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Effect of superfluid matter of a neutron star on the tidal deformability
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We study the effect of superfluidity on the tidal response of a neutron star in a general relativistic
framework. In this work, we take a dual-layer approach where the superfluid matter is confined in the core
of the star. Then the superfluid core is encapsulated with an envelope of ordinary matter fluid which acts
effectively as the low density crustal region of the star. In the core, the matter content is described by a two-
fluid model where only the neutrons are taken as superfluid and the other fluid consists of protons and
electrons making it charge neutral. We calculate the values of various tidal love numbers of a neutron star
and discuss how they are affected due to the presence of entrainment between the two fluids in the core. We
also emphasize that more than one tidal parameter is necessary to probe superfluidity with the gravitational

wave from the binary inspiral.
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I. INTRODUCTION

The observation of a gravitational wave (GW) from the
binary neutron star (BNS) merger event GW170817 has
allowed us to study the physics of the extreme environment
of highly dense matter at strong gravity [1,2]. During the
orbital evolution, the tidal interaction between the stars of
the binary deforms both of them. These deformations can
be measured in terms of the relativistic tidal Love numbers
of the stars [3—7]. Precise measurements of these param-
eters from the GW signal during the inspiral phase can be
extremely useful to study the nature and the equation of
state (EOS) of the supranuclear matter inside a neutron star
(NS) [8-10]. This is why a huge effort has been made to
understand the modification of waveforms due to the tidal
Love numbers and their measurability and distinguish-
ability of different EOSs [11-17]. Moreover, one can also
infer on the fluid nature of those objects. As these stars are
supposedly very old, their core temperature should be
below the critical transition temperature for the BCS-like
pair formation [18]. Therefore, one can expect superfluid
(SF) neutrons and superconducting protons to form at the
core of the star and superfluid neutrons in the inner crust
[19,20]. Pulsar glitches and the rapid cooling of the NS in
Cassiopeia A are examples which are explicable invoking
superfluid matter inside a NS [21-24]. These changes in
the fluid nature of the star from a single-fluid to a multi-
fluid object can influence its deformability in a nontrivial
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way [25]. Recently, we have investigated the role of
superfluidity for the £ = 2 electric-type tidal Love number
k, and the corresponding tidal deformability Ay, [25]
(hereafter, paper I). In this work we have modeled the star
as a nonrotating sphere of superfluid nuclear matter. We
had adopted the two-fluid model where one-fluid is the
neutron superfluid and the other is the normal charge-
neutral fluid comprising protons and electrons [26-32]. We
found that the inclusion of superfluidity manifests signifi-
cant change in Ay, compared to the nonsuperfluid case.

However, a neutron star is also a multilayered object, i.e.,
the phases of matter differ significantly from the crust to the
core. As has been known that the property of low density
nuclear matter is correlated directly with the radius, one has
to take into account a proper crust model in the calculation.
To do so, we follow the method described in Ref. [33],
where the properties of the superfluid region inside the core
are appropriately matched to the normal fluid envelope
encapsulating the core. Therefore, the superfluid neutrons
are confined in the core where as the envelope acts as the low
density region of the star. Although, we do not consider the
elasticity of the crustal region in our formalism, this dual-
layer core-envelop approach can approximate the structure
of the star with a crust. Since crustal elasticity does not bring
considerable change in the Love numbers it is unnecessary to
include it here [34]. We also study the junction conditions for
the perturbed quantities of interest in detail.

At this point, it is important to note that when we speak
of the deviation of Ay, due to the superfluid nature, we
bring an ambiguity in our interpretation of the observed
Ay,. The value of Ay, in the two-fluid calculation for a

© 2020 American Physical Society
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particular EOS model can be similar to the value in a single-
fluid calculation for another EOS. So we cannot distinguish
between the EOS and also probe the fluid nature of matter
at the same time with the measurement of Ay, . One possible
way to break the degeneracy is to have measurements of
other Love numbers which have much smaller effects on
the waveform. This gives us a primary motivation to study
higher order electric-type Love numbers and magnetic-type
Love numbers in the case of a superfluid star.

The paper is organized as follows. In Sec. II, we first
discuss the two-fluid formalism followed by the calculation
of the equilibrium structure along with a brief overview of
the relativistic mean-field (RMF) model of dense matter to
calculate the assorted matter coefficients of the model. Next
in Secs. III and IV, we derive the framework for even and
odd parity tidal perturbations in the two-fluid model,
respectively. In Sec. V we discuss how the tidal Love
numbers are calculated. Then in Sec. VI we discuss our
results. We assume ¢ = G = 1 and use the metric signature
(=, +,+,+) throughout the article.

II. GENERAL RELATIVISTIC SUPERFLUID
NEUTRON STAR

The main ingredients of the superfluid formalism
have been developed and discussed in several works
[26-32,35,36]. To incorporate SF matter inside NSs we
follow a two-fluid model with entrainment. The central
quantity of this formalism is the master function, A. It
depends on three scalars, n*> = —n*n,, p*> = —p*p,, and
x> = —n# pu» Where n# and pt are the number density
currents of the neutron and proton, respectively. When the
fluids are comoving, —A(n?, p, x?) represents the total
thermodynamic energy density. The energy-momentum
tensor takes the following form:

Tllt :‘{15&+pﬂ)(u+n”ﬂu’ (1)
J

where W is the generalized pressure, and it can be
expressed as

Y =A-nu,—p'y, (2)

where y, and p, are, respectively, the chemical potential
covectors of the proton and the neutron fluids,

b= Bu, v 2, =CpytAn ()

where the A, B, and C coefficients are defined as follows:

L

ox? on? op?
The expressions for u, and y, in Eq. (3) make the
entrainment effect vivid. Momentum of the one component
carries along some of the mass current of the other
component when A # 0. Thus, if A =0 the master
function becomes “entrainment free,” implying that it is
independent of x2. The conservation equation for n# and p*
implies

vt =V, pt=0. (5)
They also satisfy a set of Euler-type equations [36],
Vi = p*Vig,) =0, (6)

where the square brackets represent the antisymmetrization
of the closed indices.

