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We study the effect of superfluidity on the tidal response of a neutron star in a general relativistic
framework. In this work, we take a dual-layer approach where the superfluid matter is confined in the core
of the star. Then the superfluid core is encapsulated with an envelope of ordinary matter fluid which acts
effectively as the low density crustal region of the star. In the core, the matter content is described by a two-
fluid model where only the neutrons are taken as superfluid and the other fluid consists of protons and
electrons making it charge neutral. We calculate the values of various tidal love numbers of a neutron star
and discuss how they are affected due to the presence of entrainment between the two fluids in the core. We
also emphasize that more than one tidal parameter is necessary to probe superfluidity with the gravitational
wave from the binary inspiral.
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I. INTRODUCTION

The observation of a gravitational wave (GW) from the
binary neutron star (BNS) merger event GW170817 has
allowed us to study the physics of the extreme environment
of highly dense matter at strong gravity [1,2]. During the
orbital evolution, the tidal interaction between the stars of
the binary deforms both of them. These deformations can
be measured in terms of the relativistic tidal Love numbers
of the stars [3–7]. Precise measurements of these param-
eters from the GW signal during the inspiral phase can be
extremely useful to study the nature and the equation of
state (EOS) of the supranuclear matter inside a neutron star
(NS) [8–10]. This is why a huge effort has been made to
understand the modification of waveforms due to the tidal
Love numbers and their measurability and distinguish-
ability of different EOSs [11–17]. Moreover, one can also
infer on the fluid nature of those objects. As these stars are
supposedly very old, their core temperature should be
below the critical transition temperature for the BCS-like
pair formation [18]. Therefore, one can expect superfluid
(SF) neutrons and superconducting protons to form at the
core of the star and superfluid neutrons in the inner crust
[19,20]. Pulsar glitches and the rapid cooling of the NS in
Cassiopeia A are examples which are explicable invoking
superfluid matter inside a NS [21–24]. These changes in
the fluid nature of the star from a single-fluid to a multi-
fluid object can influence its deformability in a nontrivial

way [25]. Recently, we have investigated the role of
superfluidity for the l ¼ 2 electric-type tidal Love number
k2 and the corresponding tidal deformability Λk2 [25]
(hereafter, paper I). In this work we have modeled the star
as a nonrotating sphere of superfluid nuclear matter. We
had adopted the two-fluid model where one-fluid is the
neutron superfluid and the other is the normal charge-
neutral fluid comprising protons and electrons [26–32]. We
found that the inclusion of superfluidity manifests signifi-
cant change in Λk2 compared to the nonsuperfluid case.
However, a neutron star is also a multilayered object, i.e.,

the phases of matter differ significantly from the crust to the
core. As has been known that the property of low density
nuclear matter is correlated directly with the radius, one has
to take into account a proper crust model in the calculation.
To do so, we follow the method described in Ref. [33],
where the properties of the superfluid region inside the core
are appropriately matched to the normal fluid envelope
encapsulating the core. Therefore, the superfluid neutrons
are confined in the core where as the envelope acts as the low
density region of the star. Although, we do not consider the
elasticity of the crustal region in our formalism, this dual-
layer core-envelop approach can approximate the structure
of the star with a crust. Since crustal elasticity does not bring
considerable change in the Love numbers it is unnecessary to
include it here [34]. We also study the junction conditions for
the perturbed quantities of interest in detail.
At this point, it is important to note that when we speak

of the deviation of Λk2 due to the superfluid nature, we
bring an ambiguity in our interpretation of the observed
Λk2 . The value of Λk2 in the two-fluid calculation for a
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particular EOSmodel can be similar to the value in a single-
fluid calculation for another EOS. So we cannot distinguish
between the EOS and also probe the fluid nature of matter
at the same time with the measurement ofΛk2 . One possible
way to break the degeneracy is to have measurements of
other Love numbers which have much smaller effects on
the waveform. This gives us a primary motivation to study
higher order electric-type Love numbers and magnetic-type
Love numbers in the case of a superfluid star.
The paper is organized as follows. In Sec. II, we first

discuss the two-fluid formalism followed by the calculation
of the equilibrium structure along with a brief overview of
the relativistic mean-field (RMF) model of dense matter to
calculate the assorted matter coefficients of the model. Next
in Secs. III and IV, we derive the framework for even and
odd parity tidal perturbations in the two-fluid model,
respectively. In Sec. V we discuss how the tidal Love
numbers are calculated. Then in Sec. VI we discuss our
results. We assume c ¼ G ¼ 1 and use the metric signature
ð−;þ;þ;þÞ throughout the article.

II. GENERAL RELATIVISTIC SUPERFLUID
NEUTRON STAR

The main ingredients of the superfluid formalism
have been developed and discussed in several works
[26–32,35,36]. To incorporate SF matter inside NSs we
follow a two-fluid model with entrainment. The central
quantity of this formalism is the master function, Λ. It
depends on three scalars, n2 ¼ −nμnμ, p2 ¼ −pμpμ, and
x2 ¼ −nμpμ, where nμ and pμ are the number density
currents of the neutron and proton, respectively. When the
fluids are comoving, −Λðn2; p2; x2Þ represents the total
thermodynamic energy density. The energy-momentum
tensor takes the following form:

Tμ
ν ¼ Ψδμν þ pμχν þ nμμν; ð1Þ

where Ψ is the generalized pressure, and it can be
expressed as

Ψ ¼ Λ − nρμρ − pρχρ; ð2Þ

where χν and μν are, respectively, the chemical potential
covectors of the proton and the neutron fluids,

μμ ¼ Bnμ þApμ; χμ ¼ Cpμ þAnμ; ð3Þ

where the A, B, and C coefficients are defined as follows:

A ¼ −
∂Λ
∂x2 ; B ¼ −2

∂Λ
∂n2 ; C ¼ −2

∂Λ
∂p2

: ð4Þ

The expressions for μμ and χμ in Eq. (3) make the
entrainment effect vivid. Momentum of the one component
carries along some of the mass current of the other
component when A ≠ 0. Thus, if A ¼ 0 the master
function becomes “entrainment free,” implying that it is
independent of x2. The conservation equation for nμ and pμ

implies

∇μnμ ¼ ∇μpμ ¼ 0: ð5Þ

They also satisfy a set of Euler-type equations [36],

nμ∇½μμν� ¼ pμ∇½μχν� ¼ 0; ð6Þ

where the square brackets represent the antisymmetrization
of the closed indices.

