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We investigate the geodesic deviation equation in the context of quantum improved spacetimes.
The improved Raychaudhuri equation is derived, and it is shown that the classical strong energy
condition does not necessarily lead to the convergence of geodesics in a congruence in the quantum
improved spacetime.
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I. INTRODUCTION

Weinberg’s asymptotic safety conjecture proposed a
successful renormalizibility condition for quantum fields
at the UV limit which would end to a predictive renorma-
lizable theory of gravity [1]. The process of finding a non-
Gaussian UV fixed point for the trajectories of essential
couplings on the finite dimensional critical surface, which
is the ultimate goal of the asymptotic safety conjecture,
would be simplified by using the functional renormaliza-
tion group method [2]. Therefore, instead of functional
integration over all spacetime, one can use the effective
average action Γk satisfying the exact renormalization
group equation (ERGE),

k∂kΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1k∂kRk�: ð1Þ

This would simplify the way to obtaining the desired
quantities. The Γk is an effective action averaged over the
highmomentum fluctuationmodes. To achieve this goal, the
low momentum fluctuations in the functional integral are
suppressed by an arbitrary mass-squared dimension IR-
cutoff function Rk ∝ k2Rð0Þðp2=k2Þ, where the dimension-
less function Rð0Þðp2=k2Þ is a kind of smeared step function
[3]. Therefore, without any impression by low-momentum
fluctuations, the high-momentum fluctuations are integrated
out such as a kind of Wilsonian loop.
Truncation of the theory space would decrease the

complexity of the infinite dimensional dynamical system
of ERGE, and enables one to solve it nonperturbatively
although approximately. It has been shown [4,5] that the
Einstein–Hilbert truncation which spanned the theory
space on the

ffiffiffi
g

p
and

ffiffiffi
g

p
R basis, leads to an antiscreening

gravitational running coupling

GðkÞ ¼ Gðk0Þ
1þ ωGðk0Þðk2 − k20Þ

ð2Þ

where ω ¼ 4
π ð1 − π2

144
Þ and the k0 is a reference scale. The

Newton’s constant GN seems to be a suitable choice as the
reference, hence GN ≡Gðk0 → 0Þ ¼ G0 [4,5].
Usually people assume the decoupling idea [3,6] and

improve the coupling constant G0 of the classical theory to
the running one. It seems that this could be a proper
approximate shortcut from the UV to IR limit in a process
of searching for the effects of this quantization method.
The cutoff momentum k is a common choice for the

scaling parameter of decoupling. On the flat background,
this renomalization group parameter can be identified with
the inverse of a function of coordinate with dimension of
length, k ∝ D−1ðxÞ. But this coordinate dependent identi-
fication is not useful for the curved spacetimes. Introducing
a function of all independent curvature invariants as χðχiÞ,
in which χi¼1;… are the independent curvature invariants,
seems to be a suitable coordinate independent choice for
the scaling parameter in curved spacetimes [7]. Hence, a
proper identification in curved spacetime is k ¼ ζχ−1ðχiÞ
where ζ is some dimensionless constant. By this coordinate
independence property, improving the coupling constant is
possible at the level of the action functional as

SI ¼
1

16π

Z
d4x

ffiffiffiffiffiffi−gp
GðχÞRþ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lm; ð3Þ

without any concerns about breaking the general
covariance [7].
As a result, the quantum corrections would emerge

dynamically in the gravitational field equation

Gαβ ¼ 8πGðχÞT̃αβ þ GðχÞXαβðχÞ; ð4Þ

where the T̃αβ ¼ −2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgαβ is the classical energy-

momentum tensor. The dynamical effects of the running
coupling are contained in
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XαβðχÞ ¼ ð∇α∇β − gαβ□ÞGðχÞ−1

−
1

2

�
RKðχÞ δχ

δgαβ
þ ∂μ

�
RKðχÞ δχ

δð∂μgαβÞ
�

þ ∂μ∂ν

�
RKðχÞ δχ

δð∂ν∂μgαβÞ
��

; ð5Þ

which explicitly depends on the identification function χ,
its derivatives, the running couplingGðχÞ, and its derivative
through KðχÞ≡ 2∂GðχÞ=∂χ

GðχÞ2 .

