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We consider an Einstein-aether scalar field cosmological model where the aether and the scalar field are
interacting. The model of our consideration consists of the two different interacting models proposed in the
literature by Kanno et al. and Donnelly ef al. We perform an extended analysis for the cosmological
evolution as it is provided by the field equations by using methods from dynamical systems; specifically,
we determine the stationary points and we perform a stability analysis of those exact solutions.
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I. INTRODUCTION

Gravitational theories where the Lorentz symmetry is
violated have drawn the attention of cosmologists over the
last years [1-6]. Horava-Lifshitz theory is a theory of
quantum gravity which provides Einstein’s general rela-
tivity (GR) as a limit. Hofava-Lifshitz is a renormalization
theory with consistent ultraviolet behavior exhibiting an
anisotropic Lifshitz scaling between time and space [7].
Horava-Lifshitz theory has various applications in gravi-
tational theories from cosmological studies to compact
stars [8—15].

There are various problems in Hotava-Lifshitz gravity of
major significance which have yet to be addressed. For
example, it has not been explained in detail how the
Lorentz invariance is restored in the low-energy problem;
indeed various proposals have been made on that problem
based on the coexistence of Horava-Lifshitz gravity with a
Lorentz-invariant matter sector with controlled quantum
corrections [16,17]. In addition the complete renormaliza-
tion of Horava-Lifshitz gravity has not been proved yet
[18,19]. The renormalization of the projectable Horava-
Lifshitz gravity was recently proved in Ref. [20]; however
while projectable Horava-Lifshitz theory has similar
physics properties as Einstein’s GR, the latter theory is
not fully recovered by the projectable Horava-Lifshitz
gravity [21]. For an extended discussion we refer the
reader to Refs. [22-25] and references therein.

In the classical limit Horava-Lifshitz gravity is related to
the Einstein-aether gravitational theory. There is a one way
equivalence, which means that every solution of Einstein-
aether theory is also a solution of Horava-Lifshitz gravity,
while the inverse is not true [26,27]. The equivalence of the
two theories is not generally true for other physical
properties and results which follow from the direct form
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of the field equations, such as the parametrized post-
Newtonian constraints [24,28].

The kinematic quantities of a timelike vector field,
known as the aether field, are introduced in the Einstein-
Hilbert action integral, where the selection of the aether
field defines the preferred frame. Important characteristics
of the Einstein-aether theory are that it preserves locality
and covariance, while it contains Einstein’s GR [29-31].

Similarly to the Hotava-Lifshitz theory, Einstein-acther
gravity has many cosmological applications. Specifically
it can describe various cosmological phases such as the
early-time and late-time acceleration phases of the Universe
[32-38]. Other applications of Einstein-aether theory in
gravitational physics can be found in Refs. [39—49] and
references therein.

In Ref. [29], Donnelly and Jacobson introduced a scalar
field into Einstein-aether gravity such that the scalar field
and the aether field are coupled and interact. In the model of
Donnelly and Jacobson the interaction term between the
scalar field and the aether field is introduced by the
potential term. On the other hand, Kanno and Soda in
Ref. [50] considered a scalar-aether interaction theory in
which the interaction is introduced in the coefficient terms
of the aether field.

There are various studies in the literature of Einstein-
aether gravity with a scalar field. Static spherically sym-
metric solutions were studied in Refs. [43,44]. Anisotropic
cosmological Einstein-aether scalar field models were
studied in Ref. [51-53]. Inflationary solutions for this
theory were presented for the first time in Ref. [32], while
an analysis of the evolution of the dynamics of Einstein-
aether scalar field theory was presented in Refs. [54,55].
The analysis presented in Refs. [54,55] was based on the
Einstein-aether model proposed by Donnelly and Jacobson
[29]. In Ref. [54] the authors performed a complete analysis
for the given scalar-field interaction potential which was
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found in Ref. [32] and provided inflationary solutions.
The scalar-field interaction potential of Ref. [32] is a power
series in terms of exponential functions for the scalar field
and the expansion rate of the underlying Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime.

In this work we extend the analysis of Ref. [55], by
considering a more generic form of the scalar-field inter-
action model for the Einstein-aether cosmology. Because of
the form of the interaction that we assume our analysis is
also valid the two different Einstein-aether scalar field
theories presented by Donnelly et al. [29] and Kanno et al.
[50]. The scope of this analysis is to understand the change
in the dynamics and the effects on the cosmological history
of the new interaction terms, as well as to compare the two
different Einstein-aether scalar field cosmological models
when possible. The dynamics of the field equations and the
evolution of the cosmological history are studied by
determining the stationary/critical points of the field equa-
tions and determining their stability. Such an analysis has
been widely used in the literature in various cosmological
models [56-67]. The plan of the paper is as follows.

In Sec. II we briefly discuss the Einstein-aether scalar
field gravitational model and we present the cosmological
field equations for the model of our study. In Sec. III we
write the field equations by using dimensionless variables
and the H normalization. In addition we define the four
different possible families of stationary points. The main
results of this work are presented in Sec. IV where we
derive the stationary points for the four possible families of
points and determine the stability conditions. Finally, in
Sec. V we discuss our results by comparing them with
those of the analysis in Ref. [55] and we draw our
conclusions.

