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Displacement and velocity memory effects in the exact, vacuum, plane gravitational wave line element
have been studied recently by looking at the behavior of pairs of geodesics or via geodesic deviation. Instead,
one may investigate the evolution of geodesic congruences. In our work here, we obtain the evolution of the
kinematic variables which characterize timelike geodesic congruences, using chosen pulse profiles (square
and sech squared) in the exact, plane gravitational wave line element. We also analyze the behavior of
geodesic congruences in possible physical scenarios describable using derivatives (first, second and third) of
one of the chosen pulses. Beginning with a discussion on the generic behavior of such congruences and
consequences thereof, we find exact analytical expressions for shear and expansion with the two chosen
pulse profiles. Qualitatively similar numerical results are noted when various derivatives of the sech-squared
pulse are used. We conclude that for geodesic congruences, a growth (or decay) of shear causes focusing of
an initially parallel congruence, after the departure of the pulse. A correlation between the “focusing time”
(or u value, u being the affine parameter) and the amplitude of the pulse (or its derivatives) is found. Such
features distinctly suggest a memory effect, named in recent literature as B memory.
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I. INTRODUCTION

The memory effect in gravitational wave physics has
been a topic of active research interest in recent times [1,2].
Though yet to be observed in gravitational wave detectors
there have been proposals [2,3] about how it can be seen in
advanced versions of the present-day detectors. The phys-
ics of memory is related to a net displacement (or a residual
velocity) noted in freely falling detectors, caused by the
passage of a pulse of gravitational radiation. This leads to a
permanent change in the Minkowski spacetimes that exist
before the arrival of the pulse and after its departure. The
change is connected with spacetime diffeomorphisms
taking one asymptotically flat spacetime to another, which
do not tend to identity at infinity. Asymptotically flat
spacetimes before the arrival of the pulse and after its
departure are therefore inequivalent. It is known that they
may be related via Bondi-Metzner-Sachs transformations
(e.g., supertranslations) [4,5].
The first report of such an effect appears in the context of

gravitational collapse in globular clusters as noted by
Zel’dovich and Polnarev [6]. Subsequently, Braginsky
and Grishchuk [7], while working within linearized gravity,
defined the memory effect to be the difference between the
quadrupole moments of the source at initial and final times.
Later, Christodoulou [8] showed that there is a nonlinear

contribution to the effect and argued that this is due to the
effective stress energy of the gravitational waves trans-
ported to null infinity. Thorne [9] had argued that the
nonlinear contribution to Christodoulou memory could be
attributed to gravitons sourced by a gravitational wave
burst. Following this idea, Bieri et al. [10,11] demonstrated
a contribution to memory from other particles having zero
rest mass. Thus, they were able to distinguish linear and
nonlinear contributions as ordinary and null memory. The
stress energy travels to null infinity in the latter case only.
Apart from four-dimensional asymptotically flat space-
times, there exists work on the memory effect in other
spacetimes and in higher dimensions [10–12]. Memory
effects have also been discussed in the context of modified
gravity and massive gravity theories [13].
Very recently, Zhang et al. [14–16] have tried to arrive at

the memory effect in the well-known exact plane gravita-
tional wave spacetimes [17–19]. Apart from other analyses
in their paper [14], they studied geodesics in this geometry
by assuming certain specific forms of the functions which
appear in the line element. In particular, they chose a
Gaussian pulse (and its derivatives) and numerically solved
the geodesic equations to obtain some qualitative results on
the displacement and velocity memory effects. The appear-
ance of a net relative displacement and/or a net relative
velocity caused by the passage of a pulse are termed as the
displacement and velocity memory effects respectively.
Building on these ideas we shall show in our work how the*indradeb@iitkgp.ac.in, sayan@phy.iitkgp.ac.in
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behavior of geodesic congruences may also lead to a
memory effect via a change in the shear and expansion
of the congruence, caused by the pulse. This memory effect
involving geodesic congruences is closer to velocity
memory but not quite the same.
In general, a memory effect can therefore be arrived at in

three different ways, eventually leading to qualitatively
similar broad conclusions. Let us now briefly discuss each
and note the differences between them too. We will confine
ourselves to the sandwich pulse profiles in exact planewave
metrics [17,20] while studying memory effects. From a
motivational standpoint, one may argue that any pulse
observed in a future detection of a binary merger event is
likely to be finite for a certain range of u. The Fourier
decomposition of such signals would exhibit a peak fre-
quency (chirp) of the burst itself over a quasistatic low
frequency background as observed in the detection events by
LIGO [21]. However, it goes without saying that the exact
planewavemetric is largely theoretical and has no direct link
with present-day gravitational wave observations.
The first among the three ways involves obtaining a net

displacement between pairs of geodesics, caused by a
gravitational wave pulse, after the pulse has left. This
may be found by directly integrating the geodesic equation
to obtain the evolution of the separation of each coordinate,
for pairs of geodesics. A second way, largely related to the
previous one, is to directly integrate the geodesic deviation
equation and understand the evolution of the deviation
vector. Both these approaches are associated with displace-
ment memory. Additionally, the former may be used to
arrive at a velocity memory as discussed in [14–16].
Here we choose the third way of arriving at a memory

effect, namely by looking at the behavior of geodesic
congruences. This approach is covariant and has been
proposed in a recent article by O’Loughlin and Demirchian
[22] wherein the term B-memory (B denotes the tensor Bi

j,
the covariant gradient of the velocity field) is introduced in
the context of impulsive gravitational waves. Our work
supports and extends the proposal in [22] using the simplest
class of pp-wave spacetimes—the well-known exact plane
gravitational waves.
In the exact plane gravitationalwave spacetime, there arise

free profile functions [AþðuÞ or A×ðuÞ]. Apart from generic
results obtained without choosing specific functional forms
for the profiles, we also find exact results with simple pulse
profiles (e.g., a square pulse and a sech-squared pulse).
Further, for the sech-squared pulsewe analyzememory using
the first, second and third derivatives (which may arise in
different physical contexts) of the pulse.1