It has to be noted that, in general χ could be a function of
all the independent curvature invariants, but an important
question is that what is this function? It should be
determined via some physical conditions and/or selection
rules. This could be energy conditions and the behavior
of the geodesic congruence as discussed in this paper, or
other physical conditions to be addressed in a forthcoming
work. For simple models like the ones given by χ ¼ R,
χ ¼ ðRαβRαβÞ1=2 and χ ¼ ðRαβγσRαβγσÞ1=2 the XαβðχÞ term
is derived in [7]. Note that it is quite possible that some
curvature invariants like R be identically zero, even though
the curvature of the manifold is not zero. For this case, such
simple models are ruled out and invariants constructed out
of untraced curvature tensors seem to be a better choice
(such as the Kretschmann scalar). Other choices like
invariants obtained from derivatives of curvature tensor
(e.g., Rαβγδ;ϵσRαβγδ;ϵσ) are also possible and maybe useful.
The metric solution of this equation is the one

describes the spacetime which fulfills the asymptotic safety
conjecture.
The effect of such quantum corrections on the classical

solutions are studied for some specific problems like
cosmological solutions [6,8] and black holes and their
thermodynamics [4,9,10]. Here we investigate the effects
on the geometrical concepts such as geodesic deviation and
the Raychaudhuri equation. To do so, we first evaluate the
quantum corrections to the connection in Sec. II. Then, the
geodesic deviation and Raychaudhuri equations are derived
in the next two sections.

II. IMPROVED METRIC CONNECTION

Determining the eligible connection is an unavoidable
issue in the process of investigating the behavior of
neighboring geodesics. For this purpose, considering
GðχÞ ¼ G0=ð1þ ωG0ζ

2χ2Þ, we expand the improved
equation of motion (4) up to first order of quantum
corrections

Gαβ ¼ 8πG0T̃αβ þ ωGαβðχÞ þOð2Þ; ð6Þ

where GαβðχÞ≡ 8πζ2

χ2
T̃αβ þ 1

ωG0
XαβðχÞ.

Neglecting the higher orders, the term GαβðχÞ behaves as
a source of perturbation to the classical (nonimproved)

Einstein equation. Thus, the approximate solution gαβ ¼
g̃αβ þ qαβ could be a proper solution for this equation
where the quantum correction qαβ generally depends on
the chosen symmetries of the spacetime and also on the
classical metric g̃αβ.
Using this decomposition into the quantum and

classical effects, the Levi–Civita connection Γγ
αβ ¼

1
2
gγκð∂αgκβ þ ∂βgακ − ∂κgαβÞ can be written as

Γγ
αβ ¼ Γ̃γ

αβ þ Cγ ðQCÞ
αβ þ Cγ ðQQÞ

αβ ; ð7Þ

where the Γ̃γ
αβ¼ 1

2
g̃γκð∂αg̃κβþ∂βg̃ακ−∂κg̃αβÞ is the classical

connection. The quantum-classical part

Cγ ðQCÞ
αβ ¼ −qκσ g̃γσΓ̃κ

αβ þ g̃κγQαβκ ð8Þ

is the contribution of both the classical connection and the
quantum part qκσ to the full connection. On the other hand,

the part Cγ ðQQÞ
αβ ≡ qκγQαβκ, where Qαβκ ¼ 1

2
ð∂αqβκ þ

∂βqκα − ∂κqαβÞ, describes the pure quantum corrections
and since it is of the second order in qαβ, we neglect it in

what follows. Also, because Cγ ðQCÞ
αβ is defined as the differ-

ence between two connections, it behaves like a tensor.