A. Equation of state of nuclear matter

We have calculated the master function (A) using the
6 — o — p model with self-interaction in the RMF approxi-
mation [37-40]. The Lagrangian of the theory is as follows:

o 1 | 1 1
‘CB = Z ‘“PB(l]/”aM —Mmp + gop0 — ga)Byywﬂ — 9yBYuTB 'p”)TB - 58”68’46 - Em(2762 - gbm(g50)3 - Z C<906)4

B=n.p
1 1 1 1
- ZQWQ”” -3 mam,w" — 1 P, P — 3 m2p, - p-.,

where mp is the baryon mass. We use the nucleon mass m
as the average of the baryon masses. The Dirac effective
mass m, has been defined as m, = m — g,0. The o, w, and
p mesons represent the scalar, vector, and vector-isovector
interactions, respectively. 7 is the isospin operator.
Q,, and P, are the field tensors for @ and p mesons,
respectively. For the two-fluid system, we choose a frame
in such a way that the neutrons have zero spatial momen-
tum and the proton momentum has a boost along the
z direction as k%, = (k¢, 0,0, K). We follow the procedure

(7)

|

as described in Refs. [39,40] to solve the meson field
equations and numerically evaluate the master function A,
generalized pressure WV, etc. in the limit K — 0.

We consider a normal fluid envelope around the super-
fluid core of the star to account for the behavior of the low
density region of a NS. We assume this region to be free of
superfluid neutrons. This assumption does not affect the
macroscopic structure of the star. To describe the matter in
this region, we employ the EOS for the inner crust
calculated by Grill et al. [41]. We smoothly join the
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EOS by keeping the pressure continuous from the two-fluid
region to the envelope. We also use the DH EOS [42] for
the outer part of the envelope.

B. Equilibrium configuration

We take the background metric of the star to be static and
spherically symmetric. Under such assumptions, the metric
can be written in the Schwarzschild form as follows:

dsy = guydxdx? = ) de? + ) dr?
+ r2(d6? + sin® Od¢?). (8)

This metric structure is valid both in the core and the
envelope. Only the energy-momentum tensor changes from
one region to another.

1. Superfluid core

In the core the energy momentum tensor will take that of
an SF matter, as has been described in Eq. (13). The two
metric functions can then be evaluated from the Einstein’s
equations as follows:

1—e€*
K = — 8mreX Ay,
r

1 =X

“Wlo. ©)

By the following equations the radial profiles for n(r) and
p(r) are determined [36]:

1
Allop" + BYlon' + §M|ol/ =0,

1
CBlop’ + Alon’ + 3710/ =0, (10)
where
88 0A 0A 8.A
0 _ —n? i 2 _7
A = A+2 —|-2a +28 +8 5
88 0A 0A
0 __ 2_ 2 4_ i 2’
By =B+ o + p p+ax2p
oC 0A 0A
CO C 2— 4 n2. 11
+8pp+82np+32 (11)

The two Fermi wave numbers k,, and k,, are the variables
that are more appropriate for the RMF calculations. Thus,

we substitute the number densities with the Fermi wave
numbers using n = 31512 and p :% and solve for %,
and k, instead. We determine the Dirac effective mass
m*|0(k”,k,,) using the method discussed in [37]. The
transcendental algebraic relation in Eq. (B5S) is turned into
a differential equation using

om om
Lo =—=—| &, -
"o = e, |,k ok, |,

K, (12)

where k;, and k), are calculated from Eq. (10). The prime in
the equation represents a radial derivative and a zero
subscript represents that K — 0 has been taken after the
partial derivatives are calculated. We put the boundary
condition at the center and the surface of the star. A
nonsingularity condition at the center imposes x(0) = 0
and «’(0) and ¢/(0) vanishes. Together with Eq. (10) this
condition imposes kj,(0) = k},(0) = 0. Necessary expres-
sions for all the matter quantities used in our calculations
(A|07‘P|07M|0’)(|0,m*|0~4|05B|0’C|07A8|0’58|07C8|0’%—r£: 0

om,
ok,

can be found in Appendix B.
o) pp

2. Normal fluid envelope

In the envelope the matter is modeled as one component
normal fluid (NF). Therefore, the energy momentum tensor
can be written as

(13)

where p and p are the energy density and the pressure of the
fluid in the envelope, respectively. And u* is the four
velocity of the fluid.

Using this form of energy-momentum tensor equation
for the two metric functions can be evaluated from the
Einstein’s equations as follows:

= pé, + (p+ p)utu,,

, I—e
K =

+ 8xre*p,

1—¢€F

V=- + 8are*p. (14)

The continuity of the metric variables at the junction of
the SF core and the normal fluid envelope has been dis-
cussed in Appendix A 1. The surface of the star r = R

implies that the total mass of the star is

R, R
M= an [ areai() +ax [Carotn. (13)
0 c
and ¥|y(R.) = p(R.) and p(R) =0, where R, is the
junction between the SF core and the NF envelope.