II. EINSTEIN-AETHER COSMOLOGY

Einstein-aether theory is a Lorentz-violating gravita-
tional theory which consists of GR coupled at second
derivative order to a dynamical timelike unitary vector
field, the aether field, u*. The vector field u* can be thought
as the four-velocity of the preferred frame.

The action integral of the Einstein-aether theory is
defined as [31]

Sag = / d*x\/=gR + / dhxy/=g (K gty
+ AU, + 1)) + S, (1)

The first term on the rhs of the action integral is the
Einstein-Hilbert Lagrangian where R is the Riccis calar of
the underlying geometric space with metric ¢"*; the second
term on the ths of Eq. (1) is introduced by the aether theory,
where u* is the aether field, 4 is a Lagrange multiplier and
the tensor K is defined as

K =g g + co ™ ¢ + c39™ ¢ + coguuP . (2)

The parameters c;, ¢,, ¢3 and ¢4 are dimensionless
constants and define the coupling between the aether field
and gravity. Finally, the third term on the rhs of Eq. (1)
describes the matter source.

An equivalent way of writing the action integral (1) is by
using the kinematic quantities 6, o, @ and « for the aether
field, u*. Hence, the action (1) is written as [26]

Sga= / V—gdx* <R+%92 +,0° + Cuw® + caa2> +8S,.
(3)

where the parameters ¢y, ¢,, c,, ¢, are functions of ¢, ¢,,
c3 and cy. As far as the values of the free parameters of the
theory, i.e., ¢, ¢5, c3 and ¢, are concerned, they have been
constrained before in the literature. Observational data from
binary pulsar systems was applied in Ref. [68], while
recently the gravitational-wave event GW170817 was
applied [69] to test the Einstein-aether theory and constrain
the free parameters. In addition, in Ref. [70] cosmological
constraints were applied to constrain the Einstein-aether
theory.

In this work, we assume that the action integral of the
matter source S, describes a scalar field minimally coupled
to gravity but coupled to the aether field, that is [29]

1
s= [ (3o 0s-VO000). @

where the interaction between the aether field and the scalar
field is described by the potential V(6, o, @, a, ¢).

According to the cosmological principle the Universe is
considered to be homogeneous and isotropic which means
that it is described by the FLRW spacetime. In addition we
consider the spatial curvature to be zero, from which it
follows that the line element which describes the Universe
on large scales is

ds? = —dt* + a*(1)(dr? + r*d6* + r’sin’0d¢?). (5)

As far as the aether field is concerned, we choose
u* =8¢, and calculate 6=0, w=0 and a=0.
Consequently, the action integral (4) is simplified as
follows:

Sea = [ V=g (R + 500, VI0.)). (©

where the term %«92 has been absorbed into the potential
function V(0, ). In addition, we assume that the scalar
field inherits the symmetries of the spacetime, that
is, ¢ = ¢<t)

The gravitational field equations for the latter action
integral and the line element (5) are [29]
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1, 1.

3P =3¢ +V -0V, (7)

2. o .

59:—45 _9V66_¢V61/n (8)
$+0p+V,=0. (9)

Recall that we have assumed k = SZ—ZG = ¢ = 1; however, in

the following section we work with dimensionless variables
and thus the physical constants play no role in our analysis.

We observe that in the limit V (6, ¢) = V(¢) or V(0, ¢) =
V() + k62, the field equations of general relativity are
recovered, while in the second case the constant k¥ changes
the gravitational constant k.

A singular universe a(t) = aot? is recovered when the
scalar field potential V (@, ¢) is of the form [32]

n
V($.0) = Voe™ + > "V, 0T, (10)
r=0
in which V), V, and 4 are constants; specifically V, is the
coupling constant of the scalar field with the aether field.
For the scalar field the exact solution is ¢(z) = In # and the
expansion rate 6(t) = 3Bt~' where B = B(V,,V,,1). In
Ref. [54] the latter model was studied in detail, and the
general cosmological evolution was studied by determining
the stationary points and their stability.

In Ref. [55] the cosmological viability of Egs. (7)-(9)
were studied for a potential of the form V (0, ¢) = U(¢) +
Y($)0 where U(¢p) and Y(¢p) were arbitrary. In this
potential Y(¢) is the coupling function between the scalar
field and the aether field. For this generic potential form
exact solutions also determined, from which we found that
except for the scaling solution a(z) = ayt? and the
de Sitter universe a(t) = ape’, we can construct
other kinds of solutions such is the ACDM universe with

alt) = aosinh%(\/%m).
In this work we extend the analysis of Ref. [55] by
assuming the potential form to be

1
V(0.¢) = U($) +Y($)0+3 (W) - 1)6”. (1)
By inserting the potential (11) into Egs. (7)—(9) we find

1 1.,
SV =3 + U(). (12)

2 . . .4 .
WD) =—¢* —Y(9)d +3WW,0p,  (13)

$+60p+U,+ Y¢9+%(W2(¢))¢92 =0. (14)

The modified Friedmann equations, namely Eqgs. (12)
and (13), can be written in an equivalent tensor form