A. Equation of state of nuclear matter

We have calculated the master function (Λ) using the
σ − ω − ρ model with self-interaction in the RMF approxi-
mation [37–40]. The Lagrangian of the theory is as follows:

LB ¼
X
B¼n;p

Ψ̄Bðiγμ∂μ −mB þ gσBσ − gωBγμωμ − gρBγμτB · ρμÞΨB −
1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

3
bmðgσσÞ3 −

1

4
cðgσσÞ4

−
1

4
ΩμνΩμν −

1

2
m2

ωωμω
μ −

1

4
Pμν · Pμν −

1

2
m2

ρρμ · ρμ; ð7Þ

where mB is the baryon mass. We use the nucleon mass m
as the average of the baryon masses. The Dirac effective
mass m� has been defined as m� ¼ m − gσσ. The σ, ω, and
ρ mesons represent the scalar, vector, and vector-isovector
interactions, respectively. τB is the isospin operator.
Ωμν and Pμν are the field tensors for ω and ρ mesons,
respectively. For the two-fluid system, we choose a frame
in such a way that the neutrons have zero spatial momen-
tum and the proton momentum has a boost along the
z direction as kμp ¼ ðk0; 0; 0; KÞ. We follow the procedure

as described in Refs. [39,40] to solve the meson field
equations and numerically evaluate the master function Λ,
generalized pressure Ψ, etc. in the limit K → 0.
We consider a normal fluid envelope around the super-

fluid core of the star to account for the behavior of the low
density region of a NS. We assume this region to be free of
superfluid neutrons. This assumption does not affect the
macroscopic structure of the star. To describe the matter in
this region, we employ the EOS for the inner crust
calculated by Grill et al. [41]. We smoothly join the
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EOS by keeping the pressure continuous from the two-fluid
region to the envelope. We also use the DH EOS [42] for
the outer part of the envelope.

B. Equilibrium configuration

We take the background metric of the star to be static and
spherically symmetric. Under such assumptions, the metric
can be written in the Schwarzschild form as follows:

ds20 ¼ gð0Þαβ dx
αdxβ ¼ −eνðrÞdt2 þ eκðrÞdr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð8Þ

This metric structure is valid both in the core and the
envelope. Only the energy-momentum tensor changes from
one region to another.

1. Superfluid core

In the core the energy momentum tensor will take that of
an SF matter, as has been described in Eq. (13). The two
metric functions can then be evaluated from the Einstein’s
equations as follows:

κ0 ¼ 1 − eκ

r
− 8πreκΛj0;

ν0 ¼ −
1 − eκ

r
þ 8πreκΨj0: ð9Þ

By the following equations the radial profiles for nðrÞ and
pðrÞ are determined [36]:

A0
0j0p0 þ B0

0j0n0 þ
1

2
μj0ν0 ¼ 0;

C00j0p0 þA0
0j0n0 þ

1

2
χj0ν0 ¼ 0; ð10Þ

where

A0
0 ¼ Aþ 2

∂B
∂p2

npþ 2
∂A
∂n2 n

2 þ 2
∂A
∂p2

p2 þ ∂A
∂x2 np;

B0
0 ¼ B þ 2

∂B
∂n2 n

2 þ 4
∂A
∂n2 npþ ∂A

∂x2 p
2;

C00 ¼ C þ 2
∂C
∂p2

p2 þ 4
∂A
∂p2

npþ ∂A
∂x2 n

2: ð11Þ

The two Fermi wave numbers kn and kp are the variables
that are more appropriate for the RMF calculations. Thus,
we substitute the number densities with the Fermi wave

numbers using n ¼ k3n
3π2

and p ¼ k3p
3π2

and solve for kn
and kp instead. We determine the Dirac effective mass
m�j0ðkn; kpÞ using the method discussed in [37]. The
transcendental algebraic relation in Eq. (B5) is turned into
a differential equation using

m0�j0 ¼
∂m�
∂kn

����
0

k0n þ
∂m�
∂kp

����
0

k0p; ð12Þ

where k0n and k0p are calculated from Eq. (10). The prime in
the equation represents a radial derivative and a zero
subscript represents that K → 0 has been taken after the
partial derivatives are calculated. We put the boundary
condition at the center and the surface of the star. A
nonsingularity condition at the center imposes κð0Þ ¼ 0
and κ0ð0Þ and ν0ð0Þ vanishes. Together with Eq. (10) this
condition imposes k0nð0Þ ¼ k0pð0Þ ¼ 0. Necessary expres-
sions for all the matter quantities used in our calculations
ðΛj0;Ψj0;μj0; χj0;m�j0;Aj0;Bj0;Cj0;A0

0j0;B0
0j0;C00j0; ∂m�∂kn j0;∂m�∂kp j0Þ can be found in Appendix B.

2. Normal fluid envelope

In the envelope the matter is modeled as one component
normal fluid (NF). Therefore, the energy momentum tensor
can be written as

Tμ
ν ¼ pδμν þ ðρþ pÞuμuν; ð13Þ

where ρ and p are the energy density and the pressure of the
fluid in the envelope, respectively. And uμ is the four
velocity of the fluid.
Using this form of energy-momentum tensor equation

for the two metric functions can be evaluated from the
Einstein’s equations as follows:

κ0 ¼ 1 − eκ

r
þ 8πreκρ;

ν0 ¼ −
1 − eκ

r
þ 8πreκp: ð14Þ

The continuity of the metric variables at the junction of
the SF core and the normal fluid envelope has been dis-
cussed in Appendix A 1. The surface of the star r ¼ R
implies that the total mass of the star is

M ¼ −4π
Z

Rc

0

drr2Λj0ðrÞ þ 4π

Z
R

Rc

drr2ρðrÞ; ð15Þ

and Ψj0ðRcÞ ¼ pðRcÞ and pðRÞ ¼ 0, where Rc is the
junction between the SF core and the NF envelope.

