thus, the effects
of the relativistic monopole, the quadrupole, and higher-
order multipoles in axisymmetric configurations can be
analyzed order by order. Moreover, approximating the
Earth’s exterior spacetime by a suitably constructed Kerr
metric allows us to consider gravitomagnetic contributions.
In the last part, we compare the conventional Newtonian

geoid to its relativistic generalization. Involved problems and
subtleties are overcome by an isometric embedding of the
relativistic geoid surface into Euclidean three-dimensional
space, and we show that the leading-order difference, for a
suitable convention, is about 2 mm due to the relativistic
monopole. This embedding is not only an academic endeavor
but necessary to overcome coordinate-dependent effects.

II. CONVENTIONAL UNDERSTANDING
AND PREVIOUS RESULTS

In this section, the conventional understanding of the
geoid in Newtonian gravity as well as generalizations that

exist so far within (approximate) relativistic frameworks are
briefly summarized. We start with the Newtonian geoid and
consider the post-Newtonian extension thereafter. In addi-
tion, we summarize helpful references in geodetic and
general relativistic literature.

A. Newtonian geoid

In Newtonian gravity, the geoid is defined as one
particular level surface of the gravity potential2 [13],

WðX⃗Þ ≔ UðX⃗Þ þ VðX⃗Þ; ð1Þ

where UðX⃗Þ is the Newtonian gravitational potential and
VðX⃗Þ is the centrifugal potential experienced by rigidly
corotating observers on the Earth’s surface. We deliberately
make the distinction between gravitation and gravity here
to match geodetic notions and conventions. In Earth-
centered global spherical coordinates ðR;Θ;ΦÞ, we then
have for the centrifugal potential,

VðX⃗Þ ≔ −
1

2
ω2d2z ¼ −

1

2
ω2R2sin2Θ; ð2Þ

and the expansion of the gravitational potential into
spherical harmonics reads

UðR;Θ;ΦÞ ¼ −
GM
R

X∞
l¼0

Xl
m¼0

�
Rref

R

�
l
PlmðcosΘÞ

× ½Clm cosðmΦÞ þ Slm sinðmΦÞ�: ð3Þ

In the equations above, ω is the angular frequency of the
Earth’s rotation, Rref is some chosen reference radius, and
dz is the distance to the rotation axis which points into the z
direction. The Plm are the Legendre functions of degree l
and order m, and Clm, Slm are multipole expansion
coefficients. The gravitational potential is a solution of
Poisson’s equation (Laplace’s equation outside the sources)
and adapted to the condition that U → 0 for R → ∞. Note
that in our sign convention the gravity potential is always
negative since it refers to an attractive force. Under the
assumption of axial symmetry, the expansion simplifies to

UðR;ΦÞ ¼ −
GM
R

X∞
l¼0

Jl

�
Rref

R

�
l
PlðcosΘÞ; ð4Þ

where the Jl are axially symmetric multipole moments. A
suitable definition of the Newtonian geoid now is the
following.
Definition.—The Earth’s geoid is defined by the level

surface of the gravity potential WðX⃗Þ such that

2Note that in conventional geodesy, the gravitational potential
is usually denoted by V, whereas the centrifugal potential is
denoted by Z.
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−WðX⃗Þjgeoid ¼ W0 ¼ constant; ð5Þ

with a constant W0 ¼ 6.263 685 34 × 107 m2s−2, which
complies with modern conventions [13,14]. The numerical
value of W0 is chosen in a way to have the geoid coincide
best with the mean sea level at rest and a history of
measurements and previous conventions; see Ref. [14]. In
contrast to usual geodetic formulations, we use a negative
potential such that our convention in Eq. (5) differs by a
sign. However, we want to keep the numerical value of W0

to be strictly positive.

B. Post-Newtonian and general relativistic approaches

The first attempt to define a relativistic geoid was
undertaken by Bjerhammar [9,10] in 1985. He defined
the geoid to be the surface “on which precise clocks run
with the same speed,” but most of the considerations
involve approximations of order c−2 and special relativistic
results. Inspired by Bjerhammar’s approach, which, how-
ever, lacks some formal and mathematical clarity, we give a
rigorous general relativistic definition of a gravity potential
and the geoid, based on clock comparison without approx-
imations. Thus, we go beyond Bjerhammar’s considera-
tions and generalize his ideas. The essential steps to do so
have already been outlined in Refs. [12,15,16], in which the
relativistic geoid is defined in terms of isochronometric
surfaces, the level sets of a so-called stationary redshift
potential for Killing congruences. Furthermore, the analy-
sis of timelike isometric congruences as the worldlines of
observers, or equivalently the Earth’s matter constituents,
allows us to derive an acceleration potential. It coincides
with the redshift potential and contributes yet another
possibility of how to determine the relativistic geoid as
the surface orthogonal to the direction of local plumb lines.
We will, to a large extent, use the results in the references
above and incorporate them into the definition of a general
relativistic gravity potential in the next section.
Several authors also investigated the Earth’s geoid in a

post-Newtonian framework; see, e.g., Refs. [11,17–19].
The principle idea is to use potentials defined at the order of
1=c2 in a post-Newtonian approximation of general rela-
tivity. The relativistic geoid can then be defined by a special
level surface again but is valid to first order only. In this
context, the notions of the u-geoid and a-geoid appear,
related to definitions in terms of clocks and their compari-
son on the one hand and accelerations of observers on the
other hand; see Ref. [11]. They are found to coincide at the
first order in post-Newtonian gravity. However, the choice
of a particular surface w.r.t. the Newtonian limit as well as
an intrinsic relativistic understanding is generally not
elaborated. In the present formalism, it can be proven that
the u- and a-geoids generically coincide in general relativity
without any approximation involved; see Refs. [12,16].
Concerning a general relativistic treatment, the work in

Ref. [20] must be mentioned, in which the authors define

the geoid in terms of quasilocal frames. Furthermore, in
Ref. [19], an exact definition of thegeoid and a generalization
of the disturbing potential in general relativity are analyzed
via perturbations of a chosen background manifold.
For the geodetic community also the difference between

Newtonian and generalized notions is of great interest but a
thorough comparison is not included in the available
literature. As we will show in the next sections, in such
a comparison, some subtle details are involved, but they
can be handled genuinely within a general relativistic
framework and by differential geometric methods without
approximations. Thus, intrinsic geometric properties are
conserved and not spoiled by an approximative description.

III. RELATIVISTIC GRAVITY POTENTIAL
AND THE GEOID

To arrive at an intrinsic relativistic understanding of
a stationary object’s geoid, we build on some of the ideas
in Refs. [11,19] together with our previous results in
Ref. [12]. Thereupon, we present a framework that is
consistent within general relativity without any approxi-
mation and allows us to recover previously known (post-)
Newtonian results in the respective limits.
The next section contains a summary of significant

results regarding clock comparison, isometric observer
congruences, and isochronometric surfaces. Thereupon,
we define a relativistic gravity potential that is, in turn,
used to define the relativistic geoid in analogy to the
Newtonian understanding.
We use SI units to explicitly see how the speed of light c

and Newton’s gravitational constant G enter into the
formulae. Greek indices are spacetime indices and shall
range from 0 to 3, whereas Latin indices are purely spatial
indices and take values from 1 to 3.