As is well known, a timelike geodesic congruence is
studied through the behavior of the expansion, shear and

rotation which is comprised of trace, symmetric traceless
and antisymmetric parts of the B-tensor. The nature of
evolution of these kinematical variables associated with the
congruence are first obtained qualitatively using simple
inequality arguments. Subsequently, using the pulse pro-
files mentioned earlier, we obtain the kinematic variables
exactly or using numerical methods. By noting the point of
convergence, we are able to relate the amplitude of the
pulse with the time at which it focuses. We demonstrate
shear-induced focusing which causes a permanent change
in the expansion after the departure of the pulse. This is B-
memory as introduced in [22]. In other words, it is the
expansion, shear and rotation which may undergo a
permanent change caused by the appearance of the pulse.
Since the B-tensor is the gradient of the normalized velocity
field, B-memory, as mentioned earlier, has a connection
with velocity memory, though it is not quite the same.
An important feature of our work is analytical solvabil-

ity. Unlike the Gaussian pulse or its derivatives, for our
choices of the profiles, quite a bit can be done by exactly
solving the Raychaudhuri equations. We explicitly illus-
trate the memory effect using the behavior of shear and
expansion, for the chosen pulse profiles, through our
largely analytical results. However, the results for the
derivatives of one of the pulses are numerically obtained.
In Sec. II, we write the line element of the vacuum,

planewave spacetimes in Brinkmann coordinates and obtain
the geodesic equations. As an illustration, we show the
displacement and velocity memory effects using a square
pulse. Section III deals with the evolution of the expansion,
shear and rotation of geodesic congruences given by the
Raychaudhuri equations. A qualitative analysis for both the
pulse and its derivatives is followed by exact solutions for
the case of a pulse. In Sec. IV, we numerically analyze the
physically interesting cases involving the derivatives of the
continuous sech-squared pulse. Finally, Sec. Vis a summary
of our results with some comments on future work.

II. GEODESICS IN EXACT
PLANE WAVE SPACETIMES

A. Brinkmann coordinates

The exact plane wave spacetimes are a class among
general pp-wave spacetimes which solve the vacuum
Einstein field equations of general relativity [18,19,24].
The metric components are the same at every point on each
wave surface. The coordinate system employed in our
calculation is the standard Brinkmann coordinates which
are both harmonic and global. The line element in
Brinkmann coordinates is given by the form

ds2 ¼ δijdxidxj þ 2dudV þ KijðuÞxixjdu2: ð1Þ

The gravitational field is encoded in the term KijðuÞ, which
satisfies the wave equation

1In a recent paper [23], Shore has looked at the square pulse
briefly in an Aichelburg-Sexl impulsive gravitational wave line
element, which is different from the spacetime we work with here.
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□ðKijðuÞxixjÞ ¼ 0: ð2Þ

KijðuÞ is a trace-free, 2 × 2 matrix having two independent
components which are known as the polarizations of the
plane gravitational wave (þ, ×). We have

KijðuÞxixj ¼
1

2
AþðuÞ½x2 − y2� þ A×ðuÞxy: ð3Þ

The polarizations AþðuÞ (plus), A×ðuÞ (cross) are functions
of retarded time variable u. Another coordinate system used
for this metric is the Baldwin-Jeffrey-Rosen (BJR) coor-
dinate system [25] which however suffers from the pres-
ence of coordinate singularities.

B. The geodesic equations

The geodesic equations in Brinkmann coordinates hav-
ing both nonzero polarizations are given as

d2x
du2

¼ 1

2
AþðuÞxþ

1

2
A×ðuÞy; ð4Þ

d2y
du2

¼ −
1

2
AþðuÞyþ

1

2
A×ðuÞx; ð5Þ

d2V
du2

þ 1

4

dAþðuÞ
du

ðx2 − y2Þ þ AþðuÞ
�
x
dx
du

− y
dy
du

�

þ A×ðuÞ
�
y
dx
du

þ x
dy
du

�
þ 1

2

dA×ðuÞ
du

xy ¼ 0: ð6Þ

Notice that we have used u as an affine parameter. This is
easily checked by writing down the Euler-Lagrange equa-
tion for the V coordinate. The general form for VðuÞ and
_VðuÞ is2 obtained by performing some algebra on Eq. (6)
and from the geodesic Lagrangian (derived from the line
element) in Eq. (1):

dV
du

¼ −
1

4
Aþðx2 − y2Þ − 1

2

��
dx
du

�
2

þ
�
dy
du

�
2
�

−
1

2
A×ðuÞxy −

k
2
; ð7Þ

VðuÞ ¼ −
1

2

�
x
dx
du

þ y
dy
du

�
−
k
2
uþ C1: ð8Þ

The solution for VðuÞ contains the integration constant C1

and also k, which is 0 or 1 for null or timelike geodesics,
respectively. Thus, for any pulse of a given polarization, if
Eqs. (4) and (5) for xðuÞ and yðuÞ are analytically solvable,
then VðuÞ also can be analytically obtained. Both the first
and second integrals for the coordinate V are known from

x, y and its derivatives. Hence, Eq. (6) reduces to an
identity. The fact that coordinate V does not give a new
equation of motion is useful for the discussion in the next
section where we analyze the kinematic variables (expan-
sion, shear, rotation) associated with the velocity field on
the two-dimensional transverse xy plane with u acting as a
parameter (similar to time in classical mechanics).
The geodesic Lagrangian for the exact plane gravita-

tional wave line element written in Brinkmann coordinates,
with u as the affine parameter, is given as