III. EVEN PARITY PERTURBATION EQUATIONS
FOR ZERO FREQUENCY MODE

To calculate the electric-type tidal Love number, pertur-
bation of the static and spherically symmetric backgrounds
needs to be calculated. For this purpose we decompose the
metric as [43]

gαβ ¼ gð0Þαβ þ δgαβ; ð16Þ
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where gð0Þαβ and δgαβ are the background and the perturbed
part of the metric, respectively.
We decompose the metric and the fluid perturbation on

the basis of spherical harmonics Ym
l ðθ;ϕÞ. Because of the

spherical symmetry of the background we take m ¼ 0
without breaking any generality [44]. Therefore, the basis is
the Legendre polynomials PlðθÞ.
It is well known that the perturbation can be decomposed

into two kinds of classes according to their behavior under
parity transformation. In this section, we will focus only on
the even parity modes. For the even parity we focus on the
static perturbations. Thus, the perturbations will have no
explicit time dependence. After restricting ourselves in
these conditions we choose the Regge-Wheeler gauge to

fix the even parity perturbation ðδgðeÞαβ Þ in the following
form [45]:

X
l

diag½−eνðrÞHðlÞ
0 ðrÞ; eκðrÞHðlÞ

2 ðrÞ; r2KðlÞðrÞ;

r2sin2θKðlÞðrÞ�PlðθÞ; ð17Þ

where (e) represents the even parity sector.

A. Superfluid core

It is simple to calculate the perturbation in the energy
momentum tensor. It can be expressed as δT0

0 ¼ δΛ and
δTi

j ¼ δΨδij. Using these in the Einstein equation and
keeping only the first order of the perturbation, we can
find the perturbed metric equations.

δGθ
θ − δGϕ

ϕ ¼ 0

⇒ HðlÞ
0 ¼ −HðlÞ

2 ≡HðlÞ; ð18Þ

δGθ
θ þ δGϕ

ϕ ¼ 16πδΨ

⇒ 2δΨ ¼ PlðθÞHðlÞðΛ −ΨÞ; ð19Þ

δGr
θ ¼ 0

⇒ KðlÞ0 þHðlÞ0 þHðlÞν0 ¼ 0; ð20Þ

where δGr
r ¼ 8πδTr

r implies

KðlÞ ¼ −r2ν0HðlÞ0

ðl2 þ l − 2Þeκ

þHðlÞf2 − r2ν02 þ eκð8πr2ðΨ − ΛÞ − lðlþ 1ÞÞg
ðl2 þ l − 2Þeκ :

ð21Þ

From the linearized Euler equation we find

∂tδμi ¼ ∂iδμt; ∂tδχi ¼ ∂iδχt: ð22Þ

Staticity implies δμ0 ¼ δχ0 ¼ 0. From [(22)] it is
straightforward to show that

δμ0 ¼ ðA0
0δpþ B0

0δnÞu0δg00 þ u0
μ

2
δg00;

δχ0 ¼ ðA0
0δnþ C0

0δpÞu0δg00 þ u0
χ

2
δg00: ð23Þ

Using Eqs. (17), (22), and (23) we find

δn ¼ ðχA0
0 − μC0

0Þ
ðB0

0C
0
0 − A02

0 Þ
HðlÞPlðθÞ

2
;

δp ¼ ðμA0
0 − χB0

0Þ
ðB0

0C
0
0 − A02

0 Þ
HðlÞPlðθÞ

2
: ð24Þ

Λ is a function of n2, p2, and x2. Therefore,

δΛ ¼ ∂Λ
∂x2 δx

2 þ ∂Λ
∂p2

δp2 þ ∂Λ
∂n2 δn

2

¼ −½ðAnþ CpÞδpþ ðApþ BnÞδn�

¼ −g
HðlÞ

2
PlðθÞ; ð25Þ

where

g ¼ μ2C0
0 þ χ2B0

0 − 2μχA0
0

A02
0 − B0

0C
0
0

: ð26Þ

We use the following Einstein equation along with the
expression of δΛ to calculate the final perturbation equa-
tion:

δGt
t − δGr

r ¼ −4πgHðlÞPlðθÞ þ 4PlðθÞπHðlÞðΨ − ΛÞ:
ð27Þ

After some calculation this reduces to

HðlÞ00 þHðlÞ0
�
4πreκðΛþ ΨÞ þ eκ þ 1

r

�

þHðlÞ
�
4πeκð−5Λþ 9Ψ − gÞ − ν02 −

lðlþ 1Þeκ
r2

�
¼ 0:

ð28Þ

This is the central equation for the determination of the
electric-type tidal Love numbers. Note that Eq. (28) con-
tains the coefficients Aμν, Bμν, and Cμν which have been
evaluated in the equilibrium configuration. The main
difference between Eq. (28) and its nonsuperfluid single-
fluid counterpart Eq. (15) in Ref. [7] is as follows. In the
case of the normal fluid, it is assumed that the fluid is
barotropic in nature. Therefore, it is possible to write
δρ ¼ dρ

dp δp and substitute it in the perturbed Einstein
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equations. For any multifluid scenarios, this assumption is
incorrect, in general. For this reason, we calculate δΛ
explicitly with respect to the fluid and the perturbed metric
variables. Because of this, the final equation of even parity
perturbation gets modified and so does the response to the
perturbation subsequently.

