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We introduce a new family of tensorial field theories by coupling different fields in a nontrivial way, with
a view towards the investigation of the coupling between matter and gravity in the quantum regime. As a
first step, we consider the simple case with two tensors of the same rank coupled together, with Dirac like a
kinetic kernel. We focus especially on rank-3 tensors, which lead to a power counting just-renormalizable
model, and interpret Feynman graphs as Ising configurations on random lattices. We investigate the
renormalization group flow for this model, using two different and complementary tools for approx-
imations, namely, the effective vertex expansion method and finite-dimensional vertex expansion for the
flowing action. Due to the complicated structure of the resulting flow equations, we divided the work into
two parts. In this first part, we only investigate the fundamental aspects on the construction of the model
and the different ways to get tractable renormalization group equations, while their numerical analysis will
be addressed in a companion paper.
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I. INTRODUCTION

The construction of a fundamental theory, which
describes the dynamics of spacetime at the quantum level,
requires a consistent account for the superposition of
(pre)geometric fluctuations [1–21]. However, the naive
perturbative path-integral quantization of general relativity
leads to a nonrenormalizable theory and therefore lacks
predictivity due to the necessity of infinitely many counter-
terms to absorb ultraviolet (UV) divergences. Consequently,
theunderlyingquantumtheory is validup to someUVcutoff,
and hence, it is not fundamental; i.e., it is not valid up to
arbitrarily large energy scales [22–24]. This can beviewed as
a hint for the departure from the standard perturbative setting
or which geometric degrees of freedom are effective and
should be replaced by more fundamental ones.
A promising strategy to properly define the quantum

gravity path integral is to discretize it in the sameway as for
lattice gauge theories and look for a suitable continuum
limit in this setting. This perspective, implements the

“integral over geometries” by a sum over triangulations,
which can be tackled by numerical simulations. Such an
approach has evolved to the so-called (causal) dynamical
triangulation program and quantum Regge calculus; see,
e.g., [12,13] and several nontrivial results as the existence
of an extended de Sitter like phase for the emergent geo-
metry were obtained over the last years. Alternatively, in
two dimensions, one can construct a sum over random
geometries by the well-known matrix models. They cor-
respond to zero-dimensional statistical models whose
interactions are dual to elementary polygonlike building
blocks, which tessellate two-dimensional surfaces [25].
Feynman diagrams of such models are dual to discretized
surfaces, and the perturbative expansion for the partition
function of matrix models can be organized by their genus
(the so-called 1=N-expansion, N being the size of the
matrices). The continuum limit can be investigated at
different levels of refinement. At the first stage, called
the single scaling limit, only planar triangulations, with
vanishing genus are taken into account. Going beyond the
planar sector and taking into account superpositions of all
topologies then requires the so-called double scaling limit,
obtained by setting simultaneously the size of the matrix
to infinity and the coupling constant to its critical value
[26–30]. In two dimensions, some powerful techniques
allow for an analytical probe of such a limit. See also
[31,32] for related discussions.
The successful story of matrix models for the description

of two-dimensional quantum space-time suggests that a
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generalization of such models might be a good strategy to
set up a theory of quantum gravity in higher dimensions.
This led to the introduction of the so-called tensor models;
see, e.g., [33–41] (see also [42] and references therein),
which statistical models for random rank-d tensors, where
d is the would be spacetime dimension. In this picture,
tensors are dual to (d − 1) simplices while the tensor
indices are dual to (d − 2) simplices. Interactions are given
by contractions of tensors, and the Feynman diagrams
of the perturbative expansion provide a simplicial decom-
position for d-dimensional manifold. Historically, the pro-
gress on the search for a suitable continuum limit for
these models was hampered by the lack of a 1=N expansion
(with N being the tensor size) similar to the one in matrix
models. The situation has changed after the introduction of
the so-called colored tensor models in [43–47]. In such
models, the interactions are constructed accordingly to
an invariance principle under unitary transformations, act-
ing independently on each index of a complex tensor.
Generalization to orthogonal transformations for real ten-
sors was successfully considered recently [48–50]. All
those models have the nice property of featuring a 1=N
expansion, a fact that boosted progress in this field. The
existence of a well-defined power counting, in particular
allows us to start a renormalization program, which has
been strongly developed since the five last years as a
promising way to investigate the continuum limit of
discrete quantum gravity models. This success does not
concern only the tensor models, but a new class of field
theories derived from them and called tensorial field
theories (TFTs) [51–59]. These field theories differ from
the orthodox tensor models due to the introduction of a
kinetic operator. Their connection with quantum gravity is
inherited from the dual interpretation of their Feynman
graphs. The unitary-invariance prescription is broken by the
kinetic action while it is preserved for interactions.
Moreover, the nontrivial spectrum of the kinetic action
provide a canonical path from UV scales (when no
fluctuations are integrated) to IR scales (when all the
fluctuations are integrated out). For these models, a solid
renormalization program has been done, and a rigorous
Bogoljubow-Parasjuk-Hepp-Zimmermann theorem has
been proven, ensuring just renormalizability for many of
them. Moreover, in the same mathematical direction,
constructive expansions and Borel summability theorems
have been obtained for some superrenormalizable models;
see [60–64] and references therein. On the physical
counterpart of the investigations, the nonperturbative
renormalization group flow has been constructed within
some approximations schemes, showing the existence of
nontrivial fixed points [65–94]. Enriched with group-field
theoretic data, the nontrivial combinatorics of such models
give rise to group field theories (GFTs), and such fixed
points are thought to identify a phase transition from

pregeometric degrees of freedom to a geometric phase
due to a “condensation” mechanism. See, e.g., [95–108].
Despite this success, some open questions remain open.

Among them, the role and the nature of matter fields in this
framework is outstanding. In this paper, we introduce a
formalism mixing two (or more) different tensor fields.
This can be motivated from different viewpoints. First of
all, the two kinds of fields materialize as two states of spin
in the Feynman graphs, turning them as random lattice with
Ising spins. An Ising model on a random lattice is not a
novel idea [109–112]; and it has been investigated in the
beginning of the colored random tensor age [112] see also
[113–119]. The new perspective in the proposed approach
is the opportunity to implement the renormalization group
flow at the lattice level, through a coarse graining of the
lattice, providing an (expected) complementary point of
view to the standard block spin approach. Other motiva-
tions arise from the difficult question of understanding the
influence of matter fields on the quantum pregeometric
spacetime. Indeed, coupling tensors fields of different sizes
and ranks may be viewed as a simple way to branch
pseudomanifold discretization of different dimensions,
having their own critical behavior. This may be viewed
as a generalization of the multicritical behavior expected to
be closely related to conformal matter field in two dimen-
sional gravity.
In this paper, with a view towards the Ising model

interpretation, we consider two coupled tensor fields of the
same rank, but keeping in mind that the possible gener-
alization and interpretation will be given in forthcoming
works. More precisely, we consider a just-renormalizable
model, with a Dirac-like kinetic kernel, mixing two tensors
with different couplings at the interaction level. For this
model, we investigate nonperturbative aspects employing
two different and complementary ways. First, the focus is
on the leading (melonic) sector, and the use of nontrivial
Ward identities arising from the unitary symmetry softly
broken by the kinetic term. This method follows the
strategy recently developed in a series of paper [65–68]
and referred as the effective vertex expansion (EVE)
method, which, in contrast to the vertex expansion which
is a finite-dimensional truncations, cut smoothly in the full
theory space and keep complete infinite dimensional
sectors rather than a finite dimensional subspace. Later,
we consider finite-dimensional truncations, to investigate
regions where EVE remains difficult to be used, especially
for disconnected interactions and interactions beyond the
melonic sector [69–71]. Note that this limitation for
melonic diagrams does not invalidate the EVE method,
which can be extended beyond the melonic sector for the
theories from which the Feynman diagrams have the tree
structure representation [65].
The outline of this paper is the following. In Sec. II, we

introduce the formalism allowing to couple two or more
tensor fields in a coherent way with respect to the
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renormalization group flow. In Sec. III, we present the
general strategies used to solve the exact renormalization
group flow equation, the effective vertex method, and
finite-dimensional truncations. The resulting equations
are then numerically investigated in Sec. IV. Discussions
and conclusion are given in the same section. We provide
three Appendixes A–C on which the power counting
theorem, the proof of important propositions, and the
computation of the sums which are used throughout the
paper are given, respectively.

II. PRELIMINARIES

A. The model

In this section, we introduce and motivate a new class of
models that we will study throughout this work, by mixing
different types of tensorial group field theories, that we call
motley tensorial group field theories (MTGFT). From this,
let us briefly give the following definition:
Definition 1 Let fðϕaðiÞ; ϕ̄aðiÞÞ; i ¼ 1; 2;…; ng be a set

of complex field. We call MTGFT any tensorial group field
theory describing two or more different complex tensorial
fields interacting together.
In this paper, we restrict our attention to the case where

only two complex tensorial fields of the same rank interact
together. Let us denote by ϕV and ϕW these two complex
fields (að1Þ ¼ V, að2Þ ¼ W),

ϕV;ϕW∶Gd → C; ð1Þ

where G denotes an arbitrary compact Lie group and d the
number of copies on which the tensors V and W are
defined. For our discussion, d will be arbitrary; however,
G is fixed to be an Abelian compact Lie group Uð1Þ. We
denote by Vp1;…;pd

and Wp1;…;pd
, or simply Vp⃗ and Wp⃗,

p⃗ ∈ Zd, the Fourier components of the fields ϕV and ϕW
such that the vectorΦ ≔ ðϕV;ϕWÞ represents the doublet of
the fields.
The fields being defined, the dynamics is given by the

classical action S½Φ; Φ̄� which can be represented in
standard “rule” for TGFTs as a sum of tensorial invariants
or generalized traces. When we have only a single
(complex) tensor field, the trace invariant are obtained as
the contractions between the indices of an equal number of
the fields T and T̄; such that, for any T and for i ∈ ⟦1; d⟧,1

the index pi of T have to be contracted with the index p̄i of
one of the involved T̄. As an example, a quartic interaction
I2½T; T̄� is

I2½T; T̄� ¼
X

p⃗;p⃗0∈Z3

Tp1;p2;p3
T̄p0

1
;p2;p3

Tp0
1
;p0

2
;p0

3
T̄p1;p0

2
;p0

3
: ð2Þ

Note that the construction of tensorial invariants quantities
are related to a proper unitary invariance. Restricting the
size of the tensors fields to N, the previous interaction (2)
is invariant under independent unitary transformations
U1ðNÞU2ðNÞU3ðNÞ ∈ U⊗3ðNÞ, where the UiðNÞ being
N × N unitary matrices. In the same way, for arbitrary
dimension d, the tensors interactions are invariant under
U⊗dðNÞ. Note that in this paper, we will essentially
interested to the inductive limit Uð∞Þ, and like in standard
quantum field theory, we assume that, acting on square
summable sequences space, the operator U − I remains
of trace or Hilbert-Schmidt class ∀U ∈ Uð∞Þ [120].
A general expression of the interaction, involving 2n fields
(where n is a number of field of type T̄ coupled with
n number of field of type T) may be indexed by a bipartite
d-colored regular graph bn and denoted as Ibn ½T; T̄� so that
the general interacting part of the action is written as

Sint½T; T̄� ¼
X
n>1

X
bn

gbnIbn ½T; T̄�; ð3Þ

where the relative weights gbn corresponds to the couplings
constant. We restrict our attention to the case of connected
graphs bn, which are called bubbles. We recall that these
bubbles are said to be local for tensor field theories, the
locality principle being inherited from the proper unitary
invariance [78]. Now let us given the following definition
allowing us to point out the connection between bubbles
and locality properties:
Definition 2 Any connected bubble is said to be local.

In the same way, any function expanding as a sum of
connected bubbles is said to be local.
This property, becoming a standard in the TGFT liter-

ature, arises from renormalization investigations and in
particular, allows us to define local counterterms in the
usual sense in quantum field theory. More information
about this notion can be found in [51–59]. Let us try to
quickly give an appropriate method to build a field theory
with different fields. For instance, let us consider two
independent fields denoted by V and W. The rule to build
an interacting doublet is not unique, but we will discuss in
the end of this section some issues concerning this
nonuniqueness. By considering a set of coupling constants
fcαg for α running from 1 to R, the first step is to define the
interacting part of the functional action Sint½Φ; Φ̄� such that
for a initial condition cα ¼ 0, ∀ α leads to the following
expression:

Sint½Φ; Φ̄� ¼ SV ½ϕV; ϕ̄V � þ SW ½ϕW; ϕ̄W �: ð4Þ
In the above relation, the quantities SV and SW are

assumed to be built as a sum of connected generalized
traces. The index R is the degree of the mixing tensor, i.e.,
the number of coupling constants. From a group symmetry
point of view, the action in this limit (4) is invariant under
the transformations of the form,

1The notation ⟦a; b⟧, used in the rest of the paper, refer to the
integer interval between a; b ∈ N.
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Yd
i¼1

 
UðVÞ

i ðNÞ 0

0 UðWÞ
i ðNÞ

!
∈ UðVÞ⊗dðNÞ × UðWÞ⊗dðNÞ;

ð5Þ

where we have to understand that the transformations

UðVÞ
i ðNÞ and UðWÞ

i ðNÞ act independently on the two
components of Φ,

�
ϕ0
V

ϕ0
W

�
¼
Yd
i¼1

 
UðVÞ

i ðNÞ 0

0 UðWÞ
i ðNÞ

!�
ϕV

ϕW

�

¼
 Q

i U
ðVÞ
i ðNÞϕVQ

i U
ðWÞ
i ðNÞϕW

!
: ð6Þ

A first way to build the coupling between these two tensor
fields may be given by implementing an explicit symmetry
reduction given by

UðVÞ⊗dðNÞ × UðWÞ⊗dðNÞ → U⊗dðNÞ; ð7Þ
simply meaning that we wish to consider mixed interaction
with tensorial invariance. Furthermore, we assume that the
transformation UiðNÞ act together in the same manner on
the two components ϕV and ϕW . Note that with this
definition, the limit (4) is well defined, and the correspond-
ing interactions are obtained from the bubbles Ibn defined in
SW (or in SV)—up to the substitution of at least one among
the number n of the field W or W̄. In order to include this

new information in the construction of the interacting two
fields, we introduce the integers mþ and m−, such that

mþ; m− < n, and the notation bðmþ;m−Þ
n ; with the convention

thatmþ denotes the number of field V f andm− the number
of field V̄. Therefore, the mixing interaction denote by SVW
will be SVW ≔ Sint − SV − SW and may be given explicitly
as follows:

SVW ¼
X
n

Xn−1
mþþm−≥1

c
b
ðmþ ;m−Þ
n

I
b
ðmþ ;m−Þ
n

½V; V̄;W; W̄�: ð8Þ

We may adopt a graphical representation to picture these
tensorial invariant as follows. We associate black and white
bulls nodes for tensors V and V̄, respectively, and black and
white square nodes for tensors fields W and W̄, respec-
tively. To each, nodes are hooked d colored half edges,
which are associated to the field variables, and the
interaction bubble is built by hooking the edges from
black to white nodes following their respective colors. For
instance, if we restrict our attention on the purely quartic
case for d ¼ 3, we have

ð9Þ

and

ð10Þ

the index i on the figure referring to the color of the lonely
edge. This construction of the interacting fields is called
minimal coupling. Note that this definition is heuristic due
to the fact that it is not “minimal” with respect to the value
of R, and, on the other hand, it is minimal with respect to
the number of additional inputs (the symmetry construction
given below). Note that the minimal coupling lost a priori
the reality of the classical action. To recover it, we impose
the invariance with respect to global Uð1Þ symmetry as

ϕV → ϕ0
V ¼ eiθVϕV; ϕW → ϕ0

W ¼ eiθWϕW; θV; θW ∈ R:

ð11Þ

We denote by a “reality condition”, the above relation,
and obviously, we come to

I0
b
ðmþ ;m−Þ
n

¼ eiθVðmþ−m−Þ−iθWðmþ−m−ÞI
b
ðmþ ;m−Þ
n

: ð12Þ

As a result, the reality condition imposes mþ ¼ m− ¼ m,
and Eq. (8) becomes

SVW ¼
X
n

Xn−1
m≥1

c
bðm;mÞ
n

I
bðm;mÞ
n

½V; V̄;W; W̄�; ð13Þ

corresponding to the real minimal coupling. For instance,
by considering the rank 3 quartic melonic model, this
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implies that ci1 ¼ ci2 ¼ ci3 ¼ ci6 ¼ ci7 ¼ 0, and therefore,
SVW becomes

ð14Þ

Another important question which need to be addressed
at this step is about the positivity of SVW given in (14). For

this, let us fix the index i to 1 and provide the following
definition:

Mðn; kÞ ≔
X
p2;p3

Vn;p1;p2
W̄k;p1;p2

;

Nðp1; p2;p0
1; p

0
2Þ ≔

X
n

Vn;p1;p2
W̄n;p0

1
;p0

2
; ð15Þ

such that we have

ð16Þ

Obviously, the construction of the interacting terms that
allow us to recover this positivity may be given carefully.
From now on, let us consider the kinetic part of the action,
which has not been discussed above. From our hypothesis
given by Eq. (4), we expect that

Skin½Φ; Φ̄� ¼ Skin;V ½V; V̄� þ Skin;W ½W; W̄�; μi ¼ 0; ∀ i;

ð17Þ

where we called fμig the set of couplings, i.e., the set of
weight which involves mixing V and W. Without a loss of
generality, the kinetic part may be written as

Skin½Φ; Φ̄� ¼
X

p⃗;q⃗∈Zd

Φ̄Tðp⃗ÞKðp⃗; q⃗ÞΦðq⃗Þ; ð18Þ

whereKðp⃗; q⃗Þ is a 2 × 2matrix whose coefficients depends
on p⃗ and q⃗. The diagonal part of the matrix corresponds to
the kinetic kernels of Skin;V and Skin;W . For the rest, we
assume that K is diagonal, i.e.,

Kðp⃗; q⃗Þ ¼ Kðp⃗Þδp⃗;q⃗: ð19Þ

Let us denote as Kab (a; b ¼ V;W) the matrix elements
of K. Note that the bubble interactions are not necessarily
the same for V and W, so that KVV and KWW may be
different (the families of bubbles could be different in SW
and SV). If we assume the symmetry ϕW ↔ ϕV holds, we
have to impose the condition,

KVV ¼ KWW: ð20Þ

For an example, when K does not depends on p⃗, we may
have

K ¼
�

1 −μ
−μ 1

�
; → K−1 ¼ 1

1 − μ2

�
1 μ

μ 1

�
: ð21Þ

With this choice, there are no canonical scale on the
Feynman graph. In this paper, we are interested to the
theories having an autonomous and operational definition
of scales. To this end, we consider only momentum-
dependent propagators. Other definitions are given by
choosing the Kernel as the following:

Kðp⃗Þ ¼ ðjp⃗j þmÞ
�

1 −μ
−μ 1

�
;

Kðp⃗Þ ¼
� jp⃗j þm −μ

−μ jp⃗j þm

�
; ð22Þ

both having the same limit for μ → 0, and jp⃗j ≔P
3
i¼1 jpij.

