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We consider a modified Brans-Dicke theory in which, instead of the usual Brans-Dicke parameter, a new
dimensionful parameter appears that modifies the kinetic term of the scalar field coupled to gravity. Solving
the coupled Einstein-Klein-Gordon equations we find new spherically symmetric solutions. Depending on
the choices of the parameters these solutions reduce to the Schwarzschild solution of general relativity, and
they give new wormhole solutions that depend on the new parameter.
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I. INTRODUCTION

Scalar fields play an important role in the general
relativity (GR) on short and large distances. On short
distances they dress the local black hole solutions with
scalar hair and provide wormhole solutions, while on large
distances they describe the early inflationary universe and
also its late-times cosmic evolution. In an attempt to
provide a viable theory of gravity and to cure certain
inconsistencies of GR, scalar-tensor theories were intro-
duced. As is well known, Brans-Dicke (BD) theory [1] is
one of the first scalar-tensor gravity theories that modifies
GR in a viable way and respects Mach’s principle and weak
equivalence principle (WEP). In this theory there is an
effective Newtonian gravitational constant G that is the
inverse of the scalar field, G ∼ 1

ϕ. It is characterized by a
new dimensionless coupling constant ω, large values of
which mean a significant contribution from the tensor part,
while the scalar field contribution is important for small
values. GR is recovered in the limit ω → ∞.
It is interesting to note that BD theory appears in

supergravity models such as in string theory at low energies
or in the Kaluza-Klein theories after a dimensional reduc-
tion process [2]. These theories yield the correct Newtonian
weak-field limit, but care should be taken when one studies
these theories and compares their predictions with GR. In
general, scalar fields, depending on their coupling to
gravity, mediate fifth forces. In the case of BD solar system
measurements of post-Newtonian corrections require that ω
is larger than a few thousands [3]. Therefore in these
theories scalar fields should accommodate a mechanism to
suppress the scalar interaction on small scales. There are
various screening mechanisms to suppress scalar inter-
actions on small scales. One of the basic screening
mechanisms is the Vainshtein mechanism [4] which was

developed for the massive gravity (for an extensive review
on the Vainshtein mechanism in massive gravity, see [5]).
On large scales, ω gets substantially lower values in a

model dependent way [6], from cosmological observations.
On the other side, the gravitational coupling may depend on
the scale [7], having different values at local and at
cosmological scales. In this case, ω can be smaller at
cosmological scales giving deviations from GR, while
agreement with local tests is preserved. Special solutions
on BD cosmology have been given in [8] which are
generalizations of the dust solution first given by the
Brans-Dicke theory. In [9] special radiation solutions for
spatially curved space were found and in [10] vacuum
solutions were given. In [11] the general spatially flat
cosmological solution was obtained in parametric form for
any barotropic perfect fluid. In [12] the general stiff and
radiation solutions for all kinds of spatial curvature are
found. Similar solutions were found in [13]. In [14] exact
solutions were found in the presence of the cosmological
constant. Other works with exact solutions are given in
[15]. In [16] it was argued that the initial singularity in the
BD theory can be resolved. The BD theory is used to solve
some problems of the inflationary scenario [17]. Also a
solution to the “graceful exit” problem of inflation [18] was
first obtained in BD without fine-tuning.
On small scales after the introduction of the theory,

Brans found four families of static spherically symmetric
solutions [19]. For a long time many authors claimed that
these solutions can describe nontrivial black holes different
from those of GR. However, it was proven by Hawking [20]
that all those spherically symmetric black hole solutions are
the same as in GR. This result was further extended to
scalar-tensor theories [21] and to compact objects in the
presence of a cosmological constant [22]. In [23] it was
claimed that black hole solutions in the BD theory were
found violating the WEC. However, in [24] it was shown
that their solutions describe either wormholes or naked
singularities. It was further proved in [25] that the static
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spherically symmetric solutions of BD theory describe
either wormholes or naked singularities. A more extensive
study was performed in [26] where it was shown that the
static and spherically symmetric BD solutions of scalar-
tensor gravity, analyzed in both the Jordan and the Einstein
conformal frames, describe wormholes, naked singularities,
or the Schwarzschild solution. Thus, they do not describe
black hole solutions besides those in GR.
If an electromagnetic field is introduced, then in four

dimensions the local solutions reduce to the Reissner-
Nordström black hole solution with a constant scalar field,
as it was proven in [20] using the WEC. However, in higher
dimensions the vacuum Brans-Dicke-Maxwell theory has
black hole solutions [27]. This is a consequence of the
presence of the electromagnetic field in the scalar field
equation, and in this way it can be considered as a source of
a nontrivial scalar field.
Recently a modification of BD gravity theory was

proposed [28] in which the scalar field, in addition to its
coupling to the metric, is also coupled to matter [29].
This coupling, except for the BD parameter ω, introduces
another parameter in the coupling of the scalar field to
gravity. This coupling is a new scale in the theory and
modifies the matter content of the BD theory; this scale also
appears in the vacuum equations of the modified BD
theory. In [30] the cosmological implications of an
extended BD theory presented in [29] was discussed.
The new mass scale introduced in the theory modifies
the Friedmann equations with field-dependent corrected
kinetic terms. In the general solutions of a radiation
universe it was found that there are branches with complete
removal of the initial singularity, while at the same time a
transient accelerating period can occur within deceleration.
Entropy production is also possible in the early universe. In
the dust era, late-times acceleration has been found numeri-
cally in agreement with the correct behavior of the density
parameters and the dark energy equation of state, while the
gravitational constant has only a slight variation over a
large redshift interval in agreement with observational
bounds.
Motivated by the cosmological results of introducing

another coupling of the scalar field to gravity in the BD
theory, in this work we will investigate what are the
effects of the new coupling parameter on small scales.
As we have already discussed, in BD theory all the static
spherically symmetric solutions of the theory, except the
Schwarzschild solution, describe either wormholes or
naked singularities [31]. To evade this problem one has
to introduce a potential, and in this case nontrivial black
hole solutions can be obtained [23,32]. Therefore, it is
interesting to see whether the introduction of the new
coupling parameter, which does not introduce new extra
matter in the BD theory in the form of a potential and
cannot be absorbed in the redefinition of ω, leads to new
spherically symmetric black hole or wormhole solutions.

For this, after reviewing in Sec. II the BD vacuum
solutions, we solve the Einstein and scalar equations of
this modified BD gravity theory in Sec. III. In this section
we perform a detailed investigation of the solutions. By
varying this new coupling we find two branches of
solutions that describe naked singularities and generate
new wormhole geometries whose behavior depends on the
coupling of the scalar field to matter. We did not find new
black hole solutions, and therefore our solutions are in
accordance with the two previously stated theorems
[20,25]. As is well known, the wormhole solutions violate
the WECs. For this reason we also study the WEC and
find that they are violated. Finally, in Sec. IV are our
conclusions.