A. Observer congruence and redshift potential

Any stationary metric can be written in the form

g ¼ e2ϕðxÞ½−ðc dtþ αaðxÞdxaÞ2 þ αabðxÞdxadxb�; ð6Þ

in which the coordinates ðx0 ¼ ct; xiÞ for i ¼ 1∶3 are
assumed to be corotating and are adapted to the symmetry.
Let us assume that Eq. (6) describes the exterior of some
astronomical object of interest. Given the geodesy of our
planet, we use this metric to build a model of the Earth’s
exterior spacetime. Because of the lack of better wording,
we will also speak of the geodesy of other objects and
define the geoid in a way that works generally. Now, we
think of observers that rigidly corotate with the object of
interest.3 They transport standard clocks along their world-
lines which are parametrized by proper time, respectively.

3Alternatively, also the constituents of the Earth in a rigid
model follow the same worldlines.
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Since the coordinates are corotating, these observers are
hovering on fixed positions (dxi ¼ 0) or might be attached
to the surface if there is any. Such observers are described
by integral curves of the Killing vector field ξð1Þ ≔ ∂t. For
the Earth, this means we consider in particular observers
(measurement stations equipped with atomic clocks and
gravimeters) attached to its physical surface. The world-
lines of these observers form an isometric (Killing) con-
gruence, and there are some important conclusions. As
shown in Ref. [12], for a spacetime with a metric in the
form of Eq. (6), there exists a time-independent redshift
potential. It describes the relative frequency difference
between any two standard clocks on worldlines in the
congruence. This redshift potential is given by the scalar
function ϕðxÞ and two observers on worldlines γ1 and γ2,
respectively, determine their mutual redshift

1þ z ≔
ν1
ν2

¼ expðϕjγ2 − ϕjγ1Þ≕ expðΔϕÞ; ð7Þ

in which ν1;2 is the frequency of an exchanged light signal
as seen by the respective observer. All observer worldlines
in the congruence are described by the tangent vector field
u ¼ expð−ϕÞξð1Þ. The redshift potential and the redshift are
dimensionless.
As shown in Ref. [12], a definition of the relativistic

geoid can be given in terms the redshift potential’s level
sets. These equipotential surfaces are called isochronomet-
ric, i.e., two standard clocks on the same level surface have
a vanishing mutual redshift. Therefore, the relativistic geoid
is defined in Bjerhammar’s philosophy as the surface on
which all clocks run with the same speed but with more
mathematical rigor and intrinsic general relativistic notions.
We want to point out here that this definition remains valid
in the following, but we will use new notions to make it
accessible and also more intuitive with clear nonrelativistic
limits. Moreover, the definition will enable a direct com-
parison to existing post-Newtonian results and shed some
light on the order of magnitude of deviations from the
conventional geoid.

B. Gravity potential

We assume that Einstein’s field equation is fulfilled and
the configuration is asymptotically flat and stationary.
Given a relativistic spacetime model of the Earth with a
metric (6) that allows for the existence of a time-indepen-
dent redshift potential ϕ for observers who are rigidly
corotating, i.e., observers who form an isometric congru-
ence, we construct the following.
Definition.—Let the relativistic gravity potential U� be

defined by the following relation to the observers’ time-
independent redshift potential ϕ [16]:

eϕ ≕ 1þ U�

c2
⇔ U� ¼ c2ðeϕ − 1Þ ¼ c2ð ffiffiffiffiffiffiffiffiffiffi

−g00
p

− 1Þ; ð8Þ

where we use corotating coordinates as defined above.
The dimension of U� is the square of a velocity,
½U�� ¼ ½c2� ¼ m2=s2. The intention of defining the new
potential in this way becomes evident in the Newtonian
limit, in whichU� becomes the Newtonian gravity potential
W, i.e.,

U� →
c→∞

W: ð9Þ

This is easily verified by expanding the square root in
Eq. (8) in the usual way, assuming a weak-field limit exists.
Centrifugal effects are included since the coordinates are
adapted to rigidly corotating observers such that they move
on integral curves of the Killing vector field ξð1Þ. Note in
particular that in our sign convention also U� < 0 every-
where. Hence, it has the same sign as Newton’s gravity
potentialW. A definition of the relativistic geoid in terms of
U� will then also resemble the conventional Newtonian
definition in terms of W in the limit.

C. Redshift and acceleration

Using the potential U�, redshift and acceleration mea-
surements for observers in the congruence can be expressed
in the following way.

1. Redshift of two rigidly corotating observers

Let the worldlines of two observers in the congruence be
γ1 and γ2, respectively, and assume they measure their
respective proper time, i.e., they are equipped with standard
clocks. We evaluate the redshift potential ϕ and the
relativistic gravity potential U� on their worldlines accord-
ing to

ϕi ≔ ϕjγi and U�
i ≔ U�jγi i ¼ 1; 2: ð10Þ

The frequency ratio of the observers’ clocks is then
given by

1þ z¼ ν1
ν2

¼ eϕ2−ϕ1 ¼ 1þU�
2=c

2

1þU�
1=c

2

¼ 1þU�
2 −U�

1

c2
þOðc4Þ≕1þΔU�

c2
þOðc4Þ: ð11Þ

Hence, the relativistic gravity potential U� determines the
redshift. To leading order, the redshift is given by the
potential differences and vanishes in the Newtonian limit
since Newton’s universal time is absolute. But to first post-
Newtonian order, we obtain as the largest contribution

ν1
ν2

¼ 1þ ΔW
c2

þOðc−3Þ; ð12Þ

since U� can be expressed as
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U� ¼ W þ
X
n¼2

Ξn=cn; ð13Þ

where the Ξn are post-Newtonian correction terms of
order n.
Note, however, that the definition of U� is exact, i.e.,

without any approximation, and it is valid for an arbitrary
stationary spacetime. Thus, we have constructed an intrin-
sic general relativistic analog of the concepts introduced by
Soffel et al. in Ref. [11]. In this work, the authors derive
a similar potential but work within a first-order post-
Newtonian approximation only.