L ¼ _x2 þ _y2 þ 1

2
AþðuÞðx2 − y2Þ þ A×ðuÞxyþ 2 _V: ð9Þ

It is clear that the last term on the rhs of L is a total
derivative and hence has no effect on equations of motion
for the “generalized” coordinates x and y. The system
becomes two dimensional for the parameter u where the
terms quadratic in x, y gives the associated potential.
The resemblance with a two-dimensional system where
the polarization factors AþðuÞ and A×ðuÞ act as time
(u)-dependent squared frequencies of an oscillator (or an
inverted oscillator) and a time (u)-dependent x-y coupling
coefficient respectively, is clearly visible.

C. Memory effects

The memory effect can be easily realized in the above
class of spacetimes by choosing suitable pulse profiles
[15,16]. A simple example is a square pulse with analytical
form chosen as AþðuÞ ¼ 2A2

0½Θðuþ aÞ − Θðu − aÞ�. The
solutions are obtained by solving the geodesic equations
and then matching them at the boundaries.3 Initially parallel
geodesics before the wave region (purple vertical lines
showing the boundary of the wave region) are seen to have
a nonzero finite separation even after the passage of the
pulse visible in Figs. 1(a) and 1(b).
Velocity memory effect is simply obtained by taking the

first derivative of the solutions for geodesic equations. The
results appear in Fig. 2, as shown.
The velocity memory effect, as shown, displays a sharp

change in the wave region which settles to a nonzero finite
value. This is due to the fact that the pulse profile itself is
discontinuous and hence ẍðuÞ and ÿðuÞ are discontinuous—a
fact which follows from their geodesic equations (4) and (5).
In the following sections, we attempt to explore the

possibility of arriving at a somewhat different memory
effect from the evolution of the B-tensor.

III. EXPANSION, SHEAR AND ROTATION IN
BRINKMANN COORDINATES FOR EXACT

PLANE GRAVITATIONAL WAVES

The general formalism for obtaining the evolution
of the kinematic variables in two dimensions (i.e., the

2In this paper, _f ¼ df
du, for any general f. The two symbols are

used interchangeably throughout the paper. 3We have chosen A× equal to zero.
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Raychaudhuri equations) is available in [26]. Thegradient of
velocity [found by differentiation of xðuÞ and yðuÞ with
respect tou] can bewritten as a second rank tensorwhich can
be decomposed into expansion (trace), shear (symmetric,
traceless) and rotation (antisymmetric):

Bij ¼ ∂jvi

¼
� 1

2
θ 0

0 1
2
θ

�
þ
�
σþ σ×

σ× −σþ

�
þ
�

0 ω

−ω 0

�
: ð10Þ

The evolution equation for the gradient of velocity may be
written as

vk∂kð∂jviÞ ¼ ∂jfi − ð∂jvkÞð∂kviÞ; ð11Þ

vk∂kðBi
jÞ ¼ ∂jfi − Bi

kB
k
j: ð12Þ

In Eqs. (11) and (12) the term fi denotes the acceleration per

unit mass. Hence fx ¼ d2x
du2 and f

y ¼ d2y
du2. The four kinematic

variables fθ; σþ; σ×;ωg obey the evolution equation (12)
which leads to separate equations given as

dθ
du

þ θ2

2
þ 2ðσ2þ þ σ2× − ω2Þ ¼ ∂xfx þ ∂yfy; ð13Þ

dσþ
du

þ θσþ ¼ 1

2
ð∂xfx − ∂yfyÞ; ð14Þ

dσ×
du

þ θσ× ¼ 1

2
ð∂yfx þ ∂xfyÞ; ð15Þ

dω
du

þ θω ¼ 1

2
ð∂yfx − ∂xfyÞ: ð16Þ

Eqs. (13)–(16) may be solved for specific pulse profiles
(square pulse, sech-squared pulse and its derivatives) by
substituting the values of fx and fy from their respective
geodesic equations given in Eqs. (4) and (5).
The two pulse profiles that we choose to work with in

this paper are as follows:
(1) Square pulse, AþðuÞ ¼ 2A2

0½Θðuþ aÞ − Θðu − aÞ�.
(2) Sech-squared pulse, AþðuÞ ¼ 1

2
sech2ðuÞ.

The nature of the pulses vary in their differentiable nature.
We further study consequences for the derivatives of the
continuous sech-squared pulse.

(a) (b) 

FIG. 1. Displacement memory effect along (a) x and (b) y directions for the first (orange, x ¼ 1, y ¼ 1) and second (blue, x ¼ 2,
y ¼ 2) geodesics respectively, for a square pulse with values of A0 ¼ 1, a ¼ 0.5. The vertical lines in purple denote the sandwiched
wave region in between two flat spacetimes (this is true for the next plot too).