Note that for the rest of this paper, the notation jp⃗j ≔ jjp⃗jj1
is used for L1 norm. The choice (22) in particular ensures
the just renormalizability of the model, as explained in
Appendix A. In general, the presence of the parameter μ
leads to a nonzero, Wick contractions between V and W̄,
and then this parameter gives their relative weight with
respect to VV̄ and WW̄ contractions. Note that with such
terms, we can generate nonreal effective couplings. We
then expect that the real coupling may be stable only if
μ ¼ 0. As an example, for the rank 3 quartic model, we get

RENORMALIZATION GROUP FLOW OF COUPLED TENSORIAL … PHYS. REV. D 101, 064014 (2020)

064014-5



ð23Þ

It can be easily checked that the condition μ ¼ 0 is stable
with respect to the renormalization group flow (in the deep
UV sector). At this stage, let us discuss the existence of
another a priori stable model with μ ≠ 0. For that, by
setting ci5 ¼ 0, it is easy to see that see Proposition 1 and
the proof given in Appendix B,
(1) Even if μ ≠ 0, the form of the effective action (in the

UV) remains stable, and ci5 remains equal to zero.
(2) In the same limit, μ is a nondynamical parameter,

with a mass dimension 2 and flow equation related to
this parameter is therefore

d
dt

μ̄ ¼ −2μ̄; ð24Þ

the parameter t designated the standard log-scale parameter
along the flow. Note that the fact that μ becomes “non-
dynamical” might seem strange for a background indepen-
dent theory. One expects that μ can be fixed for another
way. For instance, it may correspond to the nonzero
vacuum for an interacting discrete matter model, building
on the same way from an additional vector field (which are
tensors of order 1).
In this paper, we focus on nonperturbative renormaliza-

tion group aspects for the model defined by the classical
equation (25). More precisely, we choose a slightly
simplified version of the model, where coupling constant
are independent of the color index i, leading to a classical
model without a preferred color,

ð25Þ

We have essentially two motivations to consider such a
kind of theory and to develop nonperturbative renormal-
ization group techniques. The first one arises from the
common area of research for TGFT, i.e., a pioneering
formulation of random geometry throughout the genesis of
our classical space-time near the big bang theory. Indeed,
the MTGFT formalism allows us to mix several phases or
several critical behaviors, and to add a nontrivial complex-
ity into the primitive or pregeometric quantum space-time.
The second motivation arises from the similarity between
such a model mixing to a kind of tensor fields and the
standard Ising model. Indeed, the two fields V and W may
be freely interpreted as incarnations of the up and down
Ising spins, the interactions, and kinetic kernel providing

competition between them, as the spin-spin interaction in
the sing model. This interpretation, considered initially in
[112], may allow considering an Ising spin on the random
lattice; the interest of a renormalization group analysis,
therefore, could be to provide an alternative way to
renormalize, based on the lattice itself rather than on the
spins as in standard approaches. Note that in this point of
view, our choices for the model have to be questioned.
Indeed, setting μ ¼ 0, there is no coupling between up and
down spins, except at the interaction level, with c1 and c2
couplings. The corresponding Ising model, therefore,
appears to be quite nonconventional. However, we may
adopt another point of view to stress the link with the Ising
model on a random lattice using the intermediate field

LAHOCHE, OUSMANE SAMARY, and PEREIRA PHYS. REV. D 101, 064014 (2020)

064014-6



representation, recalled in Appendix A. To put it in a
nutshell, and considering a vacuum diagram, the inter-
mediate field representation associates colored edges to
vertices and vertices (called loop vertices) to the ordinary
loops (see Fig. 5). An elementary statement is that leading
order (melonic) graphs are trees in this representation [see
Appendix A, and Eq. (A4) for an example]. Therefore,
setting c2 ¼ 0 (as we will see in the rest of this paper, this
coupling play a marginal role with respect to the other
ones), the leading order trees are built with loop vertices of
two kinds: the ones with only square nodes and the ones
with bullet nodes. Note that we cannot have loop vertices
mixing square and bullet nodes because of μ ¼ 0. Then,
interpreting the first kind of nodes as down spins and the
other one as up spins, we get that the expansion of the
leading order free energy corresponds to an Ising spin on
random trees. Moreover, the next to leading order dia-
grams, including loops over trees, may be interpreted as
self and long-range interactions. This interpretation may
be clearer on the interaction described in remark 3 in
Appendix A, the coupling λ between type V and type W
intermediate fields being viewed as the incarnation of the
relative Ising weight and introduce competition between up
and down spins. Figure 1 provides an illustration of the
correspondence stressed in this paragraph.
In the rest of this paper, we do not set c2 ¼ 0. The reason

is that we are essentially interested in the method allowing
us to extract the RG flow rather than by the specific
contacts of the different versions of the model with physics.
Then, we remain as general as possible.

B. Nonperturbative renormalization group equation

Among the formulations of the nonperturbative func-
tional renormalization group (FRG), the Polchinski and
Wetterich equations are the most popular. Except for very
special problems, the investigation of the solutions of these
equations are a difficult challenge which requires approxi-
mation. Even if Polchinski and Wetterich equations are
essentially two different presentations for the same prob-
lem, the Wetterich equation is shown to be much more

suitable for approximations and remains the most used to
approach the nonperturbative renormalization group. We
will focus on the Wetterich approach in this paper and
consider two different and complementary approximation
schemes to solve it, the vertex expansion and the effective
vertex expansion (EVE) method, both associated to a
derivative expansion.
The model we consider in this paper is described by the

action (25) on which the dynamic or the evolution of the
correlation function is governed by the Gaussian measure
dμC from which the propagator is given explicitly by the
following definition:Z

dμCVp⃗V̄p⃗0 ¼
Z

dμCWp⃗W̄p⃗0 ¼ 1

jp⃗j þm
δp⃗p⃗0 ;Z

dμCWp⃗V̄p⃗0 ¼ 0: ð26Þ

The partition function is therefore defined as

Z½J; J̄� ¼ eW½J;J̄� ¼
Z

dμCe−SintþhJW;W̄iþhW;J̄WiþhJV;V̄iþhV;J̄Vi;

ð27Þ
where Sint denotes the quartic part of the action (25), and
hA;Bi ≔P

p⃗ Ap⃗Bp⃗, J ¼ ðJV; JWÞ and J̄ ¼ ðJ̄V; J̄WÞ are
the external sources, and W½J; J̄� ≔ lnZ½J; J̄� is the stan-
dard free energy. The partition function (27) is said to be
“referent”. This expression means that it includes no more
ingredients than the quantization principle following with
the amplitude of the quantum process2 and is given from
the classical action as e−S up to a normalization factor. The
renormalization group provides the partial integration of a
UV degree of freedom that appears to be a powerful
ingredient in the study of a quantized field theory. To this
end, the scale slicing along the path from UV to IR must be
considered as a fundamental ingredient to initialize the
theory, especially for the cases where we are more
interested for the “universality class” rather than rigorous
definition in the UV limit. By “scale slicing,”we refer to the
way from which the fluctuations are classified as “UV” or
“IR” after partial integration over UV modes. In this paper,
we use the regulator function rk to drive the change of
scale, e.g., to drag the theory from UV to IR. We state that
our quantized model is quite represented scale by scale as a
continuous set of models defined with the k ≥ 0 dependent
partition function fZk½J; J̄�g, defined as

Zk½J; J̄� ≔
Z

dμCk
e−SintþhJW;W̄iþhW;J̄WiþhJV;V̄iþhV;J̄V i; ð28Þ

FIG. 1. An illustration of the correspondence with the Ising
model on random lattices. On the left, a tree in the intermediate
field representation, the þ and − indicating the nature of the
boundary of the colored edges. þ for boundaries with squares
nodes and − for bullet nodes. On the right, the corresponding
planar tree with up and down sites, respectively, in black
and white.

2Strictly speaking, the terminology “quantum” is not appro-
priate, the amplitude of a real quantum process could be of the
form eiS. We should speak about a “statistical” or “thermal
fluctuating” model. We conserve the terminology “quantum” to
grant us the conventions of literature.
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where dμCk
is the Gaussian measure given with the

modified propagator,

C−1
k ðjp⃗jÞ ≔ ðjp⃗j þmÞ

�
1 0

0 1

�
þ rkðjp⃗jÞ

�
1 0

0 1

�
: ð29Þ

The index k is the running scale and goes from ln Λ in
the deep UV to 0 in the deep IR, for some fundamental
scale Λ. Among the standard properties of the regulator, we
recall the following:

(i) rkðjp⃗jÞ ≥ 0
(ii) rk→0ðjp⃗jÞ → 0 ∀ jp⃗j ∈ Rþ
(iii) rk→∞ðjp⃗jÞ → þ∞
(iv) rkðjp⃗j → ∞Þ ≪ 1.

From this quantization point of view, we will consider as
physically relevant all the conclusions which are indepen-
dent of the choice of the regulator function. The RG flow in
this point of view corresponds to a mapping from Zk to
Zkþδk and leading to the following first order equation:

∂
∂kΓk ¼

X
p⃗

Tr

�∂rk
∂k ðp⃗2ÞðΓð2Þ

k þ rkÞ−1p⃗;p⃗
�
: ð30Þ

This equation may be understand as the dynamic respect
to the scale of the average effective action Γk, i.e., the
modification of Γk in the range of the scale ½k; kþ dk�.
Note that the trace Tr is defined over the internal indices of
the fields V and W. Due to the fact that the Wetterich
equation does not require that couplings remain small, this
equation is called a nonperturbative renormalization group
(NPRG) equation.
We recall that the average effective action is defined as

slightly modified Legendre transform of the free energy
Wk ≔ lnZk,

Γk½M; M̄� þ rk½M; M̄� ¼ hJ̄W;MWi þ hM̄W; JWi
þ hJ̄V;MVi þ hM̄V; JVi
−Wk½J; J̄�; ð31Þ

where M (respectively, M̄) denote the classical field,

MW ≔
∂Wk

∂J̄W ; MV ≔
∂Wk

∂J̄V : ð32Þ

Finally, Γð2Þ
k denotes the second derivative respect to these

classical fields of the average effective action,

Γð2Þ
k ≔

 
Γð2Þ
k;VV Γð2Þ

k;VW

Γð2Þ
k;WV Γð2Þ

k;WW

!
ð33Þ

with

Γð2Þ
k;IJ ≔

∂2Γk

∂MI∂M̄J
; I; J ∈ ðV;WÞ: ð34Þ

To complete the definition of our description of the
functional nonperturbative renormalization group formal-
ism, we have to precise the choice of the regulator function
rk. The exact solutions of the formal equation (30) does not
depend on this choice. However, the approximations used
to solve this equation introduces a more or less strong
dependency on the choice of the regulator. In this paper, we
consider only with the (modified) Litim regulator, which
has been shown to be optimal in several cases and allows us
to make the computations analytically,

rkðp⃗Þ ≔
�
ZVVðkÞ 0

0 ZWWðkÞ

�
ðk − jp⃗jÞθðk − jp⃗jÞ; ð35Þ

where θ denotes the Heaviside step function and the ZII are
the running field strength renormalization (see Definition 6
below). Note that the diagonal form of the regulator ensures
that we do not generate nonperturbative anomalies of the
perturbatively stable condition μ ¼ 0 [see Proposition 1
or Eq. (43)].
Finally, the dimension may be chosen such that the

model been just renormalizable; i.e., all the divergences can
be subtracted order by order with a finite set of counter-
terms. The proof of this important property is given in
Appendix A and could be completed with standard refer-
ences [51–58]. For our model, the counterterms related to
the mass and quartic couplings will be denoted by “bare”
notation following the standard terminology. In addition, a
wave function counterterm will be required for the two
components of the bare propagator. We will denote as Z0;II
these counterterms, the index 0 referring to the value k ¼ 0,
i.e., to the deep IR limit,which corresponds to the referring
model (27). As a result, taking into account this renorm-
alization, the propagator (29) becomes

C−1
k ðp⃗Þ ¼

�
Z0;VV jp⃗j þm 0

0 Z0;WW jp⃗j þm

�
þ rkðp⃗Þ:

ð36Þ

The path integral quantization allows us to define the
Feynman graphs of the theory. The Feynman graphs
usually arise from the perturbative expansion of the
quantum field theory. However, the definitions we will
use here holds also for “effective graphs” arising in the
vertex expansion of the flow equation (30). Basically, a
Feynman graph is a set of vertices, linking together with
edges corresponding to Wick contractions. For tensorial
field theory however, this definition have to be completed
by the concept of faces:
Definition 3 A face is defined as a maximal and

bicolored connected subset of lines, necessarily including

LAHOCHE, OUSMANE SAMARY, and PEREIRA PHYS. REV. D 101, 064014 (2020)

064014-8



the color 0 which is attributed to the Wick contractions. We
distinguish two cases:

(i) The closed or internal faces, when the bicolored
connected set correspond to a cycle.

(ii) The open or external faces when the bicolored
connected set does not close as a cycle.

Usually, we attribute the color 0 for the Wick contraction
and picture them as dotted edges. The boundary of a given
face is then the subset of its 0-colored edges, and its length
is defined as the number of internal dotted edges on its
boundary. Note that for external faces, the external edges
are not included into the boundary set. Moreover, we call
the color of the face f denoted as cðfÞ the color of the edges
building with the corresponding cycle together with the
0-colored edges. To complete this definition let us provide
the following:
Definition 4 On a given Feynman graph, the set of

edges split into internal and external edges. External edges
come from Wick contraction with external fields and
internal edges comes from Wick contractions between
vertex fields. Moreover, a vertex is said to be a boundary
vertex if at least one of the external edges is hooked to him
or an interior vertex otherwise. Finally, we define the
interior of a Feynman diagram as the set of internal vertices
and dotted edges.
Now let us define other important notion: the boundary

graphs:
Definition 5 Let G be a connected Feynman graph

amputated of its external edges. Let ∂n the set of external
nodes (i.e., nodes hooked to external edges), F0 ¼ ff0g the
set of external faces, and ∂f0 the boundary of f0. The
boundary graph ∂G of G is the d-colored bipartite regular
graph build as follows:
(1) set ðn; n̄Þ ∈ ∂n two boundary nodes, respectively,

black and white.
(2) set ∂nn̄F0 ⊂ ∂F0 the subset of boundaries having the

couple ðn; n̄Þ as boundaries.
(3) For each path ∂f0 ∈ ∂nn̄F0, we create an edge of

color cðf0Þ between n and n̄.
(4) and so one for each pair ðn; n̄Þ ∈ ∂n.
Note that the boundary graph is not necessarily con-

nected and corresponds generally to a set of bubbles. The
number of bubbles corresponds to the number of (external)
face-connected components of the graph G.