2. Acceleration of freely falling objects
w.r.t. rigidly corotating observers

Using the fact that the acceleration potential of an
isometric congruence is the same as its redshift potential,
see Ref. [12], we can express the acceleration of freely
falling test masses w.r.t. the observers in terms of U�,

a ¼ −c2dϕ ¼ −c2
∂ϕ
∂U� dU

� ¼ −dU�

1þ U�=c2
: ð14Þ

Here, d denotes the exterior derivative. The one form
acceleration a is closed and exact. Its components can be
calculated by aμ ¼ −c2∂μϕ and it is clear that a0 ≡ 0.
Thus, ðaμÞ ¼ ð0; a1; a2; a3Þ and the components are

ai ¼ −c2∂iϕ ¼ −c2e−ϕ∂ieϕ ¼ −∂iU�

1þ U�=c2
: ð15Þ

We notice that U�, or rather its scaled gradient, determines
the acceleration of freely falling test masses. The level
surfaces ϕ ¼ const, i.e., U� ¼ const, are everywhere
perpendicular to the acceleration—that is perpendicular
to the local plumb lines.
In the weak-field limit, we also recover the well-known

Newtonian formula,4

a⃗ ¼ −∇⃗W; ð16Þ

according to which the gravity vector is determined by the
gradient of the gravity potential. For the magnitude of the
relativistic acceleration, we obtain

a2

c4
¼ gða; aÞ

c4
¼ gij∂iϕ∂jϕ ð17aÞ

⇒ a2 ¼ gij
∂iU�∂jU�

ð1þ U�=c2Þ2 ; ð17bÞ

from which the usual Newtonian definition of scalar gravity
follows in the weak-field limit,5

a2 ¼ ð∇⃗WÞ2 ⇔ a ¼ k∇⃗Wk: ð18Þ

Here, k·k is the Euclidean norm.

D. The relativistic geoid

Definition.—For a spacetime equipped with a metric of
the form

g ¼
�
1þ U�

c2

�
2

½−ðc dtþ αaðxÞdxaÞ2 þ αabðxÞdxadxb�

ð19Þ

and a congruence of rigidly corotating observers who move
on integral curves of the Killing vector field ξð1Þ ¼ ∂t, the
relativistic geoid is a particularly chosen level surface of the
relativistic gravity potential U� such that

U�jgeoid ¼ U�
0 ¼ const: ð20Þ

Level surfaces of U� are level surfaces of ϕ and,
therefore, they are isochronometric. The observers’ world-
lines are described by the tangent vector field u ¼
ð1þU�=c2Þ−1ξð1Þ. Consequently, in a stationary general
relativistic model for the Earth’s exterior, the relativistic
geoid as determined by rigidly corotating observers on its
surface by either clock comparison or plumb line directions
is given by the particular two-dimensional isochronometric
surface on which Eq. (20) holds. The value of the redshift
and gravity potential on a given isochronometric surface is
invariant under coordinate transformations, respectively.
The same is true for the redshift, which is related to
potential differences.
The Newtonian limit of our general relativistic definition

is apparent. Because the weak-field limit of U� is W, the
Newtonian definition in terms of level surfaces of W is
recovered. The value U�

0, which singles out one equipo-
tential surface, must be given by some convention. Two
possibilities are, e.g., as follows:

(i) To fix the value by the conventional Newtonian
gravity potential on the geoid such that U�

0 ≡ −W0.
(ii) To define a master clock which is, by definition,

situated on the geoid’s surface and singles out one
isochronometric surface in a geometrical way (e.g.,
the one that passes through its center of mass). Then,
U�

0 is related to the work done to bring a unit mass
from infinity to the clock’s position.

4Note that in this limit the indices are raised and lowered with
the Kronecker delta δμν .

5In all the equations above, ∇⃗ is the flat space operator. Note
that in geodesy, the magnitude of the acceleration—gravity—is
usually denoted by g [13].
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Note that the choice (ii) is equivalent to marking a point
(possibly at the shore), representing the mean sea level, and
therefore choosing a level surface for U� in a geometric
manner. Also, the construction of a so-called clock com-
pass [21] might be employed to fix a particular isochrono-
metric surface and to test all clocks w.r.t. it.
The definition of the geoid is exact and does not only

apply to the Earth but also to arbitrarily compact objects as
long as the requirements above are fulfilled. The geoid in
various spacetimes can now be determined by expressing
the respective metric in the form (6) and reading off the
gravity potential. In this way, also a comparison to previous
results in a post-Newtonian framework is possible and
presented in the next section.

E. Examples and limits

In this section, we show particular examples for the
application of our definitions. With the spacetimes con-
sidered in the following, the influence of the relativistic
monopole, quadrupole, and higher-order moments can be
studied order by order. We start with a first-order para-
metrized post-Newtonian metric and proceed to exact Weyl
solutions that include, in particular, the Schwarzschild and
the Erez-Rosen spacetime. Moreover, results for the Kerr
metric reveal the influence of gravitomagnetic contribu-
tions. We argue that exact spacetimes play a useful role in
relativistic geodesy and should be employed to explicitly
define, understand, and calculate conceptional notions and
quantities, cf. Ref. [22].

1. Parametrized post-Newtonian framework

In harmonic corotating coordinates ðx0 ¼ ct; x; y; zÞ, the
metric components for the parametrized post-Newtonian
spacetime that describes the Earth’s exterior can be given by6

g00ðxÞ ¼ −
�
1þ 2WðxÞ

c2
þ 2βUðxÞ2

c4

�
þOðc−6Þ; ð21aÞ

g0iðxÞ ¼ −
ðγ þ 1ÞjUiðxÞj

c3
−
ϵijkxjωk

c
þOðc−5Þ; ð21bÞ

gijðxÞ ¼ δij

�
1 −

2γUðxÞ
c2

�
þOðc−4Þ; ð21cÞ

see, e.g., Refs. [8,23,24]. Here, ω⃗ is the Earth’s rotation
vector w.r.t. coordinate time, pointing in the x3 direction, and
Ui is the post-Newtonian vector potential [8,25]. In these
coordinates, rigidly corotating observers on the Earth’s
surface are described by dxi ¼ 0. The post-Newtonian
approximation of general relativity is obtained for β ¼ 1
and γ ¼ 1. Note that g0iðxÞ can also be expressed in the form

g0iðxÞ ¼ −
γ þ 1

c3
L⊕;i −

ϵijkxjωk

c
; ð22Þ

with the Earth’s gravitomagnetic field [11,26]

L⃗⊕ ¼ GJ⃗⊕ × x⃗
R3

ð23Þ

and the total angular momentum J⃗⊕ of the Earth. For a
spherical central massM with radius R0, rotating around the
x3 axis with angular velocity ω, the gravitomagnetic vector
potential can be evaluated easily in associated spherical
coordinates, leading to

gtΦ ¼ −
�
2ðγ þ 1Þ

5

�
R0

R

�
2m
R
þ 1

�
ωR2sin2θ; ð24Þ

which can also be derived by an expansion of the Kerr metric
in the weak field for β ¼ 1.
With the definition (8), the relativistic gravity potential