(a) (b)

FIG. 2. Velocity memory effect along (a) x and (b) y directions for the first (orange) and second (blue) geodesics respectively. Here, a
square pulse with A0 ¼ 1, a ¼ 0.5 is used.
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A. Qualitative analysis on the evolution
of kinematic variables

1. Generic pulse

For any generic pulse having both polarizations AþðuÞ
and A×ðuÞ be nonzero, the four evolution equations for
these kinematic variables become

dθ
du

þ θ2

2
þ 2ðσ2þ þ σ2× − ω2Þ ¼ 0; ð17Þ

dσþ
du

þ θσþ ¼ 1

2
AþðuÞ; ð18Þ

dσ×
du

þ θσ× ¼ 1

2
A×ðuÞ; ð19Þ

dω
du

þ θω ¼ 0: ð20Þ

A geodesic congruence starting out with initial values for
all four variables set to zero simplifies Eqs. (17)–(20).
There is no twist in the entire range u ϵ ðui; ufÞ if ω ¼ 0

initially. We consider only “þ” polarization and therefore
σ× ¼ 0 always. The resulting equations become

dθ
du

þ θ2

2
þ 2σ2þ ¼ 0; ð21Þ

dσþ
du

þ θσþ ¼ 1

2
AþðuÞ: ð22Þ

Equation (21) implies that dθdu is always negative. Therefore,
irrespective of its initial value at some ui, θ will eventually
diverge to negative infinity. Equation (22) is multiplied by
two on both sides and added/subtracted to/from Eq. (21)
yielding a pair of uncoupled, first order ordinary differ-
ential equations. Then, defining ðθ þ 2σþÞ ¼ ξ and
ðθ − 2σþÞ ¼ η, the corresponding equations turn out to be

dξ
du

þ ξ2

2
¼ AþðuÞ; ð23Þ

dη
du

þ η2

2
¼ −AþðuÞ: ð24Þ

Note that the variables ξ and η are the eigenvalues of the
B-matrix when σ× and ω are zero. From Eq. (24) it is clear
that _ηðuÞ < 0 as the function representing the pulse is
manifestly positive and asymptotically zero in value.
Integrating _ηðuÞ from ui (ui will be negative and located
far from the region around the origin where the pulse is
nonzero in value) to uf (positive u value and located far
down the positive u axis), we conclude that since the right-
hand side of Eq. (24) is the negative of a positive definite
number, the change [limu→ufηðuÞ − limu→uiηðuÞ < 0] is

always less than zero. Mathematically, the change in the
value of η from u → ui to u → uf can never be set to zero
due to the presence of the integral of the pulse (which
equals the area enclosed between ui and uf), and hence it is
always nonzero, negative and finite. But no such conclu-
sion can be drawn for ξðuÞ from Eq. (23). This equation can
further be analyzed as yielding

ξjufui ¼−
1

2

Z
uf

ui

ξ2ðuÞduþArea enclosed by the pulseð¼a1Þ:

ð25Þ

Equation (25) implies that ξjufui ¼0 only if
R uf
ui ξ

2ðuÞdu¼2a1.
[In the following we will denote limu→ufPðuÞ (P may be
θ; σþ; ξ or η) as simply PðufÞ, assuming its value to be zero
when u → ui.] Thus, there are essentially two possibilities.

(a) ξðufÞ ≥ 0, ηðufÞ < 0:

The resulting inequalities are

θðufÞ − 2σþðufÞ < 0; θðufÞ þ 2σþðufÞ ≥ 0:

As is obvious from the above, θ → −∞ and σþ →
þ∞ as u → uf (focusing) is possible and will be
shown as a consequence in various examples given
later. On the other hand θ → −∞ and σþ → −∞ are
not permissible because, as stated above, at u ¼ uf
(focusing), θðufÞ þ 2σþðufÞ ≥ 0.

(b) ξðufÞ ≤ 0, ηðufÞ < 0:

The resulting inequalities are

θðufÞ − 2σþðufÞ < 0; θðufÞ þ 2σþðufÞ ≤ 0:

Hence,

θðufÞ < 0;

�
σþðufÞ >

θðufÞ
2

�

or

�
σþðufÞ ≤ −

θðufÞ
2

�
: ð26Þ

Thus, θ→−∞, σþ→þ∞ as well as θ→−∞, σþ →
−∞ are both permissible, modulo constraints. We will
see examples of this too, later.

2. Derivatives of the pulse

Let us now analyze the nature of evolution of the
kinematical variables for the first three derivatives of the
pulse. The physical relevance which motivates us to look at
consequences for the derivatives of a pulse are given in the
following section (Sec. IV). Equations (21) and (22) are
now modified on their rhs’s with the pulse being replaced
by its derivative (first, second or third). Since we consider
an even pulse (sech-squared pulse), the first and third
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derivatives are odd functions and the second derivative
is even.

(a) First derivative and third derivative:

Let us consider the case for the first derivative. The
new set of equations are

dξ
du

þ ξ2

2
¼ dAþ

du
; ð27Þ

dη
du

þ η2

2
¼ −

dAþ
du

: ð28Þ

We employ the same trick as was done in the case of
the pulse. The integral of the first derivative of the
pulse is positive as long as we assume ui far down the
negative u axis and uf relatively closer to u ¼ 0 on
the positive u direction, but reasonably away from the
region where the function is clearly nonzero. Thus, in
this case we end up with conclusions similar to the
case of the pulse discussed just above.
The same line of argument holds for the third

derivative too (odd function).