III. SOLVING THE NPRG EQUATIONS

As explained above, the NPRG equation (30) cannot be
exactly solved apart for a very special cases. Approxi-
mations are then necessary to track nonperturbative aspects
of the renormalization group flow. We focus on two
approaches in this section, the standard vertex expansion
method and the EVE method. Let us briefly recall the mean
ingredients of these two point of views.

(i) The standard vertex expansion consists of a sys-
tematic “crude” projection into a reduced phase

space of a finite dimension, so that a big information
on the observable, beyond this reduced phase space,
is lost. Especially, for a truncation around inter-
actions of a valence n, Γnþ1 ≈ 0. The vertex ex-
pansion method is a powerful formalism to deal with
nonlocal interactions, especially for the tensor field
theory, as shown by the number of papers on the
subject [83–92]. In particular, the formalism offers
great flexibility in the type of interactions which are
considered. Moreover, this truncation scheme seems
to be more appropriate to investigate intermediate
regimes between deep UV and deep IR.

(ii) The EVE method, in contrast, cuts “smoothly” into
the full phase space and selects “sectors” (that is,
infinite sets of observables) rather than a finite
dimensional subset of interactions. The results about
fixed points are similar with a vertex expansion in
the melonic sector. However, the methods differ on
their philosophy. With the EVE method, the phase
space is build of an infinite set of interactions,
parametrized with a finite set of couplings, and
the full momentum dependence of the effective
vertices is taken into account. Moreover, some
singularities occurring in the vertex expansion
method disappear in the EVE, in that sense, EVE
extends maximally the domain of investigation of
the phase space [65]. However, the formalism seems
to be less flexible than truncations via vertex
expansion. In particular, it is difficult to nest “sectors
with sectors”, as explained in [65,69].

Both methods will be discussed in the same section as
complementary ways of investigation.

A. The effective vertex expansion method

In this section, we investigate the EVE method. This
point of view to derive the flow equations was introduced
recently in [65] and extensively discussed in [69]. Then in
this paper, we will focus only on the major modifications
due to the specificity of the two tensor models that we
consider. As a remark in this section, we reintroduce the
rank of the tensor fields to arbitrary dimension d to clarify
some results. In detail, in this section, we discuss succes-
sive points:

(i) The local expansion is investigating the structure of
the leading order graph to get relations between
effective vertices holding to all orders of the per-
turbative expansion.

(ii) The Ward identities are used to express the deriva-
tive of the effective vertices with respect to the
external momenta, playing an important role in the
definition of the anomalous dimension. The Ward
identities moreover introduce a nontrivial relation
between β functions that we call Ward constraint.

(iii) We deduce the flow equations in the EVE approxi-
mation, taking into account the Ward constraint in a
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second time, defining the constrained melonic flow.
Finally, we investigate the vertex expansion in a
complementary way, allowing us to track effects
depending on the disconnected diagrams.

1. Local expansion for hierarchical RG equations

Taking successive functional derivations, the first order
differential flow equation (30) split as an infinite hierar-
chical system, expressing the derivative of ΓðnÞ in terms of
Γðnþ2Þ, and so on. The basic strategy of the EVE is to close
this hierarchical system with the a set of rigid relations
called structure equations, inherited from the structure of
the leading order graphs in the deep UV. These equations
express all the irrelevant effective vertices in terms of a
restricted set of parameters: the mass and all the just-
renormalizable couplings. More precisely, we consider a
special domain for k, so far from the very deep UV limit,
and so far from the deep IR limit: 1 ≪ k ≪ Λ. In this
regime, one expects that relevant and marginal couplings
dominate the flow and are sufficient to drag the irrelevant
observables. We will investigate the boundary configura-
tion for the effective vertices and fix some conditions about
this investigation. First, we focus our investigation in a
phase where the expansion around vanishing classical
fields is assumed to be a good vacuum. As explained in
[66], in this region of the global phase space, the two-point
functions have to be diagonal, and all the odd vertex
functions have to vanish. More precisely:
Corollary 1 Into the symmetric phase, the 2-point

functions GIJðp⃗; q⃗Þ, I; J ∈ ðV;WÞ are diagonals in the
momentum space,

GIJðp⃗; q⃗Þ ≔ GIJðp⃗Þδp⃗;q⃗; ð37Þ

and all the odd vertex functions vanish, as well as vertex
functions which do not involve the same number of
derivatives with respect to M̄I and MI .
The properties of the effective vertex in the symmetric

phases are inherited from the behavior of the Feynman
diagrams contributing to their perturbative expansion. This
has been proven for quartic models with a single field

(see [66]). In fact, this is not mysterious, because a
vanishing classical field is precisely the good vacuum
for the perturbative expansion, and one expects that the
symmetric phase is contained or coincides with the ana-
lyticity domain of the effective vertex function. For leading
order graphs, the definition of the melonic diagrams is
recalled in Appendix A, and the series have been explicitly
ressumed for purely quartic models. Note that these well
analytic properties are a direct consequence of the tree
structure of the melonic diagrams (see Appendix A), trees
increasing less fast than ordinary Feynman graphs with the
number of vertices, and are easy to count.
Following the argument explained with full details in

[66], the boundary structure of the Feynman graphs
contributing to the perturbative expansion of the effective
vertex reduces them to a set of d × n matrix valued

functions πði;nÞ2 ∶Z2 → R, the index n labeled the type of
interaction that we consider [see Eq. (A1) of Appendix A]
and i ∈ ⟦1; d⟧. Indeed, from the Proposition 3
(Appendix A), it follows that all melonic quartic graphs
(except for the first term of the perturbative expansion)
contributing to the effective 4-points vertex function Γð4Þ
have two boundary vertices, two external faces of the same
color connected to boundary nodes of two different
boundary vertices, and (d − 1) short external faces of
length 1 per boundary vertex. Finally, the stability of the
condition μ ¼ 0 given in the Proposition 1, ensures the
stability of the flow in the UV limit. As a result, there are
only four allowed boundaries, corresponding to the quartic
graphs involved in the classical action, and the effective

4-point function Γð4Þ
p⃗1;p⃗2;p⃗3;p⃗4

may be decomposed in terms of

d × n functions Γð4Þ;ði;nÞ
p⃗1;p⃗2;p⃗3;p⃗4

as

Γð4Þ;n
k;p⃗1;p⃗2;p⃗3;p⃗4

¼
Xd
i¼1

Γð4Þ;ði;nÞ
k;p⃗1;p⃗2;p⃗3;p⃗4

: ð38Þ

Graphically, up to the permutations coming from the
Wick theorem, the four effective vertex functions Γð4Þ;ði;nÞ
are the following, up to permutations of the external
indices :

ð39Þ
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Explicitly,

Γð4Þ;ði;nÞ
k;p⃗1;p⃗2;p⃗3;p⃗4

¼ πði;nÞ2;p1ip3i
SymnWp⃗1;p⃗2;p⃗3;p⃗4

; ð40Þ

whereWp⃗1;p⃗2;p⃗3;p⃗4
is a product of Kronecker delta building

the general melonic quartic interaction,X
fp⃗kg

Wp⃗1;p⃗2;p⃗3;p⃗4
ϕI;p⃗1

ϕ̄J;p⃗2
ϕK;p⃗3

ϕ̄L;p⃗4
ð41Þ

with, J; K; L ∈ ðV;WÞ. The operator Symn takes into
account all the allowed contractions due to Wick contrac-
tions with external edges, and its action depends on the type
of boundary that we consider. Indeed, for n ¼ 3, 4, there is
only a single configuration of the external edges, each type
of field occurring only one time. In contrast, there are four
allowed contractions for n ¼ 1, 2, because there are two
white and two black nodes of the same type (bull or
square). Explicitly,

SymnWp⃗1;p⃗2;p⃗3;p⃗4
¼
�
2ðWp⃗1;p⃗2;p⃗3;p⃗4

þWp⃗3;p⃗2;p⃗1;p⃗4
Þ if n ¼ 1; 2

Wp⃗1;p⃗2;p⃗3;p⃗4
if n ¼ 3; 4

: ð42Þ

Deriving the Wetterich equation (30) with respect to MI and M̄J in the deep UV, one gets, graphically,

_Γð2Þ
k;IJðp⃗Þ ¼ 0 for I ≠ J; ð43Þ

and

ð44Þ

where we keep only the leading order contractions in the
large k limit, the contraction with dotted edges building
the effective loop with propagator _rkG2

k, Gk denoting the
effective 2-point function,

ðG−1
k ÞIJ ¼ ðΓð2Þ

k þ rkÞIJ: ð45Þ

Note that the factor 2 in front of some effective vertex is
at least abusive since all the combinatorics is in fact
included in the definition of the effective vertex itself.
Then, we can think this notation as a simple way to count
the symmetry factors, i.e., the number of equivalent
diagrams without permutation of the external indices.
The first equation (43) ensures the stability of the condition
μ ¼ 0 and provides a nonperturbative version of the first
point of the Proposition 1. The second equation (43) allows
us to extract the flow equations for the effective mass
parameters mII and wave function renormalization ZII .
In order to get the flow equations, we have to fix the

renormalization conditions by giving the effective coupling
constant at the scale k:
Definition 6 Renormalization condition in the symmet-

ric phase. The effective mass parameters mIIðkÞ for I ∈
ðV;WÞ is defined as the zero-momenta value of the 2-point

function Γð2Þ
k;II ,

mIIðkÞ ≔ Γð2Þ
k;IIðp⃗ ¼ 0⃗Þ: ð46Þ

In the same way, the effective couplings gIðkÞ and cIðkÞ are
defined from the zero momenta 4-point functions as

Γð4Þ;ði;nÞ
k;0⃗;0⃗;0⃗;0⃗

¼ 4πði;nÞ2;00 ≕ 4gnðkÞ; for n ¼ 1; 2 ð47Þ

Γð4Þ;ði;nÞ
k;0⃗;0⃗;0⃗;0⃗

¼ πði;nÞ2;00 ≕ cnðkÞ; for n ¼ 3; 4: ð48Þ

Finally, in the symmetric phase, the wave functions
renormalization factors ZIIðkÞ are defined as

ZIIðkÞ ≔
∂

∂jpij
Γð2Þ
k;IIðp⃗ ¼ 0⃗Þ: ð49Þ

Note that we must distinguish between the effective and
the bare couplings (i.e., the couplings involved in the
classical action) by the evolution parameter k. Moreover,
note that our initial conditions for mass are such that
mVV ¼ mWW ¼ m in the limit k → Λ.
Our strategy will be to close the hierarchical system of

coupled flow equations for local couplings by expressing

the effective vertices Γð6Þ
k in terms of Γð4Þ

k and Γð2Þ
k . We recall

that local couplings correspond to couplings for the local
observable, in the sense of the Definition 2. For 2- and
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4-points melonic observables, these local couplings are
defined by the renormalization conditions given by
Definition 6. However, strict local couplings are not
sufficient to express the flow of the local couplings. In
particular, this requires the full momentum dependence of
the 2-point function. In the melonic sector, this function is
fixed by a system of closed equations from the following
statement (for more detail, see Appendix B):
Proposition 1 Melonic closed equations. In the sym-

metric phase, and in the deep UV limit, we have the fol-
lowing two statements about the leading order self energy:

(i) The components ΣVW and ΣWV of the self energy Σ
have to vanish. As a consequence, the coupling
constant μ does not receive radiative corrections, and
the condition μ ¼ 0 is stable.

(ii) The leading order remaining components ΣVV

and ΣWW splits into d functions σðiÞII , I ∈ ðV;WÞ,
i ∈ ⟦1; d⟧, depending on a single component of the
external momentum,

ΣIIðp⃗Þ ≔
Xd
i¼1

σðiÞII ðpiÞ; ð50Þ

and the components σðiÞII ðpiÞ satisfies to the coupled
system of closed equations,

σðiÞVVðpÞ ¼ −2g1
X
q⃗∈Zd

δqipGVVðq⃗Þ

− c1
X
q⃗∈Zd

δqipGWWðq⃗Þ; ð51Þ

σðiÞWWðpÞ ¼ −2g2
X
q⃗∈Zd

δqipGWWðq⃗Þ

− c1
X
q⃗∈Zd

δqipGVVðq⃗Þ: ð52Þ

Note that the couplings involved in these equations are
the bare couplings without k dependence. Remark that
these melonic closed equations are reputed to be difficult to
solve [110,111], and we do not focus on the solution of this
system. In spite of all the difficulties to provide the explicit
solution, we remind the reader that the resolution of these
equations is deserved for a forthcoming investigation. Our
strategy in this paper is to use the flow equation itself to get
an approximation of the exact solution. More concretely,
we will choose an ansatz for Γð2Þ and follow its evolution
along the RG flow. Because we are in the symmetric phase,
Γð2Þ has to be independent of the classical mean fields, and
following references [65–68], we will keep only the first
terms of the derivative expansion (that is to say, we keep
only marginal and essential terms in the expansion of
Γð2Þðp⃗Þ with respect to jp⃗j). Our ansatz is then the
following:

Γð2Þ
II ðp⃗Þ ≔ ZIIðkÞjp⃗j þmIIðkÞ: ð53Þ

Note that this approximation holds only in the symmetric
phase. From the renormalization conditions, by setting the
external momenta to zero, i.e., p⃗ ¼ 0⃗ in Eq. (44) and in the
first derivative of the same equation, one can deduce the
equations for _mII and _ZII . Defining the anomalous dimen-
sion ηI as

ηI ≔
1

ZII

d
dt

ZII; ð54Þ

one gets

_mII ≔ −6giðIÞðkÞI2;IIð0Þ − 3c1ðkÞI2;Î Îð0Þ ð55Þ

ZIIηI ≔ −2
∂πð1;nðIÞÞ2;00

∂jp1j
I2;IIð0Þ −

∂πð1;3Þ2;00

∂jp1j
I2;Î Îð0Þ

− 2gnðIÞðkÞI02;IIð0Þ − c1ðkÞI02;Î Îð0Þ; ð56Þ

where, nðVÞ ¼ 1, nðWÞ ¼ 2; and as in Sec. III B, the “dot”
refers to the derivative with respect to the log scale
t ≔ lnðkÞ, and we defined the one-loop sums In;II as

In;IIðjqjÞ ≔
X
p⃗

δp1q
_rkðp⃗Þ

ðZIIjp⃗j þmII þ ðrkÞIIðp⃗ÞÞn
: ð57Þ

Finally, the notation Î is defined as: for I ¼ V, Î ¼ W
and for I ¼ W, Î ¼ V. Using the explicit expression of the
regulator (2.2), the sums In;IIðjqjÞ writes as

In;IIðjqjÞ ¼
ZII

ðZIIkþmIIÞn
X
p⃗

δp1qθðk − jp⃗jÞ

× ½ηIðk − jp⃗jÞ þ k�: ð58Þ

In the deep UV limit, the sums can be approached by
integrals of the type,

JnðjqjÞ ≔
Z

d2xjx⃗jnθðR − jx1j − jx2jÞ ð59Þ

for the continuous variables xi ≔ pi=k; more detail about
the explicit computation of this sum can be found in
Appendix C. Then we get

In;IIðjqjÞ ¼ ZII
J0ðjqjÞ½ηIðk − jqjÞ þ k� − J1ðjqjÞηI

ðZIIkþmIIÞn
: ð60Þ

This expression allows us to compute each term in the

Eqs. (55) and (56), except the terms
∂πð1;nÞ

2;00

∂jp1j I2;IIð0Þ. These
terms take into account additional information about the
momentum dependence of the effective vertices with
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respect to the finite local vertex expansion. We compute
them in the next section using Ward identities.
The equations for _gi and _ci may be obtained from the

same principle by deriving twice with respect to M and M̄,
before setting M ¼ M̄ ¼ 0. Formally, if we forget tempo-
rarily the index structure V;W, we get an equation
schematically of the form,

_Γð4Þ
k;0⃗;0⃗;0⃗;0⃗

¼ −
X
p⃗

Tr _rkðp⃗ÞG2
kðp⃗Þ

�
Γð6Þ
k;p⃗;0⃗;0⃗;p⃗;0⃗;0⃗

− 2
X
p⃗0

Γð4Þ
k;p⃗;0⃗;p⃗0;0⃗

Gkðp⃗0ÞΓð4Þ
k;p⃗0;0⃗;p⃗;0⃗

�

þ 2
X
p⃗

Tr _rkðp⃗ÞG3
kðp⃗Þ½Γð4Þ

k;p⃗;0⃗;p⃗;0⃗
�2; ð61Þ

the trace Tr running through the V-W indices. This equation
involve 6-point functions, and therefore in the hope to
isolate the contributions of each beta functions, we have to

provide the structure of the effective vertices Γð6Þ
k , as in the

case of the 4-point vertices.
From Proposition 3 of Appendix A, we keep that the

boundary of a 1PI melonic 6-point graph has to be made of
three external vertices, each of them sharing d − 1 colored
faces of length one. Moreover, there must exist three
external faces of the same color, whose boundaries link
pairwise each external vertex (i.e., their end nodes are on
different vertices). However, all the boundary configura-
tions are not allowed, and we have the following constraint
(the proof is given in Appendix B):