B. Normal fluid envelope

We model the low density region as the one component
normal fluid matter. Hence, it is simple to calculate the
perturbation in the energy momentum tensor of the fluid. It
can be expressed as δT0

0 ¼ −δρ ¼ − dρ
dp δp and δTi

j ¼ δpδij.
Using these in the Einstein equation and keeping only the
first order of the perturbation, perturbed metric equations
have been found in several works [3,6]. The equation is as
follows:

HðlÞ00 þHðlÞ0
�
4πreκð−ρþpÞ þ eκ þ 1

r

�

þHðlÞ
�
4πeκ

�
5ρþ 9pþ ρþp

dp=dρ

�
− ν02 −

lðlþ 1Þeκ
r2

�
¼ 0:

ð29Þ

We take the initial condition for HðlÞ in the normal fluid
region to be the value of the HðlÞ at the junction found by
solving Eq. (28). Then the solution of Eq. (29) gives the
perturbation for the entire star.

IV. ODD PARITY PERTURBATION EQUATIONS
FOR ZERO FREQUENCY MODE

In this section we discuss the odd parity perturbation of
the Einstein equation that will lead to the calculation of the
magnetic-type Love number. The zero frequency limit in
the odd parity sector is discontinuous as has been discussed
in Ref. [46]. Keeping this in mind we take a time dependent
perturbation of the metric and finally in the end we take the
zero frequency limit carefully. After choosing the Regge-
Wheeler gauge the metric perturbation ðδgðoÞαβ Þ can be
written as follows:

δgðoÞαβ dx
αdxβ ¼

X
l

2ðhðlÞ0 ðr; tÞdtdϕþ hðlÞ1 ðr; tÞdrdϕÞ

× sin θ∂θPlðθÞ; ð30Þ
where (o) represents the odd parity.

A. Superfluid core

For the odd parity modes δn ¼ 0 ¼ δp where δp and δn
are the perturbed number density of the proton and the
neutron, respectively. If the perturbed velocity of the
neutron and the proton are, respectively, δuμ and δvμ then
only nonzero components can be written as [36]

δuϕ ¼ e−ν=2 _Unðr; tÞ sin θ
∂Pl

∂θ ;

δvϕ ¼ e−ν=2 _Upðr; tÞ sin θ
∂Pl

∂θ ; ð31Þ

where Un and Up are two arbitrary functions yet to be
determined and Pl is the Legendre polynomial.
Using the form of the velocity and metric perturbation in

the Einstein equation, the equation for the perturbations can
be found. The equations relevant for our works are as
follows:�

1

eκ

�
ν0 − κ0

2r
þ 1

r2

�
−
lðlþ 1Þ
2r2

�
hðlÞ1 −

1

2eν
ḧ1

ðlÞ

þ 1

2eν

�
_h0
ðlÞ0 −

2

r
_h0
ðlÞ
�

¼ 4πðΨþ ΛÞhðlÞ1 ; ð32Þ

1

eν
_h0
ðlÞ −

1

eκ

�
hðlÞ01 þ ν0 − κ0

2
hðlÞ1

�
¼ 0: ð33Þ

A new master function is defined as ψ ¼ eðν−κÞ=2 h1
r [46].

Equation (33) now can be written as

_h0
ðlÞ ¼ eðν−κÞ=2ðψ ðlÞrÞ0: ð34Þ

We take the time dependence of each mode as eiωt.
Putting everything together Eq. (32) can be written as

ψ ðlÞ00 þ ψ ðlÞ0eκ

r2
½2MðrÞ þ 4πr3ðΨþ ΛÞ�

− eκψ ðlÞ
�
−e−νω2 −

6MðrÞ
r3

− 4πðΨþ ΛÞ þ lðlþ 1Þ
r2

�
¼ 0:

ð35Þ
After taking the ω → 0 limit the zero frequency equation
takes the following form:

ψ ðlÞ00 þ ψ ðlÞ0eκ

r2
½2MðrÞ þ 4πr3ðΨþ ΛÞ�

− eκψ ðlÞ
�
−
6MðrÞ
r3

− 4πðΨþ ΛÞ þ lðlþ 1Þ
r2

�
¼ 0: ð36Þ

This is the central equation for the determination of the
magnetic-type tidal Love numbers. Note that Eq. (36) does
not depend on the coefficients Aμν, Bμν, and Cμν explicitly.
But the effect of the SF nature enters through the depend-
ence of Λ on x2. Because of this, the values of the magnetic
Love numbers get modified even though the final equation
of odd parity perturbation looks similar to the ones
in [3,46].

B. Normal fluid envelope

Details of the odd parity equations for normal fluid can
be found in Ref. [46]. The final equation is as follows:
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ψ ðlÞ00 þ ψ ðlÞ0eκ

r2
½2MðrÞ þ 4πr3ðp − ρÞ�

− eκψ ðlÞ
�
−
6MðrÞ
r3

− 4πðp − ρÞ þ lðlþ 1Þ
r2

�
¼ 0: ð37Þ

We take the initial condition for ψ ðlÞ in the normal fluid
region to be the value of the ψ ðlÞ at the junction found by
solving Eq. (36). Then the numerical solution of Eq. (37)
gives the solution for odd mode perturbation for the entire
star.