II. BRANS-DICKE VACUUM SOLUTIONS

In this section we will review the local solutions of
the BD theory mainly following the work of [27]. In the
Dð≥4Þ dimensions, the action of the vacuum BD theory
is given by

I ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−g

p �
ϕR −

ω

ϕ
gμν∇μϕ∇νϕ

�
: ð2:1Þ

In this Jordan frame version of BD theory, test particles
have constant rest mass and move along the geodesics. That
is, matter fields are coupled to gravity only via the metric.
Varying (2.1) yields the equations of motion,

ϕGμν ≡ ϕ

�
Rμν −

1

2
gμνR

�

¼ ω

ϕ

�
∇μϕ∇νϕ −

1

2
gμνð∇ϕÞ2

�
þ∇μ∇νϕ − gμν∇2ϕ; ð2:2Þ

∇2ϕ ¼ 0; ð2:3Þ

where d ¼ D − 3. Solving (2.2) and (2.3) we consider the
following conformal transformation:

gμν ¼ Ω2ḡμν; ð2:4Þ

with

Ω−ðdþ1Þ ¼ ϕ ð2:5Þ

and

ϕ̄ ¼
ffiffiffiffiffiffi
2a

p Z
ϕ dϕ
ϕ

¼
ffiffiffiffiffiffi
2a

p
lnϕ; a ¼ dþ 2

dþ 1
þ ω: ð2:6Þ

The BD theory (2.1) can be transformed into the Einstein
frame version of BD theory with a minimally coupled
scalar field ðϕ̄Þ
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Ī ¼ 1

16π

Z
dDx

ffiffiffiffiffiffi
−ḡ

p �
R̄ −

1

2
ð∇̄ ϕ̄Þ2

�
; ð2:7Þ

where R̄ and ∇̄ are the scalar curvature and covariant
differentiation in the new metric ḡμν, respectively. We note
the following:

(i) Relation (2.6) implies a > 0 (ω > − dþ2
dþ1

), and one
has ϕ̄ ¼ 0 at spacelike infinity.

(ii) The action under the conformal transformation gets
a simpler form of a minimally coupled scalar field.

(iii) The Brans-Dicke theory (2.1) is equivalent to the
theory (2.7) up to a conformal transformation.
However, note that in the Einstein frame, a test
particle will take the variable rest mass with space-
time and is no longer going to move along the
geodesics. This physical inequivalence can be
understood from the conformal transformation of
the metric (2.4) and (2.5). The conformal trans-
formation depends on the scalar field ϕ which
parametrizes the matter of the theory. Therefore
the physical behavior of the theory can be under-
stood only if the coupling to matter is specified.
Hence, one can argue that the two theories are

equivalent from a mathematical point of view but not
from a physical one.

Varying the action (2.7) we can obtain the equations of
motion that are connected with the equations of motion of
(2.2) and (2.3) through the relation

zðgμν;ϕÞ ¼
�
e
− 2

ðdþ1Þ ffiffiffi2ap ϕ̄
ḡμν; e

1ffiffiffi
2a

p ϕ̄
�
: ð2:8Þ

Introducing isotropic coordinates [33]

ds̄2 ¼ −efdt2 þ e−hðdρ2 þ ρ2dΩ2
dþ1Þ; ð2:9Þ

in the D-dimensional vacuum BD theory, using (2.8), we
can obtain its solution,

ds2 ¼ Ω2ds̄2 ¼
�
ρd þ ρdo
ρd − ρdo

� 2
dþ1

½ðdþ1Þð1−γ2Þ
ad �1=2

ds̄2; ð2:10Þ

ϕ ¼
�
ρd − ρdo
ρd þ ρdo

�½ðdþ1Þð1−γ2Þ
ad �1=2

; ð2:11Þ

where γ is a constant and ds̄2 is given by Eq. (2.9). It is easy
to show that the solution (2.10) is asymptotically flat and
the point ρ ¼ ρo corresponds to a naked singularity still.
This can be found from calculating the scalar curvature of
the solution (2.10) through the relation,

R ¼ Ω−2R̄ − 2ðdþ 2ÞΩ−3ḡμν∇̄μ∇̄νΩ

− ðdþ 2Þðd − 1ÞΩ−4ḡμν∇̄μΩ∇̄νΩ; ð2:12Þ

and show that it diverges at zero areal radius. Again we
observe the following:

(i) When γ ¼ 1, the solution (2.10) is reduced to the
D-dimensional Schwarzschild solution with the con-
stant scalar field (ϕ ¼ 1). In that case, the BD theory
degenerates into the Einstein theory of gravitation.

(ii) The scalar ϕ in the BD theory belongs to the region
ϕ ∈ ð0; 1�. From the action (2.7) we can see that the
equations of motion remain unchanged under the
transformation: ϕ̄ → −ϕ̄. Thus, we can obtain an-
other solution of the vacuum BD theory,

ds2 ¼
�
ρd − ρdo
ρd þ ρdo

� 2
dþ1

½ðdþ1Þð1−γ2Þ
ad �1=2

ds̄2; ð2:13Þ

ϕ ¼
�
ρd þ ρdo
ρd − ρdo

�½ðdþ1Þð1−γ2Þ
ad �1=2

; ð2:14Þ

where ds̄2 is still given by Eq. (2.9). In this case, the
scalar field ϕ takes values in the region ½1;∞Þ. But
the spacetime is still an asymptotically flat region
and the point ρ ¼ ρo is a curvature singularity unless
γ ¼ 1. When γ ¼ 1, the scalar field is a constant and
the solution (2.13) is the D-dimensional Schwarzs-
child solution. We note that ϕ ¼ 0 corresponds to
infinite gravitational coupling while ϕ ¼ ∞ corre-
sponds to zero gravitational coupling, so ϕ should be
allowed to diverge or vanish only at singularities.

The metric (2.10) is actually a Brans Class 1 solution
since if we substitute D ¼ 4, then d ¼ 1 and α ¼ 3þ2ω

2
,

which is related with our λ parameter by 1
α ¼ 1

ωþ3=2 ¼ λ (see
Sec. III). We substitute all these in the line element,
together with the form of ds̄2, and we obtain

ds2 ¼ −
�
1 − ρo=ρ
1þ ρo=ρ

�
αðλ;γÞþ2γ

dt2

þ
�
1 −

ρ2o
ρ2

�
2
�
1þ ρo=ρ
1 − ρo=ρ

�
αðλ;γÞþ2γ

½dρ2 þ ρ2dΩ2�;

ð2:15Þ

which is exactly what we find in (3.66). The requirement
that the scalar field ϕ̄, in the Einstein frame, is real implies
α > 0ðω > − 3

2
inD ¼ 4Þ; hence, only Brans Class I sol-

ution can be obtained in the Jordan frame. However, there
are three other classes of Brans solutions that correspond to
ω < − 3

2
(for a detailed discussion on the Brans solutions

see the review in [26]).
Therefore, again the black hole solution of the vacuum

BD theory is the Schwarzschild solution with a constant
scalar field.
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III. MODIFIED BRANS-DICKE THEORY

We will consider a modified BD theory presented in [28]
and described by the following equations:

Gμ
ν ¼

8π

ϕ
ðTμ

ν þ T μ
νÞ; ð3:1Þ

Tμ
ν ¼

ϕ

2λðνþ 8πϕ2Þ2 f2½ð1þ λÞνþ 4πð2 − 3λÞϕ2�ϕ;μϕ;ν

− ½ð1þ 2λÞνþ 4πð2 − 3λÞϕ2�δμνϕ;ρϕ;ρg

þ ϕ2

νþ 8πϕ2
ðϕ;μ

;ν − δμν□ϕÞ; ð3:2Þ

□ϕ ¼ 4πλT ; ð3:3Þ

T μ
ν;μ ¼

ν

ϕðνþ 8πϕ2Þ T
μ
νϕ;μ; ð3:4Þ

where T μ
ν is the energy momentum tensor of matter (e.g.,

the standard matter radiation in the case of cosmology). We
can see that matter couples directly to the scalar field ϕ.
Since in the action of BD gravity the scalar field is
nonminimally coupled to the curvature, the same mecha-
nism could also lead to a coupling between the scalar and
matter fields, as happens here. Various studies have
analyzed the exchange of energy from ordered motion
by entropy generation due to bulk viscosity. Of course, the
parameters λ and ν should be such that the equivalence
principle is not violated at the ranges that it has been tested.
However, the new parameter ν violates the exact conser-
vation of the matter energy-momentum tensor T μ

ν in (3.4).
Interesting cosmological results were obtained in [29] as
we have already discussed. For ν ¼ 0 the system (3.1)–
(3.4) reduces to the BD equations of motion (with unit
velocity of light)