Proposition 2 Let us consider a 1PI nonvacuum dia-
gram having V̄4 external vertices of type ði; 4Þ among the V̄
external vertices and 2N external edges. In the limit μ → 0,
all the leading order connected 1PI graphs with odd V̄4

vanish except for the special case 2N ¼ 4 and V̄4 ¼ V̄ ¼ 1.
In particular, for 1PI 6-points graphs, we get the

following statement:
Corollary 2 The 6-point vertex functions with a 3 and 1

boundary vertex of type ði; 4Þ vanish in the limit μ → 0.
As a result, the full melonic function Γð6Þ

k splits into d
components, labeled by the color of the external face
running through the interior of the diagrams contributing to
its perturbative expansion. Moreover, each of these com-
ponents split as nine components, labeled by all the allowed
configurations for the boundary vertices,

Γð6Þ
k;p⃗1;p⃗2;p⃗3;p⃗4;p⃗5;p⃗6

¼
Xd
i¼1

X
a;b;c∈ð1;2;4Þ

Γð6Þ;ði;abcÞ
k;p⃗1;p⃗2;p⃗3;p⃗4;p⃗5;p⃗6

; ð62Þ

where the allowed structures for the functions

Γð6Þ;ði;abcÞ
k;p⃗1;p⃗2;p⃗3;p⃗4;p⃗5;p⃗6

are listed on Fig. 2 below. Note that, as
for 4-point functions, we took into account the permuta-
tions of the external momenta.
Note that all the reduced vertex functions πði;abcÞ3 ∶ Z3 →

R will be fixed latter to close the hierarchy.
Moving on to the flow equation (61), we are now in

position to investigate the beta functions for each coupling
from the renormalization conditions, identifying their
contributions on the right-hand side from the boundary
structure of the resulting effective observables. Let us
consider _g1. From the Definition 6, one gets

FIG. 2. The allowed boundary structures for the vertex functions Γð6Þ;ði;abcÞ
k;p⃗1;p⃗2;p⃗3;p⃗4;p⃗5;p⃗6

. All the other combinations of the indices a, b, c
labels are vanished functions.
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ð63Þ

More explicitly, we write

_g1 ¼ −3πð1;111Þ3 I2;VVð0Þ − πð1;112Þ3 I2;WWð0Þ þ 4g21I3;VVð0Þ þ c21I3;WWð0Þ: ð64Þ

The same computation may be given for _g2, _c1, and _c2; we get

_g2 ¼ −3πð1;222Þ3 I2;WWð0Þ − πð1;122Þ3 I2;VVð0Þ þ 4g22I3;WWð0Þ þ c21I3;VVð0Þ; ð65Þ

_c1 ¼ −2πð1;112Þ3 I2;VVð0Þ − 2πð1;122Þ3 I2;WWð0Þ þ 4c1ðg1I3;VVð0Þ þ g2I3;WWð0ÞÞ; ð66Þ

_c2 ¼ −πð1;144Þ3 I2;VVð0Þ − πð1;244Þ3 I2;WWð0Þ þ c22I3;VWð0Þ; ð67Þ

where for the last equation, we introduce the mixed loop I3;VWð0Þ, defined from

I3;VWðjqjÞ ≔
X
p⃗

δp1qð_rVVG2
k;VVGk;WW þ _rWWG2

k;WWGk;VVÞ; ð68Þ

and we used of the notation πði;abcÞ3 ≡ πði;abcÞ3;000 . As explained
before, to close the hierarchy, we have to find a relation
between 6, 4, and 2 points functions. As we will see, there
are two nonequivalent ways to do this. The first one follows
the strategy explained in [69] and uses the structure of the
melonic diagram to find explicitly the structure of the
leading order 6 point functions. This strategy has to be
finally completed with a constraint coming from a Ward
identity and provides a complicated description of the
effective physical phase space. Another way is to constrain
the expression of the 6-point functions themselves using
Ward identities. We will discuss these two strategies in the
two next sections.

2. Structure equations and Ward identities

The unitary symmetry of the classical interactions (32)
induce a nontrivial Ward-Takahashi identity at the quantum
level, due to the translation invariance of the Lebesgue
measure

Q
I dϕIdϕ̄I involved in the definition of the

partition function (27),Z
dμC ≔

Z Y
I¼V;W

dϕIdϕ̄Ie−Skin½ϕI ;ϕ̄I �: ð69Þ

In the first Sec. II, we defined as UðNÞ the set of unitary
symmetries of size N, admitting an inductive limit for
arbitrary large N. A transformation is then a set of d

independent elements of UðNÞ, U ≔ ðU1;…; UdÞ ∈
UðNÞd, one per index of the tensor fields, and the trans-
formation rule is explicitly the following:

U½ϕI�p⃗ → ðϕ0
IÞp⃗ ≔

X
q1;…;qd

ðU1Þp1q1
� � � ðUdÞpdqd

ðϕIÞq⃗: ð70Þ

Note that, as explained in the Sec. II, the same trans-
formation act on V and W fields. The global translation
invariance of the Lebesgue measure ensures the invariance
of the partition functions (28),

U½Zk½J; J̄�� ¼ Zk½J; J̄�: ð71Þ

Focusing on an infinitesimal transformation, δ1 ≔ ðidþ ϵ;
id;…; idÞ acting nontrivially only on the color 1 for some
infinitesimal anti-Hermitian transformations, and keeping
only the variation terms of order ϵ, one gets the following
statement:
Theorem 1 The partition function Zk½J; J̄�≕ eWk½J;J̄� of

the theory defined by the action (32) satisfy the following
relation (we sum over the index I):

X
p⃗⊥;p⃗⊥ 0

δp⃗⊥p⃗⊥ 0

�
½ΔCsðp⃗; p⃗0Þ�II

� ∂2Wk

∂J̄I;p⃗0∂JI;p⃗ þ M̄I;p⃗MI;p⃗0

�

− J̄I;p⃗MI;p⃗0 þ JI;p⃗0M̄I;p⃗

�
¼ 0;
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with p⃗⊥ ≔ ð0; p2;…; pdÞ ∈ Zd and

½ΔCsðp⃗; p⃗0Þ�II ≔ C−1
k;IIðp⃗Þ − C−1

k;IIðp⃗0Þ: ð72Þ

The proof can be found in [65–71]. The interest of the
Ward identities is to connect n and nþ 2 effective
functions, due to the specific noninvariance of the kinetic

term. In particular, we will be extensively interested by the
connection between 4 and 2 point functions on one hand,
and between 6 and 4 point functions on a second hand.
Taking successive derivative with respect to the external
sources, JV and J̄V , setting p⃗ → p⃗0 on one hand, and
finally, p⃗ → 0⃗, one gets the relation,

ð73Þ

where

Lk;Iðp⃗Þ ≔
�
Z0;II þ

∂rk;II
∂jp1j

ðp⃗Þ
�
G2

k;Iðp⃗Þ: ð74Þ

The same relation holds in the replacement V → W for the
external points, and because of the renormalization con-
ditions, Definition 6, one gets the following statement:
Corollary 3 In the symmetric phase, and in the deep UV

sector, the effective local quartic couplings and the field
strength renormalization obey to the following set of
coupled equations:

�
2g1ðkÞLk;V þ c1ðkÞLk;W ¼ Z0;VV − ZVVðkÞ
2g2ðkÞLk;W þ c1ðkÞLk;V ¼ Z0;WW − ZWWðkÞ;

ð75Þ

where

Lk;I ≔
X
p⃗⊥

Lk;Iðp⃗⊥Þ; I ∈ ðV;WÞ: ð76Þ

Note that the coupling c2ðkÞ does not appear in these
equations, and it is not constrained by theWard identity. We
will discuss extensively this point at the end of this section
and in the next one.
Now, let us consider the 6-point function. Deriving twice

with respect to the external sources, the Ward identity given
by theorem 72, setting J ¼ J̄ ¼ 0 at the end of the
computation, and following the same strategy as explained
in references [65,66], we obtain a relation between the
derivative of the reduced vertex functions π2 with respect to
the external momenta and the reduced functions π3.
Graphically,

ð77Þ

ð78Þ
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ð79Þ

ð80Þ

Note that for each of these equations,

∂πð1;nÞ2;00

∂jp1j
≡ ∂πð1;nÞ2;p1p1

∂jp1j
jp1¼0: ð81Þ

Translating each of these equations into a formula, we get
to complete the Corollary 3:
Corollary 4 In the symmetric phase, and in the deep UV

limit, the first derivatives of each reduced effective quartic
functions with respect to the external momenta are related
to 6 and 4 point effective vertices as

6πð1;111Þ3 Lk;V þ 2πð1;112Þ3 Lk;W − 8g21ðkÞUk;V − 2c21ðkÞUk;W

¼ −
∂πð1;1Þ2;00

∂jp1j
; ð82Þ

6πð1;222Þ3 Lk;W þ 2πð1;122Þ3 Lk;V − 8g22ðkÞUk;W − 2c21ðkÞUk;V

¼ −
∂πð1;2Þ2;00

∂jp1j
; ð83Þ

2πð1;112Þ3 Lk;V þ 2πð1;122Þ3 Lk;W

− 4c1ðkÞðg1ðkÞUk;V þ g2ðkÞUk;WÞ ¼ −
∂πð1;3Þ2;00

∂jp1j
; ð84Þ

πð1;144Þ3 Lk;V þ πð1;244Þ3 Lk;W − c22ðUk;VVW þ Uk;WWVÞ

¼ −
∂πð1;4Þ2;00

∂jp1j
; ð85Þ

where we introduced Uk;I and Uk;IIJ defined as

Uk;I ¼
X
p⃗⊥

Lk;Iðp⃗⊥ÞGk;Iðp⃗⊥Þ;

Uk;IIJ ¼
X
p⃗⊥

Lk;Iðp⃗⊥ÞGk;Jðp⃗⊥Þ: ð86Þ

These equations allows us to express the derivatives on
the right-hand side of the expression (56) in terms of the
local observables π2 and π3. At this stage, π3 is the only
inconvenience to close the hierarchy.
The recursive definition of the melonic diagram provides

a set of solid relations called structure equations in [65–68]
and allowing us to express all the melonic effective vertex
functions in terms of the finite set of them corresponding to
just-renormalizable interactions. We only provide the main
step of the proof, referring to the cited papers for details.
Let us consider a Feynman diagram G contributing to the

perturbative expansion of the reduced melonic effective

vertex πð1;111Þ3 . We use the intermediate field representation,
the reader unfamiliar with this formalism may consult the
Appendix A. As a leading order graph, G corresponds to a
tree T G in the intermediate field representation, whose
example is pictured in Fig. 3 below. The structure of the
diagram follows the Proposition 3 of Appendix A. The
diagram has three cilia corresponding to the external
(dotted) edges to which the three external vertex are
hooked. Each of these vertices share d − 1 short external
faces of length one and are the end points of 3 monocolored
external faces running through the interior of the diagram.
These three internal faces connect two-by-two the boun-
dary vertex and then ensure the existence a path of color 1

between each pair of boundary vertices. Let Pð1Þ
c1c2 , P

ð1Þ
c2c3 ,

and Pð1Þ
c1c3 . Merging together these paths Pð1Þ

c1c2 ∪ Pð1Þ
c2c3 ∪

Pð1Þ
c1c3 build a monocilored tree made of three monocolored

arms Pð1Þ
ci . Topologically, these arms have to be hooked to a
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common loop-vertex v. Some other connected components
may be hooked to this vertex, has τ1 and τ2 between the arc

ðPð1Þ
c3 ;P

ð1Þ
c1 Þ,

ð87Þ

Each of these components τi are subtrees with two
external points, and then they contribute to the perturbative
expansion of the leading order self-energy. As a result,
order by order, connected components hooked to the arc

ðPð1Þ
c3 ;P

ð1Þ
c1 Þ build nothing but the effective 2-point function

Gk, between each arc ðPð1Þ
ci ;P

ð1Þ
cj Þ. In the same way, each

arm Pð1Þ
ci are nothing but contributions to the perturbative

expansion of the effective 4-point functions. More pre-
cisely, due to the boundary conditions, the effective

functions may be homogeneous and corresponds to Γð4;1Þ
k

or heteroclite and corresponds to Γð4;3Þ
k . Indeed, because of

Propositions 1 and 2, only type 1, 2, or 3 vertices may be
hooked to the global node v. Moreover, to ensure its

closure, all the arms hooked to v have to be of the same
type. In other worlds, all of them have to be a contribution

of the perturbative expansion of Γð4;1Þ
k or Γð4;3Þ

k , but mixed
contributions are not allowed. As a result, one expect the
following structure (up to permutations of the external
momenta):

ð88Þ

and it easy to check that any tree of the type of Fig. 3 is a
term of the perturbative expansion of one among the two
configurations pictured above. In this sense, the identifi-
cation of both sides of the previous equation make sense

only in the analyticity domain of Γð6Þ
k . The remaining

coefficients α and β may be computed by considering the

first term of the pertubative expansion of Γð6Þ;ð1;111Þ
k . The

diagrams are exactly of the form of those pictured on the
right-hand side of the Eq. (88), and from the Wick theorem
one get straightforwardly,

α ¼ 16; β ¼ 2: ð89Þ
By reexpressing the diagramical equation (88) and

setting to zero all the external momenta, one gets

πð1;111Þ3 ¼ 16g31ðkÞA3;VVV þ 2c31ðkÞA3;WWW; ð90Þ

where we introduced An;IJ���K as

An;IJ���K ≔
X

p⃗⊥∈Zd−1

Gk;Iðp⃗⊥ÞGk;Jðp⃗⊥Þ � � �Gk;Kðp⃗⊥Þ: ð91Þ

In the same way, one gets, for the remaining reduced
effective vertices,

πð1;222Þ3 ¼ 16g32ðkÞA3;WWW þ 2c31ðkÞA3;VVV; ð92Þ

πð1;112Þ3 ¼ 2g2ðkÞc21ðkÞA3;VVW þ 4g21ðkÞc1ðkÞA3;VVW;

ð93Þ

πð1;221Þ3 ¼ 2g1ðkÞc21ðkÞA3;WWV þ 4g22ðkÞc1ðkÞA3;WWV;

ð94Þ

FIG. 3. Intermediate field representation of a typical 1PI
melonic diagram contributing to πð1;111Þ3 . The dotted cilia corre-
spond to external edges, and some connected components are

surrounded with dotted lines: the three monocolored arms Pð1Þ
ci

ending with ciliated vertex and the two connected components τi.
The red arrows picture the external monocolored faces running
through the interior of the diagram from the boundary vertices.
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πð1;144Þ3 ¼ 2c22ðkÞð2g1ðkÞA3;VVW þ c1ðkÞA3;WWVÞ; ð95Þ

πð1;244Þ3 ¼ 2c22ðkÞð2g2ðkÞA3;WWV þ c1ðkÞA3;VVWÞ: ð96Þ

The set of effective melonic functions (92), (94), (95),
and (96) allows us to close our hierarchical system. Indeed,
from Ward identities of the Proposition (4), we would be
able to express the lacking derivatives ∂πði;aÞ2 =∂jp1j
involved in the expression of ηI [Eq. (56)] and express
all the Eqs. (67) in terms of local couplings only [thanks to
the approximation (53)]. However, in this way, we lack the
contribution of the Ward identities provided by Corollary 3.

As discussed in [65], and as we will see in the next section,
the relations provided by the corollary may be translated
locally as a constraint between beta functions and finally,
on the renormalization group flow as well. Instead of this
constraint approach, ensuring that all melonic structure
equations remain true along the flow, we will adopt another
strategy in the next section, defining the six (and higher)
effective vertices along the “physical” flow itself.