III. IMPROVED GEODESIC DEVIATION

The behavior of neighboring geodesics is described by
the tidal forces which deflect the Euclidean parallel geo-
desics in curved spacetime. As in general relativity, this
behavior can be investigated by considering a 2-surface S
which is covered by a congruence of timelike geodesics.
If τ is an affine parameter along the specified geodesic
and distinct geodesics are labeled by a parameter λ, then
xμ ≡ xμðτ; λÞ is a parametric equation of the surface S. Any
point on this surface is specified by two vector fields, uμ ¼
∂xμ=∂τ as a tangent vector of the geodesic and ξμ ¼
∂xμ=∂λ which connects two nearby curves. Therefore, on
using the Lie derivative relations Luξ

μ ¼ Lξuμ ¼ 0 besides
symmetric properties of a connection, one gets

uβ∇βξ
α ¼ ξβ∇βuα: ð9Þ

The geodesic deviation, which describes the relative
acceleration of neighboring geodesics is interpreted as the
parallel transportation ofDξα=Dτ ¼ uμ∇μξ

α. From Eq. (9),
this covariant derivative becomes

D2ξα

Dτ2
¼ −Rα

βγσuβξγuσ þ ξβ∇βðuγ∇γuαÞ: ð10Þ

Note that, conservation of stress tensor (∇μT̃μν ¼ 0) for a
congruence of particles forces the second term to vanish.
But in the approximation gμν ¼ g̃μν þ qμν, the conservation
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relation reduces to ð∇μT̃μνÞevaluated on g̃μν þ other terms
linear in qμν ≃ 0. Therefore, particles do not move on
the geodesics of g̃μν, and thus the second term is nonzero
up to the first order in qμν.
On using this approximation and Eq. (6), and by virtue of

Bianchi identity, ∇αGαβ ¼ 0, this term becomes

uβ∇βuα ¼ −
1

8π
ðGβα∇βJ ðχÞ þ∇βXβαðχÞÞ; ð11Þ

where J ≡ G−1ðχÞ. Hence, the geodesic deviation equa-
tion in the asymptotic safety context is

D2ξα

Dτ2
¼ −Rα

βγσu
βξγuσ

−
1

8π
ξβ∇β∇γ½J ðχÞgακGγκ þ gακXγκðχÞ�: ð12Þ

This shows that, in addition to the tidal forces, the deviation
vector would be affected by the variations of the improve-
ment terms. Clearly, this variation depends on the chosen
scaling parameter χ.
The relation can be written more clearly on substituting

gαβ ¼ g̃αβ þ qαβ, and expanding up to the first order as

D2ξα

Dτ2
¼ −R̃α

βγσũβξγũσ − 2R̃α
βγσũβξγuσðQCÞ − Δα

βγσũβξγũσ

þ 1

8π
ξβ∇β∇γ½J ðχÞgακGγκ þ gακXγκðχÞ�; ð13Þ

where Δα
βγσ ≡ Rα

βγσ − R̃α
βγσ is

Δα
βγσ ¼ ∂γC

α ðQCÞ
σβ − ∂σC

α ðQCÞ
γβ þ Γ̃α

γλC
λ ðQCÞ
σβ

þ Cα ðQCÞ
γλ Γ̃λ

σβ − Γ̃α
σλC

λ ðQCÞ
γβ − Cα ðQCÞ

σλ Γ̃λ
γβ: ð14Þ

Note that any quantity with a tilde is a classical quantity.
While the term −R̃α

βγσũβξγũσ in (13) is the classical one,
the others are the effects of the quantum improvement.
All the correction terms are proportional to the relative
distance and could affect geodesics like the classical
case. The second term on the right-hand side (r.h.s.),
−2R̃α

βγσũβξγuσðQCÞ, describes the tidal force between the
classical geometry and its quantum fluctuations. The third
one, −Δα

βγσũβξγũσ, determines how two classical parallel
geodesics deviate because of the quantum fluctuations of
the classical background. It is notable that the Δα

βγσ is
nothing but the derivatives of quantized metric, which is
compatible with the geometrical definition of the tidal
force. And, the last term at the r.h.s. is caused by dynamical
self-coupling of geometry and the matter terms.
This additional quantum effect may be attractive or

repulsive depending on the structure and symmetries of
the spacetime and the quantum aspects. This symmetry

dependence is the result of the dependence of the cutoff
function χðχiÞ on the metric. It has to be noted that any
singular curvature invariant, should be avoided in χ, at least
in the vicinity of the singularity.
This property would be clarified more by studying the

evolution of the cross-sectional volume of a congruence of
geodesics or Raychaudhuri equation. In the next section we
would see that the improved Raychaudhuri equation is so
that the strong energy condition could not guarantee the
attractive property of quantum improved gravity.