Gμ
ν ¼

8π

ϕ
ðTμ

ν þ T μ
νÞ; ð3:5Þ

Tμ
ν ¼

2− 3λ

16πλϕ

�
ϕ;μϕ;ν −

1

2
δμνϕ

;ρϕ;ρ

�
þ 1

8π
ðϕ;μ

;ν − δμν□ϕÞ;

ð3:6Þ

□ϕ ¼ 4πλT ; ð3:7Þ

T μ
ν;μ ¼ 0; ð3:8Þ

which is described by the action

SBD ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωBD

ϕ
gμνϕ;μϕ;ν

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð3:9Þ

where Lmðgκλ;ΨÞ is the matter Lagrangian depending on
some extra fields Ψ. The parameter λ ≠ 0 is related to the
standard BD parameter ωBD ¼ 2−3λ

2λ .
As we discussed in the Introduction of this work, we are

interested to see what is the effect of the new coupling ν on
local spherically symmetric solutions of the vacuum BD
theory without extra matter. Therefore we will study the
modified BD theory with T μ

ν ¼ 0. Although the extra
matter vanishes, it leaves an impact on the vacuum
equation (3.1) through the parameter ν, and this is the novel
difference compared to the vacuum BD equation (3.5).
This vacuum theory arises from the action [29]

S ¼ η

2ð8πÞ3=2
Z

d4x
ffiffiffiffiffiffi
−g

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πϕ2j

q
R

−
8π

λ

νþ 4πð2 − 3λÞϕ2

jνþ 8πϕ2j3=2 gμνϕ;μϕ;ν

�
; ð3:10Þ

where η ¼ sgnðϕÞ. It is clear in the above action that the
kinetic term of the scalar field is modified compared to the
original Brans-Dicke theory, and it results in a modified
energy momentum tensor for the scalar field.
In this work, we will consider the modified BD theory

given by the action (3.10) and study spherically symmetric
solutions of this theory. It is useful for the following
analysis of spherically symmetric solutions to transform
the action (3.10) to its canonical form. Following the
discussion in Sec. II, consider the conformal transformation

g̃μν ¼ Ω2ðϕÞgμν; ð3:11Þ

where

Ω ¼
�jνþ 8πϕ2j

8π

�1
4

; ð3:12Þ

together with a field redefinition from the field ϕðxÞ to the
new field σðxÞ defined by

dϕ
dσ

¼
ffiffiffiffiffiffiffiffi
jλj
16π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πϕ2j

q
: ð3:13Þ

The action (3.10) takes the form

S ¼ η

16π

Z
d4x

ffiffiffiffiffiffi
−g̃

p �
R̃ −

1

2
ϵϵλg̃μνσ;μσ;ν

�
; ð3:14Þ

where ϵ ¼ sgnðνþ 8πϕ2Þ and ϵλ ¼ sgnðλÞ. The
Lagrangian (3.14) refers to the Einstein frame where the
gravitational coupling is a true constant and the field σ
behaves as a usual scalar field. In this work we are looking
for black hole and wormhole solutions. The action (3.14)
describes in the Einstein frame the kinetic energy of a scalar
field coupled to gravity. We will look first for spherically
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symmetric black hole solutions in this frame. For this
reason we will assume ϵϵλ > 0 for the scalar field to have a
physically propagating mode. This condition is a necessary
condition in order not to have instabilities in our theory.
However, as we will see in the Jordan frame, we will find
wormhole solutions in which the energy conditions are
violated [34] and ghostlike instabilities appear. Therefore,
this condition does not guarantee the stability of the
theory under perturbations. This behavior is not a surprise
since stable wormholes can be supported only in higher-
derivative theories of the beyond-Horndeski type [35–37], a
class in which our theory (3.10) clearly does not belong.
We assume throughout that ϵϵλ ¼ 1. For ϵ > 0, the

integration of Eq. (3.13) gives

σ ¼
ffiffiffiffiffi
2

jλj

s
ln
			4πϕþ

ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νþ 8πϕ2

q 			; ð3:15Þ

where an additive integration constant σ0 has been
absorbed into σ. Inversely,

ϕ ¼ s
8π

�
e
ffiffiffi
jλj
2

p
σ − 2πνe−

ffiffiffi
jλj
2

p
σ
�
; ð3:16Þ

where s ¼ sgnð4πϕþ ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νþ 8πϕ2

p
Þ ¼ sgnðe

ffiffiffi
jλj
2

p
σþ

2πνe−
ffiffiffi
jλj
2

p
σÞ. The conformal factor Ω in terms of the

new field σ takes the form

Ω ¼ 1ffiffiffiffiffiffi
8π

p
				e

ffiffiffi
jλj
2

p
σ þ 2πνe−

ffiffiffi
jλj
2

p
σ

				
1
2

: ð3:17Þ

For the physically more interesting case with ϕ > 0, the
absolute value in (3.17) disappears.
For ϵ < 0, the integration of Eq. (3.13) gives

σ ¼
ffiffiffiffiffi
2

jλj

s
arcsin

� ffiffiffiffiffiffi
8π

jνj

s
ϕ

�
; ð3:18Þ

where again an additive integration constant σ0 has been

absorbed into σ and it is − π
2
<

ffiffiffiffi
jλj
2

q
σ < π

2
. Inversely,

ϕ ¼
ffiffiffiffiffiffi
jνj
8π

r
sin

� ffiffiffiffiffi
jλj
2

r
σ

�
: ð3:19Þ

The conformal factorΩ in terms of the new field σ takes the
form

Ω ¼
�jνj
8π

�1
4

�
cos

� ffiffiffiffiffi
jλj
2

r
σ

��1
2

: ð3:20Þ

After the solution of the fields g̃μν; σ governed by the
action (3.14) has been derived, the solution for the initial

fields gμν;ϕ is found through Eqs. (3.11), (3.16), and (3.19)
as functions of σ. The action (3.14) defines Einstein gravity
minimally coupled to a scalar field whose equations of
motion are

G̃μν ¼
1

2
σ;μσ;ν −

1

4
g̃μνg̃κλσ;κσ;λ; ð3:21Þ

□̃σ ¼ 0: ð3:22Þ

The solution of this system of a minimally coupled scalar
field to gravity, assuming spherical symmetry, has been
found in [33]. In the Einstein frame, we consider a static
spherically symmetric line element in isotropic coordinates

ds̃2 ¼ −efdt2 þ e−h½dρ2 þ ρ2ðdθ2 þ sin2 θdφ2Þ�; ð3:23Þ

where f and h are functions of the radial coordinate
ρ (we keep the symbol r for the radius in the standard
coordinates). Because of the symmetry it is also σðρÞ.
The solution of the system (3.21) and (3.22) is the
following [33]:

σ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q
ln
ρ − ρo
ρþ ρo

; ð3:24Þ

ef ¼
�
ρ − ρo
ρþ ρo

�
2γ

; ð3:25Þ

e−h ¼
�
1 −

ρ2o
ρ2

�
2
�
ρþ ρo
ρ − ρo

�
2γ

; ð3:26Þ

where ρo > 0; γ are integration constants. The reason we
restrict ρo in this range of values will become clear in the
next sections, where the limit to the Schwarzschild solution
will be considered.
Let us express the quantity Ω as a function of ρ through

Eq. (3.24). For ϵ > 0 it is

Ω¼ 1ffiffiffiffiffiffi
8π

p
				
�
ρ− ρo
ρþ ρo

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1−γ2Þ

p
þ 2πν

�
ρþ ρo
ρ− ρo

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1−γ2Þ

p 				
1
2

;

ð3:27Þ

while for ϵ < 0,

Ω ¼
�jνj
8π

�1
4

�
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

q
ln
ρ − ρo
ρþ ρo

��1
2

: ð3:28Þ

Note that in the limit ρ → ρo, it is Ω → ∞ for ϵ > 0, while
Ω remains finite for ϵ < 0.
Going back to the original frame we have in the isotropic

coordinates

ds2 ¼ −Ω−2efdt2 þ Ω−2e−h½dρ2 þ ρ2ðdθ2 þ sin2 θdφ2Þ�:
ð3:29Þ
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The metric in the standard coordinates is obtained setting

r ¼ ρΩ−1e−
h
2; ð3:30Þ

and then

ds2 ¼ −Ω−2efdt2 þ r2

ρ2
dr2

ðdrdρÞ2
þ r2ðdθ2 þ sin2 θdφ2Þ:

ð3:31Þ

Let us now take a closer look at the behavior of this metric
for both branches.