(b) Second derivative:

In this case, the resulting equations are

dξ
du

þ ξ2

2
¼ d2Aþ

du2
; ð29Þ

dη
du

þ η2

2
¼ −

d2Aþ
du2

. ð30Þ

The second derivative of the pulse is an even function.
The integral of the second derivative from ui to uf can
be seen to be negative for a sech-squared pulse though
other examples do exist. We discuss this somewhat
opposite behavior because it is different. Here, we will
find that, at uf, ξðufÞ < 0 but ηðufÞ may be greater or
less than zero. Thus, we have

θðufÞ þ 2σþðufÞ < 0; θðufÞ − 2σþðufÞ > 0:

Hence, it is clear that θ → −∞, σþ → −∞ is allowed,
though θ → −∞, σþ → þ∞ is not. On the contrary, if
ξ < 0, η < 0, then

θðufÞ þ 2σþðufÞ < 0; θðufÞ − 2σþðufÞ < 0:

Here, θ → −∞ and σþ → −∞ and θ → −∞ and
σþ → þ∞ may both arise and are allowed.

We will illustrate some of the above-mentioned features
related to the case of the second derivative of a pulse, when
we discuss the example of a sech-squared pulse later.
We now move on to specific examples in the following

section.

B. Kinematic variables for square pulse
in plus polarization

The results given below for the square pulse are fully
analytical. The values of fx and fy are obtained from the
geodesic equations of the pulse profile. We have

fx ¼ d2x
du2

¼
8<
:

0 u ≤ −a
A2
0x −a ≤ u ≤ a

0 u ≥ a

; ð31Þ

fy ¼ d2y
du2

¼
8<
:

0 u ≤ −a
−A2

0y −a ≤ u ≤ a

0 u ≥ a

: ð32Þ

Equations (13)–(16) in the first (u ≤ −a) and third (u ≥ a)
regions have zero value on their rhs’s. We assume initial
values of all the kinematic variables to be zero. So, σ× and
ω become zero in all the regions. Thus, the evolution
equations in the second region (−a < u < a) become

dθ
du

þ θ2

2
þ 2σ2þ ¼ 0; ð33Þ

dσþ
du

þ θσþ ¼ A2
0: ð34Þ

Hence, using the transformed variables ξ and η we solve
Eqs. (23) and (24) in all three regions. The solutions in the
second (wave) region turn out as

ξ ¼ 2A0 tanh½A0ðuþ C1Þ�; ð35Þ

η ¼ 2A0 tan½A0ðC2 − uÞ�: ð36Þ

Thus, θ and σþ can found from ξ and η. Thereafter,
matching values at u ¼ −a (which is zero for both
variables) the value for C1, C2 is obtained. In the same
way, the solution for the region u ≥ a is obtained by
matching at u ¼ a. The final solutions for expansion and
shear are

θðuÞ¼

8>><
>>:
0 u≤−a
A0½tanh½A0ðuþaÞ�− tan½A0ðuþaÞ�� −a≤ u≤ a

1
u−aþA−1

0
coth½2aA0�þ

1
u−a−A−1

0
cot½2aA0� u≥ a

;

ð37Þ

σþðuÞ¼

8>><
>>:

0 u≤−a
A0

2
½tanh½A0ðuþaÞ�þ tan½A0ðuþaÞ�� −a≤u≤a

1
2

�
1

u−aþA−1
0
coth½2aA0�−

1
u−a−A−1

0
cot½2aA0�

�
u≥a

:

ð38Þ

The plots in Figs. 3(a) and 3(b) have kinks at u ¼ −0.5,
0.5 because of the nature of AþðuÞ. The expansion θ
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develops a negativity as u enters the region where the pulse
is nonzero. This acquired negativity drives it toward a focal
point after the pulse has departed, i.e., beyond u ¼ a. The
appearance of the focal point is what we noted earlier as
the intersection of the geodesics beyond u ¼ a. Similarly,
the initially zero shear acquires a positivity on entering the
region where the pulse is active and nonzero. Subsequently,
even after the departure of the pulse the shear keeps on
increasing. Thus, there is a permanent change in the shear
and expansion (after the pulse departs), which is in contrast
to their zero value before the arrival of the pulse. Further,
we note that θ → −∞ at u ¼ aþ A−1

0 cot½2aA0�, which
clearly depends on the width and height of the pulse.
It turns out that ξ ≥ 0 and η < 0 in region 3 (i.e., u ≥ a),

thereby obeying the inequality obtained for case (a) in
Sec. III A 1. The solutions and conclusions for cross
polarization are exactly the same as for plus polarization
with σþ replaced by σ×.

C. Kinematic variables for sech-squared pulse
in plus and cross polarizations

Here, the pulse profile is a continuous function and hence
the set of two coupled equations can be solved for the entire
range of the affine parameter. We show here the results for
plus polarization (for × polarization the analytical results
and plots are similar). From the geodesic equations, we
obtain fx ¼ 1