III. EVEN PARITY PERTURBATION EQUATIONS
FOR ZERO FREQUENCY MODE

To calculate the electric-type tidal Love number, pertur-
bation of the static and spherically symmetric backgrounds
needs to be calculated. For this purpose we decompose the
metric as [43]

0
Tap = 09 + 6. (16)
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where g((x%) and 69,4 are the background and the perturbed

part of the metric, respectively.

We decompose the metric and the fluid perturbation on
the basis of spherical harmonics Y7"(6, ¢). Because of the
spherical symmetry of the background we take m =0
without breaking any generality [44]. Therefore, the basis is
the Legendre polynomials P;(6).

It is well known that the perturbation can be decomposed
into two kinds of classes according to their behavior under
parity transformation. In this section, we will focus only on
the even parity modes. For the even parity we focus on the
static perturbations. Thus, the perturbations will have no
explicit time dependence. After restricting ourselves in
these conditions we choose the Regge-Wheeler gauge to

fix the even parity perturbation (695,?) in the following

form [45]:
> diag[-e*" HY (r), e HY (r). 2K (1),
1
r2sin0K ") (r)]P,(6), (17)

where (e) represents the even parity sector.

A. Superfluid core

It is simple to calculate the perturbation in the energy
momentum tensor. It can be expressed as 5T8 = 6A and
8T’ = 6¥5). Using these in the Einstein equation and
keeping only the first order of the perturbation, we can
find the perturbed metric equations.

8GY - 6GY =0
= HY = -H) = HO. (18)

8GY + 6GY = 16z5%

= 26¥ = P,(O)HD (A - ¥), (19)
Gl =
= KO+ gOr ¢ gy — 0, (20)

where 0GT = 8z6T) implies

K(l) B _rZZ/IH(l)/
(P H1-2)e"
. HD{2 = P2/% + e (8ar* (W = A) = I(I + 1))}
(> +1-2)e" )
(21)
From the linearized Euler equation we find
0,6p; = 0;0p,. 0i6xi = 0;6x;. (22)

Staticity implies opy = oy = 0. From [(22)] it is
straightforward to show that

5/10 = (Agép + Bg5n)uoégoo + Mogﬁgoo,
Sy = (Agén + C85p)u05900 + uogégoo. (23)

Using Eqgs. (17), (22), and (23) we find

_ (rAY - pCY) HOP(9)
S (BiGy-AR) 2
(nAG —xB) HP,(0)

5p = . (24)
(BoCo — A 2

on

A is a function of n?, p?, and x>. Therefore,

oA OA oA
S\ = == 6x% + == 6p* + — on?
ox? * +8[)2 P +6n2 "
= —[(An + Cp)ép + (Ap + Bn)dn|
HO

= _QTPI(H)v (25)

where

_ #2Cy+ x*BY = 2uxAG
AT = BYCS

(26)

We use the following Einstein equation along with the
expression of A to calculate the final perturbation equa-
tion:

5G. — 6G. = —4ngHP,(0) + 4P,(0)zH (¥ — A).
(27)

After some calculation this reduces to

K+ 1
HO 4 g0y {4mek</\ Ly O }

+HD |:47[6K(—5A +9¥ —g) -2 -
(28)

This is the central equation for the determination of the
electric-type tidal Love numbers. Note that Eq. (28) con-
tains the coefficients A,,, B,,, and C,, which have been
evaluated in the equilibrium configuration. The main
difference between Eq. (28) and its nonsuperfluid single-
fluid counterpart Eq. (15) in Ref. [7] is as follows. In the
case of the normal fluid, it is assumed that the fluid is

barotropic in nature. Therefore, it is possible to write
op = j—”ép and substitute it in the perturbed Einstein
p
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equations. For any multifluid scenarios, this assumption is
incorrect, in general. For this reason, we calculate oA
explicitly with respect to the fluid and the perturbed metric
variables. Because of this, the final equation of even parity
perturbation gets modified and so does the response to the
perturbation subsequently.

B. Normal fluid envelope

We model the low density region as the one component
normal fluid matter. Hence, it is simple to calculate the
perturbation in the energy momentum tensor of the fluid. It
can be expressed as 6T) = —p = — j—f) 8p and 6T = 5pé’.
Using these in the Einstein equation and keeping only the
first order of the perturbation, perturbed metric equations
have been found in several works [3,6]. The equation is as
follows:

HO 4 O {zmex(_p )+

+p I(I+1)e*
HO |azes(5p+9p +2 - LA Y
+ [ﬂe<p+ p+dp/dp 1% 2

e’W—l]

(29)

We take the initial condition for H"") in the normal fluid
region to be the value of the H(") at the junction found by
solving Eq. (28). Then the solution of Eq. (29) gives the
perturbation for the entire star.

IV. ODD PARITY PERTURBATION EQUATIONS
FOR ZERO FREQUENCY MODE

In this section we discuss the odd parity perturbation of
the Einstein equation that will lead to the calculation of the
magnetic-type Love number. The zero frequency limit in
the odd parity sector is discontinuous as has been discussed
in Ref. [46]. Keeping this in mind we take a time dependent
perturbation of the metric and finally in the end we take the
zero frequency limit carefully. After choosing the Regge-
Wheeler gauge the metric perturbation (6g((;;5)) can be
written as follows:

So\y dxdx? = N "2(h) (r.1)drdp + i (r, 1)drdg)
1

X sin 689Pl<9), (30)

where (0) represents the odd parity.

A. Superfluid core

For the odd parity modes 6n = 0 = dp where 5p and én
are the perturbed number density of the proton and the
neutron, respectively. If the perturbed velocity of the
neutron and the proton are, respectively, éu, and v, then
only nonzero components can be written as [36]

. oP
Suy = e—”/QUn(r, t) sin98—91,

Svy = €U, (r,1) sin@%, (31)
where U, and U, are two arbitrary functions yet to be
determined and P, is the Legendre polynomial.