3. Description of the constrained melonic flow

Let us consider the two relations of Corollary 3. Setting
k ¼ 0, the regulator rk disappears, and the relations
reduces to

�
2gR1Z0;VVA2;VVðk ¼ 0Þ þ cR1Z0;WWA2;WWðk ¼ 0Þ ¼ Z0;VV − 1

2gR2Z0;WWA2;WWðk ¼ 0Þ þ cR1Z0;VVA2;VVðk ¼ 0Þ ¼ Z0;WW − 1;
ð97Þ

where the renormalized couplings gRi and cRi are defined as

gRi ≔ giðk ¼ 0Þ; cRi ≔ ciðk ¼ 0Þ; ð98Þ

and we chose ZIIðk ¼ 0Þ ¼ 1. The last condition ensuring
the following behavior for small momenta in the deep IR
limit:

Gk¼0;IIðp⃗Þ ∼
1

jp⃗j þmR
II
; jp⃗j ≪ 1; ð99Þ

assuming the definition mR
II ≔ mIIðk ¼ 0Þ. Note that the

condition ZIIðk ¼ 0Þ ¼ 1
3 does not make sense necessarily

if the flow is attracted toward a nontrivial fixed point. In this

case, we can choose a referent scale k0 far away from the
deep UV sector to fix the renormalization condition. We
left this irrelevant difficulty for our purpose. Interestingly,
the set of coupled equations given by Proposition 3 have to
be compared with the closed system given by Proposition 1.
Indeed, deriving them with respect to p, setting p ¼ 0 and
taking into account the definition,

∂σð1ÞII

∂jpj ðp ¼ 0Þ ¼ Z0;II − ZIIðkÞ; ð100Þ

we get

�
2gB1ZVVðkÞA2;VVðkÞ þ cB1ZWWðkÞA2;WWðkÞ ¼ Z0;VV − ZVVðkÞ
2gB2ZWWðkÞA2;WWðkÞ þ cB1ZVVðkÞA2;VVðkÞ ¼ Z0;WW − ZWWðkÞ;

ð101Þ

where we introduced the subscript B for “bare” to clearly distinguish between bare and renormalized quantities. The
Eqs. (101) and the Corollary 3 provide two a priori nonequivalent expressions for the difference Z0;II − ZIIðkÞ. Equaling
them together, one get (and the same exchanging V ↔ W),

2gB1ZVVðkÞA2;VVðkÞ þ cB1ZWWðkÞA2;WWðkÞ ¼ 2g1ðkÞLk;V þ c1ðkÞLk;W: ð102Þ

Especially, setting k ¼ 0,

�
2ðgB1 − gR1Z0;VVÞA2;VVðk ¼ 0Þ þ ðcB1 − cR1Z0;WWÞA2;WWðk ¼ 0Þ ¼ 0

2ðgB2 − gR2Z0;BBÞA2;WWðk ¼ 0Þ þ ðcB1 − cR1Z0;VVÞA2;VVðk ¼ 0Þ ¼ 0;
ð103Þ

3Note that, we have not to confused ZIIðk ¼ 0Þ and Z0;II . The first one corresponds to the end point of the RG trajectory; the second
one is an initial condition ensuring the model to be well defined in the UV.
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In a sense, these equations relate the end points of the RG
flow history, the bare quantities being for the classical
model in the UVand the renormalized ones for the classical
model in the IR. They simply means that something is
conserved along the flow, a conservation that we will
translate locally, in the infinitesimal interval ½k; kþ δk�. Let
us return on the pair of Eqs. (97). Solving in terms of Z0;VV

and Z0;WW , we get8>>>>><
>>>>>:

Z−1
0;VV ¼ 1−2gR

1
A2;VV

1þcR
1
Z0;WWA2;WW

Z−1
0;WW ¼

1−2gR
2
A2;WW−

ðcR
1
Þ2A2;VVA2;WW

1−2gR
1
A2;VV

1þ cR
1
A2;VV

1−2gR
1
A2;VV

:
ð104Þ

Expanding the coefficients A2;VV and A2;WW in the power
of couplings, we generate the log-divergent wave function
counterterms. For some fundamental cut off Λ, one then
expects that A2;II ∼ lnðΛÞ, and a direct inspection of the
Eqs. (104) show that Z0;VV and Z0;WW vanish as 1= lnðΛÞ in
the continuum limit Λ → ∞, except for the special con-
figurations,

4gR1 g
R
2 ¼ ðcR1 Þ2: ð105Þ

In our consideration, we will consider a region so far from
the region defined by (105).
Let us return on the equations given by the Corollary 3.

Deriving with respect to t ¼ lnðkÞ, one gets

2_g1Lk;V þ 2g1ðZ0;VV
_A2;VV þ _Δ2;VÞ þ _c1Lk;W

þ c1ðZ0;VV
_A2;WW þ _Δ2;WÞ ¼ 0; ð106Þ

and the same equation exchanging V ↔ W, the quantity
Δ2;I being defined as

Δn;I ≔
X
p⃗⊥

∂rk;II
∂jp1j

ðp⃗⊥ÞGn
I ðp⃗⊥Þ: ð107Þ

There are some obstacles to simplify the Eq. (106). The big
one is the computation of Ak;II, which is a divergent
quantity. One could expect that we can use of the
approximation (53). However, such an approximation
has been shown very bad for quartic models with a single
field [65,66]. In particular, the universal one loop asymp-
totic freedom is lost. The expected reason is that the
approximation (53) used to solve the flow equation is
valid only in the interior of the windows of momenta
corresponding to the support of the distribution _rk;II ,
whereasAk;II involves an integration over all the momenta,
from the very deep UV scale jp⃗j ∼ Λ to jp⃗j ∼ 0, so far from
the domain in which the approximation (53) make sense. In
the same paper, the authors show that for superficially
divergence free quantities like An;I;J;…;K for n > 2, how-
ever, the approximation (53) is trusty.

To skirt the difficulty, we express Lk;I in terms of ZII and
the effective couplings g1, g2, and c1 from the Corollary 3.
In the continuum limit, we obtain straightforwardly

Lk;V ¼ c1ZWW − 2g2ZVV

4g2g1 − c21
; ð108Þ

Lk;W ¼ c1ZVV − 2g1ZWW

4g2g1 − c21
: ð109Þ

In the continuum limit, we saw that Z0;II → 0. Moreover,
_A2;II is essentially the difference of two logarithmic
divergent quantity, and because the integrated functions
have the same behavior in the deep UV limit, _A2;II has to be

finite in the continuum limit.4 Therefore: Z0;II
_A2;II → 0,

and from (108) and (109),

�
2_g1Lk;V þ 2g1 _Δ2;V þ _c1Lk;W þ c1 _Δ2;W ¼ 0;

2_g2Lk;W þ 2g2 _Δ2;W þ _c1Lk;V þ c1 _Δ2;V ¼ 0:
ð110Þ

Because the allowed windows of momenta for ∂rk;II
∂jp1j and

_rk;II are essentially the same, the approximation (53) used
to solve the flow equation may be used to compute Δ2;I .
The explicit computation is given in Appendix C. Finally,
we are not really interested by the velocities of the
effective couplings, but by the velocity of the dimension-
less and renormalized quantities, that is to say, quantities
for which we retain only the intrinsic part of the
dynamic. For our model, the notion playing the role
of dimension is called canonical dimension and refers to
the optimal scaling of the quantum corrections for each
couplings. From the results of Appendix A, all the
quartic couplings have zero canonical dimension, and
the mass has canonical dimension equal to 1. Note these
dimension reflect nothing but the UV behavior of the RG
flow and are the direct consequence of the just renor-
malizability of the model that we consider. The renor-
malized couplings, finally, are obtained by subtracting the
contribution coming from the wave function renormali-
zation. To summarize:
Definition 7: Dimensionless renormalized couplingsIn

the deep UV, the dimensionless and renormalized couplings
ḡi, c̄i, and m̄II are defined as

gi ≕Z2
II ḡi; ci≕ZVVZWWc̄i; mII ¼ kZIIm̄II:

ð111Þ

The velocity of the dimensionless renormalized cou-
plings are the standard beta functions, that is to say :
βgi ¼ _̄gi, βc1 ≔ _̄ci and βmII

≔ _̄mII , and we have the follow-
ing statement:

4This point has been explicitly checked in [65–67].
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Corollary 5 In the continuum limit, and in the symmetric phase, the beta function of the renormalized couplings along
the flow are related as

2βg1
c̄1 − 2ḡ2
4ḡ2ḡ1 − c̄21

þ 12ḡ1

�
1

1þ m̄VV

�
4

βmVV
þ βc1

c̄1 − 2ḡ1
4ḡ2ḡ1 − c̄21

þ 6c̄1

�
1

1þ m̄WW

�
4

βmWW

þ ηVð5c̄1 − 2ð4ḡ1 þ ḡ2ÞÞ þ ηWðc̄1 − 2ḡ1Þ
4ḡ2ḡ1 − c̄21

¼ 0;

2βg2
c̄1 − 2ḡ1
4ḡ2ḡ1 − c̄21

þ 12ḡ2

�
1

1þ m̄WW

�
4

βmWW
þ βc1

c̄1 − 2ḡ2
4ḡ2ḡ1 − c̄21

þ 6c̄1

�
1

1þ m̄VV

�
4

βmVV

þ ηWð5c̄1 − 2ð4ḡ2 þ ḡ1ÞÞ þ ηVðc̄1 − 2ḡ2Þ
4ḡ2ḡ1 − c̄21

¼ 0:

Note that the singularity (105) is the end version of
the singularity 4ḡ2ðkÞḡ1ðkÞ − c̄21ðkÞ occurring in each of
these equations. They define a breakdown region, where
our method do not make sense. In fact, we have to
distinguish two regions 4ḡ2ðkÞḡ1ðkÞ − c̄21ðkÞ > 0 and
4ḡ2ðkÞḡ1ðkÞ − c̄21ðkÞ < 0; we will return on this point
in the next section.
These equations introduce a nontrivial constraint along

the flow and have to be solved simultaneously with the
flow equations. Indeed, they come from the Ward identity,
which has to be treated on the same footing as the flow
equations. Indeed, they provide two complementary
description of the global phase space, and to see why,
it suffice to compare the Eqs. (77) and (63). The same
diagrams appears in two case. For the Ward identity (77),
the contraction involves a variation of the propagator with
respect to the momentum, and the equation express the
variation of the quantity πði;1Þ2 with respect to jpj. In the
same way, the flow equation (63) describes the evolution

of πði;1Þ2 with the change of scale k, and the contractions
involves the variation of the propagator with respect to k.
In both cases, this is the nontrivial variation of the
propagator which generates the change; and there is no
reason to discard the Ward identity, especially because as
it is easy to cheek, the two variations, with respect to p and
k are not independent [see Eq. (56)].5

To close this section, therefore, we will provide two
description of the melonic flow. The first one discarding the
constraint, and the second one taking into account the
constraint and describing what we will call physical
melonic phase space.
Unconstrained melonic flow. As announced we start by a

description of the unconstrained melonic flow. From the
Ward equations given by the Corollary 4, we may obtain
the derivative of the effective vertex and then complete the
Eq. (56). The functions Lk;I have been computed before,
and we have to compute the functions Uk;I . Because it is a

superficially convergent quantity, and from our previous
discussion, it is suitable to use of the Eq. (53). In the
continuum limit, we get from Appendix C,

Uk;I → Δ3;I ¼ −2
1

Z2
II

1

k

�
1

1þ m̄II

�
3

: ð112Þ

Ultimately we are interested by the beta functions, that is to
say, by dimensionless and renormalized quantity. To this
end, we extend the notation “bar” for any function
Xðfgi; ci; mIgÞ, extracting of them their explicit depend-
ence in k and ZI ,

Xðfgi; ci; mIgÞ≕ kdXZ
∂ðVÞX
VV Z

∂ðWÞ
X

WWX̄ðfḡi; c̄i; m̄IgÞ: ð113Þ

As for the couplings constants, we call canonical dimen-
sion the exponent dX, whereas we call heteroclite degree

the quantities ∂ðVÞ
X and ∂ðWÞ

X . As an example,

Ūk;I ¼ −2
�

1

1þ m̄II

�
3

: ð114Þ

We have to proceed in the same way for the reduced
effective vertices πð1;abcÞ3 given by Eqs. (90) and (92), (94),
(95), and (96). The computation of the dimensionless
quantities Ā3;IJK are given in Appendix C, the result is

Ā3;IIJ ¼
2

ð1þ m̄IIÞ2
1

1þ m̄JJ
þ 4

m̄JJ − m̄II

×

�
m̄JJ

m̄JJ − m̄II
ln

�
1þ m̄JJ

1þ m̄II

�
−

m̄II

1þ m̄II

�
; ð115Þ

and

Ā3;III ¼
2

ð1þ m̄IIÞ3
þ 4

�
−

1

1þ m̄II
þ 2

1

ð1þ m̄IIÞ2
�
:

ð116Þ5This point is extensively discussed in [69,70].
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As a result, the dimensionless effective 6-points vertex
functions writes as

π̄ð1;111Þ3 ¼ 16ḡ31ðkÞĀ3;VVV þ 2c̄31ðkÞĀ3;WWW ð117Þ

π̄ð1;222Þ3 ¼ 16ḡ32ðkÞĀ3;WWW þ 2c̄31ðkÞĀ3;VVV; ð118Þ

π̄ð1;112Þ3 ¼ 2ḡ2ðkÞc̄21ðkÞĀ3;VVW þ 4ḡ21ðkÞc̄1ðkÞĀ3;VVW;

ð119Þ

π̄ð1;221Þ3 ¼ 2ḡ1ðkÞc̄21ðkÞĀ3;WWV þ 4ḡ22ðkÞc̄1ðkÞĀ3;WWV;

ð120Þ

π̄ð1;144Þ3 ¼ 2c̄22ðkÞð2ḡ1ðkÞĀ3;VVW þ c̄1ðkÞĀ3;WWVÞ; ð121Þ

π̄ð1;244Þ3 ¼ 2c̄22ðkÞð2ḡ2ðkÞĀ3;WWV þ c̄1ðkÞĀ3;VVWÞ; ð122Þ

and from the flow equations (55), (56), (64), and (67), we
obtain, up to straightforward manipulations,

βmVV
¼ −ð1þ ηVÞm̄VV − 6ḡ1Ī2;VV − 3c̄1Ī2;WW; ð123Þ

βmWW
¼ −ð1þ ηWÞm̄WW − 6ḡ2Ī2;WW − 3c̄1Ī2;VV; ð124Þ

βg1 ¼ −2ηVḡ1 − 3π̄ð1;111Þ3 Ī2;VV − π̄ð1;112Þ3 Ī2;WW

þ 4ḡ21Ī3;VV þ c̄21Ī3;WW; ð125Þ

βg2 ¼ −2ηWḡ2 − 3π̄ð1;222Þ3 Ī2;WW − π̄ð1;122Þ3 Ī2;VV

þ 4ḡ22Ī3;WW þ c̄21Ī3;VV; ð126Þ

βc1 ¼ −ðηV þ ηWÞc̄1 − 2π̄ð1;112Þ3 Ī2;VV − 2π̄ð1;122Þ3 Ī2;WW

þ 4c̄1ðḡ1Ī3;VV þ ḡ2Ī3;WWÞ; ð127Þ

βc2 ¼ −ðηV þ ηWÞc̄2 − π̄ð1;144Þ3 Ī2;VV − π̄ð1;244Þ3 Ī2;WW

þ c̄22Ī3;VW; ð128Þ

where the relevant effective vertices are given by equa-
tions (117)–(122), and, from Appendix C [Īn;II ≡ Īn;IIð0Þ],

Īn;IIðjqjÞ ¼
J̄0ðjqjÞ½ηIð1 − jqj=kÞ þ 1� − J̄1ðjqjÞηI

ð1þ m̄IIÞn
; J̄nðjqjÞ ¼ 22

ð1 − jqj=kÞnþ2

nþ 2
; ð129Þ

and, from definition (68),

Ī3;VWðjqjÞ ¼
J̄0ðjqjÞ½ηVð1 − jqj=kÞ þ 1� − J̄1ðjqjÞηV

ð1þ m̄VVÞ2ð1þ m̄WWÞ
þ J̄0ðjqjÞ½ηWð1 − jqj=kÞ þ 1� − J̄1ðjqjÞηW

ð1þ m̄WWÞ2ð1þ m̄VVÞ
: ð130Þ

To get the explicit expression for ηI from Eq. (56), we have to compute Ī02;IIðjqj ¼ 0Þ,

I02;IIðjqj ¼ 0Þ ¼ J̄00ð0ÞðηI þ 1Þ − ðJ̄0ð0Þ þ J̄01ð0ÞÞηI
ð1þ m̄IIÞ2

; J̄0nð0Þ ¼ ð2þ nÞJ̄nð0Þ: ð131Þ

Solving in ηI , the Eq. (56), we get

ηI ¼
CIBÎ − ACÎ

BVBW − A2
; ð132Þ

where

A ≔ ðπ̄ð1;3Þ2;00 Þ0ðJ̄1 − J̄0Þ þ c̄1½ðJ̄0 þ J̄01Þ − J̄00�; ð133Þ

BI ≔ ðπ̄ð1;nðIÞÞ2;00 Þ0ðJ̄1 − J̄0Þ þ 2gnðIÞ½ðJ̄0 þ J̄01Þ − J̄00�
− ð1þ m̄IIÞ3; ð134Þ