IV. IMPROVED RAYCHAUDHURI EQUATION

The behavior of gravity can be investigated more
precisely by studying the evolution of the expansion
parameter, which describes the cross-sectional volume of
geodesics congruence in the Raychaudhuri equation frame-
work. Although the strong energy condition in the classical
Raychaudhuri equation assures the attractive behavior of
gravity, we would see that the improvement may change the
situation in certain conditions.
As in the classical case, to obtain the Raychaudhuri

equation, we first investigate the kinematics of a congru-
ence of geodesics.

A. Kinematics of a timelike geodesic congruence

The purely transverse tensor Bαβ ≡∇βuα measures the
parallel transport failure of ξα along the congruence. For the
linear decomposition (4), we would have

Bα
β ¼ B̃α

β þ Bα
β
ðQCÞ ð15Þ

where the B̃α
β ≡ ∇̃βuα is the classical form of Bα

β and the

Bα
β
ðQCÞ ≡ Cαβγ

ðQCÞuγ is the quantum correction on it.
The expansion,

Bαβ ¼
1

3
θhαβ þ σαβ þ ωαβ ð16Þ

where hαβ ¼ gαβ þ uαuβ is the spacelike hypersurface
induced metric, would facilitate understanding the evolu-
tion of deviation vector Dξα=Dτ ¼ Bα

βξ
β.

The scalar expansion θ which is the trace of Bαβ becomes

θ≡ Bα
α ¼ θ̃ þ ϑαα

ðQCÞ ð17Þ

where for the linear solution gαβ ¼ g̃αβ þ qαβ, the term
ϑαα

ðQCÞ ¼ −qαβB̃αβ þ Bα
α
ðQCÞ is the first order correction to

the classical expansion parameter θ̃≡ B̃α
α.

The shear tensor σαβ is the traceless symmetric compo-
nent of the decomposition (16) and can be expanded as

σαβ ≡ BðαβÞ −
1

3
hαβθ ¼ σ̃αβ þ ς ðQCÞ

αβ ð18Þ
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where the σ̃αβ is the classical shear tensor and the ς ðQCÞ
αβ ¼

BðQCÞ
ðαβÞ − ðh̃αβϑγγ ðQCÞ þ qαβθ̃Þ=3 is the first order quantum

correction.
Finally, the last term of Bαβ is the antisymmetric rotation

tensor ωαβ which up to the first order correction becomes

ωαβ ≡ B½αβ� ¼ ω̃αβ þ w ðQCÞ
αβ ð19Þ

with the correction term w ðQCÞ
αβ ¼ BðQCÞ

½αβ� .
Since Dξα=Dτ ¼ Bα

βξ
β, any small displacement from a

spacelike hypersurface to another one would be described
byΔξα ¼ Bα

βξ
βðt0ÞΔt. Three distinct cases can portray each

element of this deviation from parallel transportation, best:
(i) The dynamical spacetime without any rotation and

shearing, or σαβ ¼ ωαβ ¼ 0. In this case, only the
parameter θ would be the source of displacement
such as

Δξα ¼ 1

3
θξαðt0ÞΔt; ð20Þ

which is just the pure expansion. This expansion
may results from either the deviation of the classical
metric field (Cαβγ

ðQCÞuγ), or from the interaction of
the classical metric g̃αβ with the quantum correction
qαβ which has footprints in ϑαα

ðQCÞ.
It is important to note that the zero value of any

σαβ or ωαβ quantity, does not mean the vanishing of
their classical counterparts. Instead, the classical
spacetime may have nonzero rotating or shearing
properties, canceled by quantum terms.