Using the form of the velocity and metric perturbation in
the Einstein equation, the equation for the perturbations can
be found. The equations relevant for our works are as
follows:

L[W/=« 1] W(I+1)\,p 1 -
— —| = g
(eK [ 2r * rz] 272 > ! 2e0 !

1 /. 2.
+5 (hOW —;h()(”) =4z(v+ AR, (32)
1 . 1 V-«
Lo 1 (0 Y _
Zho! (hl + =5 h} ) 0. (33)

A new master function is defined as y = ev=r)/2 h—r‘ [46].
Equation (33) now can be written as

o) = et 2y O (34

We take the time dependence of each mode as e''.
Putting everything together Eq. (32) can be written as

(D1 ,x
o L 28 rf RM(r) + 42 (¥ + A)]
M 1
— eyl | —eva? — 6—3(”) —4z(¥+A) + il —’2_ ) = 0.
r r
(35)

After taking the @ — 0O limit the zero frequency equation
takes the following form:

(1) ,k
ylor £ 2 r;’ RM(r) + 47 (¥ + A)]
M I(l+1
ey | =M _gpw a) + DY _o 36)
T I

This is the central equation for the determination of the
magnetic-type tidal Love numbers. Note that Eq. (36) does
not depend on the coefficients A,,, B,,, and C,, explicitly.
But the effect of the SF nature enters through the depend-
ence of A on x2. Because of this, the values of the magnetic
Love numbers get modified even though the final equation
of odd parity perturbation looks similar to the ones

in [3,46].

B. Normal fluid envelope

Details of the odd parity equations for normal fluid can
be found in Ref. [46]. The final equation is as follows:
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(D)1 K
w'e
y" + == 2M(r) + 477 (p = p)]
6M(r (I+1
— eyl | = r3( )—4ﬂ(p—p)+ ( . ) =0. (37)

We take the initial condition for y(!) in the normal fluid
region to be the value of the w(!) at the junction found by
solving Eq. (36). Then the numerical solution of Eq. (37)
gives the solution for odd mode perturbation for the entire
star.

V. CALCULATION OF THE TIDAL LOVE
NUMBERS

A. Electric-type Love numbers

To calculate the tidal deformability, we solve Eq. (28)
numerically inside the NS up to the junction between the
SF core and the NF envelope. Using the junction conditions
described in Appendix A 1 we find the initial condition of
H" in the envelope. This initial condition has been used to
numerically evolve Eq. (29) up to the surface of the NS.
After that the tidal Love numbers are calculated by
matching the numerical value of HY) found by integration

|

with the external solution of the same equation on the
surface of the star. Extensive discussion on this can be
found in Refs. [3,4,7]. Here we focus only on the initial
conditions. We integrate Eq. (28) for metric perturbation
in core H) radially outward from the center using the
profiles of the background quantities calculated from
Tolman-Oppenheimer-Volkoff (TOV) equations. For
numerical purposes, instead of starting from r =0, we
use a very small cutoff radius (r = r, = 107°). The initial
condition for Eq. (28) around the regular singular point
r=0 can be taken to be H)(r)~ hr!, with I some
arbitrary constant. Since this equation is homogeneous
and the tidal deformability depends explicitly on the value
of yeven(! >(: o - ) at the surface, the scaling constant i does
not hold any relevance Therefore, we can choose the
starting value for the metric variable as H')(ry) = r}
and H'(ry) = Ir!

The deformability is expressed in terms of y¥*(!), found
by solving Eq. (29) in the envelope, and the compactness
C= %, by matching the internal and external value of H(")
at the surface. The tidal Love numbers &, and k5 then take
the following functional form [3.4,7]:

k, 2(1 —2C)2C52C(y? = 1) —y@ + 2] [2C(4(y(2> + 1)C* + (6yD —4)C? 4 (26 — 22y (2
1 -1
+3(5y?@ = 8)C =3y 4+ 6) —3(1 —=2C)?(2C(y» = 1) =y +2) log <W)} , (38)
ks 2(1 —20)2C"2C2(y®) = 1) = 3(y®) =2)C 4y = 3] [2C{4(y<3) +1)C5 +2(9y®) = 2)c?

—20(7y®)

—3C(y®) —2) +y® - 3)log<1_lzc>}_l.

—-9)C? 4 5(37y0) = 72)C? — 452y

The expression for dimensionless deformability can be
found from Damour et al. to be [3]

2
B

Aelecm'c —

C-H,, (40)

TABLE 1. Nucleon-meson coupling constants in the NL3 and
GML sets are taken from Refs. [47.48]. The coupling constants
are obtained by reproducing the saturation properties of sym-
metric nuclear matter as detailed in the text. All the parameters
are in fm?, except b and c¢ which are dimensionless.

c2 c2 clz, b c
NL3 15739 10.530 5324 0.002055 —0.002650
GMI1 11.785 7.148 4410 0.002948 —0.001071

—5)C+15(y® =3)} -

15(1 =2C)*(2C?*(y® =1)