V. CALCULATION OF THE TIDAL LOVE
NUMBERS

A. Electric-type Love numbers

To calculate the tidal deformability, we solve Eq. (28)
numerically inside the NS up to the junction between the
SF core and the NF envelope. Using the junction conditions
described in Appendix A 1 we find the initial condition of
HðlÞ in the envelope. This initial condition has been used to
numerically evolve Eq. (29) up to the surface of the NS.
After that the tidal Love numbers are calculated by
matching the numerical value of HðlÞ found by integration

with the external solution of the same equation on the
surface of the star. Extensive discussion on this can be
found in Refs. [3,4,7]. Here we focus only on the initial
conditions. We integrate Eq. (28) for metric perturbation
in core HðlÞ radially outward from the center using the
profiles of the background quantities calculated from
Tolman-Oppenheimer-Volkoff (TOV) equations. For
numerical purposes, instead of starting from r ¼ 0, we
use a very small cutoff radius ðr ¼ r0 ¼ 10−6Þ. The initial
condition for Eq. (28) around the regular singular point
r ¼ 0 can be taken to be HðlÞðrÞ ∼ h̄rl, with h̄ some
arbitrary constant. Since this equation is homogeneous
and the tidal deformability depends explicitly on the value
of yevenðlÞð¼ rHðlÞ0

HðlÞ Þ at the surface, the scaling constant h̄ does
not hold any relevance. Therefore, we can choose the
starting value for the metric variable as HðlÞðr0Þ ¼ rl0
and H0ðr0Þ ¼ lrl−10 .
The deformability is expressed in terms of yevenðlÞ, found

by solving Eq. (29) in the envelope, and the compactness
C ¼ M

R , by matching the internal and external value of HðlÞ

at the surface. The tidal Love numbers k2 and k3 then take
the following functional form [3,4,7]:

k2 ¼
8

5
ð1 − 2CÞ2C5½2Cðyð2Þ − 1Þ − yð2Þ þ 2�

�
2Cð4ðyð2Þ þ 1ÞC4 þ ð6yð2Þ − 4ÞC3 þ ð26 − 22yð2ÞÞC2

þ 3ð5yð2Þ − 8ÞC − 3yð2Þ þ 6Þ − 3ð1 − 2CÞ2ð2Cðyð2Þ − 1Þ − yð2Þ þ 2Þ log
�

1

1 − 2C

��
−1
; ð38Þ

k3 ¼
8

7
ð1 − 2CÞ2C7½2C2ðyð3Þ − 1Þ − 3ðyð3Þ − 2ÞCþ yð3Þ − 3�

�
2Cf4ðyð3Þ þ 1ÞC5 þ 2ð9yð3Þ − 2ÞC4

− 20ð7yð3Þ − 9ÞC3 þ 5ð37yð3Þ − 72ÞC2 − 45ð2yð3Þ − 5ÞCþ 15ðyð3Þ − 3Þg − 15ð1 − 2CÞ2ð2C2ðyð3Þ − 1Þ

− 3Cðyð3Þ − 2Þ þ yð3Þ − 3Þ log
�

1

1 − 2C

��
−1
: ð39Þ

The expression for dimensionless deformability can be
found from Damour et al. to be [3]

Λelectric
l ¼ 2

ð2l − 1Þ!!C
−ð2lþ1Þkl: ð40Þ

TABLE I. Nucleon-meson coupling constants in the NL3 and
GM1 sets are taken from Refs. [47,48]. The coupling constants
are obtained by reproducing the saturation properties of sym-
metric nuclear matter as detailed in the text. All the parameters
are in fm2, except b and c which are dimensionless.

c2σ c2ω c2ρ b c

NL3 15.739 10.530 5.324 0.002 055 −0.002650
GM1 11.785 7.148 4.410 0.002 948 −0.001071 FIG. 1. The l ¼ 2 electric-type Love number is plotted with

respect to the mass of the neutron star. M⊙ is the solar mass.
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FIG. 2. The l ¼ 3 electric-type Love number is plotted with
respect to the mass of the neutron star. M⊙ is the solar mass.

FIG. 3. The l ¼ 2 magnetic-type Love number is plotted with
respect to the mass of the neutron star. M⊙ is the solar mass.

FIG. 4. The l ¼ 2 dimensionless electric-type tidal deform-
ability is plotted with respect to the mass of the neutron star. M⊙
is the solar mass.

FIG. 5. The l ¼ 3 dimensionless electric-type tidal deform-
ability is plotted with respect to the mass of the neutron star. M⊙
is the solar mass.

FIG. 6. The l ¼ 2 dimensionless magnetic-type tidal deform-
ability is plotted with respect to the mass of the neutron star. M⊙
is the solar mass.

FIG. 7. The percentage change in dimensionless tidal deform-
abilities is plotted here with respect to the mass of the neutron
star. M⊙ is the solar mass.
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Since the information of the fluid enters through
yðlÞjr¼R and C, these expressions of k2 and k3 are similar
to the one-fluid formalism. Two-fluid formalism does not
change the external solution. It only changes the internal
equation of HðlÞ, resulting in a different value of yðlÞjr¼R,
leading to the change in the value of kl but not their
expressions.

B. Magnetic-type Love numbers

To calculate the magnetic-type tidal deformability, we
solve Eq. (36) numerically inside the NS up to the junction
between the SF core and the normal fluid envelope. Then
using the junction conditions described in Appendix A 1
we find the initial condition of ψ ðlÞ in the envelope. Using
this initial condition we numerically evolve Eq. (37) up to
the surface of the NS. The tidal Love numbers are
calculated by matching the numerical value of ψ ðlÞ found
by integration with the external solution of the same

equation on the surface of the star. Details can be found
in Ref. [3]. We will integrate Eq. (36) for ψ ðlÞ radially
outward from the center using the profiles of the back-
ground quantities calculated from the TOV equations.
Similar to the calculations of the electric-type Love
number, we start from a very small cutoff radius
ðr ¼ r0 ¼ 10−6Þ. The initial condition for Eq. (36) near
the regular singular point r ¼ 0 can be taken to be ψ ðlÞðrÞ ∼
ψ̄rlþ1 with ψ̄ ðlÞ some constant. Since this equation is
homogeneous in ΨðlÞ and the tidal deformability depends

explicitly on the value of yoddðlÞð¼ rψ ðlÞ0

ψ ðlÞ Þ at the surface,

FIG. 8. This diagram shows the universal relation between C and Λel
2 . The upper half of the left panel shows the universality for one

component normal fluid and the upper half of the right panel shows the universal relation for the two-fluid system. The lower halves of
both panels show errors with respect to the fitted curves.