4
x sech2ðuÞ and fy ¼ − 1

4
ysech2ðuÞ for the

pulse profile. Subsequently, we solve Eqs. (21) and (22)
by using Eqs. (23) and (24)4:

dξ
du

þ 1

2
ξ2 ¼ 1

2
sech2ðuÞ; ð39Þ

dη
du

þ 1

2
η2 ¼ −

1

2
sech2ðuÞ: ð40Þ

Equations (39) and (40) can be solved analytically by the
substitution, ξ ¼ 2_α=α; η ¼ 2_β=β, which leads to

d2α
du2

¼ 1

4
sech2ðuÞα; ð41Þ

d2β
du2

¼ −
1

4
sech2ðuÞβ: ð42Þ

The solutions of Eqs. (41) and (42) are

αðuÞ ¼ C1K

�
1

2
ð1 − tanhðuÞÞ

�
þ C2Q−1

2
ðtanhðuÞÞ; ð43Þ

βðuÞ¼C3P1
2
ð ffiffi

2
p

−1ÞðtanhðuÞÞþC4Q1
2
ð ffiffi

2
p

−1ÞðtanhðuÞÞ; ð44Þ

where, in Eq. (43), the first function is a complete
elliptic integral of the first kind and the second is a
Legendre function of the second kind. In Eq. (44) we have
Legendre functions of first and second kinds respectively.
The relationship between the kinematic variables fθ; σþg
and fα; βg is

θ ¼
�
_α

α
þ

_β

β

�
; σþ ¼ 1

2

�
_α

α
−
_β

β

�
: ð45Þ

Substituting back the functional forms of α, β as obtained
from Eqs. (43) and (44) into Eq. (45) we get analytic
expressions of θ and σþ. Since Eqs. (41) and (42) are second
order ordinary differential equations, we end up with a total
of four constants. However, our initial equations (39) and
(40) were first order and hencewe should have two arbitrary
constants.Hence, these are fixed by setting thevalue of θ; σþ
to zero at an initial value of u (i.e., we have an initially
parallel geodesic congruence). Thus, among the four con-
stants in Eqs. (43) and (44) we choose two freely and the
other two are fixed by constraining _α ¼ _β ¼ 0 at an initial u.
The plots generated for the kinematic variables are shown
in Fig. 4.
Conclusions from Figs. 4(a) and 4(b) are largely the

same as found earlier for a square pulse. A permanent
change in the expansion and shear of the congruence is
noted here too. The plot for shear does not exhibit any kink

(a) (b)

FIG. 3. (a) Expansion and (b) shear variation in case of square pulse for A0 ¼ 1; a ¼ 0.5. The plot for shear shows piecewise
smoothness owing to Eq. (18). The vertical lines in blue demarcate the wave region from the flat spacetime region.

4The same relationships between the variables fθ; σþg and
fξ; ηg are used.
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(as seen in the square pulse)—the smoothness due to the
continuous nature of the pulse.
In both cases (square and sech squared), expansion is

always negative and σþ is monotonically increasing. It may
be checked that the constraints imposed from the analysis
of a generic pulse, as discussed in Sec. III A, hold.

IV. DERIVATIVES OF SECH-SQUARED PULSE

We now move on toward applying the above formalism
for calculating kinematic variables, when we have various
derivatives of a sech-squared pulse. The nature of deriv-
atives and its integrals over the duration of the pulse
have been discussed previously in [27] and much later
by Zhang et al. in [14]. In linear theory, the source
quadrupole moment is related to the curvature tensor via
the formula

Ri0j0 ¼
G
3r

d4Dij

dt4
: ð46Þ

The above-mentioned authors defined integrals over the
Riemann tensor in the limit where the wave is localized and
subsequently looked at their values for the first three
derivatives of chosen pulse profiles:

Ið3Þ ¼
Z

tf

ti

dt
Z

t

ti

dt0
Z

t0

ti

dt00R0i0jðt00Þ; ð47Þ

Ið2Þ ¼
Z

tf

ti

dt
Z

t

ti

dt0R0i0jðt0Þ; ð48Þ

Ið1Þ ¼
Z

tf

ti

dt R0i0jðtÞ: ð49Þ

Depending upon the physical scenario (such as collapse or
flybys) the initial and final quadrupole moment would
differ and hence one can obtain the nature of an incoming
pulse by analyzing the number of times the Riemann
tensor has changed sign (i.e., by evaluating Ið1Þ, Ið2Þ and
Ið3Þ). Even in full nonlinear theory, one can guess the

approximate nature of a pulse by knowing the values of
these integrals, although Eq. (46) does not hold. Here we
calculate these integrals for the derivatives of a sech-
squared pulse and explain the corresponding physical
scenario. Subsequently, we analyze the nature of expansion
and shear for geodesic congruences, in the presence of the
various derivatives of the sech-squared pulse.

(a) First derivative:

Recall the pulse profile given before. Its derivative
would lead to (Fig. 5)

A1ðuÞ ¼
dAþðuÞ
du

¼ 1

2

d
du

sech2ðuÞ
¼ −sech2ðuÞ tanhðuÞ: ð50Þ

The integrals given by Eqs. (47)–(49) are evaluated for
this pulse. The values are

Ið1Þ ¼ 0; Ið2Þ ¼ 1; Ið3Þ → ∞: ð51Þ

This could correspond to the case of a flyby leading to
gravitational bremsstrahlung. Kovacs and Thorne [28]
gave an analytic expression for the metric perturbation
as a function of time and other parameters related
to the binary (viz., mass, inclination angle, impact

FIG. 5. First derivative of sech-squared pulse. This corresponds
to a flyby scenario where the gravitational radiation is emitted via
bremsstrahlung.

