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The big bang singularity of the expanding-universe Friedmann solution of the Einstein gravitational field
equation can be regularized by the introduction of a degenerate metric and a nonzero length scale b. The
result is a nonsingular bounce of the cosmic scale factor with a contracting prebounce phase and an
expanding postbounce phase. The corresponding maximum values of the curvature and the energy density
occur at the moment of the bounce and are proportional to powers of 1=b. This article presents a detailed
calculation of the dynamics of such a nonsingular bounce. In addition, a comparison is made between this
nonsingular bounce and the bounces of loop quantum cosmology and string cosmology.
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I. INTRODUCTION

The Friedmann solution [1–3] of Einstein’s gravitational
field equation describes an expanding universe, assumed
to be homogeneous and isotropic. The big bang singularity
of the Friedmann solution can be regularized [4] by the
introduction of a degenerate metric with a vanishing
determinant on a three-dimensional submanifold of
spacetime and a nonzero length scale b. The original big
bang singularity [at cosmic time coordinate t ¼ tbb with
vanishing cosmic scale factor aðtbbÞ ¼ 0] is replaced by
a three-dimensional “defect” of spacetime [the defect
occurs at cosmic time coordinate T ¼ TB and has a cosmic
scale factor aðTBÞ ≠ 0, for a new coordinate T that is
defined later].
The interpretation of the degenerate metric in Ref. [4] as

corresponding to a spacetime defect [5,6] is recalled below.
At this moment, we only mention that we consider general
relativity, albeit in an extended version that allows for
degenerate metrics (see the last two paragraphs of Sec. I in
Ref. [4] for further details).
Three follow-up papers [7–9] of the regularized-big-

bang paper [4] discuss certain phenomenological aspects
of the resulting nonsingular bouncing cosmology. See
Ref. [10] for a review of the basic ideas of nonsingular
bouncing cosmology and an extensive list of references.
The calculations of the follow-up papers [7,8], in

particular, use an auxiliary cosmic time coordinate
τ ¼ τðTÞ, for which the reduced field equations are non-
singular and, therefore, directly accessible to numerical
analysis. These reduced field equations are, in fact, ordi-
nary differential equations (ODEs) and may be called the
τ-ODEs. But the auxiliary coordinate τ differs essentially
from the cosmic time coordinate T that enters the metric.

The corresponding reduced field equations in terms of T are
singular ODEs and precisely the singularities in these
T-ODEs force the solution aðTÞ to be nonsingular, with
a nonzero cosmic scale factor aðTBÞ ≠ 0 at the moment of
the cosmic bounce, T ¼ TB.
The goal of the present article is to carefully study these

singular T-ODEs, in order to understand the dynamics of
the time-symmetric nonsingular bounce. The outline is as
follows. In Sec. II, we recall the Ansatz for the metric from
Ref. [4], and discuss an advantage and a disadvantage of
this Ansatz. In Sec. III, we present a new Ansatz for the
metric, which may or may not have a bounce, depending on
the dynamics. In Sec. IV, we obtain analytic and numerical
results for this new metric with appropriate boundary
conditions at the bounce, where the main focus is on
establishing the smooth behavior of physical quantities at
the bounce. In Sec. V, we expand on the subtle issue of
boundary conditions (a calculation with initial conditions is
presented in Appendix A). In Appendix B, we compare our
degenerate-metric bounce with the bounces of loop quan-
tum cosmology and string cosmology.

II. FIRST METRIC ANSATZ

For a modified spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe with cosmic time
coordinate T and comoving spatial Cartesian coordinates
fX1; X2; X3g, a relatively simple Ansatz of a degenerate
metric is given by [4]

ds2jðtype-1Þ ≡ gμνðXÞdXμdXνjðtype-1Þ

¼ −
T2

T2 þ b2
dT2 þ ã2ðTÞδkldXkdXl; ð2:1aÞ

b2 > 0; ð2:1bÞ*frans.klinkhamer@kit.edu
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ãðTÞ ∈ R; ð2:1cÞ

T ∈ð−∞;∞Þ; Xk ∈ ð−∞;∞Þ; ð2:1dÞ

where b > 0 corresponds to the length scale of a spacetime
defect (cf., Refs. [5,6] and references therein). For defi-
niteness, we call this previous metric (2.1a) the “type-1”
metric. The metric from (2.1a) is degenerate, having
det gμν ¼ 0 at T ¼ 0. We remark that the spacetime
resulting from the metric (2.1) is no longer independent
of the choice of foliation [11,12], as the hypersurface T ¼ 0
is singled out. Incidentally, this degeneracy hypersurface
can be shifted to T ¼ TB by replacing the metric compo-
nent g00 in (2.1a) by −ðT − TBÞ2=ððT − TBÞ2 þ b2Þ.
We assume that the matter content is described by a

homogeneous perfect fluid with energy density ρMðTÞ and
pressure PMðTÞ. From the Einstein gravitational field
equation [2] and the metric (2.1a), we then obtain the
dynamic equations for the variables ãðTÞ, ρMðTÞ, and
PMðTÞ. These equations are the energy-conservation equa-
tion of the matter, the equation of state relating PMðTÞ to
ρMðTÞ, the modified first-order spatially flat Friedmann
equation, and the modified second-order spatially flat
Friedmann equation,