CI ≔ ð2ðπ̄ð1;nðIÞÞ2;00 Þ0 þ ðπ̄ð1;3Þ2;00 Þ0ÞJ̄0 þ ð2gnðIÞ þ c1ÞJ̄00: ð135Þ

Constrained melonic flow. The set of equations derived
above describe the behavior of the minimal relevant
couplings in the UV sector, describing the renormalization

group flow toward the infinite melonic subset. However,
they completely ignore the Corollary 5. As explained, a
solution to take into account this corollary is to consider the
relations between beta functions as a constraint along the
RG flow and to keep only the solutions of the flow
equations which satisfy them. This restriction define a
subset of the full melonic phase space corresponding to that
we called physical melonic phase space. However, the
description of the physical phase space is not the more
practical. Indeed, even with a single field like in [67],
taking into account the constraint in this way provides an
inelegant description. But we can remark that in this
description, what we conserve is precisely the 6-point
melonic equations. We impose that the set of Eqs. (90)–(96)
remain true along the flow. The description that we propose
in this section relax this unessential constraint. More
precisely, we use of the two relations provided by
Corollary 5 to define βg1 and βg2 ,
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βg1 ¼ −6ḡ1
4ḡ2ḡ1 − c̄21
c̄1 − 2ḡ2

�
1

1þ m̄VV

�
4

βmVV
−
βc1
2

c̄1 − 2ḡ1
c̄1 − 2ḡ2

− 3c̄1
4ḡ2ḡ1 − c̄21
c̄1 − 2ḡ2

�
1

1þ m̄WW

�
4

βmWW
−
ηVð5c̄1 − 2ð4ḡ1 þ ḡ2ÞÞ þ ηWðc̄1 − 2ḡ1Þ

2ðc̄1 − 2ḡ2Þ
; ð136Þ

βg2 ¼ −6ḡ2
4ḡ2ḡ1 − c̄21
c̄1 − 2ḡ1

�
1

1þ m̄WW

�
4

βmWW
−
βc1
2

c̄1 − 2ḡ2
c̄1 − 2ḡ1

− 3c̄1
4ḡ2ḡ1 − c̄21
c̄1 − 2ḡ1

�
1

1þ m̄VV

�
4

βmVV
−
ηWð5c̄1 − 2ð4ḡ2 þ ḡ1ÞÞ þ ηVðc̄1 − 2ḡ2Þ

2ðc̄1 − 2ḡ1Þ
: ð137Þ

Then, we keep all the equations of the set (128), except the
ones given βg1 and βg2 which are now given by (136) and
(137). The old equations for βg1 and βg2 become the
constraint, but not on the flow of the relevant coupling
constant. The constraint defines the effective vertices

πð1;111Þ3 and πð1;222Þ3 along the physical flow. In other words,
we replaced the constraint along the flow of the relevant
couplings with structure equations by a constrained flow
relaxing the structure equations for two effective vertices,
which are now defined by the flow itself. Moreover, it is
easy to cheek that this construction does not break the
closure of the flow equations. The physical effective

vertices, that we call Πð1;111Þ
3 and Πð1;222Þ

3 to distinguish
them from the unconstrained ones (90) and (92) being
fixed, and their beta function may be found taking the
derivation with respect to k. Equaling the result with the
corresponding flow equation obtained from the Wetterich
equation (30), we fix some 8-point effective vertices, and so
on. We will investigate numerically the unconstrained and
constrained melonic flows in the next section. Note that,
even to close this section, our equations have some
singularities. First of all, a singularity for m̄II ¼ −1,
inherited from the restriction to the symmetric phase.
Moreover, Corollary 5 adds the condition 4ḡ2ḡ1 −
c̄21 ≠ 0, which defines two regions I�, respectively, for
4ḡ2ḡ1 − c̄21 > 0 and 4ḡ2ḡ1 − c̄21 < 0. Finally, the defini-
tion of the anomalous dimension (132) provides a new
restriction,

BVBW − A2 > 0; ð138Þ

assuming that the physical region has to contain the
Gaussian fixed point, i.e., the point at which ḡi ¼ c̄i ¼
m̄II ¼ 0.

B. Finite-dimensional vertex expansion
and multitrace interactions

In this section, we obtain the system of β functions for
the heteroclite tensorial group field theory within the
simplest truncation containing all the symmetric quartic
interactions mixing the tensor fields V and W. As recalled

before, the vertex expansion method is finite dimensional
and assumes a systematic projection into the finite dimen-
sional phase space parametrized by the truncated average
action. This approach has proved powerful, especially for
treating branching and multitrace interactions, which lack
to form a closed sector, as required by the EVE method.
Nevertheless, those terms will be generated along the
renormalization group flow unavoidably, and with this
respect, the understanding of how the couplings associated
to these interactions couple to the full system of β functions
is of uttermost importance. Note that as in the previous
section, we focus on the deep UV region (k ≫ 1), ensuring
that flow equations must be rewritten as an autonomous
system for dimensionless couplings.

1. Setting up the vertex expansion

In order to benefit of the efficiency of the vertex
expansion method, we consider the following quartic
truncation Γk, taking into account disconnected contribu-
tions:

Γk ¼ Γk;kin þ ΓðVÞ
k þ ΓðWÞ

k þ ΓðV;WÞ
k ; ð139Þ

where Γk;kin is a diagonal matrix in the fV-Wg space, with

entries Γð2Þ
II given by Eq. (53), and the quartic interactions

ΓðVÞ
k ,ΓðWÞ

k and ΓðV;WÞ
k , including mixing couplings, are

graphically defined as

ð140Þ

ð141Þ
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and

ð142Þ

The truncated effective action (139) provides a para-
metrization of the theory space going beyond the connected
melonic sector that we considered in the previous sections
with the EVE method. Note that the list of quartic
interactions is then complete for tensor fields of rank three.
We use the same regulator as in the Sec. III A 1, that is, the
Litim-like regulator, building as a diagonal in the V −W
coordinates. More precisely, in matrix form, the regulator
kernel Rkðp⃗; q⃗Þ must be expressed as

Rkðp⃗; q⃗Þ ¼ δp⃗;q⃗

�
RV;k 0

0 RW;k

�
;

where the functions RI;k are defined as

RI;k ≔ ZII

�
k −

X3
i¼1

jpij
�
θ

�
k −

X3
i¼1

jpij
�
; ð143Þ

and the scale derivative of the regulator yields

_RI;k ¼ _ZII

�
k −

X3
i¼1

jpij
�
θ

�
k −

X3
i¼1

jpij
�

þ kZIIθ

�
k −

X3
i¼1

jpij
�
; ð144Þ

with once again I take values I ¼ V, W. Following the
projection method, we demand that the truncated action
(139) satisfies the full Wetterich equation (30). An alter-
native way to the successive functional derivatives consid-
ered in the previous section is to expand the right-hand side
of the flow equation as a power series in fields (vertex
expansion), namely,

∂tΓk ¼ Tr

�
ð∂tRkÞP−1

k þ
X∞
n¼1

ð−1Þnð∂tRkÞP−1
k ðHP−1

k Þn
�
;

ð145Þ

the big matrix H writing in the V −W space as

H ¼
 

Γint
VV Γint

VW

Γint
WV Γint

WW

!
; ð146Þ

where we defined Γint
k as Γint

k ¼ ΓðVÞ
k þ ΓðWÞ

k þ ΓðV;WÞ
k , Γint

IJ

denoting the derivative of Γint
k with respect to I and J fields,

and where the matrix valued regulated propagator P−1
k is

defined for vanishing classical fields as

Pk ≔ Γð2Þ
k jðΦV ;ΦWÞ¼ð0;0Þ þ Rk: ð147Þ

Explicitly, using matrix notation in the V −W space, we
get

Pkðp⃗; q⃗Þ ¼ δp⃗;q⃗

�
kZVV þmVV 0

0 kZWW þmWW

�
: ð148Þ

The first term in Eq. (145) is field independent, and
therefore, it is just a vacuum contribution which can be
disregarded. Within our truncation, we must consider the
expansion up to n ¼ 2 order since this will generate quartic
terms in the fields. The projection of the results at n ¼ 1 to
the left-hand side of the flow equation (145) will provide
the running of the masses as well as the anomalous
dimensions, while at n ¼ 2, we can extract the beta
functions of the couplings for each interaction class. In
the following, we present the analysis for each order n ¼ 1
and n ¼ 2 separately.

2. Running of masses and anomalous dimensions

Computing the β functions for masses ðmVV;mWWÞ and
running wave function normalization ðZVV; ZWWÞ follows
the same strategy as in Sec. III A 1. In the vertex expansion
formalism described just above, we have to compute the
n ¼ 1 contribution of equation. (145), that is to say

∂tΓkjn¼1 ¼ −Tr½ð∂tRkÞP−1
k HP−1

k �: ð149Þ
Due to the diagonal structure of the regulated propagators,
Eq. (149) can be factorized as

∂tΓkjn¼1 ¼ −
X

I¼V;W

Tr½∂tRI;kðkZII þmIIÞ−2Γint
II ðp⃗0; p⃗Þ�;

ð150Þ
or explicitly,

∂tΓkjn¼1

¼ −
X

I¼V;W

Tr

�
ðβI þ αIKÞθ

�
k −

X3
i¼1

jpij
�
Γint
II ðp⃗0; p⃗Þ

�
;

ð151Þ
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with K ≡P3
i¼1 jpij,

αI ¼ −ZII
ηI

½kZII þmII�2
; ð152Þ

and

βI ¼ kZII
1þ ηI

½kZII þmII�2
; ð153Þ

where we used of the definition of the anomalous dimension.
The explicit evaluation of the traces over the tensor indices
can be performed directly employing the techniques
described in the previous section, i.e., taking second deriva-
tive with respect to the classical field and setting them to zero
at the end of the computation. In regard to the connected
contributions, the result is exactly the same as for Eqs. (128).
For the contributions involving disconnected couplings
however, the computation have to be done, and it is not
so hard to check that only the four diagrams pictured on
Fig. 4 must provide a relevant contribution in the large k
limit for the flows of m̄VV and m̄WW . What is unclear for now
is the canonical dimension of the disconnected couplings.
The canonical dimension may be fixed from the general
argument stressed in [65], considering the behavior of the
RG flow in the vicinity of the Gaussian fixed point. Another
and consistent way to fix the canonical dimension is to
impose the scaling of the disconnected couplings with
respect to k in such a way that the flow equations become
an autonomous system in the large-k limit.
The computation of the new loop integrals is a straight-

forward variation from the computation of Sec. III A 1. The
only difference with respect to the computation of Jn is that
we have one additional internal face and therefore one
additional integration. For instance, up to numerical factors,
the weight associated to the sum on the first diagrams of
Fig. 4 is, in the large k limit,

ð154Þ

which motivate the definition of the integral kernel,

Kn;II ≔ ZII
G0½ηI þ 1�k − G1ηI

ðZIIkþmIIÞn
; ð155Þ

with, in terms of the continuous variables xi ≔ pi=k,

Gn ≔
Z

d3xjx⃗jnθðk − jx1j − jx2j − jx3jÞ ¼
8

nþ 3
knþ3;

ð156Þ

where we used the same strategy described in Appendix C
to compute the integral. From the behavior of this integral,
it is in fact no hard to check that the canonical dimension
for all disconnected interactions must be fixed to −1. As a
result, we are now in position to write down the flow
equations for masses. Let us consider for instance the β
function for mVV,

βmVV
¼ −ð1þ ηVÞm̄VV − 6ḡ1Ī2;VV − 3c̄1Ī2;WW

− 2κ̄1K̄2;VV − c̄0K̄2;WW; ð157Þ

where the three first terms are nothing but the ones that we
get in the previous section, and the last two terms provide
the disconnected contributions; the numerical factors may
be easily computed: There are two kinds of independent
contractions for the interaction corresponding to the cou-
pling κ̄V , and a single one for c̄0. Moreover, there are no
summation over colors for disconnected interactions. Note
that the accordance with the canonical dimension expected
for disconnected couplings may be checked directly on this
expression. Indeed, while I2;VV scale as k2, K̄2;VV scale as
k3, then, disconnected couplings must be scale as k−1 with
respect to the connected quartic couplings. Obviously, due
to the V ↔ W symmetry of the model, the equation for
βmWW

may be easily deduced,

βmWW
¼ −ð1þ ηWÞm̄WW − 6ḡ1Ī2;WW − 3c̄1Ī2;VV

− 2κ̄2K̄2;WW − c̄0K̄2;VV: ð158Þ

The anomalous dimension may be computed in the same
way. From Eq. (49), it is not hard to deduce that

ZIIηI ≔ −2gnðIÞðkÞI02;IIð0Þ − c1ðkÞI02;Î Îð0Þ: ð159Þ

Note that there are no contribution coming from dis-
connected interactions, because any external momenta
flows through the effective loop (this is why Kn;II does
not depends on q). From the explicit expression of
I02;IIð0Þ, Eq. (129), it is straightforward to solve in ηI ,
leading to

ηI ¼
C̃IB̃Î − ÃC̃Î

B̃VB̃W − Ã2
; ð160Þ

FIG. 4. The four relevant contractions contributing to the mass
RG flow in the large k limit. The two contractions on the right
contribute to _̄mVV whereas the two left ones contribute to _̄mWW .
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where

Ã ≔ c̄1½ðJ̄0 þ J̄01Þ − J̄00�; ð161Þ

B̃I ≔ 2gnðIÞ½ðJ̄0 þ J̄01Þ − J̄00� − ð1þ m̄IIÞ3; ð162Þ

C̃I ≔ ð2gnðIÞ þ c1ÞJ̄00; ð163Þ

which is nothing but the Eq. (132) with vanishing vertex
derivatives. We have then obtained all the flow equations
for two-point relevant parameters. The computation of the
beta functions of the couplings of the quartic interactions
requires the computation of the n ¼ 2 contributions from
Eq. (145). Those will be reported in the next subsection.

3. Running of quartic couplings

The computation of the running of quartic couplings
requires the expansion of (145) up to n ¼ 2; the reason
being that due to the fact that the truncation is limited to
quartic truncations, two insertions of 2-point functions are
necessary to do a relevant contribution with four tensors
fields. Explicitly, this is achieved by Eq. (61), setting

Γð6Þ
k ¼ 0. In the vertex expansion approach, at order

n ¼ 2, the contribution we want to evaluate is given by

∂tΓkjn¼2 ¼ Tr½ð∂tRkÞP−1
k HP−1

k HP−1
k �: ð164Þ

As before, the diagonal structure of the regulator leads to
the following expression:

∂tΓkjn¼2 ¼ Tr½ð∂tR
ðVÞ
k ÞP−1

k;VΓint
VVP

−1
k;VΓint

VVP
−1
k;V �

þ Tr½ð∂tR
ðWÞ
k ÞP−1

k;WΓint
WWP

−1
k;WΓint

WWP
−1
k;W �

þ Tr½ð∂tR
ðVÞ
k ÞP−1

k;VΓint
VWP

−1
k;WΓint

WVP
−1
k;V �

þ Tr½ð∂tR
ðWÞ
k ÞP−1

k;WΓint
WVP

−1
k;VΓint

VWP
−1
k;W �: ð165Þ

The explicit evaluation of the traces as well as a suitable
projection into the different combinatorial structures yield
systematically all the β functions for each of the couplings
involved in the truncation. First of all, the equations for
connected couplings must have no additional contributions
arising from disconnected interactions with respect to the

EVE formula (128), vanishing the Γð6Þ
k contribution [for

instance, the relevant diagrams for _g1 remain the ones given
by Eq. (63)]. Therefore, we must have

βg1 ¼ −2ηVḡ1 þ 4ḡ21Ī3;VV þ c̄21Ī3;WW; ð166Þ

βg2 ¼ −2ηWḡ2 þ 4ḡ22Ī3;WW þ c̄21Ī3;VV; ð167Þ

βc1 ¼ −ðηV þ ηWÞc̄1 þ 4c̄1ðḡ1Ī3;VV þ ḡ2Ī3;WWÞ; ð168Þ

βc2 ¼ −ðηV þ ηWÞc̄2 þ c̄22Ī3;VW: ð169Þ

Therefore, we have only to check the β functions for κI, c0,
and c3. Let us consider βκV for instance. A direct inspection
of the different allowed contractions leads to the following
diagrammatic equation:

ð170Þ

where we keep the notation d for the rank of the tensor, to highlight the nature of the numerical coefficient. Taking into
account the canonical dimension and the ½κ1� ¼ −1, we easily get the equation for βκ1,

βκ1 ¼ ð1 − 2ηVÞκ̄1 þ 4κ̄21K̄3;VV þ c̄20K̄3;WW þ 12ḡ21Q̄3;VVð0Þ þ 3c̄21Q̄3;WWð0Þ
þ 6ḡ1κ̄1Ī3;VVð0Þ þ 3c̄0c̄1Ī3;WWð0Þ: ð171Þ
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The equation for βκ2 may be immediately deduced from the W ↔ V symmetry,

βκ2 ¼ ð1 − 2ηWÞκ̄2 þ 4κ̄22K̄3;WW þ c̄20K̄3;VV þ 12ḡ22Q̄3;WWð0Þ þ 3c̄21Q̄3;VVð0Þ
þ 6ḡ2κ̄2Ī3;WWð0Þ þ 3c̄0c̄1Ī3;VVð0Þ; ð172Þ

where the new loop kernel Qn is defined as

Qn;II ≔ ZII
H0½ηI þ 1�k −H1ηI

ðZIIkþmIIÞn
; ð173Þ

with, in terms of the continuous variables xi ≔ pi=k,

Hn ≔
Z

dxjx⃗jnθðk − jx1jÞ ¼
2

nþ 1
knþ1: ð174Þ

In the same way, counting the number of relevant contractions following their respective combinatorics, we deduce the
flow equations for c0 and c3,

βc0 ¼ ð1 − ηV − ηWÞc̄0 þ 4c̄0κ̄1K̄3;VV þ 4c̄0κ̄2K̄3;WW þ 12c̄1ðκ̄1I3;VV þ κ̄2I3;WWÞ
þ 12c̄0ðḡ1I3;VV þ ḡ2I3;WWÞ þ 12c̄1ðḡ1Q3;VV þ ḡ2Q3;WWÞ;

βc3 ¼ ð1 − ηV − ηWÞc̄3 þ 2c̄23K3;VW þ 12c̄3c̄2I3;VW þ 12c̄22Q3;VW; ð175Þ

where I3;VW has been defined in Eq. (68), and

K3;VW ≔
X
p⃗

ð_rVVG2
k;VVGk;WW þ _rWWG2

k;WWGk;VVÞðp⃗Þ;

ð176Þ
Q3;VW ≔

X
p⃗

δp10
δp20

ð_rVVG2
k;VVGk;WW

þ _rWWG2
k;WWGk;VVÞðp⃗Þ: ð177Þ

We have now all the theoretical material to address the
numerical analysis of the RG flow. The next section
provides a first look on these difficult investigations, which,
as announced in the Introduction will be reported for an
incoming work.