U�
ppN for the parametrized post-Newtonian metric is

U�
ppN ¼ W þ U2ðβ − 1=2Þ

c2
; ð25Þ

and for the post-Newtonian approximation of general
relativity, we get

U�
pN ¼ W þ U2

2c2
: ð26Þ

Hence, deviations from the Newtonian gravity potential are
described by the second term in Eq. (25), which is
proportional to U2=c2. Note that this result coincides with
the findings in Refs. [11,19]. However, the relativistic
gravity potential U� here is defined without any approx-
imations regarding the strength of the gravitational field.
Thus, our framework also covers well-known results in an
appropriately constructed limit of general relativity.
Assume that signals are sent from one observer on the

worldline γ1 to another observers on the worldline γ2, and
both observers rigidly corotate with the Earth. To the
appropriate order Oðc−2Þ, the redshift is

1þ z¼ ν1
ν2

¼ 1þU�
2=c

2

1þU�
1=c

2
¼ 1þW2−W1

c2
þOðc−4Þ; ð27Þ

where U�
i ≔ U�jγi and Wi ≔ Wjγi for i ¼ 1, 2. To first

order, the redshift is proportional to ΔW ≔ W2 −W1 and it
is not sensitive to the ppN parameters β and γ. In fact, with
Eq. (27), we have just derived the fundamental equation of
chronometric geodesy. Since we derived it in a top-down
approach, we know how it is conceptually embedded in a
broader theoretical framework; this gives trust in its validity6We use only the parameters β and γ here.
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and it is not only an approximative result which could, in
principle, become useless at the full theoretical level.
The leading-order contribution to the redshift is due to

the relativistic monopole moment and given by the result
for the Schwarzschild spacetime; see below. Close to the
Earth’s surface, a height difference of two clocks results in
a redshift of roughly 10−16 per meter height distance. For
most applications related to clock comparison close to the
Earth’s surface, it will be sufficient to expand the gravity
potential in Eq. (27) up to quadrupolar order proportional to
J2 in Eq. (4). For a small spatial distance between the two
clocks, the expansion of the gravity potentialW2 around the
value W1 leads to

W2 ¼ W1 þ ∇⃗W · ðX⃗2 − X⃗1Þ þOðjX⃗2 − X⃗1j2Þ: ð28Þ
Hence, we obtain

W2 ¼ W1 − ḡ12H12 þOðH2
12Þ ð29Þ

in terms of the orthometric height H12 [13] between both
clock positions. Here, ḡ12 < 0 denotes the averaged gravity
between the clocks’ positions along the plumb line.
Therefore, the redshift becomes

zðH12Þ ≈ jḡ12j
H12

c2
> 0: ð30Þ

Hence, redshift measurements are useful to determine the
orthometric height, provided that they are supported by
gravity measurements. Indeed, geodetic leveling measure-
ments must always be supported by matching gravity obser-
vations to conclude meaningful height measures [13,16].
The relativistic geoid in the parametrized post-

Newtonian spacetime is given by the equipotential surface
of U�

ppN such that

U�
ppNjgeoid ¼ W þU2ðβ − 1=2Þ

c2

����
geoid

¼ U�
0 ¼ const: ð31Þ

For the post-Newtonian approximation of general relativity,
we obtain

U�
pNjgeoid ¼ W þ U2

2c2

����
geoid

¼ U�
0 ¼ const: ð32Þ

Thus, high-accuracy geoid determination might give
bounds on the value of β. The result above will be used
later to access the leading-order relativistic corrections to
the Newtonian geoid. The results above are consistent with
the literature; see Ref. [11].
We now calculate the covariant acceleration components

ai, the contravariant components ai, and the norm of the
acceleration a at the level of Oð1=c2Þ accuracy,7

ai;ppN ¼ −∂i

�
W þ U2ðβ − 1Þ

c2

�
; ð33aÞ

aippN ¼ −δij∂j

�
W þU2ðβ þ γ − 1Þ

c2

�
; ð33bÞ

which is equivalent to

a⃗ppN ¼ −∇⃗
�
W þ U2ðβ þ γ − 1Þ

c2

�
≕ − ∇⃗ŪppN; ð33cÞ

appN ¼
����∇⃗
�
W þ U2ðβ þ γ=2 − 1Þ

c2

�����≕ k∇⃗ŨppNk: ð33dÞ

Here, ∇⃗ is the flat space operator such that k∇⃗ Ũ k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δij∂iŨ∂jŨ

q
in Cartesian coordinates.

As shown in Eq. (33), two new potentials are defined:
(i) the potential ŪppN, which determines the “acceleration
vector” a⃗ppN, and (ii) the potential ŨppN of which the norm
of the gradient gives the scalar acceleration appN. The
results coincide with those in Ref. [11].
Note that for the parameter values of general relativity

ðβ ¼ 1; γ ¼ 1Þ, we have

ŪpN ¼ W þU2

c2
; ð34aÞ

ŨpN ¼ U�
pN ¼ W þ U2

2c2
: ð34bÞ

Interestingly, for the post-Newtonian approximation of
general relativity, it is true that ŨpN ≡U�

pN. However,
measuring the acceleration of corotating observers on
the Earth’s surface yields bounds on the combination
ðβ þ γ=2 − 1Þ.
In this section, we have shown how the results in

Ref. [11], which was one of the major sources of inspiration
for the development of our work, are included in the present
formalism.We regard it as an essential test of the framework
that these results are successfully recovered—be reminded
of our sign convention for the comparison.

2. Weyl metrics

In the following, we apply our framework to Weyl
metrics, which are axisymmetric and static solutions to
Einstein’s vacuum field equation. We explicitly consider
solutions which are asymptotically and elementary flat; see
Ref. [27]. Special examples of this class of spacetimes are
the Schwarzschild solution and the quadrupolar spacetime
found by Erez and Rosen [28]. However, a straightforward
generalization to higher-order multipole spacetimes exists.
Written in spheroidal nonrotating coordinates ðt; x; y;φÞ,

the Weyl metric reads
7Formally, the contravariant acceleration components can

include a nonzero a0. However, we have a0ppN ¼ 0þOðc−3Þ.
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gμνdxμdxν ¼ −e2ψc2dt2 þm2e−2ψðx2 − 1Þ
× ð1 − y2Þdφ2 þm2e−2ψe2γðx2 − y2Þ

×

�
dx2

x2 − 1
þ dy2

1 − y2

�
: ð35Þ

The metric functions ψ , γ depend only on x and y, and m is
a length parameter determined by the total mass. Einstein’s
vacuum field equation for the metric above can be found,
e.g., in Refs. [27,29]. In Ref. [27], Quevedo has shown that
the general asymptotically flat solution with elementary
flatness on the axis is given by

ψ ¼
X∞
l¼0

ð−1Þlþ1qlQlðxÞPlðyÞ: ð36Þ

Here, theQl are Legendre functions of the second kind; see,
e.g., Ref. [30] for details. We call the expansion coefficients
ql Quevedo moments and they are related to Weyl’s
moments for the expansion in his canonical coordinates.
There is a clear relation to invariantly defined multipoles8

and to the Newtonian moments Jl in the weak-field
limit [16],

Jl ¼ ð−1Þl l!
ð2lþ 1Þ!!