ρ0M þ 3
ã0

ã
½ρM þ PM� ¼ 0; ð2:2aÞ

PM ¼ PMðρMÞ; ð2:2bÞ
�
1þ b2

T2

��
ã0

ã

�
2

¼ 8πGN

3
ρM; ð2:2cÞ

�
1þ b2

T2

��
ã00

ã
þ 1

2

�
ã0

ã

�
2
�
−
b2

T3

ã0

ã
¼ −4πGNPM; ð2:2dÞ

where the prime stands for differentiation with respect
to T.
The ODEs (2.2c) and (2.2d) reproduce, in the formal

limit b → 0, the standard Friedmann equations [2]. The
modified Friedmann equations (2.2c) and (2.2d) can, in
fact, be rewritten as the standard Friedmann equations with
an additional effective energy density ρdefect and an addi-
tional effective pressure Pdefect, both proportional to
−b2=ðb2 þ T2Þ. For a bounce solution [4] with finite values
of ρM and PM at the moment of the bounce (T ¼ 0), the
total effective energy density ρtotal ≡ ρM þ ρdefect and the
total effective pressure Ptotal ≡ PM þ Pdefect violate the
Null Energy Condition over a finite time interval IB around
T ¼ 0: ½ρtotal þ Ptotal�T∈IB < 0. We remark also that, if
ã0ðTÞ=ãðTÞ were to vanish at a cosmic time
T ¼ Tstop ≠ 0, this would require a vanishing matter energy
density, ρMðTstopÞ ¼ 0, according to (2.2c).
The advantage of the metric (2.1a) is that it takes the

standard FLRW form,

ds2jðtype-1;τ-coordÞ ¼ −dτ2 þ â2ðτÞδkldXkdXl; ð2:3Þ

if we replace the coordinate T by the coordinate τ, which is
defined as follows:

τðTÞ ¼
�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≥ 0;

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
; for T ≤ 0;

ð2:4Þ

where τ ¼ −b and τ ¼ b correspond to the single
point T ¼ 0 on the cosmic time axis. The coordinate
transformation (2.4) is noninvertible (two different τ values
for the single value T ¼ 0) and is not a diffeomorphism.
This implies that the differential structure of the spacetime
manifold with metric (2.1a) differs from the differential
structure of the spacetime manifold with metric (2.3); see
Ref. [6] for an extensive discussion. For practical calcu-
lations [7–9], the metric (2.3) is to be preferred, as that
metric is relatively simple and the corresponding τ-ODEs
nonsingular.
But, with the different differential structure from (2.1a)

and (2.3), the actual study of the bounce at T ¼ 0 requires
the T-ODEs (2.2). The disadvantage of the metric Ansatz
(2.1a), then, is that it explicitly depends on the coordinate
T, as do the corresponding ODEs (2.2c) and (2.2d). It
would be preferable to have a metric that depends only on
the scale factor and its derivatives. Another desirable
property of this new metric would be that the appearance
of a bounce is not hardwired into the metric Ansatz but that
the bounce occurs dynamically.

III. SECOND METRIC ANSATZ

We now present another metric Ansatz for a modified
spatially flat FLRW universe, with the metric depending
only on the scale factor and its derivatives, apart from two
constants (b and aB). For definiteness, we call this new
metric the “type-2” metric. Specifically, the new metric
reads

ds2jðtype-2Þ ¼ −
½aðTÞ − aB�2

½aðTÞ − aB�2 þ b2½a0ðTÞ=2�2 dT
2

þ a2ðTÞδkldXkdXl; ð3:1aÞ

b2 > 0; ð3:1bÞ

aB > 0; ð3:1cÞ

aðTÞ ∈ R; ð3:1dÞ

T ∈ ð−∞;∞Þ; Xk ∈ ð−∞;∞Þ; ð3:1eÞ

where the prime stands, again, for differentiation with
respect to T. With the metric (3.1), a bounce occurs at
T ¼ TB if
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aðTBÞ ¼ aB; ð3:2aÞ

a0ðTBÞ ¼ 0: ð3:2bÞ

Whether or not the conditions (3.2) are fulfilled depends on
the dynamics and the boundary conditions (see below). An
explicit realization of the bounce behavior is given by

aðTÞ ∼ aB þ c2ðT − TBÞ2; ð3:3Þ

for a nonzero constant c2.
We observe that close to a bounce, with aðTÞ ∼ aB þ

c2T2 for TB ¼ 0 and c2 ≠ 0, the g00 component from (3.1a)
reduces to the expression −T4=ðT4 þ b2T2Þ, which has
essentially the same structure as the g00 component of the
type-1 metric (2.1a). In principle, it is also possible to
consider a metric Ansatz without explicit mention of aB (an
example would be g00 ¼ −ða0Þ2=½ða0Þ2 þ b2ða00Þ2�), but the
Ansatz (3.1a) suffices for the purpose of studying the
bounce dynamics. Note that the type-2 metric Ansatz
(3.1) differs from the type-1 metric Ansatz (2.1) because,
with the respective dynamic equations, the type-2 metric
may or may not have a bounce, whereas the type-1 metric
always has a bounce at T ¼ 0, as long as ρM > 0 (see
Appendix A 2 for a direct comparison of the two metrics).
Just as in Sec. II, we assume that the matter content is

given by a homogeneous perfect fluid. From the Einstein
gravitational field equation [2] and the new metric (3.1a),
we then obtain the dynamic equations for the variables
aðTÞ, ρMðTÞ, and PMðTÞ. These equations are the energy-
conservation equation of the matter, the equation of state of
the matter, the (new) modified first-order spatially flat
Friedmann equation, and the (new) modified second-order
spatially flat Friedmann equation,