IV. PRELIMINARY NUMERICAL
INVESTIGATIONS, DISCUSSION,

AND CONCLUSION

As announced, this section is devoted to a first look at the
numerical investigations of the flow equations obtained in
the previous sections. But before coming to this analysis,
we briefly summarize the results of the previous sections:

(i) We defined a nonconventional TGFT, mixing two
complex tensors interacting together. For this field
theory, we will investigate nonperturbative aspects
of the renormalization group flow, following two
different approximation schemes: The EVE method
and the standard vertex expansion.

(ii) For the EVE methods, we showed that the recursive
structure of the melonic diagrams provides a non-
trivial relation between effective vertex functions,

providing a way to close the hierarchical renor-
malization group equation expanded around local
interactions.

(iii) The nontrivial Ward identities, arising from the
unitary symmetry breaking by the kinetic action,
provide relations between local effective couplings
and the derivative of the effective vertices with
respect to the external momenta. This was especially
useful for the computation of the anomalous dimen-
sion. Moreover, Ward identities provide a relation
between β functions. Projecting the flow along with
this constraint, we obtained a set of equations
describing the constrained melonic flow.

(iv) In a complementary way, we investigate the renorm-
alization group flow from a more standard strategy,
using a vertex expansion, exploiting the flexibility of
the formalism to explore regions of the phase space
where the EVE break down (for instance, for the
disconnected diagrams, or more generally as soon as
we left the melonic sector).

Then, moving on to the numerical analysis, we only
consider the unconstrained flow, discarding the constraints
(136) and (137) coming from Ward identities, and inves-
tigate separately the equations obtained from the EVE and
finite-dimensional truncations. Due to the complicated
structure of the flow equations, the numerical search for
the fixed becomes challenging. In fact, here we provide the
search for the fixed point in a systematic inspection of some
regions in the vicinity of the Gaussian fixed point. In this
way, the first relevant fixed points, closer to the Gaussian
one, are given in the Table I; their respective critical
exponents, computed as the opposite of the eigenvalues
of the stability matrix are given in Table II. Note that all
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these fixed points are obtained from the EVE equations, no
fixed point being obtained from vertex expansion, keeping
disconnected interactions or not within our limited pre-
liminary search—fixed points with the mixing interactions
turned off are found, of course.
Despite the strong incompleteness of this analysis, these

two fixed points require some comments. First of all, due to
the V ↔ W symmetry of the β functions, each of these
fixed point admits a symmetric image coming from theW-V
exchange. Moreover, the fixed point FP2 appears essentially
as anUVattractor, in contrast to the first fixed point FP1. It has
four relevant directions in the IR and then appears as an IR
fixed point, spanning a basin of attraction of dimension four,
where only the couplings of type V survive. It is tempting to
interpret this situation as a Ising-type phase transition, where
only spins “up” survive, below the Curie point.
Another question can be raised. How can we explain that

we do not find fixed points with truncated equations? How
can we explain the strong disagreement that we observe
here? One way to explain this feature is to argue that the
coupling between the V and W fields enhanced the
dependence on the terms that the vertex expansion do
not take into account. This can be tracked, for instance, on
the expressions (108) and (109). The expression that we
found for Lk;V and Lk;W exhibit a line of singularity for
4g1g2 − c21 ¼ 0, where Lk;V and Lk;W are not defined. In
contrast, the singularity behaves like 1=2g for a single
coupling and is compensated by the factors gwhich provide
a suitable limit for g → 0. The occurrence of such a

singularity line is expected to be the main source of
enhancement of EVE contributions and seems to have a
strong impact on the fixed point structure. If this inter-
pretation holds, this simply means that the understanding of
the fixed point structure cannot be well found from too
small finite-dimensional truncations and requires a deep
investigation of the theory space, including more and more
operators, which is especially what EVE intends to do.
However, this conclusion may be confirmed/improved by
taking into account disconnected interaction at the vertex
expansion level, with a deeper numerical analysis. In a first
time, we can interpret our result as a pathology of the vertex
expansion and as a hint about the role of higher interactions
to correctly understand the physical theory space and the
fixed point structure. This was already pointed out in [77]
for disconnected interactions and confirmed the necessity
of finding methods allowing to explore more sophisticated
theory spaces. There is no version of the EVE for discon-
nected interactions, but this result should be viewed as a
strong motivation for future investigations. Note that the
emergence of the disconnected interaction seems to be
unavoidable from a RG point of view, even starting with
connected interactions, and it is a direct consequence of the
fact that many connected interactions exist. This remark
shows that a simple way to circumvent the problem of
disconnected interaction may be to consider a single
melonic interaction, rather than a model symmetric under
color permutation. One can, for instance, replace the
Eq. (23) by

ð178Þ

TABLE I. The list of the first non-Gaussian fixed points around the Gaussian one keeping only connected interactions with the EVE
method.

Fixed points / m̄�
VV m̄�

WW ḡ�1 ḡ�2 c̄�1 c̄�2 ηV ηW

FP1 −0.36 0 −0.051 0 0 0 −2.16 0
FP2 0.91 −0.41 −0.15 0.01 −0.011 −0.13 −0.27 −0.19

TABLE II. The critical exponents corresponding to fixed points keeping only connected interactions.

Fixed points / θ1 θ2 θ3 θ4 θ5 θ6

FP1 −8 −5.1 −2.1 −1.3 1 7.10−9

FP2 3.3 − 1.4i 3.3þ 1.4i −0.066 − 1.2i −0.066þ 1.2i 0.46 −0.12
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which discard all the disagreements expected to come from
disconnected interactions but keep the disagreements
between EVE and vertex truncations. All these numerical
investigations will be addressed in the companion paper.
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APPENDIX A: LEADING ORDER, JUST
RENORMALIZABILITY, AND CANONICAL

DIMENSION

In this section, we briefly investigate the leading order
graphs of the theory and provide an argument for just
renormalizability. For more extensive developments, the
reader may consult Refs. [51–58]. We introduce an alter-
native representation of the theory, called intermediate field

representation, in which the properties of the leading sector
become very nice. Usually, intermediate field representa-
tion is introduced as a “trick” coming from the properties of
the Gaussian integration and allowing us to break a quartic
interaction for a single field into a three body interaction for
two fields. To simplify the presentation, we introduce the
intermediate field decomposition as a one-to-one corre-
spondence between Feynman graphs [65]. We will prove
the following result:
Theorem 2 The 1PI leading order vacuum graphs are

trees in the intermediate field representation. In the original
representation, these trees are called melonic diagrams.
The rule are the following. First of all, we picture as

dotted edges the Wick contractions in the original repre-
sentation. The graphs on the left-hand side of the Fig. 5
provides some examples of vacuum Feynman graphs. To
introduce the intermediate field decomposition, we remark
that all our vertices can be labeled with a pair of numbers
ði; nÞ, where i runs from 1 to 3 whereas n runs from 1 to 4.
The first index i is a color label, corresponding for a given
melonic vertex to the color of the single edges; and n labels
the four configurations. Explicitly,

ðA1Þ

The correspondence from an original to intermediate field
representation is then as follows. For a given vacuum
Feynman graph, we associate an edge of color i, labeled
with an index n to each vertex of type ði; nÞ. In the same
way, to each loop made of dotted edges, we associate an
effective black vertex, the number of corners correspond-
ing to the length of the original loop. Figure 5 provides
some examples. To distinguish this representation with the
standard Feynman one, we call colored edges the lines of
an intermediate field graph, and loop vertices its vertices.
We can now move on to the proof of Theorem 2.
Let us consider the following Lemma (power counting):

Lemma 1 For any Feynman graph G in the original
representation, with L internal (dotted) edges, F closed
faces, and V vertices, the divergent degree ωðGÞ is given by

ωðGÞ ¼ −LðGÞ þ FðGÞ: ðA2Þ

Standard proofs using multiscale decomposition may be
found in [57]; the presence of two tensor fields introduce
only minor modifications of the standard proofs.
Proof of Theorem 2 (sketched). We only sketch the

proof, focusing on aspects that depend on the specificity of
the model. We proceed recursively on the number of

FIG. 5. Example of the correspondence between original representation (on left) and intermediate field representation (on right).
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intermediate field edges. Let l the number of colored
edges. A tree with l edges has c ¼ 2l corners, and
F ¼ ðd − 1Þðlþ 1Þ þ 1 faces,6 since each colored edge
glues two faces. As a result, for trees: ωT ¼ −2lþ
ðd − 1Þðlþ 1Þ þ 1 ¼ ðd − 3Þlþ d, the index T being
for “trees.”

(i) For l ¼ 1, there are essentially two configurations,
independent of the choice of the integer n,

ðA3Þ

and so one for each choices of colors for the intermediate
field edges. From direct computation, the divergent degrees

are, respectively, from left to right: ωL ¼ −2þ 5 ¼ 3 and
ωR ¼ ωL − 1 ¼ 2; then the leading order graph if this one
on the left is a tree.
(ii) Now, we assume that we have a tree for arbitrary l,

and we investigate the way to build a graph with
l ¼ 1 colored edges. From the typical tree,

ðA4Þ

we have four possible moves,

ðA5Þ

where the moves are represented with dotted edges. The
two moves one the right, (c) and (d), preserve the tree
structure, then, the power counting is the expected for a
tree, and setting d ¼ 3: ωT ¼ 3, such that the variation of
the power counting vanish: δω ¼ 0. The two moves (a) and
(b) on left, however, introduce a loop. For the first one (a),
we introduce at least a single face, and we create two
corners. The variation for power counting is then optimally:
δω ¼ −2þ 1 ¼ −1. Obviously this bounds hold for the
second move (b) on the left which introduce a tadpole edge.
Then for these two moves, the divergent degree decreases
from its value for trees, and the theorem is proven. ▪
This definition extends for nonvacuum diagrams:
Definition 8 All the leading order diagrams (vacuum or

not) are said to be melonic.
Remark 1 Note that in this proof, we assumed that all

the interactions have the same “scaling” that we justify at
the end of this section.
The leading order nonvacuum graphs can be obtained

following a recursive procedure as well, opening some
internal loops from a vacuum graphs. When a single field is
involved, this procedure allows us to obtain the structure of
the leading order graph very quickly. Indeed, consider a
“pure” vacuum, made only of vertices of type ði; 1Þ or
ði; 2Þ. We obtain a 2-point graph by cutting one of the
dotted edges in a corner. Because of the structure of
melonic diagrams, it is clear that if we cut a dotted edge
which is not a tadpole line (i.e., a line in a loop of length

greater than one), we get a 1PR diagrams. Therefore, we
have to cut only a tadpole edge to get a 1PI diagram.
Cutting the first one, we delete d faces and obtain a 1PI 2-
points melonic diagram. To obtain a 4-points melonic
diagram, we have to cut another tadpole edge on the same
diagram. However, it is clear that such a cutting could
delete d internal faces, except if the chosen vertex shares the
opened heart external face. Indeed, in this case, the cutting
cost d − 1 faces (which become boundary external lines)
for the same “cost” in a dotted edge, and the power
counting is clearly optimal.
It is easy to cheek that interactions of type ði; 3Þ do not

modify the argument. However, a difficulty occurs for
interactions of type ði; 4Þ. Indeed, we have no Wick
contractions between V and W fields, and there are no
melonic contractions built of a single vertex of the type
ði; 4Þ. For the same reason, there are no leaves hooked to an
edge of color ði; 4Þ in the intermediate field representation.
As a consequence, nonvacuum leading order graphs having
boundary vertices of type ði; 4Þ cannot be obtained from a
leading order graph vacuum graph following the procedure
described above. To solve this difficulty, we propose the
following “trick.” We temporarily modify the bare propa-
gator in a way to allow all Wick contractions,

C−1
μ ðp⃗Þ ≔ ðjp⃗j þmÞ

�
1 μ

μ 1

�
: ðA6Þ

In this way, the procedure described before holds, and at the
end of the cutting procedure,

6We introduce d, the rank of the tensor field to clarify the
origin of the different factors.
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(i) We delete all the graphs involving a contraction
between V and W fields.

(ii) We set the coupling μ to zero.
As a result, we proved the following statement:
Proposition 3 A 1PI melonic diagram with 2N external

lines has Nðd − 1Þ external faces of length 1 shared by
external vertices and N heart external faces of the same
color running through the internal vertices and/or internal
edges (i.e., through the heart graph).
To complete these definitions, and of interest for our

incoming results, we have the following proposition:
Corollary 6 The perturbative expansion of the model is

power-counting just renormalizable.
Indeed, we showed that the power counting is bounded

by the melonic diagrams. Moreover, it is easy to see, from
the recursive definition of melons that F ¼ ðd − 1Þ×
ðL − V þ 1Þ. Indeed, contracting a tree line does not
change the divergent degree and the number of faces.
Then, contracting all the lines over a spanning tree, we get
L − V þ 1 lines contracted over a single vertex. Now, we
delete the lines optimally. We have some external lines, but
we know from the definition of melons that no more than
one heart external face passes through one of them. Then,
an optimal cutting is for a line which is on the boundary of
one external face. As a result, the cutting removes 4 internal
lines. Processing the operation until the last line has been
contracted, we find the desired counting for faces..
Therefore, taking into account the topological relation
2L ¼ 4V − Next coming because our model is quartic,
and whereNext denotes the number of external lines; we get

ω ¼ −Lþ F ¼ −2V þ Next=2þ 2ð2V − Next=2 − V þ 1Þ

¼ 2 −
1

2
Next; ðA7Þ

which does not depend on the number of vertices.
Moreover, it is positive for Next ¼ 2, 4, and then negative
for Next > 4.
To conclude this Appendix, let us briefly discuss the

problem of the dimension. A standard field theory defined
over space-time is delivered with a canonical notion of
scale, provided by the background space-time itself.
However, as background independent field theories, there
is no canonical notion of scale for GFTs. Except if we
impose a physical contact with ordinary space-time, all the
quantities involved in the classical actions for GFTs are
dimensionless. The renormalization group however pro-
vides a specific notion of scale from the behavior of the
running coupling constant. For instance, it is tempting to
attribute the dimension zero for couplings which behaves
like lnðΛÞ—for some UV cutoff Λ. Generally, recognizing
that radiative corrections behaves like a power Λn of the
cutoff, we define the canonical dimension as the optimal n,
that is, following the behavior of the leading order quantum
corrections. Because the power counting (A7) does not
depend on the number of vertex, it follows that for leading

order graphs, adding an elementary melon has no cost, and
then their canonical dimension has to be zero,

½gi� ¼ ½ci� ¼ 0; for i ¼ 1; 2: ðA8Þ

In the same way because 2-point melonic graphs diverge
like Λ (ω ¼ 1), we have to fix at 1 the dimension of the
parameter m,

½m� ¼ 1: ðA9Þ
Remark 2 We proved that power counting is bounded

by the melonic one. However, we did not prove that all
divergences are localized into the melonic sector, and a
direct inspection showed that it is not the case. For instance,
the following nonmelonic diagram:

ðA10Þ

diverge logarithmically and therefore require counterterms
to make the theory divergence free.
Remark 3 As a remark, note that if we discard the

couplings ði; 4Þ (i.e., if we set c2 ¼ 0), the effective action
in the intermediate field representation takes an interesting
form. Indeed, in this case, the original action (25) can be
broken with the help of d doublets of matrixlike Hermitian
fields σi ≔ ðσVi; σWiÞ as

S½Φ; Φ̄; σ� ¼ Φ̄TKΦþ 1

2

X
i

TrσTi C
−1
VWσi

−
ffiffiffiffiffiffi
−2

p Xd
i¼1

TrΨT
i σi; ðA11Þ

with

Ψi ¼ ð ffiffiffiffiffi
g1

p
ψVi;

ffiffiffiffiffi
g2

p
ψWiÞ;

ðψV1Þpq ≔
P
p1;p2

V̄p;p1;p2
Vq;p1;p2

ðψW1Þpq ≔
P
p1;p2

W̄p;p1;p2
Wq;p1;p2

;

ðA12Þ
and

CVW ¼
�
1 λ

λ 1

�
; with∶ λ ¼ 1

2

c1ffiffiffiffiffiffiffiffiffi
g1g2

p : ðA13Þ

APPENDIX B: PROOFS OF PROPOSITIONS
1 AND 2

In this section, we prove the Proposition 1, providing the
closure relations defining formally the self energy, and the
Corollary 2.
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Proof of Proposition 1. To begin, let us focus on the first
part of the proposition, i.e., the components ΣVW and ΣWV
of the self energy have to vanish, so that the coupling
constant μ has no radiative corrections in the deep UV.
We prove this statement by recurrence on the number of

vertices. To simplify the proof, we use of the intermediate
field representation recalled in Appendix A. In this repre-
sentation, vertices become edges, and we build our recur-
rence on the number of edges.
Let G be a melonic 2-point diagram contributing to the

perturbative expansion of ΣVW , and T G the corresponding
tree in the intermediate field representation. Let n be the
number of colored edges and n4 the number of vertices
of type 4. For n ¼ 1 and n4 ¼ 1, it is easy to cheek that
there are no leading order diagram [there is no melonic
tadpole with vertex of type ði; 4Þ]. Now, we assume
n > 1. Because we cannot build leaves with edges of
type ði; 4Þ, we have necessarily n > n4. Assuming
n4 ¼ 1, we can investigate all the ways to build a tree
with n4 ¼ 2. All the different moves are given in
Eq. (A5), figures (c) and (d). The configuration (c) is
impossible for vertex of type 4. Moreover, the configu-
ration (d) is impossible as well. Indeed, closing the
boundary loop vertex requires the same number of bull
and square nodes, and therefore, another edge of type
ði; 4Þ hooked to him, in contradiction with the recursion
hypothesis n4 ¼ 1. From the same argument, it is
impossible to build a tree with n4 þ 1 nodes from a
tree with n4 > 1 nodes.
We now move on to the second part of the proposition.