(ii) The dynamical spacetime which does not experience
any shearing or expansion, in other words, σαβ ¼ 0
and θ ¼ 0. Hence,

Δξα ¼ ωα
βξ

βðt0ÞΔt: ð21Þ

Since the quantum corrected term w ðQCÞ
0i may have

nonzero value, this case, unlike the previous one,
could end up to asynchronized effects like what
happens in Palatini fðRÞ theories [11].
Same as for the first case, the vanishing values of

the elements σαβ and θ does not mean that their
classical values are zero.

(iii) The last case, is the spacetime which does not make
any rotation or expansion between the geodesics, so
ωαβ ¼ 0 and θ ¼ 0. This assumption leads to

Δξα ¼ σαβξ
βðt0ÞΔt: ð22Þ

Again, the quantum correction of transverse vector
ξα to the classical shearing σ̃αβ is not limited to extra

shearing ςij. And asynchronization which is caused
by the element ς0i could be considerable for this
kind of spacetimes, too.

B. Improved Raychaudhuri equation

To derive the improved Raychaudhuri equation, which
describes the evolution of expansion scalar, we begin by
studying the time derivation of Bα

β . We have

DBαβ

Dτ
¼ uγ∇γBαβ

¼ uγ∇̃γB̃αβ þ uγ∇̃γB
ðQCÞ
αβ

− uγCκγβ
ðQCÞB̃ακ − uγCκαγ ðQCÞB̃κβ: ð23Þ

The first correction terms, uγ∇̃γB
ðQCÞ
αβ , is the contribution of

quantum semiconnection evolution. On the other hand, the
last two terms describe the interaction of the classical
deviation source and the quantum one along the geodesic
passage.
Now, the evolution of the expansion scalar is obtained by

taking the trace of the above equation in the improved
spacetime:

Dθ

Dτ
¼ Dθ̃

Dτ
− uγðqαβ∇̃γ þ 2g̃καCβκγ ðQCÞÞB̃αβ

þ uγ g̃αβ∇̃γB
ðQCÞ
αβ : ð24Þ

Since

Dθ̃

Dτ
¼ −

1

2
θ̃2 − σ̃αβσ̃αβ þ ω̃αβω̃αβ − R̃αβuαuβ ð25Þ

and

Rαβ ¼ R̃αβ þ Δγ
αγβ ð26Þ

and by considering Eqs. (17)–(19) the improved
Raychaudhuri equation is derived as:

Dθ

Dτ
¼ −

1

2
θ2 − σαβσαβ þ ωαβωαβ − Rαβuαuβ

þ 2θϑαα
ðQCÞ þ 2σαβςðQCÞ

αβ − 2σ β
α σγβqαγ

− 2ωαβςðQCÞ
αβ þ 2ω β

α ωγβqαγ

− Δγ
αγβu

αuβ − uγ½qαβ∇̃γ þ 2g̃καCβκγ ðQCÞ�B̃αβ

þ uγ g̃αβ∇̃γB
ðQCÞ
αβ : ð27Þ

Although in the improved spacetime the transversity of
σαβ and Bαβ are saved, other terms of this equation can
change the standard attractive behavior of gravity and
should be investigated separately.
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It is interesting to notice that since the first order corrections
are considered, all the nonclassical terms of the improved
Raychaudhuri equation describe the behavior of the quantum
fluctuations of the geodesic on the classical background.
Indeed, since the Einstein equation is improved in this

context, the strong energy condition does not guarantee the
non-negativity of Rαβuαuβ for the quantum improved
spacetime.
Rewriting the improved field equation (4) as

Tαβ−
1

2
Tgαβ¼

1

8π

�
J ðχÞRαβ−XαβðχÞþ

1

2
XðχÞgαβ

�
; ð28Þ

the strong energy condition ðTαβ − 1
2
TgαβÞuαuβ ≥ 0

results in

Rαβuαuβ ≥
1

J ðχÞ
�
XαβðχÞuαuβ −

1

2
XðχÞ

�
ð29Þ

where XðχÞ is the trace of XαβðχÞ. Therefore, to get the
condition Rαβuαuβ ≥ 0, the non-negativity of the quantum
term ðXαβðχÞuαuβ − 1

2
XðχÞÞ=J ðχÞ, is necessary. This is not

what would happen always for any spacetime and any
choice of χ.