(39)
0.14 1f-GM1
— 1fl-NL3
0.12 — 2fl_GM1
2f-NL3
0.10 -
£ 0.081
0.06
0.04 -
0.02 A
0.5 1.0 1.5 2.0 2.5 3.0
M/Mq,
FIG. 1. The [ =2 electric-type Love number is plotted with

respect to the mass of the neutron star. M is the solar mass.
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1f-GM1 107
- 1fl-GM1
0.040 - —— 1f-NL3 6 —
106 4 1fl_NL3
0.035 - 2;:‘6""1 —— 2fl-GM1
2f-NL3 105 4 —— 2fI-NL3
0.030 -
0.025 - 10* 5
-
X Tm
0.020 - L 1031
0.015 - 102 ]
0.010 -
101 o
0.005 -
100 o
0.000 . . . .
0.5 1.0 1.5 2.0 2.5 3.0 . ; . .
MiMo 0.5 1.0 1.5 2.0 2.5 3.0
M/Mq
FIG. 2. The [ = 3 electric-type Love number is plotted with . . . .
FIG. 5. The [ =3 dimensionless electric-type tidal deform-

respect to the mass of the neutron star. M is the solar mass. o .
ability is plotted with respect to the mass of the neutron star. M

is the solar mass.

0.000 1 B 103
1qu!d-GM1 1f1-GM1
e et
0.010 — 2fIE:d_NL3 2f-GM1
_' 10 4 —— 2fl-NL3
-0.015
& -0.020 A £
2 101 4
-0.025 i
~0.030 A
100 4
~0.035 -
~0.040 A . . . .
0.5 1.0 15 2.0 25 3.0 . . . .
M/Mq 0.5 1.0 1.5 2.0 2.5 3.0
MiMo
FIG. 3. The [ = 2 magnetic-type Love number is plotted with

respect to the mass of the neutron star. M, is the solar mass.

FIG. 6. The [/ =2 dimensionless magnetic-type tidal deform-

ability is plotted with respect to the mass of the neutron star. M

is the solar mass.

Percentage change

106
1fl-GM1 mag
—— A9 NL3
o —— 1fl-NL3 20.0 1 L3
L —— 2fl-GM1 2
—— 2fl-NL3 17.51 — A¢NL3
1094 XN ] A9 GM1
< 15.01
=
E<~ 103 4 o 12.5 1
(o)l
5
£ 10.0
102 5 o
7.5 1
107 3 5.0
100 & T T T T 2.5 1 T T T T T T T
0.5 1.0 15 2.0 2.5 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2
M/M M/Mo

FIG. 4. The [ =2 dimensionless electric-type tidal deform-
ability is plotted with respect to the mass of the neutron star. M
is the solar mass.

FIG. 7. The percentage change in dimensionless tidal deform-
abilities is plotted here with respect to the mass of the neutron
star. M, is the solar mass.
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— fit
% 1f-NL3
+ 1fl-GM1

—-=- 1fl-NL3
~==- 1fl-GM1

102 103

0.30 — it
®  2f-NL3
0.25 7 +  2fl-GM1

0.10

jc-cm|

10—3-
-—- 2fl-NL3
107 { —-- 2fl-GM1

102 103
A

FIG. 8. This diagram shows the universal relation between C and AS'. The upper half of the left panel shows the universality for one
component normal fluid and the upper half of the right panel shows the universal relation for the two-fluid system. The lower halves of

both panels show errors with respect to the fitted curves.
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FIG. 9. This diagram shows the universal relation between A§1 and A;l. The upper half of the left panel shows the universality for one
component normal fluid and the upper half of the right panel shows the universal relation for the two-fluid system. The lower halves of

both panels show errors with respect to the fitted curves.

Since the information of the fluid enters through
y(l>|,:R and C, these expressions of k, and k5 are similar
to the one-fluid formalism. Two-fluid formalism does not
change the external solution. It only changes the internal
equation of H/), resulting in a different value of y| _,
leading to the change in the value of k; but not their
expressions.

B. Magnetic-type Love numbers

To calculate the magnetic-type tidal deformability, we
solve Eq. (36) numerically inside the NS up to the junction
between the SF core and the normal fluid envelope. Then
using the junction conditions described in Appendix A 1
we find the initial condition of y") in the envelope. Using
this initial condition we numerically evolve Eq. (37) up to
the surface of the NS. The tidal Love numbers are
calculated by matching the numerical value of w(") found
by integration with the external solution of the same

equation on the surface of the star. Details can be found
in Ref. [3]. We will integrate Eq. (36) for y!) radially
outward from the center using the profiles of the back-
ground quantities calculated from the TOV equations.
Similar to the calculations of the electric-type Love
number, we start from a very small cutoff radius
(r = ro = 107%). The initial condition for Eq. (36) near
the regular singular point » = 0 can be taken to be y)(r) ~
writ! with %) some constant. Since this equation is
homogeneous in W) and the tidal deformability depends

odd(l)(: !’

explicitly on the value of y l//@) at the surface,

TABLE II.  Values of tidal deformabilities for 1.4M

AL T-lAS 21 AS 1Al AS 2-fl AT Il AT 2-f1

NL3 1268 1391 3455 40155 =79 -84
GM1 903 979 2241 24405  —-6.2 —6.6
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the scaling constant ") is not relevant. Therefore, the
starting value for the metric variable can be chosen as
w(ry) = rittand wW' (ry) = (14 1)r).

The deformability can be expressed in terms of y°dd(),
found by solving Eq. (37) in the envelope, and the
compactness C = %, by matching the internal and external
values of (/) at the surface. The tidal Love number j, takes
the functional form [3],

~ 96

j2 == €= 1)y =3)CRC{126 + 1T

+2(y? =3)C? +2(y? - 3)C?
+3(y® =3)C -3y +9}

+3(2C - 1)(y? =3)log(1 —20)]7". (41)

The expression for dimensionless deformability can be
found from Damour et al. to be [3]

Amagnetic o (l - 1)

_ —(21+1) ;
! 4(1+2)(21 - 1)

JI- (42)

This expression of j, is similar to the one-fluid formal-
ism because the information of the fluid enters through
y|,_g and C. The two-fluid model does not change the
external solution. It changes only the internal equation of
w!) that gives us a different value of y(!)|,_, leading to the
change in the value of j; but not its expression.