FIG. 9. This diagram shows the universal relation between Λel
3 and Λel

2 . The upper half of the left panel shows the universality for one
component normal fluid and the upper half of the right panel shows the universal relation for the two-fluid system. The lower halves of
both panels show errors with respect to the fitted curves.

TABLE II. Values of tidal deformabilities for 1.4M⊙

Λel
2 1-fl Λel

2 2-fl Λel
3 1-fl Λel

3 2-fl Λmag
2 1-fl Λmag

2 2-fl

NL3 1268 1391 3455 4015.5 −7.9 −8.4
GM1 903 979 2241 2440.5 −6.2 −6.6
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the scaling constant ψ̄ ðlÞ is not relevant. Therefore, the
starting value for the metric variable can be chosen as
ψ ðlÞðr0Þ ¼ rlþ1

0 and ψ ðlÞ0ðr0Þ ¼ ðlþ 1Þrl0.
The deformability can be expressed in terms of yoddðlÞ,

found by solving Eq. (37) in the envelope, and the
compactness C ¼ M

R , by matching the internal and external
values of ψ ðlÞ at the surface. The tidal Love number j2 takes
the functional form [3],

j2 ¼
96

5
ð2C − 1Þðy − 3ÞC5½2Cf12ðyð2Þ þ 1ÞC4

þ 2ðyð2Þ − 3ÞC3 þ 2ðyð2Þ − 3ÞC2

þ 3ðyð2Þ − 3ÞC − 3yð2Þ þ 9g
þ 3ð2C − 1Þðyð2Þ − 3Þ logð1 − 2CÞ�−1: ð41Þ

The expression for dimensionless deformability can be
found from Damour et al. to be [3]

Λmagnetic
l ¼ ðl − 1Þ

4ðlþ 2Þð2l − 1Þ!!C
−ð2lþ1Þjl: ð42Þ

This expression of j2 is similar to the one-fluid formal-
ism because the information of the fluid enters through
yðlÞjr¼R and C. The two-fluid model does not change the
external solution. It changes only the internal equation of
ψ ðlÞ that gives us a different value of yðlÞjr¼R, leading to the
change in the value of jl but not its expression.

VI. RESULTS

In this section, we discuss the numerical results for
tidally deformed superfluid NS. At first, we calculate the
static equilibrium configurations by solving the TOV
equations using realistic EOS. Since only a few calculations
are available for the two-fluid system in the literature, we
choose a RMF-type model with scalar self-interaction
terms and use NL3 and GM1 parametrizations, as in paper
I. We impose β equilibrium at the center of the star by
imposing μj0 ¼ χj0 to get a set of kn, kp, and m� for
calculating the central number densities of the neutron and
proton, energy density (−Λj0), and pressure (Ψj0). These
quantities are used to solve Eqs. (9), (10), (14), and (15) to
find the structure of the star and to generate profiles for
various background quantities for several different sets of

ðkn; kp;m�Þ that corresponds to the different central energy
densities. The maximum mass we have found to be
2.793 M⊙ for NL3 and the corresponding radius being
13.34 km. Similarly, for GM1, the maximum mass is
calculated to be 2.384 M⊙ and the corresponding radius is
12.04 km. Details of those parameter sets can be found in
Table I. Moreover, for NL3 and GM1 sets, the crust-core
transition pressures are 0.2698 and 0.2434 MeV= fm3,
respectively. The two-fluid and the single-fluid TOV
integrations are smoothly joined at those pressures. Here
it is important to stress the fact that these EOSs serve
representative purposes only.
After getting the structure of the background, we find the

numerical solution forHðlÞ for the entire star using Eqs. (28)
and (29) and the junctionconditionsdescribed inAppendixA
1. Using the background profiles mentioned earlier, find
yevenðlÞ at the surface of the stars and calculate the electric-
type Love numbers using Eqs. (38) and (39). Similarly we
find the numerical solution for ψ ðlÞ for the entire star using
Eqs. (36) and (37) and the junction conditions described in
Appendix A 2. Then we find yoddðlÞ at the surface of the
stars and calculate the magnetic-type Love number using
Eq. (41). The behavior of k2, k3, and j2 with respect to the
mass of the NS has been shown in Figs. 1–3, respectively,
along with the case of normal fluid. We plot the
dimensionless tidal deformabilities in Figs. 4–6 along
with the normal fluid case. The values of the tidal
deformabilities for 1.4 M⊙ is shown in Table II. We show
the percentage change in Fig. 7. For all the stellar
configurations, we find the tidal deformabilities of the
two-fluid star are larger than the normal one-fluid stars. To
calculate the tidal deformabilities for the normal fluid case
we used the unified EOS. As a result in both cases of NL3
and GM1, the crust is included in the calculation.
It is important to note that when we speak of the devi-

ation of Λ2 due to the superfluid nature, we bring an am-
biguity in our interpretation of the observed Λ2. The value
of Λ2 in the two-fluid calculation for a particular EOS
model can be similar to the value in a single-fluid calcu-
lation for another EOS. So we cannot distinguish between
the EOS and also probe the fluid nature of matter at the
same time with the measurement of Λ2. There are other
possible degeneracies that can affect its value too [49,50].
In Sec. VII we discuss how this degeneracy can be broken.

TABLE III. Estimated numerical coefficients for the fitting formula of the multipole Love relations.

y x Fluid type a b c d f

C Λel
2

1-fl 0.364 −0.037 0.001 � � � � � �
C Λel

2
2-fl 0.349 −0.031 0.0 � � � � � �

logΛel
3 Λel

2
1-fl −1.19050 1.141 72 0.046 98 −0.00447 0.000 17

logΛel
3 Λel

2
2-fl −1.09537 1.117 72 0.042 37 −0.00290 0.000 07

log−Λmag
2 Λel

2
1-fl −1.99175 0.442 37 0.020 82 −0.00039 −0.00000

log−Λmag
2 Λel

2
2-fl −1.87476 0.356 85 0.044 03 −0.00317 0.000 12
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VII. UNIVERSAL RELATION

In this section we fit compactness C, Λel
3 , and Λmag

2

calculated in the previous sections against Λel
2 , to test

the universal relation. In Fig. 8 we plot C against Λel
2 .