(a) (b)

FIG. 4. (a) Expansion and (b) shear variation in case of sech-squared pulse for C1 ¼ C3 ¼ 1. The blue vertical lines show the FWHM
region of the pulse. The plots are continuous indicating the smooth nature of the pulse profile.
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parameter). At initial times (t → −∞), the dominant
contribution is constant. Hence, the quadrupole
moment at initial instant is proportional to a quad-
ratic function of time. Thus, both Ið2Þ and Ið3Þ are
nonzero, following from Eq. (46). The nonzero
kinematic variables are solved numerically from
Eqs. (21) and (22)5 in Mathematica 10 and are
shown in the plots of Fig. 6. Figures 6(a) and 6(b)
are in accordance with the constraint imposed by the
condition θ → −∞ and σþ → þ∞ as discussed
previously in Sec. III A.

(b) 2nd derivative:

In this case, the pulse profile (see Fig. 7) is

A2ðuÞ ¼
d2AþðuÞ
du2

¼ 1

2

d2

du2
sech2ðuÞ

¼ −sech4ðuÞ þ 2 tanh2ðuÞsech2ðuÞ: ð52Þ

As done for the first derivative, we find the integrals
given by Eqs. (47)–(49) for the pulse given in Eq. (52).
The values are

Ið1Þ ¼ 0; Ið2Þ ¼ 0; Ið3Þ ¼ 1: ð53Þ

This scenario was considered by Braginsky and
Thorne [29] where they distinguished between bursts
with and without memory within linearized gravity. In
the latter case, the metric perturbation vanishes beyond
the wave region and hence Ið2Þ vanishes and thus no
memory effect is possible.6 In order to have a finite
value of hij beyond the wave region, Ið2Þ has to be

nonzero and finite. The plots are obtained after solving
numerically5 in Mathematica 10.
In this case, both expansion and shear [see Figs. 8(a)

and 8(b)] diverge to minus infinity, which is permis-
sible from the generic analysis (Sec. III A).

(c) Third derivative:

In this case, the pulse profile (Fig. 9) is given as

A3ðuÞ¼
d3AþðuÞ
du3

¼1

2

d3

du3
sech2ðuÞ

¼8sech4ðuÞtanhðuÞ−4tanh3ðuÞsech2ðuÞ: ð54Þ

The integrals for this pulse [as given in Eq. (54)]
become

Ið1Þ ¼ 0; Ið2Þ ¼ 0; Ið3Þ ¼ 0: ð55Þ

This scenario is of gravitational collapse [27].
The quadrupole moment tensor is initially and finally
time independent. Hence, the first derivative of the
quadrupole moment tensor vanishes. From Eq. (46)
one finds that Ið3Þ vanishes. This implies that the
minimum number of turning points for a pulse from
gravitational collapse has to have at least three

(a) (b)

FIG. 6. (a) Expansion (−10 < u < 7) and (b) shear (−10 < u < 7) variation in the case of a first derivative of a sech-squared pulse.
The initial value of both expansion and shear is set to zero (this is also true for second and third derivatives).

FIG. 7. Second derivative of a sech-squared pulse.

5AþðuÞ is now replaced with A1ðuÞ. Also, in the case of
second and third derivatives AþðuÞ is replaced by A2ðuÞ
and A3ðuÞ respectively on the right-hand side of Eq. (22).

6Exact plane wave spacetimes are exact solutions in full
nonlinear general relativity. Hence, even in this case we observe
a memory effect.
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sign changes. The numerical solutions obtained
after solving Eqs. (21) and (22)5 leads to the plots
in Fig. 10.
The nature of the plots in Fig. 10 also obeys the

constraint θ → −∞ and σþ → −∞. Here too, like in
the case of the second derivative, both expansion and
shear diverge to minus infinity (allowed via the
qualitative analysis in Sec. III A above).

Thus, expansion is relatively of the same nature in all three
of these cases (following from qualitative arguments) while
no such definite constraint can be imposed on the sign
of shear.
Plane gravitational waves form caustics and hence

can act as gravitational lenses. This feature was initially
studied by Penrose [30] for null geodesics and has
been renewed by Harte and Drivas [31] for better under-
standing of gravitational lensing from a theoretical point
of view.
Figure 11 demonstrates more quantitatively this focusing

nature of timelike congruences in the spacetime represent-
ing exact plane gravitational waves. In order to distinguish
between effects for the pulse and its various derivatives, we
have shown in Figs. 11(a) and 11(b) the variation of uf
(value of the affine parameter u where focusing occurs)

with the amplitude of the pulse7 for all cases studied here.
We note that as the amplitude increases, focusing occurs
earlier (lower values of uf) and vice versa. Physically, it
shows that the focusing value uf is dependent on the peak
amplitude of the gravitational wave pulse (or its deriv-
atives) which seems to act like a converging lens. We plot
uf versus the amplitude for the odd functions [first and
third derivatives, Fig. 11(a)] and even functions [second
derivative and the pulse itself, Fig. 11(b)] separately.
From the uf values shown in all the data displayed in
Fig. 11, we may conclude that focusing for the pulse
happens earlier as compared to all other derivatives. In
Fig. 11(a) we find that the third derivative focuses earlier
in comparison to the first derivative and, with increasing
amplitude, the difference in uf value for the first and third
derivative cases remains almost the same. In contrast,
Fig. 11(b) suggests that the difference in uf values for the
pulse and its second derivative decreases with increase in
amplitude. Therefore, in some sense, the uf versus
amplitude plots may provide a way to quantify and
differentiate between the effects due to a pulse and its
various derivatives. As stated earlier, since the derivatives
are linked to physical scenarios, one may consider the uf
versus amplitude plots as a way to quantify and distin-
guish between the memory effects arising in such
contexts.
Finally, if we have an initially expanding congruence

(unlike the ones discussed above where we looked at
an initially parallel congruence), we have checked (not
shown here) that focusing occurs and is dependent on
the gravitational wave amplitude. Similarly if we have
an initially converging congruence, there is always focus-
ing. Thus, for all types of initial configurations, we observe

FIG. 9. Third derivative of sech-squared pulse. This corre-
sponds to the case of gravitational collapse.