�
m
Rref

�
l
ql; ð37Þ

such that m is the mass monopole in geometric units and
Rref is a reference radius; see Eq. (4).
Changing to corotating coordinates allows us to include

centrifugal effects. Then, we can read off the relativistic
gravity potential from the final form of the metric. This
procedure includes inertial effects but of course fails to
cover gravitomagnetic contributions since we still have a
static spacetime at hand. From the metric (35), we conclude
that two Killing vector fields ξð1Þ ¼ ∂t and ξð2Þ ¼ ∂φ exist,
the latter of which is spacelike. Rigidly corotating observ-
ers move on integral curves of ξð1Þ þ ωξð2Þ, in which ω is
the angular velocity of rotation around the symmetry axis.
For bounded values of ω, the combination remains time-
like. After the transformation φ → φ0 ¼ φ − ωt, we obtain
the redshift potential for rigidly corotating observers,

eϕðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ψðx;yÞ−

ω2

c2
m2ðx2−1Þð1−y2Þe−2ψðx;yÞ

s
: ð38Þ

Note how Weyl’s first metric function ψ enters the result.
Now, we can insert the exact result,9

2ψðx; yÞ ¼
Xn
l¼0

ð−1Þlþ1qlPlðyÞ
�
log

�
xþ 1

x − 1

�
PlðxÞ

− 2
X½l=2−1=2�

k¼0

2l − 4k − 1

ðl − kÞð2kþ 1ÞPl−2k−1ðxÞ
�
; ð39Þ

which allows us to evaluate the redshift potential at any
multipolar level. The very first term proportional to q0 gives
the Schwarzschild result, and m is the Schwarzschild mass
related to the radius rs ¼ 2m for the choice q0 ¼ 1. To
transform the result to usual area coordinates, the relation
x ¼ r=m − 1, y ¼ cos ϑ must be used. Including also the
next higher-order term proportional to q2 gives the redshift
potential in theErez-Rosen spacetime.10Axisymmetric exact
spacetimes with well-defined Newtonian limits can be
constructed by including also qn for n > 2; see Fig. 1 for
a schematic overview. The relativistic gravity potential for
such Weyl spacetimes is a rather lengthy expression.
However, it can be calculated without any approximation
and is of the form

U�
Weyl ¼ U�

Weylðx; y;m; q2…ql;ωÞ: ð40Þ

The surfacesU� ¼ const are isochronometric and for a given
set of parameters one of them is the geoid after a suitable
choice of a constantU�

0. In the following, we give the explicit
expressions for the Schwarzschild and Erez-Rosen space-
time, respectively.
The redshift potential for rigidly corotating observers in

the Schwarzschild spacetime is

eϕðr;ϑÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðg00ðr; ϑÞ þ ω2gφφðr; ϑÞ=c2Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r

−
ω2

c2
r2sin2ϑ

s
; ð41Þ

where we use standard area coordinates. The relativistic
gravity potential for the Schwarzschild spacetime becomes

U�
Schwarzschild ¼ c2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GM
c2r

−
ω2

c2
r2sin2ϑ

s
− 1

!
: ð42Þ

Hence, the redshift between two members of the con-
gruence at positions ðr1; ϑ1Þ and ðr2; ϑ2Þ, respectively, is

zþ 1 ¼ ν1
ν2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r2
− ω2

c2 r
2
2sin

2ϑ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2m

r1
− ω2

c2 r
2
1sin

2ϑ1

q ; ð43Þ

8We refer to the definition given by Geroch and Hansen
[31,32].

9The upper limit of summation ½l=2 − 1=2� denotes the closest
integer smaller than the value of the expression in brackets.

10There is no relevant q1 contribution since a dipole moment
can always be made to vanish by a suitable coordinate
transformation.
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and we find that close to the Earth’s surface the redshift is
about 10−18 per cm height difference. For the magnitude of
the acceleration along the congruence, we find

a ¼ e−2ϕ
��

1 −
2GM
c2r

��
GM
r2

− ω2rsin2ϑ

�
2

þ 1

r2
ðω2r2 sinϑ cos ϑÞ2

�
1=2

: ð44Þ

In the Newtonian limit, this becomes

a ¼ k∇⃗Wk; with W ¼ −
GM
R

−
1

2
ω2R2sin2Θ; ð45Þ

which is the gravity magnitude in a spherically symmet-
ric field.
The Erez-Rosen spacetime can be used to describe the

spacetime outside a quadrupolar Earth. It is a natural
relativistic generalization of a quadrupolar Newtonian
gravitational potential,

UðR;ΘÞ ¼ −
GM
R

�
1þ J2R2

ref

2R2
ð3cos2Θ − 1Þ

�
; ð46Þ

which will be recovered in the weak-field limit. We can
choose the parameters m and q2 to let the relativistic
monopole M0 and the quadrupole M2 coincide with the
respective Newtonian moments of the Earth. To do so, we
have to choose m⊕ ¼ GM=c2 and q2 must be

q2 ¼
15

2

�
Rref

m

�
2

J2: ð47Þ

The resulting redshift potential reads

eϕðx;yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ψERðx;yÞ−

ω2

c2
ðGM=cÞ2ðx2−1Þð1−y2Þe−2ψERðx;yÞ

s
;

ð48Þ

in which the metric function ψER is given by

FIG. 1. An overview of the relation between Weyl solutions and the Erez-Rosen as well as the Schwarzschild metric as generalizations
of Newtonian configurations. An axisymmetric Newtonian gravitational field is generalized by a general Weyl solution with Quevedo
moments ql. For lmax ¼ 2, the Erez-Rosen spacetime is recovered as the generalization of a Newtonian quadrupolar field. If also q2 ¼ 0,
we obtain the Schwarzschild solution as the relativistic monopole analog.
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ψERðx;yÞ ¼
1

2
log

�
x − 1

xþ 1

�
þ q2

ð3y2 − 1Þ
2

×

�ð3x2 − 1Þ
4

log

�
x − 1

xþ 1

�
þ 3

2
x

�
: ð49Þ

Using the expressions above, the relativistic gravity poten-
tial U�

ERðx; y; m; q2;ωÞ for the Erez-Rosen spacetime can
be calculated analytically and the geoid is defined by a level
surface in some chosen convention for U�

0.