ρ0M þ 3
a0

a
½ρM þ PM� ¼ 0; ð3:4aÞ

PM ¼ PMðρMÞ; ð3:4bÞ
�
1þ b2

4

a2

½a − aB�2
�
a0

a

�
2
��

a0

a

�
2

¼ 8πGN

3
ρM; ð3:4cÞ

�
1þ 1

2

b2½a0�2
½a − aB�2

�
a00

a
þ 1

2

�
a0

a

�
2

þ 1

8
b2

a2½aþ aB�
½a − aB�3

�
a0

a

�
4

¼ −4πGNPM: ð3:4dÞ

We have the following remarks:
(1) The ODEs (3.4c) and (3.4d) reproduce, in the formal

limit b → 0, the standard Friedmann equations [2].
(2) Precisely the b2 terms of the ODEs (3.4c)

and (3.4d) contain various powers of the factor
a0ðTÞ=½aðTÞ − aB�, which is singular at T ¼ TB
for aðTÞ from (3.3).

(3) The singular b2 term in (3.4c) allows for a nontrivial
bounce solution at T ¼ TB, with aðTÞ from (3.3) and
ρMðTÞ ∼ r0 þ r2ðT − TBÞ2 for positive aB and r0;
see Sec. IVA for further details.

(4) If a0ðTÞ were to vanish at a cosmic time T ¼ Tstop ≠
TB with aðTstopÞ ≠ 0 and aðTstopÞ ≠ aB, this would
require a vanishing energy density, ρMðTstopÞ ¼ 0,
according to (3.4c).

(5) It can be verified that the second-order ODE (3.4d)
follows from the first-order ODEs (3.4a) and (3.4c);
see the discussion in Sec. 15.1 of Ref. [2] for the case
of the standard Friedmann equations.

(6) The ODEs (3.4a), (3.4c), and (3.4d) are invariant
under the rescaling aðTÞ → ζaðTÞ and aB → ζaB
for ζ ∈ Rnf0g, and also under time reversal
ðT − TBÞ → −ðT − TBÞ if a, ρM, and PM are even
functions of T − TB.

From now on, we assume that the matter content is
described by a homogeneous perfect fluid with a constant
equation-of-state parameter,

WMðTÞ≡ PMðTÞ=ρMðTÞ ¼ wM ¼ constant: ð3:5Þ

Furthermore, we use reduced-Planckian units, with

8πGN ¼ c ¼ ℏ ¼ 1; ð3:6Þ

and take the following model parameters:

b ¼ 1; ð3:7aÞ

wM ¼ 1; ð3:7bÞ

where this particular choice for wM aims at avoiding
instabilities in the prebounce phase (see, e.g., Sec. IV of
Ref. [10] and references therein). In order to compare with
previous results, we choose the following value for the
bounce scale factor in (3.1) and (3.4),

aB ¼ 1; ð3:8aÞ

and take the following value for the bounce time,

TB ¼ 0; ð3:8bÞ

but the value of aB can be arbitrarily rescaled and the value
of TB can be arbitrarily shifted.

IV. BOUNCE SOLUTION WITH BOUNDARY
CONDITIONS AT THE BOUNCE

In this section, we discuss the solution of the ODEs (3.4)
with appropriate boundary conditions at the bounce.
Specifically, we take the following boundary conditions:
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að0Þ ¼ 1; ð4:1aÞ

a0ð0Þ ¼ 0; ð4:1bÞ

ρMð0Þ > 0; ð4:1cÞ

where we have used the values TB ¼ 0 and aB ¼ 1
from (3.8).
In Sec. V, we give a general discussion of the issue

of boundary conditions and, in Appendix A, we obtain
solutions with initial conditions, which may or may not
result in a bounce solution.

A. Analytic results

We start from the analytic solution [2] of (3.4a) for the
case of a constant equation-of-state parameter wM as
defined by (3.5)

ρMðaÞ ¼ r0a−3½1þwM �; ð4:2aÞ

r0 > 0; ð4:2bÞ

where aðTÞ is assumed to be positive and to have boundary
conditions (4.1). The resulting ODEs (3.4c) and (3.4d) near
T ¼ TB ¼ 0 are approximately solved by a truncated
power series,

aðTÞ ¼ 1þ
XN
n¼1

a2nðT=bÞ2n; ð4:3Þ

for appropriate values of the coefficients a2n. With N ¼ 4,
we obtain the following coefficients (taking the positive
root for a2):

a2 ¼
1

2
ffiffiffi
3

p b
ffiffiffiffiffi
r0

p
; ð4:4aÞ

a4 ¼ −
1

72
ffiffiffi
3

p ð6b ffiffiffiffiffi
r0

p þ
ffiffiffi
3

p
b2r0½1þ 3wM�Þ; ð4:4bÞ

a6 ¼
1

25920
b

ffiffiffiffiffi
r0

p ð156
ffiffiffi
3

p
þ 48b

ffiffiffiffiffi
r0

p ½1þ 3wM�
þ

ffiffiffi
3

p
b2r0½31þ 132wM þ 117wM

2�Þ; ð4:4cÞ

a8 ¼ −
1

362880
ffiffiffi
3

p b
ffiffiffiffiffi
r0

p ð1044 − 72
ffiffiffi
3

p
b

ffiffiffiffiffi
r0

p ½1þ 3wM�

þ 9b2r0½29þ 120wM þ 99wM
2�

þ 2
ffiffiffi
3

p
b3r03=2½77þ 405wM þ 621wM

2 þ 297wM
3�Þ;