The upper half of the left panel represents the case when
the fluid has been taken to be one component normal
fluid. The upper half of the right panel represents the
case when the matter is modeled as a two component
superfluid core and a normal fluid envelope. For all the
cases we fit them with a fitting function. The lower
halves of both panels show errors with respect to fitted
curves. In Fig. 9 we plot Λel

3 against Λel
2 . The upper half

of the left panel represents the case when the fluid has
been taken to be one component normal fluid. The
upper half of the right panel represents the case when
the matter is modeled as a two component superfluid
core and a normal fluid envelope. For all cases we fit
them with a fitting function. The lower halves of both
panels show errors with respect to fitted curves. For the
C − Λel

2 relation, we fit the results for both the one-fluid
and the SF case with the following function [51,52]:

C ¼ aþ b lnΛel
2 þ cðlnΛel

2 Þ2: ð43Þ

For the other cases, we used the following fitting
function [51,52]:

FIG. 11. This diagram shows the differences between theΛel
3 − Λel

2 universality curves for different fluid scenarios. For comparison we
have plotted the corresponding curves using the fitting parameters from Ref. [51].

FIG. 10. This diagram shows the differences between the
C − Λel

2 universality curves for different fluid scenarios. For
comparison we have plotted the corresponding curve using the
fitting parameters from Ref. [52].
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y ¼ aþ b lnΛel
2 þ cðlnΛel

2 Þ2 þ dðlnΛelÞ3 þ fðlnΛelÞ4:
ð44Þ

The details of the fitted values of the parameters are
described in Table III. In Fig. 10 we show the differences
between the C − Λel

2 universality curves for the different
fluid scenario. For comparison, we have plotted the corre-
sponding curve using the fitting parameters from Ref. [52],
which has been named “1-fl Maselliþ.” In Fig. 11 we show
the differences between theΛel

3 − Λel
2 universality curves for

different fluid scenarios. For comparison, we have plotted
the corresponding curve using the fitting parameters from
Ref. [51], which has been named “1-fl Yagi.”
Interestingly one-fluid formalism and SF formalism both

show universal behavior, even though the values of tidal
deformabilities change due to the inclusion of the SF. But a
crucial feature that we have found is that the fitted curve for
normal fluid formalism is different from the scenario when
the matter is treated using two-fluid formalism. For
example, in Table III it can be seen that the values of a,
b, c, d, f are different for two different formalisms. This is
an important observation as it opens up the possibility to
probe the SF nature of matter using this deviation. From the
GW data, it is possible to estimate the values of Λel

2 and Λel
3 .

Having an estimation of such manner it is possible to check
which universal relation is more suitable for the observed
values of the deformabilities. As the two different fluid
natures imply different universal relations, measured values
of the deformabilities will be able to distinguish between
the two different universality curves. This result will help
us break the degeneracy between the fluid nature and the
EOS, discussed in earlier sections. It is important to note
that even though the universal curves are different, they are
not “too different.” Therefore it remains to be seen whether
this strategy will be able to break the degeneracy with the
real data.

VIII. CONCLUSION

Results found in the current work are very important in
the context of constraining the dense matter EOS using the
GW data. Values of the deformabilities for superfluid NS
are higher than the normal fluid star, for a given RMF
model. At present tight constraint has been put on the EOS
from the BNS observation [1,2,53–57]. The results found
here indicate that more EOSs will be ruled out which are
otherwise allowed if we do not consider superfluidity inside
the NS. This provides us the opportunity to improve our
understanding of the SF nature of the dense matter with
better observational data in the future.
We find that the Love numbers are usually larger for a

two-fluid system. Comer et al. [36] found the existence of
several superfluid oscillation modes that cannot be found
otherwise in a single-fluid star. This nature is very specific
to the two-fluid formalism where different fluid modes can
appear due to the existence of the two different types of

fluid displacements. Flanagan and Hinderer discussed the
fact that the tidal deformation of a star can be thought of as
the sum of the deformations arising from different fluid
modes that have been excited inside the star, due to the
tidal perturbation [6]. Therefore, we can say that, due to
the appearance of extra fluid modes in the superfluid
stars, we will get slightly larger deformations under tidal
perturbation.
We argued that there is a degeneracy between the fluid

nature and the EOS. Interestingly, we found that in the SF
case the tidal deformabilities show a universal relation but
the universal curve is different from the one-fluid case. We
discussed howmeasuring different tidal deformabilities and
using universal relations can break the degeneracy between
the fluid nature and the EOS.
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APPENDIX A: JUNCTION CONDITION

In our current work we have modeled the NS as a
superfluid core with a normal fluid envelope. Crustal
physics is encoded in the current model via the normal
fluid envelope. As there are two layers of fluid in our
model, it is necessary to find the junction condition across
the boundary. For the purpose of simplicity in this section
wewill useΨ as the symbol for pressure both in the SF core
and in the NF envelope, while we derive the junction
conditions. To calculate the junction conditions we take the
level surfaces of Ψ. As there are no “delta-functionlike”
discontinuities inΨ, the first and second fundamental forms
are continuous everywhere inside the star [58]. Therefore,
by imposing continuity in the first and second forms we can
find the junction conditions.
The normal to the level surface of Ψ is

N μ ¼ gμν∇νΨffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∇μΨ∇μΨ
p : ðA1Þ

The induced three metric (first fundamental form) γμν is

γμν ¼ ⊥σ
μ⊥τ

νgστ;

⊥σ
μ ¼ δσμ −N σN μ: ðA2Þ

The extrinsic curvature (second fundamental form) Kμν

is defined as follows:
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Kμν ¼ −⊥σ
μ⊥τ

ν∇ðσN τÞ; ðA3Þ

where parentheses imply symmetrization of the indices.
Junction conditions will be found from the continuity of γμν
and Kμν.