VI. RESULTS

In this section, we discuss the numerical results for
tidally deformed superfluid NS. At first, we calculate the
static equilibrium configurations by solving the TOV
equations using realistic EOS. Since only a few calculations
are available for the two-fluid system in the literature, we
choose a RMF-type model with scalar self-interaction
terms and use NL3 and GM1 parametrizations, as in paper
I. We impose S equilibrium at the center of the star by
imposing x|, = x|y to get a set of k,, k,, and m, for
calculating the central number densities of the neutron and
proton, energy density (—Al,), and pressure (¥|;). These
quantities are used to solve Egs. (9), (10), (14), and (15) to
find the structure of the star and to generate profiles for
various background quantities for several different sets of

(k,. k,,m,) that corresponds to the different central energy
densities. The maximum mass we have found to be
2.793 My for NL3 and the corresponding radius being
13.34 km. Similarly, for GM1, the maximum mass is
calculated to be 2.384 M, and the corresponding radius is
12.04 km. Details of those parameter sets can be found in
Table 1. Moreover, for NL3 and GM1 sets, the crust-core
transition pressures are 0.2698 and 0.2434 MeV/ fm?,
respectively. The two-fluid and the single-fluid TOV
integrations are smoothly joined at those pressures. Here
it is important to stress the fact that these EOSs serve
representative purposes only.

After getting the structure of the background, we find the
numerical solution for H”) for the entire star using Eqs. (28)
and (29) and the junction conditions described in Appendix A
1. Using the background profiles mentioned earlier, find
yeven() at the surface of the stars and calculate the electric-
type Love numbers using Eqgs. (38) and (39). Similarly we
find the numerical solution for () for the entire star using
Egs. (36) and (37) and the junction conditions described in
Appendix A 2. Then we find y°4() at the surface of the
stars and calculate the magnetic-type Love number using
Eq. (41). The behavior of k,, k5, and j, with respect to the
mass of the NS has been shown in Figs. 1-3, respectively,
along with the case of normal fluid. We plot the
dimensionless tidal deformabilities in Figs. 4-6 along
with the normal fluid case. The values of the tidal
deformabilities for 1.4 M is shown in Table II. We show
the percentage change in Fig. 7. For all the stellar
configurations, we find the tidal deformabilities of the
two-fluid star are larger than the normal one-fluid stars. To
calculate the tidal deformabilities for the normal fluid case
we used the unified EOS. As a result in both cases of NL3
and GM1, the crust is included in the calculation.

It is important to note that when we speak of the devi-
ation of A, due to the superfluid nature, we bring an am-
biguity in our interpretation of the observed A,. The value
of A, in the two-fluid calculation for a particular EOS
model can be similar to the value in a single-fluid calcu-
lation for another EOS. So we cannot distinguish between
the EOS and also probe the fluid nature of matter at the
same time with the measurement of A,. There are other
possible degeneracies that can affect its value too [49,50].
In Sec. VII we discuss how this degeneracy can be broken.

TABLE III.  Estimated numerical coefficients for the fitting formula of the multipole Love relations.

y X Fluid type a b c d f

c AY 1-A1 0.364 —-0.037 0.001

c AY 2-11 0.349 —0.031 0.0 e e
log A§! AS 1-A1 —1.19050 1.14172 0.046 98 —0.00447 0.000 17
log AS A 2-11 —1.09537 1.11772 0.042 37 —0.00290 0.000 07
log =A™ AY 1-A1 —1.99175 0.442 37 0.020 82 —0.00039 —0.00000
log =A™ AS 2-11 —1.87476 0.356 85 0.044 03 —0.00317 0.000 12
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FIG. 10. This diagram shows the differences between the
C — AS! universality curves for different fluid scenarios. For
comparison we have plotted the corresponding curve using the
fitting parameters from Ref. [52].

VII. UNIVERSAL RELATION

In this section we fit compactness C, A§, and A"
calculated in the previous sections against AS, to test
the universal relation. In Fig. 8 we plot C against AS.
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The upper half of the left panel represents the case when
the fluid has been taken to be one component normal
fluid. The upper half of the right panel represents the
case when the matter is modeled as a two component
superfluid core and a normal fluid envelope. For all the
cases we fit them with a fitting function. The lower
halves of both panels show errors with respect to fitted
curves. In Fig. 9 we plot A against A§'. The upper half
of the left panel represents the case when the fluid has
been taken to be one component normal fluid. The
upper half of the right panel represents the case when
the matter is modeled as a two component superfluid
core and a normal fluid envelope. For all cases we fit
them with a fitting function. The lower halves of both
panels show errors with respect to fitted curves. For the
C - Agl relation, we fit the results for both the one-fluid
and the SF case with the following function [51,52]:

C=a+blnAY + c(InAg)2. (43)

For the other cases, we used the following fitting
function [51,52]:
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FIG. 11. This diagram shows the differences between the Agl - Agl universality curves for different fluid scenarios. For comparison we
have plotted the corresponding curves using the fitting parameters from Ref. [51].
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y=a+bnAg + c(InA$)? + d(In A%)3 + f(In A4,
(44)

The details of the fitted values of the parameters are
described in Table III. In Fig. 10 we show the differences
between the C — AS' universality curves for the different
fluid scenario. For comparison, we have plotted the corre-
sponding curve using the fitting parameters from Ref. [52],
which has been named “1-fl Maselli+.” In Fig. 11 we show
the differences between the A§' — AS! universality curves for
different fluid scenarios. For comparison, we have plotted
the corresponding curve using the fitting parameters from
Ref. [51], which has been named “1-fl Yagi.”