(a) (b)

FIG. 8. (a) Expansion (−10 < u < 7) and (b) shear (−10 < u < 5) variation in the case of a second derivative of a sech-squared
pulse.

7Amplitude here denotes the overall coefficient which appear
in the functional expressions for a pulse or its derivatives. For
example, AþðuÞ ¼ a sech2ðuÞ in the case of the pulse, where a
represents the amplitude. In Figs. 11(a) and 11(b) “a” ranges
from 10−3 to 1 (in arbitrary units).
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focusing as well as a permanent distortion (shear) for
timelike geodesic congruences encountering a localized
gravitational wave pulse (or its derivatives).

V. CONCLUSIONS

We have, in this article, tried to arrive at an under-
standing of a memory effect using the kinematic variables
that define a geodesic congruence, namely the expansion,
shear and rotation. In the exact, vacuum plane parallel
gravitational wave line element, the Raychaudhuri equa-
tions for timelike geodesic congruences have been written
down and solved. We have exploited the known fact that
geodesic motion in such spacetimes reduces to a motion in
an effective two-dimensional (x, y) mechanical system
where the coordinate u acts like time. The “geodesic
Lagrangian” [when A×ðuÞ ¼ 0] becomes that of a non-
relativistic oscillator along x and an inverted oscillator
along y, with time (u)-dependent frequency [14,15]. The
equation for the coordinate VðuÞ is redundant since its
geodesic equation reduces to an identity. Following
standard methods, we have obtained the behavior of θ
and σþðσ×Þ for plus (cross) polarization for general as
well as specific choices of the pulse profiles. There is no

rotation (ω) involved in the congruences we have worked
with here.
In contrast to noting a memory effect through geodesics

or geodesic deviation, we have shown how kinematic
variables like expansion and shear can carry information
about memory. Qualitative treatment of the case of a
generic pulse or its derivatives lead to constraints on the
values of expansion and shear as u → uf (focusing). These
have been discussed in detail.
Quantitative solutions (for specific pulses) for the expan-

sion and shear obtained above are in full agreement with the
inequality constraints found in the qualitative analysis. The
plots for expansion and shear for both the pulse and its
derivatives show divergences at specific values of u ¼ uf.
The exact location of uf, expectedly, depends on the func-
tional forms representing the pulse or its derivatives.
Furthermore, we note that the value of u where focusing

happens (along with the growth/decay of shear) after the
pulse has departed depends on the amplitude and the width
of the pulse. We have plotted uf as a function of the
amplitude of the pulse. We observe that as the amplitude
increases the value of uf shrinks, showing that the pulse
focuses more acutely. Even for an initial expanding con-
gruence, there is focusing dependent on the pulse amplitude

(a) (b)

FIG. 11. Plot of amplitude versus uf (focusing value) using logarithmic scales along both the axes. (a) uf-amplitude plots for first and
third derivatives (odd functions) of a sech-squared pulse (odd function). (b) uf-amplitude plots for the pulse itself and its second
derivative (even function). All values here are obtained by numerically solving Eqs. (21) and (22), with initial data at ui ¼ −5 where
θðui ¼ −5Þ ¼ σþðui ¼ −5Þ ¼ 0.

(a) (b)

FIG. 10. (a) Expansion (−10 < u < 4) and (b) shear (−10 < u < 4) variation in case of the third derivative of a sech-squared pulse.
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thereby resembling what is seen in a converging lens.
Considering this analogy with geometric optics [31], we
may also associate the amplitude of a pulse with the inverse
of the focal length. Hence, pulse-induced focusing coupled
with a change of shear can act as yardsticks for under-
standing B-memory.
The fact that null geodesics do form caustics in exact,

plane gravitational wave spacetimes of fixed polarization
had been shown many years ago in the work of Bondi and
Pirani [20]. However, their work does not involve studying
the behavior of the kinematic variables of geodesic con-
gruences in order to figure out focusing effects or a change
in shear. Further, in our studies, we demonstrate how such
benign focusing for timelike geodesic congruences occur as
induced by the appearance of a pulse. There is no real
singularity in the spacetime (the invariant scalars are zero
everywhere). The point of intersection of the geodesics
implies deviation going to zero (which coincides with
the location in u where the expansion θ diverges to
negative infinity) and is thus a critical point where the
coordinate singularity of the metric (when written in
BJR coordinates) appears [15]. Our explicit and detailed
analysis of shear-induced focusing and its association with

B-memory are both new and so are the numerous exact
analytical solutions showcasing theB-memoryeffect directly.
A more complete and detailed treatment of the

Raychaudhuri equations with both the þ and × profiles
simultaneously present can be an extension of our work.
It will also be interesting to note if rotation (ω), when
initially present, has any role to play in controlling the
eventual focusing of geodesics. It is possible that rotation
may prohibit focusing leading to finite changes in the
expansion and shear. Studying the influence of a gravita-
tional wave pulse on the evolution of the full B-matrix can
also be an elegant and unified approach toward arriving at
an associated memory effect. We conclude with the hope
that in the future, such studies on the kinematic evolution of
geodesic congruences in relevant spacetimes of interest will
be able to throw more light on newer aspects of B-memory.
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