V. CONCLUDING REMARKS

The asymptotic safety conjecture predicts a renormaliz-
able field theory when there is a non-Gaussian fixed point
at the UV limit of the theory. By using the functional
renormalization group methods, with some consideration,
one would end to an antiscreening running gravitational
coupling which has a non-Gaussian fixed point needed by
this conjecture. It is shown that a general function of
curvature invariants, χðχiÞ, seems to be a suitable scaling
parameter for gravity theory as a renormalizable quantum
field theory [7]. Considering the running gravitational
coupling GðχÞ, and improving the Einstein–Hilbert action
would result in the improved equation of motions which
contain this kind of quantum correction effects.
In this paper, we investigated the properties of a geo-

desics congruence in this context. First the geodesic
deviation equation is derived. It is shown that the deviation
contains improvement terms. The improved Raychaudhuri
equation shows that the strong energy condition, unlike the
classical general relativity, does not necessarily end to a
converging quantum corrected geodesic congruence,
because of the presence of correction terms.
To make this more clear, consider a congruence of

timelike geodesics which are hypersurface orthogonal.
Since the improved equation of motion (4) results in

Rαβ¼
8π

J ðχÞ
�
Tαβ−

1

2
Tgαβ

�
þ 1

J ðχÞ
�
Xαβ−

1

2
Xgαβ

�
; ð30Þ

the convergence of this congruence depends on the
condition

8π

J ðχÞ
�
Tαβ −

1

2
Tgαβ

�
uαuβ þ 1

J ðχÞ
�
Xαβ −

1

2
Xgαβ

�
uαuβ

þ 2θϑαα
ðQCÞ þ 2σαβςðQCÞ

αβ − 2σ β
α σγβqαγ

− 2ωαβςðQCÞ
αβ þ 2ω β

α ωγβqαγ

− Δγ
αγβu

αuβ − uγ½qαβ∇̃γ þ 2g̃καCβκγ ðQCÞ�B̃αβ

þ uγ g̃αβ∇̃γB
ðQCÞ
αβ ≥ 0: ð31Þ

As an example, the XαβðχÞ for a special case χ ¼ RαβRαβ

would be [7]

XαβðχÞ ¼ ð∇α∇β − gαβ□ÞJ ðχÞ þKðχÞRRακRβγgκγ

−∇γ∇βðKðχÞRRαγÞ þ
1

2
□ðKðχÞRRαβÞ

þ 1

2
gαβ∇γ∇κðKðχÞRRγκÞ ð32Þ

where KðχÞ≡ 2∂GðχÞ=∂χ
GðχÞ2 . Up to the first order, only the first

term should be considered. Hence, X ¼ −□J ðχÞ and
Eq. (31) reduces to

8π

J ðχÞ
�
Tαβ −

1

2
Tgαβ

�
uαuβ

þ 1

J ðχÞ
�
∇α∇β −

1

2
gαβ□

�
J ðχÞuαuβ þ 2θϑαα

ðQCÞ

þ 2σαβςðQCÞ
αβ − 2σ β

α σγβqαγ − 2ωαβςðQCÞ
αβ þ 2ω β

α ωγβqαγ

− Δγ
αγβu

αuβ − uγ½qαβ∇̃γ þ 2g̃καCβκγ ðQCÞ�B̃αβ

þ uγ g̃αβ∇̃γB
ðQCÞ
αβ ≥ 0: ð33Þ

This shows that it is quite possible that for a general
improved spacetime, the correspondence of attractiveness
and strong energy condition, breaks down.
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