Interestingly one-fluid formalism and SF formalism both
show universal behavior, even though the values of tidal
deformabilities change due to the inclusion of the SF. But a
crucial feature that we have found is that the fitted curve for
normal fluid formalism is different from the scenario when
the matter is treated using two-fluid formalism. For
example, in Table III it can be seen that the values of a,
b, ¢, d, f are different for two different formalisms. This is
an important observation as it opens up the possibility to
probe the SF nature of matter using this deviation. From the
GW data, it is possible to estimate the values of A and A
Having an estimation of such manner it is possible to check
which universal relation is more suitable for the observed
values of the deformabilities. As the two different fluid
natures imply different universal relations, measured values
of the deformabilities will be able to distinguish between
the two different universality curves. This result will help
us break the degeneracy between the fluid nature and the
EOS, discussed in earlier sections. It is important to note
that even though the universal curves are different, they are
not “too different.” Therefore it remains to be seen whether
this strategy will be able to break the degeneracy with the
real data.

VIII. CONCLUSION

Results found in the current work are very important in
the context of constraining the dense matter EOS using the
GW data. Values of the deformabilities for superfluid NS
are higher than the normal fluid star, for a given RMF
model. At present tight constraint has been put on the EOS
from the BNS observation [1,2,53-57]. The results found
here indicate that more EOSs will be ruled out which are
otherwise allowed if we do not consider superfluidity inside
the NS. This provides us the opportunity to improve our
understanding of the SF nature of the dense matter with
better observational data in the future.

We find that the Love numbers are usually larger for a
two-fluid system. Comer et al. [36] found the existence of
several superfluid oscillation modes that cannot be found
otherwise in a single-fluid star. This nature is very specific
to the two-fluid formalism where different fluid modes can
appear due to the existence of the two different types of

fluid displacements. Flanagan and Hinderer discussed the
fact that the tidal deformation of a star can be thought of as
the sum of the deformations arising from different fluid
modes that have been excited inside the star, due to the
tidal perturbation [6]. Therefore, we can say that, due to
the appearance of extra fluid modes in the superfluid
stars, we will get slightly larger deformations under tidal
perturbation.

We argued that there is a degeneracy between the fluid
nature and the EOS. Interestingly, we found that in the SF
case the tidal deformabilities show a universal relation but
the universal curve is different from the one-fluid case. We
discussed how measuring different tidal deformabilities and
using universal relations can break the degeneracy between
the fluid nature and the EOS.
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APPENDIX A: JUNCTION CONDITION

In our current work we have modeled the NS as a
superfluid core with a normal fluid envelope. Crustal
physics is encoded in the current model via the normal
fluid envelope. As there are two layers of fluid in our
model, it is necessary to find the junction condition across
the boundary. For the purpose of simplicity in this section
we will use ¥ as the symbol for pressure both in the SF core
and in the NF envelope, while we derive the junction
conditions. To calculate the junction conditions we take the
level surfaces of W. As there are no “delta-functionlike”
discontinuities in W, the first and second fundamental forms
are continuous everywhere inside the star [58]. Therefore,
by imposing continuity in the first and second forms we can
find the junction conditions.

The normal to the level surface of W is

gvV, ¥

V'V, ¥V

The induced three metric (first fundamental form) y,,, is

NH = (A1)

Yw = LiLig00s
Lo =68 - N°N,. (A2)

The extrinsic curvature (second fundamental form) /C,,
is defined as follows:
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K==LV Ny, (A3)
where parentheses imply symmetrization of the indices.
Junction conditions will be found from the continuity of 7,
and IC,,.

1. Equilibrium configuration and even parity sector

As we are mainly interested in the perturbation on the
background, we write ¥ as follows:

Y(t,r,0) =Y¥y(r) + 5¥(r,0). (A4)

As a smooth background is constructible even in the
presence of perturbation, we assume that the background
and the perturbed part of y,, and K, are separately
continuous at the junction. We will discuss only those
components of y,, and K, that are relevant for our
purpose; for more details see Ref. [33]. First we consider
the components that are useful for the even mode pertur-
bation added to the background quantities. In the zero
frequency limit the relevant quantities can be expressed as

Yoo = —€* + 6900, (AS)
4 v—k/2 1 ! 4 v—3k/2
Koo = ¢ T i 5900 +Ze Sg11.  (A6)
el/z 51119
= — , A7
o= (A7)
r 5‘{”99 l

o Kk/2
Ky = o2 € A

r
—— | 8¢, ———]. (A8
ZeK/2 < 920 e"ég“) ( )

With 6¥(r,0) = 8¥(r)P,(0) these sets of equations
imply

v(R:) = U(R.), (A9)
V(R:) =V(R.), (A10)
k(R.) = R(R,), (Al1)
¥y(R.) = Py(R,), (A12)
H(R.) = H(R,). (A13)

oY oY
lil_é)(RC) - T_é)(RC)’ (A14)
where R represents the radius of the boundary. Physical
quantities with no tilde represent their value in the SF
region just below the junction. A tilde represents the value
of the physical quantity in the normal fluid region just
above the junction.