3. Kerr spacetime

To investigate the influence of gravitomagnetic contri-
butions, we apply the framework to the Kerr spacetime. In
the standard Boyer-Lindquist coordinates, the metric is
given by

g ¼ −
�
1 −

2mr
ρ2

�
c2dt2 þ ρ2

Δ
dr2 þ ρ2dϑ2

þ sin2ϑ

�
r2 þ a2 þ 2mra2sin2ϑ

ρ2

�
dφ2

−
4mra sin2ϑ

ρ2
cdtdφ; ð50Þ

and we introduce the abbreviations

ρ2 ¼ r2 þ a2cos2ϑ; Δ ¼ r2 þ a2 − 2mr: ð51Þ

The gravitomagnetic field of the Kerr spacetime approx-
imates frame dragging effects in the Earth’s vicinity very
well, if parameters are chosen appropriately. The first
multipole moments of the Kerr metric are

Mass monopole M0 ¼ m; ð52aÞ

Spin dipole S1 ¼ ma; ð52bÞ

Mass quadrupole M2 ¼ −ma2: ð52cÞ

The Kerr parameter is related to the angular momentum by
a ¼ J=ðMcÞ. Hence, we can choose m such that the Kerr
monopole is the total mass of the Earth, and a such that the
spin dipole is related to the Earth’s angular momentum. To
have this correspondence, we set m⊕ ¼ GM=c2, as before,
and use the relation of the angular momentum to the
moment of inertia I, J ¼ Iω. For a rigidly rotating sphere
with radius r⊕, we have I ¼ 2=5Mr2⊕. Hence, the Kerr
parameter for the Earth becomes

a⊕ ¼ 2

5

ω

c
r2⊕: ð53Þ

Calculating the values, we obtain m⊕ ≈ 0.0044 m and
a⊕ ≈ 892m⊕, where the radius and angular velocity as

given by the EGM96 model are used [33].11 However, we
have to state that the Kerr spacetime is also not a good
approximation for the Earth’s exterior in the sense that it
covers gravitomagnetic effects but fails to represent the
Earth’s flattening and quadrupole moment. Choosing the
values for the mass monopole and the spin-dipole fixes
the mass quadrupole uniquely. Therefore, we cannot
expect the Kerr spacetime to represent features of the
flattened Earth.
We change again to rotating coordinates to find the

relativistic gravity potential for rigidly corotating observers,

U�
Kerr=c

2¼−1þ
�
1−

2mr
ρðr;ϑÞ2þ4

ω

c
amrsin2ϑ
ρðr;ϑÞ2

−
ω2

c2
sin2ϑ

�
r2þa2þ2mra2sin2ϑ

ρðr;ϑÞ2
��

1=2
: ð54Þ

This potential can be used to compute redshifts, acceler-
ations, and the relativistic geoid in the Kerr spacetime.
For a → 0, the Schwarzschild result is recovered. Gravi-
tomagnetic effects are included in two terms. One is propor-
tional to aω and the other is proportional to a2ω2. The first
term can change the sign depending on the direction of
rotation, whereas the latter mixes with inertial effects.

IV. MAGNITUDES OF RELATIVISTIC
EFFECTS ON THE GEOID

In this section, we determine and quantify the magni-
tudes of relativistic corrections to the Earth’s geoid at the
leading order. We study a simple quadrupolar Earth model
in the Newtonian theory and its relativistic generalization in
the framework presented above. The best relativistic
generalization of such a model is given by an appropriately
constructed Erez-Rosen spacetime; see Sec. III E 2.
However, leading-order effects are given by the first-order
post-Newtonian approximation of the Erez-Rosen metric,
which is the post-Newtonian metric constructed for a
quadrupolar Newtonian potential (46). This spacetime,
constructed with the help of Eq. (21), will be employed
in the following.
The Earth’s quadrupole moment12 C20 ≡ J2, related to

its flattening, gives the first (and by far the largest)
nontrivial contribution to its gravitational field beyond
the monopole. The quadrupole causes gravity to change
from the equator toward the poles with a sin2α-like
behavior, where α is the geocentric latitude. Hence, we
expect relativistic corrections to (i) induce an overall
spherical correction due to the monopole and (ii) yield

11Note that for this value the Kerr spacetime is actually over-
extreme. However, this is true for any planet or star and horizons/
singularities are of no interest since they are in the interior but the
solution is valid and used for the exterior part only.

12Note that both are positive in our convention, whereas in
geodesy, a different sign convention applies and C20 ≡ −J2
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latitude-dependent corrections about 3 orders of magnitude
smaller since J2=J0 ≈ 10−3 for the Earth.
The methodology of this section is as follows. We use the

Newtonian quadrupolar gravity potential (46) and, there-
upon, construct the post-Newtonian approximation of this
situation to access the first-order relativistic contributions.
Then, we construct the Newtonian geoid, based on the
gravity potential W and the relativistic geoid based on U�.
In either case, we obtain a two-dimensional surface given
by some function x1ðx2Þ, where x1 is a radial coordinate
and x2 is related to the polar angle.
The comparison of both results must be done in a way

that eliminates coordinate ambiguities. We have decided to
use an isometric embedding of the relativistic geoid surface
into the three-dimensional Euclidean space R3. If such an
embedding is possible, it is unique and allows us to
investigate the intrinsic geometry of the relativistic geoid
by applying well-known methods for the analysis of curved
two-dimensional surfaces. The Newtonian geoid generi-
cally “lives” in this Euclidean space and a comparison of
two-dimensional surfaces inR3 is possible, e.g., in terms of
their radial distance in any angular direction. Therefore,
once the relativistic geoid is embedded, we can compare it
to the Newtonian one and determine the difference. Note
that such an embedding is in general only possible by
numerical methods, even though the embedding equations
can be given analytically; see Appendix for details.
We also have to overcome some subtle conventional

issues. In the Newtonian case, the geoid is defined by the
level surface of the gravity potential such that jWj ¼ W0 on
its surface. Nowadays, W0 is an agreed upon constant
related to coordinate time transformations from TCG to
TAI scales; see Ref. [14]. Already in the Newtonian case,
there are conceptional difficulties with properties of the
geoid being a mean sea surface fit and the derived constant
W0 being not at all directly related to the sea surface. Let us,
therefore, assume that some valueW0 is chosen, one way or
another, that defines the Newtonian geoid. In the relativistic
case, we define the geoid by one particular isochronometric
surface such that U�jgeoid ¼ U�

0. Now, we need a clear
prescription of how to choose the value U�

0 and how to
relate it to W0. Hence, some gauge freedom is left in the
choice of the constant. In the following, we consider
different approaches and calculate the differences between
the Newtonian and relativistic geoid in either case.
In approach (I), we choose −U�

0 ≡W0, which may be
obvious regarding the Newtonian limit and is supported by
the results of the previous section, as well as the proper time
on the geoid and the defining constant Lg in the IAU
resolution with its relation to W0.
In approach (II), we choose the value of U� such that

after the isometric embedding into R3 and comparison to
the Newtonian geoid, the difference vanishes in the
equatorial plane and is globally as small as possible.
This means, we use the gauge freedom in the comparison

such that the relativistic geoid is as close as possible to the
Newtonian geoid.
In approach (III), we choose the value of U�

0 such that in
its post-Newtonian expansion W → W0 and U → U0.
Finally, we also consider approach (IV), which is analog

to approach (I) but without embedding the relativistic geoid
into R3. Instead, we identify the global coordinates that are
used for the Newtonian geoid and the relativistic post-
Newtonian metric. This approach allows to judge whether
or not the embedding is really necessary at the leading order
or merely an academic endeavor.