ð4:4dÞ

where r0 in the expressions (4.4) corresponds to 8πGNρ0
with mass dimension 2, so that b

ffiffiffiffiffi
r0

p
is dimensionless. For

b ¼ 1, wM ¼ 1, and r0 ¼ 1=3, we have the following
numerical values:

fa2; a4; a6; a8gjb¼1;wM¼1;r0¼1=3

≈ f0.166667;−0.0462963; 0.0120885;−0.0022352g;
ð4:5Þ

which suggests an alternating series with a finite radius of
convergence.
Returning to the a2 solution (4.4a), the relevant equation

is the series expansion of the modified first-order spatially
flat Friedmann equation (3.4c), which reads

0 ¼ 4ða2Þ2=b2 − r0=3þ OðT2Þ; ð4:6Þ

for 8πGN ¼ 1 and r0 > 0. As said, we have chosen the
positive root for a2 and postpone further discussion
to Sec. V.
The Ricci curvature scalar RðxÞ≡ gνσðxÞgμρðxÞRμνρσðxÞ

and the Kretschmann curvature scalar KðxÞ≡
RμνρσðxÞRμνρσðxÞ are readily evaluated for the metric
(3.1a). The resulting expressions are functionals of the
Ansatz function aðTÞ and its derivatives. Inserting the
truncated power series (4.3), we obtain

RðTÞ ¼ 1

b2
XN0

n¼0

R2nðT=bÞ2n; ð4:7Þ

KðTÞ ¼ 1

b4
XN00

n¼0

K2nðT=bÞ2n: ð4:8Þ

With the a-coefficients from (4.4), we get

R0 ¼ b2r0ð1 − 3wMÞ; ð4:9aÞ

R2 ¼ −
1

2

ffiffiffi
3

p
b3r03=2ð1 − 2wM − 3wM

2Þ; ð4:9bÞ

R4 ¼
1

24
b3r03=2ð1 − 2wM − 3wM

2Þ
× ð2

ffiffiffi
3

p
þ b

ffiffiffiffiffi
r0

p ½13þ 12wM�Þ; ð4:9cÞ

and

K0 ¼
1

3
b4r02ð5þ 6wM þ 9wM

2Þ; ð4:10aÞ

K2 ¼ −
1ffiffiffi
3

p b5r05=2ð5þ 11wM þ 15wM
2 þ 9wM

3Þ;

ð4:10bÞ
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K4 ¼
1

36
b5r05=2ð5þ 11wM þ 15wM

2 þ 9wM
3Þ

× ð2
ffiffiffi
3

p
þ b

ffiffiffiffiffi
r0

p ½22þ 21wM�Þ: ð4:10cÞ

The perturbative results (4.9) suggest that RðTÞ ¼ 0 for
the case of relativistic matter with wM ¼ 1=3, just as for the
standard FLRW universe [2]. The numerical values of the
coefficients (4.9) and (4.10) for b ¼ 1, wM ¼ 1, and r0 ¼
1=3 are

fR0; R2; R4gjb¼1;wM¼1;r0¼1=3

≈ f−0.666667; 0.666667;−0.574074g; ð4:11aÞ

fK0; K2; K4gjb¼1;wM¼1;r0¼1=3

≈ f0.740741;−1.48148; 2.01646g: ð4:11bÞ

For completeness, we also give the asymptotic solution
for jTj → ∞,

aasympðTÞ ∼ a∞ðT2Þp=2; ð4:12aÞ

ρMasympðTÞ ∼ r∞½aasympðTÞ�−3½1þwM �; ð4:12bÞ

a∞ ¼
�
r∞
3p2

�
p=2

; ð4:12cÞ

p ¼ 2

3

1

1þ wM
; ð4:12dÞ

where the constant r∞ depends indirectly on the constant r0
from (4.2).
In closing, we remark that we have seen that the solution

āðTÞ of the ODEs (3.4) can be expanded perturbatively
around T ¼ TB ¼ 0. The obtained Taylor series is char-
acterized by the numerical value of r0, as the values of TB
and aB can be changed arbitrarily (here, they are taken as
TB ¼ 0 and aB ¼ 1). The asymptotic solution for aðTÞ has
also been found to depend indirectly on r0. Similar results
hold for the solution [4] from the type-1 metric of Sec. II,
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FIG. 1. Solution of the ODEs (3.4a) and (3.4c) for a constant equation-of-state parameter wM from (3.5) and reduced-Planckian units
(3.6). The model parameters are b ¼ 1 and wM ¼ 1. The boundary conditions at T ¼ TB ¼ 0 are að0Þ ¼ aB ¼ 1 and ρMð0Þ ¼ r0 for
r0 ¼ 1=3. The approximate analytic solution is shown over T ∈ ð−ΔT;ΔTÞ and the numerical solution over T ∈ ½−Tmax;−ΔT� ∪
½ΔT; Tmax�, with ΔT ¼ 1=10 and Tmax ¼ 15. Specifically, the approximate analytic solution for aðTÞ is given by (4.3) and (4.4) for
N ¼ 4, while the analytic solution for ρMðTÞ follows from (4.2). The numerical solution is obtained from the ODEs (3.4a) and (3.4c)
with boundary conditions at T ¼ �ΔT from the approximate analytic solution. Shown, on the top row, are the dynamic functions aðTÞ
and ρMðTÞ, together with the corresponding Hubble parameterHðTÞ≡ ½daðTÞ=dT�=aðTÞ. The middle and bottom rows zoom in on the
bounce at T ¼ 0. In the middle panel of the top row, 10ρMðTÞ is scaled by a further factor ð1þ T2Þ, in order to display the asymptotic
behavior ρMðTÞ ∝ 1=T2 as jTj → ∞. Similarly, in the right panel of the top row, HðTÞ is scaled by a factor 3T, in order to display the
asymptotic behavior HðTÞ ∼ ð1=3ÞT−1.
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but, here, we have focused on the more general type-2
metric of Sec. III.