2. Odd parity sector

For the continuity of the quantities of the odd mode
perturbation we follow a similar procedure. But as has been
discussed earlier we consider the time dependent pertur-
bation for that purpose. We find

Y03 = 6903, (AIS)
Y13 = —0413, (A16)
Ky = (8913 — )y3)- (A17)

SO

Taking /;(t,7) = [ dwh;(w, r)e™" implies h; is con-
tinuous implying y is continuous (for the definition check
Sec. 1V). Continuity of Ky implies we® /2y +
w is continuous. Using Eq. (35) in the SF
region we find that the following expression is continuous:

U 1))].

(A18)

e=x)/2 4M(r)

we )2y + {21//’ +yer <— 2

A similar expression can be found in the normal fluid
region with ¥ — p and A — —p. Since y is continuous,
this implies ' is continuous across the junction.

APPENDIX B: EXPRESSIONS FOR
MATTER VARIABLES

In the limit K — O the master function and the che-
mical potentials of the neutron and proton fluids can be
expressed as

c2 c2 1
Aly = (62 K5 == (03 = K32 =5 (iR il K i+ il

184 7274

1

1 1
—gbm(m—m*|o)3 _Zc(m_m*|0)4 -

1 N i k, +\/ky, 4+ m?
P ky[2ks 4 mz]\/ k5, + mz—myIn | ————| |,

=3 Co [@m=m.fo)(m = m.|o) + m.o(bmez(m = m.|o)* + ccg(m = m.[y)*)]

_ (B1)

064016-12



EFFECT OF SUPERFLUID MATTER OF A NEUTRON STAR ON ... PHYS. REV. D 101, 064016 (2020)

7? OA c c2 o —
/4|0 kz%o :371'2 (k,31+k?,)— 1222 (k;—kﬁ)+ k%+m%|0’
7 OA ¢z 2
_ OAL o 33 P (13— \/kz 2 \/k2 2
)(|0 k%akpo 371'_(n+ p)Jrlzﬂ_z(p n)+ p+m|0+ p+me

The generalized pressure W and the master function are realized by the following relationship:

1
Ply = Alp + 32 (uloks + xlok).

In the above expressions, ¢2 = (g,/m,)*, ¢4 = (9u/my)* 3 = (g,/m,)* and

m.|o = m,(k,.k,,0)

ki 4+ mZ,

2 2
kn + m*|0

2 ! ki +
—m=m o>’ k,,\/k,%+m§|0+kp\/k§,+m$|0+5mi|oln .

1 —k, +\/ k3, + mZ
+ Emﬂo In + bmci(m —m,)? + cci(m —m,)>.
k, + \/k3 +m3|y

(B2)

(B3)

(B4)

(B5)

The expressions for the other matter coefficients (see [39,40]) that are used as the inputs in field equations are as follows:

ki, k2 ks
Vi 4+ mi \/k%7 +m?|,

)

BT SR V7 37

2
JEmly 3F
2 /12 1 2 2
_'_ C/) 2](2 k% ‘|’ m%|0 + C/)
2000 \ "\ fi2 ), 127

1 2 /k2 2 2
Alg=c2 —=c2+ Co <2kf, "+m*|0+ Co

)

KK, K2k
2 2
vk Emilo Jig +md,

2.2

e K%k, B k2 k N 3%ks K2+ m?|,
2 2 2 13 :
30u7lom™ |\l + m? g \/k%, + m?, SHloki VK +milo

n*p

Ve mdlo Jig 4w,

32 ky 1,k cik ks, + m? ;
Blo="Mo_ 2 ke Laks  Cokp {0 Vit mil , i
kn kn 4 kn 5/,{ |Okn /ki_i_mz'() 37[
Cl%k; 2k2 \% k%+m£|0+ C/27

20p%| ok b /k%)+m%|0 127°

2213 213 213
cycuky, kyk, ks ks

Vi +mily \/kf, + m?|,

ki3 12K

K%k, k2 ks
Vi 4+ mi \/klz, +m?|,

32K K2+ m2,

52| okS ’
whokn \ fi2 + m?,

307 oks
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cl - 375l 1 Lk Lk 2k 2 VK +miy k%, K2k
o= e s T | 2 i 3 | e e
P p p OHlokp N Ve +m2g \/kf,—l—mﬂo
B ek 2 VK2 4+ m?|, N c? ki, k2 ks
2 13 p 2
200k B mily 12 Vhrmilo i,
cielk kik, ~ K2k _ 3n K+ ml, (BS)
3042 |0k, | /K + ml] \/k%, + m?, St ok \Vp +milo
at OPA 2 g2 m*lo?;f*
Ao =~ 77| =3T3 (B9)
kpks; Ok, 0k, |, 4k Vi +m
om,
BO| :ﬂj 287‘/\ — 827‘/\ :C2 +i%+£24kn+m7*|00_11” 0 (B]O)
okl okl AT e mly
2 Oms
ety =" (298] ALY A Sl W (B11)
0075 "ok, |, ok YT R k ’
AR NN
where
am* o Clzf m*|0k% 3m — 2m*|0 + 3bmc£(m - m*|0>2 + 3CC§(I’H, - m*|0)3
akﬂ 0 7[2 vV k% + m£|0 m*|0
c2 i3 i3 -
- d + P +2bmci(m —m,|y) +3cc2(m—m,|))? | (B12)
G VC R/ R
and
om.| & mok; 3m —2m,|, + 3bmci(m —m,|y)? + 3ccz(m —m,|y)?
ok, |, ° /kf, +m?|, m. |
c2 3 i3 -1
-5 | =t = +2bmeg(m —m. o) + 3ccy(m—m.[o)* | (B13)
7 |V + ml, \/kf,+mz|0
respectively.
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