A. Spherically symmetric solutions
in the Jordan frame

We consider the line element in the Jordan frame

ds2 ¼ −Ω−2efdt2 þΩ−2e−hðdρ2 þ ρ2dΩ2Þ; ð3:32Þ

in isotropic coordinates ðt; ρ; θ;ϕÞ, where dΩ2 ¼ dθ2 þ
sin2 θdϕ2 is the line element of the unit 2-sphere.
The exponentials are given by (3.25) and (3.26) and the
conformal factors by (3.27) and (3.28) for ϵ > 0 and ϵ < 0,
respectively. It must be ρ > ρo > 0 and 0 ≤ γ2 ≤ 1. The
λ ≠ 0 parameter is related to the standard BD parameter by
λ ¼ 1

ωþ3=2. Hence in our model, λ and ν are parameters of
the theory and ρo and γ are the parameters of this specific
family of solutions.

B. Branch ϵ < 0

As previously stated, we require ϵ < 0 and ϵλ < 0 to
avoid ghost solutions of the field σ. That is,

ϵ ¼ sgnðνþ 8πϕ2Þ < 0;

ϵλ ¼ sgnðλÞ < 0:

Substituting (3.24) into (3.19) and using the preceding
inequalities we can find that when ν < 0 and ρ > ρo

eKþ1
eK−1,

where K ¼ π

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1−γ2Þ

p , the relation ϵ < 0 is always sat-

isfied. Basically, this is the range of ρ such that

− π
2
<

ffiffiffiffiffiffiffi
jλj
2
σ

q
< π

2
. Therefore, in the general case, we will

only consider such values of ρ in the following analysis.
Moreover, the condition ϵλ < 0 is the equivalent
to ω < −3=2.

1. Scalar field

The Brans-Dicke scalar field is given by the relation

ϕ ¼
ffiffiffiffiffiffi
jνj
8π

r
sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

q
ln
ρ − ρo
ρþ ρo

�
: ð3:33Þ

Note that ϕ becomes constant when γ ¼ �1, and the theory
reduces to GR. Moreover, the scalar field vanishes in the
limits ρ → ∞ or λ → 0 (i.e., ω → ∞), which means the
effective gravitational constant diverges.

2. Metric components

The metric components in isotropic coordinates are
given by

gtt ¼ −
�
8π

jνj
�1

2

sec

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

q
ln
ρ − ρo
ρþ ρo

��
ρ − ρo
ρþ ρo

�
2γ

;

gρρ ¼
�
8π

jνj
�1

2

sec

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

q
ln
ρ − ρo
ρþ ρo

��
1 −

ρ2o
ρ2

�
2

×

�
1þ ρo=ρ
1 − ρo=ρ

�
2γ

:

The appearance of the secant function prevents gtt and gρρ
from vanishing; however, it causes divergences at the points
that satisfy the equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

p
ln ρ−ρo

ρþρo
¼ − π

2
, i.e.,

ρ ¼ ρo
eKþ1
eK−1, if γ ≠ �1.

It is rather easy to check the asymptotic behavior of our
metric. A straightforward calculation gives

lim
ρ→∞

gtt ¼ −

ffiffiffiffiffiffi
8π

jνj

s
; lim

p→∞
gρρ ¼

ffiffiffiffiffiffi
8π

jνj

s
: ð3:34Þ

The fact that ν is a parameter of a theory and not a dynamic
variable, means that we can absorb the above factors in the
line element by redefining dt and dρ. Thus, in this case the
line element (3.32) with Ω given by (3.28), describes an
asymptotically flat spacetime. Moreover, note that when
ν ¼ 0 the line element diverges and the solution does not
produce the corresponding solutions of BD. This is not
surprising since setting ν ¼ 0 automatically corresponds to
ϵ ¼ sgnð8πϕ2Þ > 0, and that is why only the branch ϵ > 0
has a correct limit to Brans-Dicke.
Let us now consider two particular cases.
If γ ¼ 1, then

gtt ¼ −
�
8π

jνj
�1

2

�
ρ − ρo
ρþ ρo

�
2

; ð3:35Þ

gρρ ¼
�
8π

jνj
�1

2

�
1þ ρo

ρ

�
4

: ð3:36Þ

Now the range ρo < ρ < ρo
eKþ1
eK−1 is physically meaningful.

Note that gtt !ρ→ρo
0while it remains negative for ρ ≠ ρo. The

BD scalar becomes constant for γ ¼ 1, and as can be seen
from the forms of gtt and gρρ, the solution reduces to the
standard Schwarzschild metric in isotropic coordinates,
with mass M ¼ 2ρo. In the case γ ¼ −1 one can find that
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gtt ¼ −
�
8π

jνj
�1

2

�
ρþ ρo
ρ − ρo

�
2

!ρ→ρo −∞ ð3:37Þ

and

gρρ ¼
�
8π

jνj
�1

2

�
1 −

ρo
ρ

�
4

!ρ→ρo
0: ð3:38Þ

The scalar field is again constant; thus the solution
corresponds to Schwarzschild spacetime with a negative
mass M ¼ −2ρo.

3. Areal radius and Ricci scalar

Now we wish to analyze the behavior of the areal radius
since it can give us extra information about the geometry

and also help us to deduce which ranges of the spatial
coordinate ρ are physically meaningful. Basically, what we
call areal radius is just the radial coordinate of the spherical
(Schwarschild) coordinates and that is why we are going to
denote it by r. On the other hand, the study of scalar
quantities helps us to detect real spacetime singularities
since they do not depend on our choice of coordinates.
They are invariants, and thus, if we manage to find a point
where a scalar curvature diverges, we know that it will
correspond to a true spacetime singularity.
The areal radius is read off the line element (3.29)

r ¼ ρΩ−1e−
h
2;

and in this case it is

r ¼ ρΩ−1e
h
2 ¼ Ω−1 1

ρ

ðρþ ρoÞγþ1

ðρ − ρoÞγ−1

¼
�jνj
8π

�
−1=4

sec
1
2

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�
1

ρ
ðρþ ρoÞ1þγðρ − ρoÞ1−γ; ð3:39Þ

while its derivative is given by

dr
dρ

¼
ffiffiffiffiffiffi
2π

jνj
4

s
1

p2

�
ρþ ρo
ρ − ρo

�
γ
� ffiffiffi

2
p

ðρ2 þ ρ2o − 2γρρoÞ cos
�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�

þ
ffiffiffi
2

p
αðλ; γÞρρo sin

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

��
sec

3
2

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�
: ð3:40Þ

Furthermore, the Ricci scalar is given by

R ¼
ffiffiffiffiffiffi
jνj
2π

r
ð1 − γ2Þρ4ρ2o

ðρ − ρoÞ2ðγ−2Þ
ðρþ ρoÞ2ðγþ2Þ sec

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�

×


4cos2

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�
þ 3jλj

�
cos
�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�
− 5

��
: ð3:41Þ

Note that all of these quantities as well as the metric
components are proportional to sec ðαðλ; γÞ ln ρ−ρo