B. Numerical results

We obtain a close approximation of the exact solution
āðTÞ of the ODEs (3.4), for a constant equation-of-state
parameter wM from (3.5) and with boundary conditions
(4.1), by using the truncated power series (4.3) for a small
enough interval around T ¼ TB ¼ 0 and by solving the
ODEs (3.4a) and (3.4c) numerically for T values outside
this central interval. The ODE (3.4c) is singular at T ¼ 0, if
að0Þ ¼ aB ¼ 1, but this value T ¼ 0 lies outside the
intervals used for the numeric calculation. Specifically,
we choose the power-series interval ½−ΔT;ΔT� and trun-
cate the series (4.3) at N ¼ 4. In principle, we must take
ΔT → 0 and N → ∞. We leave a detailed study of the
numerical convergence properties to the future, as well as
an analytic calculation (if at all possible) of the radius of
convergence of the power series corresponding to (4.3). For
the moment, we have just compared the results for different
values of ΔT (specifically, 1=10 or 1=100) and different
values of N (specifically, 4 or 8), and find the results to be
reasonably stable.
For the numerical solution of the ODEs (3.4), we can

focus on the modified first-order Friedmann ODE (3.4c).
The reason is that (3.4a) already has the analytic solution
(4.2a) and that, as mentioned in the fifth remark below

(3.4d), the second-order Friedmann ODE (3.4d) follows
from the first-order ODEs (3.4a) and (3.4c).
As to the numerical solution of the ODE (3.4c), there

are two subtleties. The first subtlety is that the ODE
(3.4c) is not directly accessible to numerical analysis, as
the equation is quadratic in ½a0�2 ≡ S. But we can obtain
analytically the positive root of this quadratic equation
for S. Then, we take the square root of S, with a minus
sign of the resulting expression for a0 in the prebounce
phase and a plus sign in the postbounce phase. The
second subtlety is that we do not numerically solve the
obtained ODEs, which are linear in a0 (with different
signs for the pre- and postbounce phases), but rather
numerically solve the first derivative of these first-order
ODEs. In this way, we obtain a numerical solution with a
reasonably accurate value of a00ðTÞ at T ¼ �ΔT. In fact,
we can check for the accuracy of the obtained numerical
solution anumðTÞ by evaluating the residue of the second-
order ODE (3.4d).
Analytic and numerical results for b ¼ 1, wM ¼ 1, and

r0 ¼ 1=3 are given in Fig. 1. As noted in the last paragraph
of Sec. IVA, the solution is characterized by the numerical
value of r0, for fixed values of the model parameters b and
wM. We give the results for a smaller numerical value of r0
in Fig. 2, where the ρM peak is found to be lower and
somewhat broader than the one in Fig. 1. The correspond-
ing plots for the Ricci curvature scalar RðTÞ and the
Kretschmann curvature scalar KðTÞ are given in Figs. 3
and 4.
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FIG. 2. Same as Fig. 1, but now with boundary condition ρMð0Þ ¼ r0 ¼ 1=6.
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FIG. 4. Ricci curvature scalar RðTÞ and Kretschmann curvature scalar KðTÞ for the solution aðTÞ of Fig. 2. The scaling of −RðTÞ and
KðTÞ in the top-row panels is the same as used in Fig. 3.
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FIG. 3. Ricci curvature scalar RðTÞ and Kretschmann curvature scalar KðTÞ for the solution aðTÞ of Fig. 1. In the middle panel of the
top row, −RðTÞ is scaled by a factor ð1þ T2Þ, in order to display the asymptotic behavior −RðTÞ ∝ 1=T2. Similarly, in the right panel of
the top row, KðTÞ is scaled by a factor ð1þ T4Þ, in order to display the asymptotic behavior KðTÞ ∝ 1=T4.
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The top-right panels in Figs. 1 and 2 show the
asymptotic behavior HðTÞ ∼ ð1=3ÞT−1, which results
from the asymptotic behavior aðTÞ ∝ ðT2Þ1=6, as given
by the analytic solution (4.12). The bottom rows in
Figs. 1 and 2 illustrate the smooth behavior at the bounce
T ¼ TB ¼ 0. The smoothness of the bounce is also
evident from the behavior of the Ricci curvature scalar
RðTÞ and the Kretschmann curvature scalar KðTÞ, as
obtained perturbatively in (4.7) and (4.8) and shown on
the bottom rows of Figs. 3 and 4,