1. Equilibrium configuration and even parity sector

As we are mainly interested in the perturbation on the
background, we write Ψ as follows:

Ψðt; r; θÞ ¼ Ψ0ðrÞ þ δΨðr; θÞ: ðA4Þ
As a smooth background is constructible even in the

presence of perturbation, we assume that the background
and the perturbed part of γμν and Kμν are separately
continuous at the junction. We will discuss only those
components of γμν and Kμν that are relevant for our
purpose; for more details see Ref. [33]. First we consider
the components that are useful for the even mode pertur-
bation added to the background quantities. In the zero
frequency limit the relevant quantities can be expressed as

γ00 ¼ −eν þ δg00; ðA5Þ

K00 ¼
ν0

2
eν−κ=2 −

1

2eκ=2
δg000 þ

ν0

4
eν−3κ=2δg11; ðA6Þ

K12 ¼
eλ=2

r
δΨθ

Ψ0
0

; ðA7Þ

K22 ¼ −
r

eκ=2
− eκ=2

δΨ;θθ

Ψ0
0

−
1

2eκ=2

�
δg022 −

r
eκδg11

�
: ðA8Þ

With δΨðr; θÞ ¼ δΨðrÞPlðθÞ these sets of equations
imply

νðRcÞ ¼ ν̃ðRcÞ; ðA9Þ

ν0ðRcÞ ¼ ν̃0ðRcÞ; ðA10Þ

κðRcÞ ¼ κ̃ðRcÞ; ðA11Þ

Ψ0ðRcÞ ¼ Ψ̃0ðRcÞ; ðA12Þ
H̃ðRcÞ ¼ HðRcÞ; ðA13Þ

δΨ̃
Ψ̃0

0

ðRcÞ ¼
δΨ
Ψ0

0

ðRcÞ; ðA14Þ

where Rc represents the radius of the boundary. Physical
quantities with no tilde represent their value in the SF
region just below the junction. A tilde represents the value
of the physical quantity in the normal fluid region just
above the junction.

2. Odd parity sector

For the continuity of the quantities of the odd mode
perturbation we follow a similar procedure. But as has been
discussed earlier we consider the time dependent pertur-
bation for that purpose. We find

γ03 ¼ δg03; ðA15Þ

γ13 ¼ −δg13; ðA16Þ

K03 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
gð0Þ11

p ð _δg13 − δg003Þ: ðA17Þ

Taking hiðt; rÞ ¼
R
dωĥiðω; rÞe−iωt implies ĥi is con-

tinuous implying ψ is continuous (for the definition check

Sec. IV). Continuity of K03 implies ωeðν−κÞ=2rψ þ
feðν−κÞ=2ðψrÞ0g0

ω is continuous. Using Eq. (35) in the SF
region we find that the following expression is continuous:

ωeðκ−νÞ=2rψ þ eðν−κÞ=2

ω

�
2ψ 0 þ ψeκ

�
−
4MðrÞ
r2

þ lðlþ 1Þ
r

��
:

ðA18Þ

A similar expression can be found in the normal fluid
region with Ψ → p and Λ → −ρ. Since ψ is continuous,
this implies ψ 0 is continuous across the junction.

APPENDIX B: EXPRESSIONS FOR
MATTER VARIABLES

In the limit K → 0 the master function and the che-
mical potentials of the neutron and proton fluids can be
expressed as

Λj0 ¼ −
c2ω
18π4

ðk3n þ k3pÞ2 −
c2ρ

72π4
ðk3p − k3nÞ2 −

1

4π2

�
k3n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
þ k3p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q 	
−
1

4
c−2σ ½ð2m −m�j0Þðm −m�j0Þ þm�j0ðbmc2σðm −m�j0Þ2 þ cc2σðm −m�j0Þ3Þ�

−
1

3
bmðm −m�j0Þ3 −

1

4
cðm −m�j0Þ4 −

1

8π2

0
B@kp½2k2p þm2

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
−m4

e ln

2
64kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
me

3
75
1
CA; ðB1Þ
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μj0 ¼ −
π2

k2n

∂Λ
∂kn
����
0

¼ c2ω
3π2

ðk3n þ k3pÞ −
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
; ðB2Þ

χj0 ¼ −
π2

k2p

∂Λ
∂kp
����
0

¼ c2ω
3π2

ðk3n þ k3pÞ þ
c2ρ

12π2
ðk3p − k3nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2

e

q
: ðB3Þ

The generalized pressure Ψ and the master function are realized by the following relationship:

Ψj0 ¼ Λj0 þ
1

3π2
ðμj0k3n þ χj0k3pÞ: ðB4Þ

In the above expressions, c2σ ¼ ðgσ=mσÞ2, c2ω ¼ ðgω=mωÞ2, c2ρ ¼ ðgρ=mρÞ2 and

m�j0 ¼ m�ðkn; kp; 0Þ

¼ m −m�j0
c2σ
2π2

0
B@kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

q
þ kp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
þ 1

2
m2�j0 ln

"
−kn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
kn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
#

þ 1

2
m2�j0 ln

2
64−kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
kp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q
3
75
1
CAþ bmc2σðm −m�Þ2 þ cc2σðm −m�Þ3: ðB5Þ

The expressions for the other matter coefficients (see [39,40]) that are used as the inputs in field equations are as follows:

Aj0 ¼ c2ω −
1

4
c2ρ þ

c2ω
5μ2j0

 
2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q þ c2ω
3π2

"
k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2�j0
p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2p þm2�j0
q

#!

þ c2ρ
20μ2j0

 
2k2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þm2�j0

q þ c2ρ
12π2

"
k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2n þm2�j0
p þ k2pk3nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2p þm2�j0
q

#!

−
c2ρc2ω

30μ2j0π2
"

k2nk3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þm2�j0

p −
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respectively.
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