ρþρo
Þ which

forces them to diverge near the point ρ ¼ ρo
eKþ1
eK−1, if

γ ≠ �1. Here a few additional points should be stressed.
If γ ¼ 1, then

r ¼
�
8π

jνj
�

1=4 ðρþ ρoÞ2
ρ

; ð3:42Þ

dr
dρ

¼
�
8π

jνj
�

1=4
�
1 −

ρ2o
ρ2

�
; ð3:43Þ

and if γ ¼ −1,

r ¼
�
8π

jνj
�

1=4 ðρ − ρoÞ2
ρ

; ð3:44Þ

dr
dρ

¼
�
8π

jνj
�

1=4
�
1 −

ρ2o
ρ2

�
; ð3:45Þ

which means that for these two particular cases, the areal
radius decreases for 0 < ρ < ρo, has an absolute mini-
mum at ρ ¼ ρo [whose value is r ¼ ð8πjνjÞ1=44ρo > 0 if

γ ¼ 1, and r ¼ 0 if γ ¼ −1], and increases for ρ > ρo.
Thus, for γ ¼ −1 the range 0 < ρ < ρo is unphysical.
Moreover, notice that r → þ∞ in the limits ρ → 0 and
ρ → ∞, for both cases γ ¼ �1. Therefore the region near
ρ → 0 corresponds to a second asymptotically flat region
of spacetime.
For these two particular values of γ we know that the

scalar field becomes trivial and the solution describes a
Schwarzschild spacetime.
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If γ ≠ �1, the areal radius approaches infinity if ρ → ∞
or ρ → ρo

eKþ1
eK−1 where K ¼ παðλ;γÞ

2
and has a point of

minimum value that satisfies the equation

dr
dρ

¼ 0 → −
1

αðλ; γÞ
�
ρo
ρ
þ ρ

ρo
− 2γ

�

¼ tan

�
αðλ; γÞ ln ρ − ρo

ρþ ρo

�
: ð3:46Þ

Since r goes to infinity if ρ → ∞ or ρ ¼ ρo
eKþ1
eK−1 ≥ ρo, the

range 0 ≤ ρ ≤ ρo
eKþ1
eK−1 is unphysical. By taking a closer

look at (3.39) it is evident that rðρÞ is always positive in the
range ρ > ρo

eKþ1
eK−1. Such a behavior indicates a wormhole

structure. To justify this last statement let us represent
(3.32) in the Morris-Thorne form [38]

ds2 ¼ −e−2ΦðrÞdt2 þ dr2

1 − bðrÞ=rþ r2ðdθ2 þ sin2 θdϕ2Þ:

ð3:47Þ

Following [38,39], certain conditions have to be imposed in
order for a line element to be considered as a wormhole
spacetime, namely
(1) bðrÞ

r ≤ 1 for every ½rth;þ∞Þ, where rth is the radius
of the throat. This condition ensures that the pro-
per radial distance defined by lðrÞ ¼ � R rrth dr

1−bðrÞ
r

is

finite everywhere in spacetime. Note that in the

coordinates ðt; l; θ;ϕÞ the line element (3.47) can be
written as

ds2 ¼ −e2ΦðlÞdt2 þ dl2 þ r2ðlÞðdθ2 þ sin2 θdϕÞ:

In this case the throat radius would be given
by rth ¼ minfrðlÞg.

(2) bðrthÞ
rth

¼ 1 at the throat. This relation comes from
requiring the throat to be a stationary point of rðlÞ.
Equivalently, one may arrive at this equation by
demanding the embedded surface of the wormhole
to be vertical at the throat.

(3) b0ðrÞ < bðrÞ
r which reduces to b0ðrthÞ < 1 at the

throat. This is known as the flare-out condition
since it guarantees rth to be a minimum and not
any other stationary point.

Confronting the two metrics we directly see that the
radial coordinate is given by the already known relation
(3.30). The redshift and shape functions are, respectively,
given by

ΦðrÞ ¼ 1

2
ðln ef þ lnΩ−2Þ; ð3:48Þ

bðrÞ ¼ r

�
1 −

1

Ω−2e−h

�
dr
dρ

�
2
�
; ð3:49Þ

or in terms of the coordinates

ΦðrÞ ¼ 1

4
ln

�
8π

jνj
�
þ 1

2



ln

�
ρðrÞ − ρo
ρðrÞ þ ρo

�
2γ

− ln

�
cos

�
αðλ; γÞ ln ρðrÞ − ρo

ρðrÞ þ ρo

���
; ð3:50Þ

bðrÞ
r

¼ 1 −

ρðrÞ2 þ ρ2o − 2γρðrÞρo þ ρðrÞρoαðλ; γÞ tan ðαðλ; γÞ ln ρðrÞ−ρo

ρðrÞþρo
Þffiffiffi

2
p ðρðrÞ2 − ρ2oÞ

�
2

: ð3:51Þ

All the aforementioned conditions are verified in the range
½rth;þ∞Þ. The throat condition bðrthÞ

rth
¼ 1 has the same roots

with (3.46); i.e., it is satisfied when r reaches its minimum
value. Substituting these roots back in r, one can determine
the area of this spatially finite “bridge” which is given by
AðρÞ ¼ 4πrðρÞ2 [39]. Moreover, since from (3.39) we
observe that r ∝ jνj−1=4, then we conclude for the size of
the bridge that

AðρÞ ∝ jνj−1=2: ð3:52Þ

The Ricci scalar is finite at the throat, and hence, the
solution indeed describes a geometrically traversable
wormhole. On the other hand, it diverges as one approaches
the second asymptotic spatial infinity ρ ¼ ρo

eKþ1
eK−1 (r → ∞)

associated with our wormhole. Thus the region near ρ ¼
ρo

eKþ1
eK−1 is asymptotically large in the sense that the proper

area of a circle at radius ρ, AðρÞ ¼ 4πrðρÞ2, goes to infinity
as one approaches that region but not asymptotically flat,
making the wormhole asymmetric under the interchange of
the two asymptotic regions. This feature is also exhibited in
the Brans Class I solution for a specific range of its
parameters (see [26,40] for more details). Also, notice that
even though it is not evident from the form of (3.51), the
parameter ν determines the behavior of bðrÞ as it is hidden
inside ρðrÞ, the inverse of (3.39). This behavior is depicted
in Fig. 1.
In [38] the authors proved that every wormhole, by

definition, must violate the null energy condition (NEC) if
one assumes that a perfect fluid generates the wormhole
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spacetime. This is guaranteed by the flaring-out condition
b0ðrÞ < bðrÞ

r . By going in a proper reference frame, i.e., a
frame of a static observer with respect to ðr; θ;ϕÞ coor-
dinates, one can express the energy density ϱ and radial
pressure pr with respect to the isotropic radius by using the
known relations [38]

ϱ ¼ 1

r2
db
dρ

�
dr
dρ

�
−1
; ð3:53Þ

pr ¼
2

r

�
1 −

b
r

�
dΦ
dρ

�
dr
dρ

�
−1

−
b3

r
: ð3:54Þ

Their explicit forms are given in Appendix and, as Fig. 2
indicates, for general values of the parameters (i.e., for
γ ≠ �1; λ ≠ 0, and ν ≠ 0) the energy density becomes
negative close to the throat. Thus, the WEC is also violated.