A. Geoid models

The Newtonian gravity potential of a quadrupolar
gravitational field is

WðR;ΘÞ¼−G
�
M
R
þN2P2ðcosΘÞ

R3

�
−
1

2
R2Ω2sin2Θ; ð55Þ

where N2 ¼ J2R2
⊕M⊕. We use spherical coordinates

ðR;Θ;ΦÞ for the R3, and R⊕, M⊕ are the Earth’s radius
and mass, respectively, and Ω its angular velocity. The
geoid as determined by observers on the rotating Earth, i.e.
including centrifugal effects, in this model is the level
surface of W such that

−WðR;ΘÞjgeoid ¼ W0 ¼ 6.263 685 34 × 107 m2 s−2: ð56Þ

For the post-Newtonian approximation of this configu-
ration, we have to use

U�ðr; θÞ ¼ Uðr; θÞ − 1

2
r2Ω2sin2θ þ 1

2

Uðr; θÞ2
c2

¼ Wðr; θÞ þ 1

2

Uðr; θÞ2
c2

: ð57Þ

The relativistic geoid is given by one chosen level surface
of U�ðr; θÞ such that

U�ðr; θÞjgeoid ¼ U�
0: ð58Þ

We choose pseudospherical coordinates ðr; θ;φÞ for the
post-Newtonian spacetime and the flat space coordinates
ðR;Θ;ΦÞ are their 0th order approximations.

B. Geoid comparison approach (I)

Using the comparison method (I), we choose

U�
0 ¼ −W0 ð59Þ

and construct the relativistic geoid for the post-Newtonian
configuration. The result is a two surface described by rðθÞ.
After embedding this surface into R3, we determine the
radial distance, at any polar angle, to the Newtonian geoid,
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which is generically given in R3 as a function RðΘÞ. The
result is shown in Fig. 2. We find the mean difference
between both geoids to be about 2 mm with some small
angular deviations that are 3 orders of magnitude smaller
due to the quadrupolar influence. Hence, we exactly find
what we predicted at the beginning: the relativistic monop-
ole causes a global deviation and the relativistic quadrupole
induces some angular variation.
In a nutshell, the first-order corrections to the Earth’s

geoid due to general relativity are about 2 mm with
latitudinal variations of about 3 μm.

C. Geoid comparison approach (II)

For the second approach, we choose the value U�
0 such

that in the embedding space both geoids coincide in the
equatorial plane. This choice can be easily translated into
the structure of the embedding equations; see Appendix.
However, in general, it is not possible to deduce properties
or parameter values in the spacetime from requirements
which shall be fulfilled after an embedding. First, the
equatorial radius R0 of the Newtonian geoid is calculated

and, thereupon, the solution r0ðR0Þ of gφφðr0; π=2Þ ¼ R2
0 is

used as initial condition for the embedding equations; see
Eq. (A10a). Thus, it is guaranteed that in the equatorial
plane the embedded relativistic geoid has the same radius as
the Newtonian one. In terms of the constant U�

0, this relates
to the choice

U�
0 ¼ −W0 − 0.02 m2 s−2

¼ −6.263 685 34 × 107 m2 s−2 − 0.02 m2 s−2: ð60Þ

Hence, there is a small difference between U�
0 and W0 in

this gauge, which is indeed below the contemporary
accuracy of measurements for W0 but corresponds to the
next significant digit.
The result of this approach is shown in Fig. 3. We see

that the overall modulation is almost completely removed,
the mean value is about 4 μm, and only the latitudinal
variation of about 8 μm remains. By this choice, we have
fitted the relativistic geoid to the Newtonian one in the best
possible way and the influence of the relativistic monopole
was reduced (or corrected for) as good as possible.

FIG. 2. Comparison of the relativistic and Newtonian geoid at leading order for approach (I). We show the geoid radii differences
ΔRðΘÞ ¼ RPNðΘÞ − RNðΘÞ in the embedding space R3 as a function of Θ. The maximal, minimal, and mean differences are indicated.

FIG. 3. Comparison of the relativistic and Newtonian geoid at leading order for approach (II). We show the geoid radii differences
ΔRðΘÞ ¼ RPNðΘÞ − RNðΘÞ in the embedding space R3 as a function of Θ. The maximal, minimal, and mean differences are indicated.
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The remaining difference is mainly due to the relativistic
quadrupole. Hence, the freedom in the choice of gauge and
convention can be used to minimize the differences
between both geoids. Note, however, that for this approach
it is no longer true thatU�

0 ¼ −W0 and the numerical values
that define the surfaces of the relativistic and conventional
geoid, respectively, are different. No obvious a priori
choice for the constant U�

0 can be made and this limits
the geometric realization by measurement stations.

D. Geoid comparison approach (III)

For the third approach, U�
0 is chosen such that

U�
0 ¼ U�jgeoid ¼ U�

pNjW→−W0;U→U0
¼ −W0 þ

U2
0

2c2
; ð61Þ

and the result is shown in Fig. 4. For this choice, the
difference between Newtonian and relativistic geoid in the
embedding space is about 4 mm with latitudinal variation
of 0.02 mm between the poles and the equatorial plane.

The disadvantage of this choice is that the value of U�
0

varies for each post-Newtonian order. Hence, we may
exclude choices like the this from further analysis.

E. Geoid comparison approach (IV)

To emphasize the importance of the embedding, we
compare the relativistic and Newtonian geoid also without
any embedding but for identification of the coordinates.
The result is quite remarkable and shown in Fig. 5. We
clearly see that w.r.t. approach (I), the sign of the difference
changes. As we can infer from Fig. 2 for approach (I), the
radius of the relativistic geoid is globally about 2 mm larger
than the radius of the Newtonian geoid. For approach (IV),
it is vice versa! The “effect” appears due to the mismatch of
the coordinates which is of the order of 4 mm at the
involved distances, such that pN radii are “smaller” than
Newtonian radii. Hence, the embedding is not only a
theorists pedantism but really has an important influence
on the result. It is, however, a mere coincidence that
þ2 mm becomes −2 mm by coordinate and embedding

FIG. 4. Comparison of the relativistic and Newtonian geoid at leading order for approach (III). We show the geoid radii differences
ΔRðΘÞ ¼ RPNðΘÞ − RNðΘÞ in the embedding space R3 as a function of Θ. The maximal, minimal, and mean differences are indicated.