V. DISCUSSION

We have presented, in Sec. III, a new metric Ansatz for a
modified spatially flat FLRW universe. For the case of a
constant equation-of-state parameter wM and with appro-
priate boundary conditions, we have obtained, in Sec. IV,
analytic results in a small interval around the cosmic time
T ¼ TB ¼ 0 of the time-symmetric bounce, together with
numerical results at larger values of jTj for the case of
wM ¼ 1. The solution āðTÞ is regular at T ¼ 0 and appears
to be well behaved for finite values of jTj. The solution
āðTÞ is characterized by the maximum energy density
ρMðTÞ of the matter, which occurs at T ¼ 0. The dimen-
sionless quantity for this maximum energy density is
denoted r0, and the behavior of the analytic and numeric
solutions in Figs. 1 and 2 is controlled by r0 only, for fixed
model parameters b and wM.
As mentioned in Sec. IVA, the behavior of the aðTÞ

power series solution (4.3) near T ¼ TB ¼ 0 has been
chosen to be convex (a2 > 0with aB ¼ 1). In principle, it is
also possible to have an aðTÞ solution near T ¼ TB that is
concave (a2 < 0 with aB ¼ 1), so that there will be cosmic
times T� ¼ TB � ΔTbb with a vanishing scale factor,
aðT�Þ ¼ 0. The different bounces, convex and concave
at T ¼ TB, result from different initial conditions at
Tstart < TB. Taking aðTstartÞ > aB and a0ðTstartÞ < 0 gives
a convex bounce, with a contracting phase for T ∈
½Tstart; TBÞ and an expanding phase for T ∈ ðTB;∞Þ. An
explicit bounce solution from such initial conditions is
presented in Appendix A 1. Solutions with other initial
conditions are obtained in Appendix A 2, which illustrate
the difference between the metrics of Secs. II and III.
Up till now, we have not been specific as regards the

numerical value of the defect length scale b, apart from the
fact that this numerical value should not be too small, so as
to invalidate the approximate applicability of Einstein’s
classical theory of gravity. In Ref. [7], we have obtained a
broad range of numerical b values allowed by experiment.
A hint that the defect length scale b may be close to the
Planck length is obtained in Appendix B by comparing our
degenerate-metric bounce with the bounce of loop quantum
cosmology [13–15] (for completeness, we also compare
with the bounce of string cosmology [16–19]). Moreover,
it is conceptually interesting to compare our classical
degenerate-metric bounce with the quantum bounce

obtained from the de-Broglie-Bohm pilot-wave approach
(see Ref. [20] for a review and, in particular, the discussion
of Sec. 4.2.1 in that reference).
In closing, we remark that we have focused on the

dynamics of a time-symmetric nonsingular bounce, with
equal equation-of-state parameter wM in the prebounce
phase and the postbounce phase. But the metric (3.1a) is
perfectly suited for the case of a nonsingular bounce with
different values of wM before and after the bounce. Such a
time-asymmetric nonsingular bounce may be preferable for
cosmological applications; see Ref. [10] and references
therein. The origin of the time asymmetry may be due to a
fundamental arrow of time [8] but may also be due to
dissipative processes [10], or a combination of both.
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APPENDIX A: SOLUTIONS FROM INITIAL
CONDITIONS

1. Solution with bounce

The nonsingular bounce solution in Sec. IV was obtained
from boundary conditions at the moment of the bounce,
T ¼ TB. Specifically, the boundary conditions of Figs. 1–4
were given at T ¼ TB ¼ 0: að0Þ ¼ aB ¼ 1 and ρMð0Þ ¼ r0
for values r0 ¼ 1=3 or r0 ¼ 1=6. Here, we present a
nonsingular bounce solution obtained from initial boun-
dary conditions at T ¼ Tstart, where the actual value of TB
follows from the solution itself.
Consider the ODEs (3.4a) and (3.4c) for a constant

equation-of-state parameter wM from (3.5) and set

aB ¼ 1: ðA1Þ

Next, choose an arbitrary time

Tstart ∈ R; ðA2Þ

at which the initial conditions are the following:

aðTstartÞ ¼ astart > 1; ðA3aÞ

ρMðTstartÞ ¼ ρM−start > 0; ðA3bÞ

a0ðTstartÞ < 0; ðA3cÞ

where the prime stands for differentiation with respect to T.
If, for a generic value of astart (with astart > 1), the value of
ρM−start is chosen as

ρM−start ¼ r0ðaB=astartÞ3½1þwM �; ðA4Þ
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then, for r0 ¼ 1=3 and wM ¼ 1, the bounce dynamics of
Figs. 1 and 3 is reproduced, but with TB ¼ 0 shifted to a
nonzero value TB > Tstart. Similarly, for r0 ¼ 1=6 and
wM ¼ 1, the bounce dynamics of Figs. 2 and 4 is
reproduced.
The solution from initial conditions (A3) and (A4) at

Tstart ¼ −10 is shown in Fig. 5. The actual value
astart ¼ 2.48312, for given values r0 ¼ 1=3 and wM ¼ 1
in (A4), is chosen so that the resulting value for TB is close
to Tstart þ 15 ≈ 5, which makes the curves of Fig. 5
resemble those of Fig. 1 (with more digits in the numerical
value of astart, the curves of Fig. 5 become essentially
identical to those of Fig. 1 with a shifted T coordinate).
Different values of astart (for the same values of Tstart, r0,
and wM) give different values for TB.