The proof follows the Proposition 3 of Appendix A. Let
us consider the component ΣVV having boundary made of
bull nodes. From Proposition 3, we know that all the
graphs contributing to the perturbative expansion of ΣVV
can be obtained from a vacuum graph by opening a leaf.
As a result, the two external (dotted) edges have to be
hooked to the same vertex. The color of the edges
hooked to this leaf split ΣVV into d components

σðiÞVV∶Z → R, labeled with a color index, corresponding
to the color of the long opening face, running through the
interior of the diagram. Let us consider the component i.
Deleting the edge of color i from its interior loop vertex,
we get a 2-point graph, and we have to distinguish
two cases:
(1) If the deleted colored edge was of type ði; 1Þ, this

2-point graph has to be an element of the perturba-
tive expansion of GVV .

(2) If the deleted colored edge was of type ði; 3Þ, this
2-point graph has to be an element of the perturba-
tive expansion of GWW .

The same decomposition has to be true for all diagrams

contributing to σðiÞVV ; therefore, summing over all the
diagrams, we reconstruct the two points functions GVV
and GWW ,

ðB1Þ

This graphical equation does not take into account the
symmetry factors. There are two ways to hook the
effective function GVV to the boundary vertex ði; 1Þ,
whereas only a single way to hook the effective function
GWW to the boundary ði; 3Þ. Taking into account the
factor 2, and translating into formula the Eq. (B1), we

proved the proposition for σðiÞVV. The argument hold in the

same way for σðiÞWW, exchanging bull and square nodes,
and the proposition is proven. ▪
Proof of Proposition 2. Let us denote as V̄4 the number

of boundary vertices of type 4. Note that because of
Proposition 3, all these boundaries have to be identical,
and then, all of the type ði; 4Þ for the same i. For 2N ≠ 4,
we know that the statement is true for V̄4 ¼ V̄ ¼ 1, V̄ being
the total number of external vertices. But following the
previous proof, it is easy to see that the statement have to be
true for all V̄. Indeed, the arguments about the closure of all
the internal effective vertices hold.
Now, let us consider the case V̄4 ¼ V̄ ¼ 2. As show in

the proof of the Proposition 1, the closure of the effective
vertices require an even number of bull and square nodes.
Let G a 1PI leading order Feynman graph having V̄4 ¼ 2
and T G the corresponding tree in the intermediate field
representation. From Proposition 3, there must be a pathPi,
that we call skeleton, made of edges of color i in T G
between the loop vertices sharing the two vertices of type 4.
Let v1 and v2 be these two end loop vertices and flng the
set of edges of color i building the pathPi. Let l1 ¼ ðv1; vÞ
be the first intermediate field edge, hooked to v1.

(i) If v ¼ v1, the path Pi has a length equal to zero, and
the two boundary vertices of type 4 are hooked to the
same loop vertex. Together, they provide an even
number of bull and square nodes, and the closure of
the effective vertex is allowed. Note that we can not
hook another vertex of type ði; 4Þ to this effective
vertex because of Proposition 1. Indeed, because of
the tree structure of the graph, the connected subtree
having such a vertex has a root build of a 2-point
graph with boundary vertex of type ði; 4Þ.

(ii) If v ≠ v1, the previous argument hold for v1 if and
only if the colored edge l1 corresponds to a vertex of
type ði; 4Þ. A second colored edge of type 4 has to be
hooked to v to ensure its closure. But from Propo-
sition 1 once again, this hooked edge cannot be the
root of a subconnected tree, because this tree would
correspond to a 2-point function with a type 4
boundary vertex. As a result, either v ¼ v2 or either
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the required colored edge of type 4 has to be an
element of the path Pi.

Recursively, one has then proved that the intermediate field
representation of leading order graphs with N ¼ N4 ¼ 2
are 2-point trees with a monocolored path built of vertices
of type 4 only. Figure 6 provide two examples.
From such a leading order graph, we can break some

tadpoles along the boundary of the long external faces of
color i to get 1PI Feynman graphs with N4 ¼ 2, N > 2.
Now, let us consider a graph with arbitrary N4 ¼ N

boundary vertices; all of the type ði; 4Þ for the same i. From
the previous argument, each of them can be the boundary
vertex of a 2-point subtree having a monocolored path
building of vertices of type ði; 4Þ. Because of the

Proposition 3, there must be exist a path of color i, PðiÞ
v;v0

between each pair ðv; v0Þ of boundary loop vertex. These
paths are made of segments of color i, and we distinguish
two families of such segments: The type Pi made of a
colored edge of type ði; 4Þ, and the type P♯

i , made of
colored edge of type ði; nÞ for n ≠ 4. The set of all these
paths builds a monocolored tree, the skeleton of the graph,
that we denote as SðT GÞ. In this tree, we can investigate
the possibility to close each loop vertex. The obstruction
does not come from the paths of type P♯

i ; therefore, we can
contract all the them following the contraction rule :

(i) We delete the edge connecting the loop vertices v1
and v2.

(ii) We glue together the boundary loop vertices.
Because we delete an even number of bull and square nodes
per loop vertex, we do not change the closure constraint per
vertex, and the remaining tree, S̄ðT GÞ, has only paths of
type Pi. N4 of them are hooked to the external loop vertex.
Let us denote as C the total number of bull nodes in the tree
S̄ðT GÞ. Denoting as L the number of internal paths (i.e.,
not connected to external loop vertices), it is easy to check
that C ¼ N4 þ 2L, L because each internal path contributes
twice. Therefore, C is even, and the closure is guaranteed if
and only if N4 is even.
Finally, from the leading order 1PI graph with N4

external edges, we can delete some tadpoles to increase
the number of boundary vertices of type ði; nÞ, for n ≠ 4. ▪
Remark 4 Note that the configurations corresponding

to the 2-point trees as pictured in Fig. 6 can be easily
summed using the same technique explained in [65]. The
two diagrams pictured in Fig. 6 correspond to a skeleton of
length zero and one, respectively. Note that some vertices
could be added on each dotted edges, and order by order
they build nothing but effective 2-point functions of type
GVV and GWW . As a result, summing over the length of the
skeleton, one gets

πð1;4Þ2 ðp1; p0
1Þ ¼ c2 þ c22

X
p⃗

δp⃗⊥p⃗0⊥GVVðp⃗ÞGWWðp⃗0Þ þ c32

�X
p⃗
δp⃗⊥p⃗0⊥GVVðp⃗ÞGWWðp⃗0Þ

�
2

þ � � �

¼ c2
1 − c2

P
p⃗δp⃗⊥p⃗0⊥GVVðp⃗ÞGWWðp⃗0Þ ; ðB2Þ

where p⃗⊥ ≔ ðp2;…; pdÞ ∈ Zd−1.

APPENDIX C: USEFUL COMPUTATIONS

In this Appendix, we provide some explicit computa-
tions involved in the text.

1. Computation of Jn
The integrals Jn occurring in the flow equations are

defined as

Jn ≔
Z

d2xjx⃗jnθðR − jx1j − jx2jÞ: ðC1Þ

Rescaling the x variables as y ¼ x=R, we get

Jn ¼ Rnþ2

Z
d2yjy⃗jnθð1 − jy1j − jy2jÞ: ðC2Þ

Rewriting the Heaviside distribution θðxÞ as

θð1 − jy1j − jy2jÞ ¼
Z

1

0

dzδðz − jy1j − jy2jÞ; ðC3Þ

we obtain, using the properties of the Dirac distribution and
up to the rescaling y → zy,

FIG. 6. Two leading order nonvanishing configurations having two vertices of type ði; 4Þ as boundaries.
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Jn ¼ Rnþ2

Z
1

0

znþ1dz
Z

d2yδð1 − jy1j − jy2jÞ

¼ 22
Rnþ2

nþ 2

Z
ðRþÞ2

d2yδð1 − jy1j − jy2jÞ: ðC4Þ

The last integral may be trivially computed,Z
½0;1�2

d2yδð1 − jy1j − jy2jÞ

¼
Z

1

0

dy½θð1 − yÞ − θð−yÞ� ¼
Z

1

0

dy ¼ 1: ðC5Þ

As a result,

Jn ¼ 22
Rnþ2

nþ 2
: ðC6Þ

2. Computation of A3;IJK, Δn;I, and Δ3;IJK

In this section, we provide the computation of the
quantities A3;IJK , Δn;I , and Δn;IJK occurring in the com-
putation of the flow equations, Sec. III.
We recall the definitions,

A3;IJK ≔
X
p⃗⊥

GIðp⃗⊥ÞGJðp⃗⊥ÞGKðp⃗⊥Þ; ðC7Þ

Δn;IJK ≔
X
p⃗⊥

∂rk;II
∂jp1j

ðp⃗⊥ÞGIðp⃗⊥ÞGJðp⃗⊥ÞGKðp⃗⊥Þ; ðC8Þ

Δn;I ≔
X
p⃗⊥

∂rk;II
∂jp1j

ðp⃗⊥ÞGn
I ðp⃗⊥Þ: ðC9Þ

Computation of A3;IJK .
Using the explicit expression of Γð2Þ

k and rk;II , A3;IJK
splits into two contributions, for jp⃗j ≤ k and jp⃗j ≥ k,

A3;IJK ≕A≤
3;IJK þA≥

3;IJK; ðC10Þ
with

A≤
3;IJK ≔

� Y
L¼ðI;J;KÞ

1

ZLLkþmLL

�X
p⃗⊥

θðk − jp⃗⊥jÞ ðC11Þ

and

A≥
3;IJK ≔

X
p⃗⊥

� Y
L¼ðI;J;KÞ

1

ZIIjp⃗⊥j þmLL

�
θðjp⃗⊥j − kÞ:

ðC12Þ
To do the computations, we exploit the fact that we are in
the deep UV limit, and we use of the same integral
approximation used for compute Jn. In particular,X

p⃗⊥

θðk − jp⃗⊥jÞ → J0; ðC13Þ

and

A≤
3;IJK ¼ 2k−1

� Y
L¼ðI;J;KÞ

Z−1
LL

1þ m̄LL

�
; ðC14Þ

where we introduced the dimensionless renormalized mass
m̄II ≔ Z−1

II k
−1mII . In the same way, the integral version of

(C12) writes as

A≥
3;IJK ¼ k−1

Z
d2x

� Y
L¼ðI;J;KÞ

Z−1
LL

jx⃗j þ m̄LL

�
θðjx⃗j − 1Þ:

ðC15Þ
Using the same strategy as for computing Jn, we introduce
the integral representation of θ with a Dirac function,

A≥
3;IJK ¼ k−1

Z
d2x

Z þ∞

1

dz

� Y
L¼ðI;J;KÞ

Z−1
LL

zþ m̄LL

�
δðjx⃗j − zÞ

ðC16Þ

¼ k−1
�Z þ∞

1

dz z
Y

L¼ðI;J;KÞ

Z−1
LL

zþ m̄LL

� Z
d2xδðjx⃗j − 1Þ:

ðC17Þ
The last factor is equal to 4, and to compute the bracket, we
observe that at least to indices have to be equals (because
we have only two indices). Then, we have to evaluate the
integral,

Z þ∞

1

dz z
1

ðzþ m̄IIÞ2
1

zþ m̄JJ
¼
Z þ∞

1

dz

�
1 −

mII

zþ m̄II

�
1

zþ m̄II

1

zþ m̄JJ
: ðC18Þ

The first term of the right-hand side may be easily computed,

Z þ∞

1

dz
1

zþ m̄II

1

zþ m̄JJ
¼
Z þ∞

1

dz
1

m̄JJ − m̄II

�
1

zþ m̄II
−

1

zþ m̄JJ

�

¼ 1

m̄JJ − m̄II
ln

�
1þ m̄JJ

1þ m̄II

�
: ðC19Þ
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For the last term, observe that

−mII

Z þ∞

1

dz
1

ðzþ m̄IIÞ2
1

zþ m̄JJ
¼ mII

Z þ∞

1

dz
∂

∂mII

1

zþ m̄II

1

zþ m̄JJ
; ðC20Þ

and because the integrated function is absolutely convergent, the integral and the derivative may be exchanged,

mII

Z þ∞

1

dz
∂

∂mII

1

zþ m̄II

1

zþ m̄JJ
¼ mII

∂
∂mII

Z þ∞

1

dz
1

zþ m̄II

1

zþ m̄JJ
: ðC21Þ

Explicitly,

−mII

Z þ∞

1

dz
1

ðzþ m̄IIÞ2
1

zþ m̄JJ
¼ m̄II

m̄JJ − m̄II

� lnð1þm̄JJ
1þm̄II

Þ
m̄JJ − m̄II

−
1

1þ m̄II

�
; ðC22Þ

and

A≤
3;IJK ¼ 4k−1Z−2

II Z
−1
JJ

1

m̄JJ − m̄II

�
m̄JJ

m̄JJ − m̄II
ln

�
1þ m̄JJ

1þ m̄II

�
−

m̄II

1þ m̄II

�
: ðC23Þ

The complete dimensionless function Ā3;IJK is then given by

Ā3;IIJ ¼
2

ð1þ m̄IIÞ2
1

1þ m̄JJ
þ 4

m̄JJ − m̄II

�
m̄JJ

m̄JJ − m̄II
ln

�
1þ m̄JJ

1þ m̄II

�
−

m̄II

1þ m̄II

�
: ðC24Þ

Note that it is easy to cheek the continuity in the limit m̄II → m̄JJ. For this case,

Ā3;III ¼
2

ð1þ m̄IIÞ3
þ 4

�
−

1

1þ m̄II
þ 2

1

ð1þ m̄IIÞ2
�
: ðC25Þ

Computation of Δn;I and Δ3;IJK .
From the definition of rk;II, we get

∂rk;II
∂jp1j

ðp⃗⊥Þ ¼ −ZIIθðk − jp⃗⊥jÞ; ðC26Þ

and

Δn;I ¼ −
1

Zn−1
II

1

kn

�
1

1þ m̄II

�
nX

p⃗⊥

θðk − jp⃗⊥jÞ → −
1

Zn−1
II

1

kn

�
1

1þ m̄II

�
n
J0; ðC27Þ

explicitly,

Δn;I ¼ −2
1

Zn−1
II

1

kn−2

�
1

1þ m̄II

�
n
: ðC28Þ

In the same way,

Δ3;IIJ ¼ −2k−1Z−1
II Z

−1
JJ

�
1

1þ m̄II

�
2
�

1

1þ m̄JJ

�
: ðC29Þ
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