C. Branch ϵ > 0

We now require ϵ > 0 and ϵλ > 0 to avoid ghost
solutions of the field σ. That is,

ϵ ¼ sgnðνþ 8πϕ2Þ > 0;

ϵλ ¼ sgnðλÞ > 0:

Following the same procedure as before, we substitute
(3.24) into (3.16) and solve the first inequality, i.e.,
ν > −8πϕ2. This leads to

ν

�
1 − 4π þ 4π2ν

�
ρþ ρo
ρ − ρo

�
2αðλ;γÞ�

> −
�
ρ − ρo
ρþ ρo

�
2αðλ;γÞ

;

ð3:55Þ

where we have denoted αðλ; γÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

p
for brev-

ity. It can be seen that 0 ≤ αðλ; γÞ ≤ ffiffiffiffiffi
2λ

p
. Numerically it is

found that the last relation holds for every ρ > ρo and puts
no further bounds on the values of ν. Furthermore, the
condition ϵλ > 0 corresponds to ω > −3=2.

1. Scalar field

In this case the Brans-Dicke scalar field takes the form

ϕ ¼ s
8π

				
�
1 − ρo=ρ
1þ ρo=ρ

�
αðλ;γÞ

− 2πν

�
1þ ρo=ρ
1 − ρo=ρ

�
αðλ;γÞ				;

ð3:56Þ

s ¼ sgn
�
4πϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðνþ 8πϕ2Þ

q �
; ð3:57Þ

for which we observe the following:
(i) The limit λ → 0 (i.e., ω → ∞) corresponds

to ϕ → const.
(ii) Additionally, for γ ¼ �1 the scalar field also be-

comes trivial.
(iii) When γ ≠ �1 and ν ≠ 0, then ϕ diverges in the limit

ρ → ρo; thus, the effective gravitational constant
vanishes.

(iv) In the limit ν → 0 the scalar field yields

ϕ ¼ s
8π

				
�
1 − ρo=ρ
1þ ρo=ρ

�
αðλ;γÞ				; ð3:58Þ

s ¼ sgnðϕÞ: ð3:59Þ

FIG. 1. Plot of gtt (orange dashed line), gρρ (blue dashed line),
areal radius r (green solid line), dr

dρ (red dash-dotted line), and
Ricci scalar (purple solid line) vs the isotropic radius with
parameter values ρo ¼ 1; γ ¼ 0.2; λ ¼ −1; ν ¼ 3. All quantities
diverge at the point ρ ¼ ρo

eKþ1
eK−1 that, as can be seen, corresponds

to r → ∞. The areal radius (green line) has a point of minimum
value (vanishing of the red curve) at which gtt ≠ 0 and gρρ;R are
finite. This point connects the two asymptotically flat regions at
ρ → ∞ and ρ → ρo

eKþ1
eK−1. The scalar field remains finite for every

ρ > ρo
eKþ1
eK−1 while it vanishes as ρ → ∞.

FIG. 2. Plot of energy density ϱ (blue solid curve) and the
derivative of rðρÞ with respect to the isotropic radius ρ for
ρo ¼ 1; γ ¼ −0.2; λ ¼ −2; ν ¼ 3. The energy density becomes
negative as one approaches the wormhole throat (vanishing of dr

dρ)
indicating the presence of “exotic” matter and the violation of
the WEC.
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2. Metric components

The metric components are given by

gtt ¼ −8π
				 ðρ2 − ρ2oÞαðλ;γÞ
ðρ − ρoÞ2αðλ;γÞ þ 2πνðρþ ρoÞ2αðλ;γÞ

				
×

�
1 − ρo=ρ
1þ ρo=ρ

�
2γ

; ð3:60Þ

gρρ ¼ 8π

				 ðρ2 − ρ2oÞαðλ;γÞ
ðρ − ρoÞ2αðλ;γÞ þ 2πνðρþ ρoÞ2αðλ;γÞ

				
×

�
1 −

ρ2o
ρ2

�
2
�
1þ ρo=ρ
1 − ρo=ρ

�
2γ

; ð3:61Þ

and we calculate

lim
ρ→∞

gtt ¼ −
8π

j2πνþ 1j ; lim
ρ→∞

gρρ ¼
8π

j2πνþ 1j : ð3:62Þ

Again, the asymptotic behavior of gtt; gρρ depends only
on the parameter ν, which means spacetime becomes
Minkowski in the large distance limit. We note the
following.
In the limit λ → 0ðω → ∞Þ the metric takes the form

gtt ¼ −
8π

j1þ 2πνj
�
1 − ρo=ρ
1þ ρo=ρ

�
2γ

;

gρρ ¼
8π

j1þ 2πνj
�
1 −

ρ2o
ρ2

�
2
�
1þ ρo=ρ
1 − ρo=ρ

�
2γ

: ð3:63Þ

This is the solution (3.24)–(3.26) with the introduction of a
new scale, supported by the new parameter ν.
As ρ → ρo, gρρ vanishes except when γ ¼ 1 for which it

blows up.

If − 1 ≤ γ ≤ −
ffiffiffiffiffiffiffiffi
jλj

jλjþ2

q
, the temporal component diverges

at ρo, whereas if −
ffiffiffiffiffiffiffiffi
jλj

jλjþ2

q
≤ γ ≤ 1, it is gtt !ρ→ρo

0.

If γ ¼ 1, then

gtt ¼ −
8π

j1þ 2πνj
�
1 − ρo=ρ
1þ ρo=ρ

�
2

;

gρρ ¼
8π

j1þ 2πνj
�
1þ ρo

ρ

�
4

; ð3:64Þ

while the Brans-Dicke scalar becomes constant and the
solution reduces to the Schwarzschild solution with
M ¼ 2ρo. On the other hand, when γ ¼ −1, one directly
sees that

gtt ¼ −
8π

j1þ 2πνj
�
1þ ρo=ρ
1 − ρo=ρ

�
2

;

gρρ ¼
8π

j1þ 2πνj
�
1 −

ρo
ρ

�
4

; ð3:65Þ

which corresponds again to the Schwarzschild solution
with negative mass M ¼ −2ρo. Therefore ρo can be con-
sidered as the mass parameter of the solution. Conse-
quently, we will consider only positive values of ρo since,
even in the case γ ¼ −1, we can recover a positive mass by
taking −ρo to be the mass parameter instead of just ρo.
As we consider the limit to Brans-Dicke ν → 0, the

metric reads

gtt ¼ −8π
�
1 − ρo=ρ
1þ ρo=ρ

�
2γ−αðλ;γÞ

;

gρρ ¼ 8π

�
1 −

ρ2o
ρ2

�
2
�
1þ ρo=ρ
1 − ρo=ρ

�
αðλ;γÞþ2γ

; ð3:66Þ

and we notice that 2γ − αðλ; γÞ > 0 implies
ffiffiffiffiffiffiffiffi
jλj

2þjλj
q

< γ ≤

1 → gtt !ρ→ρo
0, whereas 2γ − αðλ; γÞ < 0 gives −1 ≤ γ <ffiffiffiffiffiffiffiffi

jλj
2þjλj

q
→ gtt !ρ→ρo∞. For the radial component one can

calculate that αðλ; γÞ þ 2ðγ − 1Þ > 0 leads to −1 ≤ γ <
2−jλj
2þjλj and consequently gρρ !ρ→ρo

0, while in the range 2−jλj
2þjλj <

γ < 1 we obtain αðλ; γÞ þ 2ðγ − 1Þ > 0 and it is gρρ !ρ→ρo∞.
More importantly, solution (3.66) can be identified as

Brans Class I solution

ds2ðIÞ ¼ −
�
1 − B=ρ
1þ B=ρ

�
2=λI

dt2 þ
�
1þ B

ρ

�
4

×

�
1 − B=ρ
1þ B=ρ

�2ðλI−C−1Þ
λI ðdρ2 þ ρ2dΩ2

ð2ÞÞ; ð3:67Þ

ϕI ¼ ϕ0

�
1 − B=ρ
1þ B=ρ

�
C=λI

; ð3:68Þ

λ2I ¼ ðCþ 1Þ2 − C

�
C −

ωC
2

�
; ð3:69Þ

if we make the substitutions

2γ − αðλ; γÞ ¼ 2

λI
; 2γ þ αðλ; γÞ ¼ 2

�
Cþ 1

λI

�
; B ¼ ρo:

ð3:70Þ

The above relations yield

γ ¼ Cþ 2

2λI
; αðλ; γÞ ¼ C

λI
: ð3:71Þ

Thus, just as ðB;CÞ [or ðB; λIÞ] are the two independent
parameters of the Brans Class I solution, in our case they
are ðρo; γÞ. The Schwarzschild solution is obtained by
setting C ¼ 0, which forces λI � 1. These values corre-
spond to γ ¼ �1 in our solution, which indeed yields the
Schwarzschild solution as we saw earlier.
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3. Areal radius and Ricci scalar

By substituting the correspondingΩ, the areal radius and
its derivative take the form

r ¼
ffiffiffiffiffiffi
8π

p

ρ

				 ðρ − ρoÞαðλ;γÞ−2ðγ−1Þ · ðρþ ρoÞαðλ;γÞþ2ðγþ1Þ

ðρ − ρoÞ2αðλ;γÞ þ 2πνðρþ ρoÞ2αðλ;γÞ
				1=2;
ð3:72Þ

dr
dρ

¼
�
ρþ ρo
ρ − ρo

�
γ 1

ρ2Ω
·

(
ðρ2 þ ρ2o − 2ρρoγÞ − ρρoαðλ; γÞ

×

"ðρ−ρoρþρo
Þ2αðλ;γÞ − 2πν

ðρ−ρoρþρo
Þ2αðλ;γÞ þ 2πν

#)
; ð3:73Þ

while the Ricci scalar is given by

R ¼ ðγ2 − 1Þρ4ρ2o
ðρ − ρoÞ2ðγ−2Þ
ðρþ ρoÞ2ðγþ2Þ

×
ð3jλj − 2Þ½ðρ−ρoρþρo

Þ2αðλ;γÞ þ 4π2ν2ðρþρo
ρ−ρo

Þ2αðλ;γÞ� − 4πνð15jλj þ 2Þ
2πjðρ−ρoρþρo

Þαðλ;γÞ þ 2πνðρþρo
ρ−ρo

Þαðλ;γÞj : ð3:74Þ

One can observe the following.
In general, the factor ðρ − ρoÞαðλ;γÞ−2ðγ−1Þ compels rðρÞ to

vanish at the point ρ ¼ ρo since αðλ; γÞ − 2ðγ − 1Þ > 0 for
every γ2 < 1. The Ricci scalar is singular at ρ ¼ ρo, and
since gtt does not vanish anywhere at ρ > ρo, we conclude
that this point corresponds to a naked singularity at the
center of the spherical symmetry ρ ¼ ρo (or r ¼ 0). Note
that the function rðρÞ is almost always increasing in the
range ρ > ρo and therefore ρ → ∞ corresponds to the
asymptotic region r → ∞.
However, as we saw earlier, our solution contains Brans

Class I as a special case, a family of solutions that is known
to describe wormholes for some range of its parameters.
With this in mind, it would be no surprise if our solution
can describe wormhole spacetimes besides the naked
singularities. A wormhole spacetime should contain two
asymptotic regions and a throat that connects them.
Hence, the areal radius should diverge at a second point
except the one at ρ → ∞ and additionally should have a
minimum value that is greater than zero. The only possible
case for which (3.72) produces a second asymptotic
region is if we demand the denominator to vanish, i.e.,
ðρ − ρoÞ2αðλ;γÞ þ 2πνðρþ ρoÞ2αðλ;γÞ ¼ 0. Solving this equa-
tion we can find the point ρ at which the second asymptotic
region occurs. It is given by

ρ ¼ ρo
1þ N
1 − N

; N ¼ ð−2πνÞ1=2α; ð3:75Þ

and in order to be greater than ρo the following relation
must hold:

0 < ð−νÞ1=2α < ð2πÞ−1=2α; ð3:76Þ
which is satisfied irrespective of the values of λ and γ
provided that ν lies in the range

−
1

2π
< ν < 0: ð3:77Þ

Again, to determine the redshift and shape functions we
make use of (3.48) and (3.49). Their explicit forms are given
in Appendix. In the following diagrams (Figs. 3 and 4) we
present the behavior of the metric, areal radius, Ricci scalar,
and energy density ϱ with respect to the isotropic radius. In
Figs. 5 and 6 we compare the energy density of our model
with the one obtained from the Brans Class 1 solution for
two different values of the parameter ν. Both solutions
violate the WEC near the wormhole throats.
If γ ¼ 1, then

r ¼
�

8π

1þ 2πν

�
1=2 ðρþ ρoÞ2

ρ
; ð3:78Þ

FIG. 3. Plot of gtt (orange dashed line), gρρ (blue dashed line),
areal radius r (green solid line), dr

dρ (red dash-dotted line), and
Ricci scalar (purple solid line) for parameter values
ρo ¼ 1; γ ¼ 0; λ ¼ 2; ν ¼ −0.019, i.e., satisfying (3.77). The
areal radius diverges at two different points [one at ρ → ∞
and one at the point given by (3.75)] corresponding to two
different asymptotic regions. Between these two regions there is a
point of minimum rðρÞ where the throat is located.
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dr
dρ

¼
�

8π

1þ 2πν

�
1=2
�
1 −

ρ2o
ρ2

�
: ð3:79Þ

If γ ¼ −1, we get

r ¼
�

8π

1þ 2πν

�
1=2 ðρ − ρoÞ2

ρ
; ð3:80Þ

dr
dρ

¼
�

8π

1þ 2πν

�
1=2
�
1 −

ρ2o
ρ2

�
: ð3:81Þ

Hence, just as in case ϵ < 0, if γ ¼ �1, then the areal radius
is a decreasing function for 0 < ρ < ρo, has an absolute
minimum at ρ ¼ ρo, and increases for ρ > ρo. If γ ¼ −1, its

minimum value is rðρ ¼ ρoÞ ¼ 0, whereas if γ ¼ 1,
then rðρ ¼ ρoÞ ¼ ð 8π

1þ2πνÞ1=24ρo > 0.
In the limit ν → 0 the areal radius yields

r ¼
ffiffiffiffiffiffi
8π

p ð1þ ρo=ρÞαðλ;γÞþ2ðγþ1Þ

ð1 − ρo=ρÞαðλ;γÞþ2ðγ−1Þ ρ; ð3:82Þ

and it is αðλ; γÞ þ 2ðγ − 1Þ > 0 → 2−jλj
2þjλj < γ < 1. If the γ

parameter lies within this range, then the point ρ ¼ ρo
corresponds to r → ∞. Its derivative is given by

dr
dρ

¼
ffiffiffiffiffiffi
8π

p

ρ2

				
�
ρþ ρo
ρ − ρo

�
2γþαðλ;γÞ				1=2

× ðρ2 þ ρ2o − 2ρρoγ − ρρoαðλ; γÞÞ; ð3:83Þ

and the point of minimum r corresponds to

ρ ¼ ρo
2

�
2γ þ αðλ; γÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4þ ð2γ þ αðλ; γÞÞ2

q �
:

By the use of (3.71) we can express these roots in terms of
the parameters of Brans Class I, and the result is given by

ρ ¼ BðCþ 1Þ
λI

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
λI

Cþ 1

�
2

s !2

; ð3:84Þ

which is in agreement with the previously obtained result
in [26].
The behavior of the metric, areal radius, and Ricci scalar,

for values of ν that do not satisfy (3.77), is depicted in the
graph Fig. 7.
To summarize for the branch ϵ > 0, if γ ¼ �1, the spheri-

cally symmetric solutions reduce to the Schwarzschild

FIG. 5. Plot of energy densities ϱ (blue solid curve), ϱBD
(yellow solid curve), dr

dρ (red dash-dotted line), and drBD
dρ (purple

dash-dotted line) for ρo ¼ 1; γ ¼ 0.5; λ ¼ 2; ν ≃ −2.19 × 10−3,
i.e., satisfying (3.77). The energy density becomes negative as
we approach the wormhole throat for both theories violating
the WEC.