2. Solutions without bounce

We discuss, for the case of a positive cosmological
constant, a particular analytic solution of the ODEs (3.4)

from the type-2 metric, and compare it to the corresponding
analytic solution of the ODEs (2.2) from the type-1 metric.
Even though both analytic solutions use the same type of
initial conditions, their behavior is very different: the first
solution does not have a bounce, whereas the second
one has.
Having a positive cosmological constant Λ corresponds

to setting

ρMðTÞ ¼ −PMðTÞ ¼ Λ ¼ constant > 0; ðA5Þ

which trivially solves (3.4a). The remaining ODE is given
by (3.4c), which reads for aB ¼ 1

�
1þ b2

4

a2

½a − 1�2
�
a0

a

�
2
��

a0

a

�
2

¼ 8πGN

3
Λ: ðA6Þ

Now take the following initial conditions:
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FIG. 5. Solution of the ODEs (3.4a) and (3.4c) for aB ¼ 1 and constant equation-of-state parameter wM from (3.5). The model
parameters are b ¼ 1 and wM ¼ 1. Different from Fig. 1, there are now initial boundary conditions at T ¼ Tstart ¼ −10. Specifically, the
boundary conditions are að−10Þ ¼ 2.48312 and ρMð−10Þ from (A4) for r0 ¼ 1=3 and wM ¼ 1. The numerical solution gives
TB ≈ 5.000. In fact, the numerical prebounce solution is obtained over T ∈ ½−10; 5 − ΔT�, the analytic solution over
T ∈ ð5 − ΔT; 5þ ΔTÞ, and the numerical postbounce solution over T ∈ ½5þ ΔT; 20�, with ΔT ¼ 1=2. The analytic solution for
aðTÞ is given by (4.3) with ðTÞ2n on the right-hand side replaced by ðT − 5Þ2n and coefficients (4.5) for N ¼ 4, while the analytic
solution for ρMðTÞ follows from (4.2). The numerical postbounce solution has boundary conditions að5þ ΔTÞ ¼ að5 − ΔTÞ,
ρMð5þ ΔTÞ ¼ ρMð5 − ΔTÞ, and a0ð5þ ΔTÞ > 0. Shown, on the top row, are the dynamic functions aðTÞ and ρMðTÞ, together with the
corresponding Hubble parameterHðTÞ≡ ½daðTÞ=dT�=aðTÞ. The middle and bottom rows zoom in on the bounce at T ¼ TB ≈ 5.000. In
the middle panel of the top row, 10ρMðTÞ is scaled by a further factor ½1þ ðT − 5Þ2�, in order to display the asymptotic behavior
ρMðTÞ ∝ 1=ðT − 5Þ2 as jT − 5j → ∞. Similarly, in the right panel of the top row,HðTÞ is scaled by a factor 3ðT − 5Þ, in order to display
the asymptotic behavior HðTÞ ∼ ð1=3ÞðT − 5Þ−1.

MORE ON THE REGULARIZED BIG BANG SINGULARITY PHYS. REV. D 101, 064029 (2020)

064029-9



aðTstartÞ < 0; ðA7aÞ

Tstart < 0: ðA7bÞ

Neglecting b, one solution of (A6) with initial conditions
(A7) is simply given by

aðTÞjðb¼0Þ ¼ − exp ½HdST�; ðA8aÞ

HdS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNΛ=3

p
: ðA8bÞ

For small but nonzero b [specifically, 0 < ðbHdSÞ2 ≪ 1],
the solution can be written as

aðTÞ ¼ − exp ½HdSfðTÞT�; ðA9aÞ

with a smooth function fðTÞ that remains close to 1 and has
the following asymptotic behavior:

fðTÞ∼
�
1; for T ≪−b;
ðbHdSÞ−1½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbHdSÞ2

p
− 2�1=2; for T ≫ b:

ðA9bÞ

The solution aðTÞ from (A9) is monotonic and does not
display bounce behavior at any finite value of T.
Incidentally, a bounce solution does occur if, for example,
the initial condition (A7a) is replaced by aðTstartÞ > 1: with
negative a0=a at T ¼ Tstart, the solution has a bounce at
TB > Tstart and qualitatively resembles the solution found
in Appendix A 1, whereas, with positive a0=a at T ¼ Tstart,
the solution has a bounce at TB < Tstart.
Returning to the solution (A9) with initial conditions

(A7), the corresponding solution for the type-1 metric (2.1)
has been discussed in Appendix B of Ref. [4]. With similar
initial conditions, ãðTstartÞ < 0 for Tstart < 0, such a sol-
ution of the ODE (2.2c) with ρM ¼ Λ > 0 is given by

ãðTÞ ¼ − exp ½−HdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
�; ðA10Þ

which displays a nonsingular bounce behavior at T ¼ 0 for
b ≠ 0. Incidentally, a similar bounce solution occurs if the
initial condition ãðTstartÞ > 0 is used: the corresponding
solution is then given by (A10) with a plus sign in front of
the exponential function on the right-hand side. Other
bounce solutions, with

ãðTÞ ¼ ∓ exp
h
HdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ T2

p
− 2HdS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðTstartÞ2

q i
;

ðA11Þ

may be more relevant for cosmology, as ã2ðTÞ → ∞
for jTj → ∞.
The different solutions (A9) and (A10) make clear that

the corresponding metrics (3.1) and (2.1) are essentially

different. For both spacetime metrics, the Cauchy problem
[3] and the foliation dependence or independence [11,12]
deserve further study.