FIG. 5. Comparison of the relativistic and Newtonian geoid at leading order for approach (IV), which is the same as approach (I) but
without embedding. The Newtonian and post-Newtonian coordinates are identified. We show the geoid radii differences ΔRðΘÞ ¼
RPNðΘÞ − RNðΘÞ as a function of Θ. The maximal, minimal, and mean differences are indicated.
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effects. Therefore, statements on the magnitude of “2 mm
difference” between the geoids, as communicated in the
geodetic community, remain correct; but signs do matter.

V. CONCLUSION AND OUTLOOK

We have shown how the definition of a relativistic
gravity potential leads to a definition of the relativistic
geoid in analogy to the Newtonian understanding and
expands the results that were presented in terms of the
time-independent redshift potential in Ref. [12]. Our
framework contains previously published results and gen-
eralizes Newtonian and post-Newtonian notions developed
by other authors. The leading-order difference of 2 mm
between relativistic and conventional geoids might be
detected with clocks and redshift measurements at the
10−19 level in the future. Therefore, clock networks using
transportable optical clocks as well as clock stations and
fiber networks can establish a realization of the relativistic
geoid; see Refs. [4,5,34–39]. Moreover, our geoid defi-
nition can also be realized by acceleration measurements
and the determination of local plumb lines. For the
realization of reference systems, the Global Geodetic
Observing System of the International Association of
Geodesy demands 1 mm as accuracy and 0.1 mm=yr for
its stability [40]. Thus, even today the relativistic geoid
should be adopted in practice to fulfill these requirements
and to be consistent with the relativistic treatment of the
other geodetic methods (space geodetic techniques, refer-
ence frames, Earth rotation, etc.).
In follow-up publications, we will focus on incorporating

gravitomagnetic effects by expanding our results to space-
times that allow to resemble the Earth’s monopole, quadru-
pole, and spin dipole at the same time. Therefore, we need
to overcome the limitation of the Kerr metric, in which the
mass quadrupole is uniquely fixed by the choice of the spin
dipole, and use another class of spacetime models allowing
for the choice of more free parameters. Moreover, building
on the present framework, we will generalize other geodetic
notions such as the normal gravity field, height definitions
for chronometric geodesy and relativistic leveling, and
timescales as well as their relation to the proper time on
the geoid.
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APPENDIX: ISOMETRIC EMBEDDING INTO
EUCLIDEAN SPACE

To investigate and visualize the intrinsic geometry of the
relativistic geoid, which is described by a particular
isochronometric surface, i.e., a level surface of the rela-
tivistic gravity potential U�jgeoid ¼ U�

0 ¼ const, we isomet-
rically embed this surface into Euclidean space R3. If such
an embedding is possible, the embedded surface shows the
intrinsic geometry of the geoid.
In all our axisymmetric models, the relativistic geoid is a

level surface,

U�ðx; yÞjgeoid ¼ U�
0 ¼ const; ðA1Þ

where x and y are the two spatial coordinates, related to a
radius measure and the polar angle, respectively.
For any such two-dimensional surface defined by

Eq. (A1), the following is true everywhere on the surface:

0 ¼ dU� ¼ ∂xU�ðx; yÞdxþ ∂yU�ðx; yÞdy: ðA2Þ

Hence, we have on the geoid surface

dx ¼ −
�∂yU�ðx; yÞ
∂xU�ðx; yÞ

�
dy; ðA3Þ

which yields a relation x ¼ xðyÞ that describes this surface.
On the surface U�ðx; yÞ ¼ U�

0, there is a two-dimen-
sional Riemannian metric defined according to

gð2Þ ¼ ðgxxðx; yÞx0ðyÞ2 þ gyyðx; yÞÞdy2 þ gφφðx; yÞdφ2;

ðA4Þ
where φ is the azimuthal angle related to the axisymmetry
of the spacetime model.
We want to isometrically embed the surface U�ðx; yÞ ¼

U�
0 into Euclidean three-space R3 with cylindrical coor-

dinates ðΛ;φ; ZÞ, where Z is the height, Λ is the radius in
the Z ¼ 0 plane, and φ is the azimuthal angle. The
Riemannian metric in R3 can then be written as

gð3ÞE ¼ dZ2 þ dΛ2 þ Λ2dφ2: ðA5Þ

The two embedding functions ZðyÞ and ΛðyÞ can now be
determined from

½gxxðxðyÞ; yÞx0ðyÞ2 þ gyyðxðyÞ; yÞ�dy2 þ gφφðxðyÞ; yÞdφ2

¼ ðZ0ðyÞ2 þ Λ0ðyÞ2Þdy2 þ Λ2ðyÞdφ2: ðA6Þ

If Eq. (A3) allows an explicit solution for x ¼ xðyÞ, the
result is inserted into (A6). A comparison of coefficients
leads to
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ΛðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφðx; yÞ

q
j
x¼xðyÞ; ðA7aÞ

ZðyÞ ¼ �
Z

y

0

dy

�
gxxðx; yÞ

�∂yU�ðx; yÞ
∂xU�ðx; yÞ

�
2

þ gyyðx; yÞ

−
g0φφðx; yÞ2
4gφφðx; yÞ

�
1=2

x¼xðyÞ
: ðA7bÞ

Here, g0φφ means that xðyÞ is inserted first and then the
derivative w.r.t. y is taken. In general, Eq. (A7b) can only be
integrated numerically.
The solutions of Eqs. (A7a) and (A7b) yield the

cylindrical radius coordinate Λ and the height Z in R3

as functions of y ∈ ½−1; 1�. This corresponds to a polar
angle ϑ ∈ ½0; π�. Using the height and radius functions, a
section of the embedded surface is obtained. Due to the
axisymmetry, the full embedded surface is obtained by a
rotation of this section. For all values of y, for which it is
true that

gxxðx; yÞ
�∂yU�ðx; yÞ
∂xU�ðx; yÞ

�
2

þ gyyðx; yÞ >
g0φφðx; yÞ2
4gφφðx; yÞ

; ðA8Þ

the embedding is possible. If the embedding into R3 is not
possible, different means of visualization and comparison
of the relativistic geoid must be employed.
If Eq. (A3) cannot be solved for x ¼ xðyÞ, we have to use

Eq. (A2), which leads to

x0ðyÞ ¼ dx
dy

¼ −
∂yU�ðx; yÞ
∂xU�ðx; yÞ : ðA9Þ

Together with Eqs. (A7a) and (A7b), the following coupled
system of differential equations must be solved:

x0ðyÞ ¼ −∂yU�ðx; yÞ
∂xU�ðx; yÞ ; ðA10aÞ

ΛðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gφφðxðyÞ; yÞ

q
; ðA10bÞ

Z0ðyÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gxxðxðyÞ; yÞðx0ðyÞÞ2 þ gyyðxðyÞ; yÞ − Λ0ðyÞ2

q
:

ðA10cÞ

The initial conditions can be given in the equatorial plane
(y ¼ 0) such that xð0Þ ¼ x0, Zð0Þ ¼ 0.
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