FIG. 6. Plot of energy densities ϱ (blue solid curve), ϱBD
(yellow solid curve), dr

dρ (red dash-dotted line), and drBD
dρ (purple

dash-dotted line) for ρo ¼ 1; γ ¼ 0.5; λ ¼ 2; ν ≃ −5.8 × 10−4,
i.e., satisfying (3.77). The energy density becomes negative as
we approach the wormhole throat for both theories violating
the WEC.

FIG. 4. Plot of energy density ϱ (blue solid curve) and dr
dρ (red

dash-dotted line) for ρo ¼ 1; γ ¼ 0.5; λ ¼ 2; ν ¼ −0.019, i.e.,
satisfying (3.77). The energy density becomes negative as we
approach the wormhole throat violating the WEC.
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solution with a constant scalar field, while if γ ≠ 1, then we
have anaked singularitywhen the parameter ν does not satisfy
the bound (3.77) and a wormhole solution otherwise.

IV. CONCLUSIONS

The Brans Classes I–IV of solutions of BD theory
according to Hawkings theorem [20] always describe either
wormholes or horizonless geometries containing naked sin-
gularities, and they never describe black holes. Spacetimes
having naked singularities are unphysical in the sense that
the initial value problem fails, leaving the theory void of
predictability and wormholes as the only remaining Brans
solutions. The Brans solutions are vacuum solutions and
the BD scalar acts as the only form of effective matter.
However, the BD scalar can violate all of the energy
conditions; therefore it is no surprise that one can obtain
wormholes as solutions of vacuum BD theory.
Wormholes are exotic objects that require the energy

conditions to be violated. This can be understood because a
wormhole requires light rays that enter at one mouth and
emerge from the other to have cross-sectional areas initially
decreasing and then increasing. This conversion can be

produced by gravitational repulsion that acts on the light
rays passing near the throat, and this can happen provided
that in this region a negative energy density resides, as it is
effectively guaranteed by the BD scalar field ϕ in the case
of γ > 1. Note that in GR the properties required for the
functions ΦðrÞ and bðrÞ cause such constraints on the
matter stress tensor as to make necessary the occupancy of
exotic matter, especially in the wormhole throat, where the
absence of a horizon is required. In the BD theory the role
of exotic matter is instead played, if γ > 1 (or ω < −2), by
the scalar field ϕ.
The aim of this work was to study spherically symmetric

solutions and in particular wormhole solutions in a modi-
fied BD theory. The BD theory is modified by introducing a
dimensionful parameter ν [28,29] in the kinetic coupling of
the scalar field to gravity. This coupling gives an extra
contribution to the matter content of the BD theory. Solving
the coupled Einstein-Klein-Gordon equations we found
new spherically symmetric solutions that depend on the
new parameter ν. Demanding the absence of unphysical
propagating modes, such as ghosts, we find two branches
of solutions.
The spherically symmetric solutions of the first branch for

any choice of parameters and independently of the value of
the new parameter ν reduce to the Schwarzschild black hole
or to a naked singularity with a constant scalar field and also
give new wormhole solutions. The second branch of
solutions, except the Schwarzschild solution for negative
values of the parameter ν, gives wormholes whose throat size
is inversely proportional to the coupling parameter ν and a
nontrivial scalar field. Also we checked the WEC for both
branches, and we found that they are violated in both cases.
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APPENDIX: ENERGY DENSITY AND
RADIAL PRESSURE

In this appendix we present the explicit form for the
radial pressure and the energy density with respect to the
isotropic radius for both branches.

ϵ < 0:

ϱ ¼ −
ρ4ρ2o

ffiffiffiffiffijνjp ðρþρo
ρ−ρo

Þ−2γ
2
ffiffiffiffiffiffi
2π

p ðρ − ρoÞ4ðρþ ρoÞ4
sec

�
αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��

×



−2γαðλ; γÞ sin

�
2αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��
þ 4ðγ2 − 1Þcos2

�
αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��

þ ðγ2 − 1Þjλj
�
cos

�
2αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��
− 9

��
;

FIG. 7. Plot of gtt (orange dashed line), gρρ (blue dashed line),
areal radius r (green solid line), dr

dρ (red dash-dotted line), and
Ricci scalar (purple solid line) with respect to the isotropic radius
for ρo ¼ 1; γ ¼ 0.2; λ ¼ 2; ν ¼ −5. At ρo the areal radius as well
as the metric components vanish, whereas the Ricci scalar
diverges. Unless γ ¼ �1, the solution produces a singularity at
ρ ¼ ρo, which is not covered by an event horizon.
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pr ¼
ρ3ρo

ffiffiffiffiffijνjp ðρþρo
ρ−ρo

Þ−2γ
2
ffiffiffi
π

p ðρ − ρoÞ4ðρþ ρoÞ4


−4

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

q ffiffiffiffiffi
jλj

p
ð−ρ2 þ γρρo − ρ2oÞ tan

�
αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��

− 3
ffiffiffi
2

p
ðγ2 − 1Þρρojλjtan2

�
αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��
− 2

ffiffiffi
2

p
ðγ2 − 1Þρρo

�

× cos

�
αðλ; γÞ log

�
ρ − ρo
ρþ ρo

��
:

ϵ > 0:

ϱ ¼
ρ4ρ2oðρþρo

ρ−ρo
Þ−2γðρ2 − ρ2oÞ−2αðλ;γÞ

4πðρ − ρoÞ4ðρþ ρoÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðρ2 − ρ2oÞ−2αðλ;γÞð2πνðρþ ρoÞ2αðλ;γÞ þ ðρ − ρoÞ2αðλ;γÞÞ2

q
× fðγ2 − 1Þjλjð4π2ν2ðρþ ρoÞ4αðλ;γÞ − 36πνðρ − ρoÞ2αðλ;γÞðρþ ρoÞ2αðλ;γÞ
þ ðρ − ρoÞ4αðλ;γÞÞ − 2γαðλ; γÞððρ − ρoÞ4αðλ;γÞ − 4π2ν2ðρþ ρoÞ4αðλ;γÞÞ
− 2ðγ2 − 1Þð2πνðρþ ρoÞ2αðλ;γÞ þ ðρ − ρoÞ2αðλ;γÞÞ2g;

pr ¼ f4πðρ − ρoÞ4ðρþ ρoÞ4ðρ2 − ρ2oÞ−αðλ;γÞð2πνðρþ ρoÞ2αðλ;γÞ þ ðρ − ρoÞ2αðλ;γÞÞg−1

× ρ3ρo

�
ρþ ρo
ρ − ρo

�
−2γ

ðρ2 − ρ2oÞ−2αðλ;γÞ½−2αðλ; γÞð−ρ2 þ γρρo − ρ2oÞ

× ððρ − ρoÞ4αðλ;γÞ − 4π2ν2ðρþ ρoÞ4αðλ;γÞÞ
þ 2ðγ2 − 1Þρρoð2πνðρþ ρoÞ2

ffiffi
2

p ffiffiffiffiffiffiffi
1−γ2

p ffiffiffiffi
jλj

p
þ ðρ − ρoÞ2αðλ;γÞÞ

2

þ 3ðγ2 − 1Þρρojλjððρ − ρoÞ2αðλ;γÞ − 2πνðρþ ρoÞ2αðλ;γÞÞ2�;

where αðλ; γÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jλjð1 − γ2Þ

p
.
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