APPENDIX B: COMPARISON WITH LOOP
QUANTUM COSMOLOGY AND

STRING COSMOLOGY

In this appendix, we review the bounce of the cosmic
scale factor obtained from loop quantum cosmology (LQC)
and compare with the bounce obtained from extended
general relativity with the degenerate metric (3.1). For the
record, we also compare with the bounce of string cosmol-
ogy (SC). We set c ¼ 1 and ℏ ¼ 1, but keep GN explicit.
As shown in Appendix B 1 of Ref [13] (and discussed in

later reviews [14,15]), the LQC bounce can be described by
an effective Friedmann equation,�

_a
a

�
2

¼ 8πGN

3
ρ

�
1 −

ρ

ρB

�
; ðB1aÞ

ρB ¼ cBðEPlanckÞ4; ðB1bÞ

EPlanck ≡ 1=
ffiffiffiffiffiffiffi
GN

p
≈ 1.22 × 1019 GeV; ðB1cÞ

lPlanck ≡ 1=EPlanck ≈ 1.62 × 10−35 m; ðB1dÞ

where the overdot stands for the derivative with respect to
the cosmic time coordinate t ∈ R. The dimensionless
constant cB in (B1b) is positive and, most likely, of order
unity. In physical terms [14,15], the value of ρB is set by the
area gapΔ ∼ ðlPlanckÞ2, ρB ∼ 1=Δ2. Let us have a quick look
at two domains of this bouncing cosmology, far away from
the bounce and close to it.
For energy densities ρ ≪ ρB (or cosmic scale factors

a ≫ aB ≡ 1), the effective Friedmann equation (B1) can be
rewritten as

�
1þ 3

8πGN

1

ρB

�
_a
a

�
2
��

_a
a

�
2

∼
8πGN

3
ρ: ðB2Þ

The structure of (B2) is the same as the one of our modified
Friedmann equation (3.4c) with a2=½a − aB�2 ∼ 1. This
allows for the following tentative identification,

b2

4
∼LQC?

3

8πGN

1

ρB
¼ 3

8π

ðEPlanckÞ2
ρB

; ðB3Þ

so that b would be of the order of lPlanck, as long as cB from
(B1b) is of order unity.
For energy densities ρ close to ρB, it is possible to use a

series Ansatz,

aðtÞ ¼ 1þ â2t2 þ…; ðB4aÞ

ρðtÞ ¼ ρB þ r̂2t2 þ…; ðB4bÞ
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with ρB > 0 and r̂2 < 0. Inserting (B4) into (B1a) gives

ðâ2Þ2 ¼ −
2πGN

3
r̂2: ðB5Þ

The quadratic coefficient â2 from (B5) has no direct
dependence on ρB, which is given by fundamental con-
stants according to (B1b). This result differs from what has
been obtained from the degenerate-metric bounce, where
the quadratic coefficient (4.4a) depends on

ffiffiffiffiffi
r0

p
, with r0 ¼

8πGNρB being a free parameter. A further difference is that,
for the case of relativistic matter (P ¼ ρ=3), the Ricci
curvature scalar at the moment of the bounce does not
vanish in the LQC calculation, according to Eq. (5.13) of
Ref. [14], whereas it does vanish in the extended-general-
relativity calculation, according to (4.9a) of Sec. IVA.
The conclusion is that the degenerate metric (3.1) may

give a reasonable approximation of the LQC-bounce
behavior at relatively low energy densities but not of the
LQC-bounce dynamics close to the maximum energy
density. At this moment, it is not clear which of the two
models, extended general relativity with an appropriate
degenerate metric or the effective theory from loop quan-
tum cosmology, best describes the cosmic bounce, assum-
ing such a bounce to be relevant to our Universe.
But another possibility is that the degenerate-metric

bounce results from an entirely new phase [16] of string
theory; see, e.g., Ref. [17] for a further review. For a direct
comparison, we refer to two recent SC calculations [18,19].
The authors of Ref. [19] obtained an explicit non-

perturbative solution of the reduced equations of motion,

assuming certain higher-order coefficients ck, for k ≥ 3,
in the effective one-dimensional action of Ref. [18].
Specifically, the Hubble parameter HEþðtÞ in the Einstein
frame, for spatial dimensionality d ¼ 3, is given by
Eq. (3.24) in Ref. [19] and has the following structure:

HEþðtÞ ∼
t − tB;þ
α0=6þ t2

; ðB6aÞ

tB;þ ∼ −
ffiffiffiffi
α0

p
; ðB6bÞ

where α0 > 0 is the Regge slope related to the inverse of
the string tension and tB;þ the moment of the bounce [the
other solution HE

−ðtÞ is also given by (B6a), but with tB;þ
replaced by tB;− ∼

ffiffiffiffi
α0

p
]. The Hubble parameter HEþðtÞ is

shown in Fig. 4 of Ref. [19] and resembles qualitatively the
Hubble parameter obtained from the degenerate metric
(3.1), as shown by the mid-right panels in Figs. 1 and 2.
Comparing the generic degenerate-metric result HðtÞ ∼

t=ðb2 þ t2Þ from Ref. [4] with (B6a) we have the following
tentative identification:

b2 ∼SC?
1

6
α0; ðB7Þ

which may be of order ðlPlanckÞ2. Still, it needs to be
emphasized that the existing SC calculations (just as the
existing loop-quantum-cosmology calculations) are only
indicative and that a possible string-theory phase repla-
cing the big bang singularity may have highly unusual
properties [16].
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