W2(¢>Gab =Tups (15)

where G, is the Einstein tensor, and 7', is the energy-
momentum tensor which describes the effective fluid
source and is written as

Top = ppttatiy, + pphap, (16)

in which h,, = g4, + u,u, is the projective tensor and p,
and p, are the effective energy density and pressure
components defined as

1. 1. . 4 .
Py =§¢2 +U(@). py :Ef/’z ~U(@) +¢Y 5 +5WW 404
(17)

At this point, it is important to mention that while we
consider the scalar-aether model proposed in Ref. [29], for
the function form (11) of the unknown potential, the field
equations of our model for Y(¢) = 0, reduce to the model
of Kanno and Soda [50]. Hence, from the following
analysis we are able to compare the dynamical evolution
of the two different theories.

From Eq. (15), we see that the term provides the
effects of a variable gravitational “constant” k, that is
ks = (W?(¢h))~", a similar behavior as in the scalar-tensor
theories. While the scalar field is minimally coupled to
gravity it interacts with the aether field, which itself is
coupled to gravity.

However, while scalar-tensor theories admit a minisuper-
space description this is not true for this specific model. The
energy density of the effective fluid is that of the minimally
coupled scalar field, while the pressure p, differs from the
other terms due to the coupling components of the scalar
field with the aether field.

Finally, because of the ke = (W?(¢))~! term we expect
a different physical evolution of the system than in the
model studied in Ref. [55] where the potential was
considered to be V(0,¢) = U(p) + Y(¢)0.

ITI. DIMENSIONLESS VARIABLES

In order to study the general evolution of the field
equations (12)—(14) we work with the dimensionless
variables defined as [56,57]

Uy Y, W,
A=—F, =V2—=, =2—2_ (18
i & fﬁ f=257 (18)
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In the new variables, the field equations are written as the
following algebraic-differential system:

Zx l(x —1)(3x+zf¢)—1y2(3x+f/1) l(x —1)yé,
T 6 6
(19)
X1+ 33000430 + VG4 VB ),
(20)
dA 2
Y o W) —
I \/;xl(é +ATCW) =1)), (21)
d
E_Vomom-va., @
ac _ \/_
with the algebraic constraint equation
1-x>—y>=0. (24)
The new independent variable 7 is defined as % = 0, that

ST = %ln a and it describes the number of e-folds while the
functions TW (1), T (&) and T'©)(¢) are defined as

U,,U Y 4y VU
r(z)(g):%, r(-f)(g):MT and
¢ ¢
W oW
o =22 ™ 25
T 5)

In the new coordinates, the equation-of-state parameter
for the total fluid w,, is written as

46
Wit = X2 — y> + xy&E+ Txé’. (26)

One can conclude that Egs. (19)—(23) have more degrees of
freedom than the field equations in the original variables of
{0, ¢}. However that is not true since Egs. (19)—(23) are not
independent. Specifically the variables A, & ¢ are not
independent and in general one can always locally write
¢ = ¢(A), such that £ = £(1) and ¢ = ¢(A). In that case, the
independent equations of the dynamical system are
Egs. (19), (20) and (21). In addition when ¢ = 0, that is
W(¢) = const, we see that the latter dynamical system
reduces to the one of Ref. [55] as expected.

Before we continue with the rest of our analysis we
present the different families of stationary points. When
the variables A, £ and { are constants, that is, U(¢) =

Uoe™, Y () = Yo — Y2 e and W(¢) = WyeH, then the

rhs of Egs. (21), (22) and (23) are identical to zero, and the
dynamical system is reduced to the two equations (19) and
(20). We say that the stationary points of that system belong
to Family A. The stationary points which form Family B
are those of the dynamical system (19), (20) and (22) where
A = const such that ¢ = ¢(&) and ¢ = {(&).

The third family of points, namely Family C, consists of
the stationary points of the dynamical system (19), (20) and
(23) in which 4 = const and £ = const, such that ¢ = ¢(C).
However, for U(¢) # Uye’®, such that 1 is a varying
function, and ¢ = ¢(1), we end with the dynamical system
(19), (20) and (21) whose stationary points form Family D.

Therefore, we conclude that the points of Family A are
defined on the two-dimensional space A = (A,,A,), while
the points of Families B, C and D are defined in the three-
dimensional spaces B = (B,,B,,B;),C = (C,,C,.C;)
and D = (D,, D,,D ,) respectively. However, from the
constraint equation (24) all the points in the plane x-y
are on the border of the unitary circle, which means that
each dynamical system can be reduced by one dimension.

IV. COSMOLOGICAL EVOLUTION

In this section we present the stationary points and their
stability for the dynamical systems that we defined above,
and we discuss the physical quantities of the exact solutions
at the stationary points.

A. Family A

The two-dimensional dynamical system (19)-(20)
admits the following four stationary points (A, A,) which
satisfy the constraint equation (24):

Af = (£1,0),
At < ~2v6(20 +2) £ /38 = 6((2L + )7 - 6)&
P 3(4+8) ’
- (A;x)y). (27)

We observe that there are two families of points, AT and A5
which include mirror points on the unitary circle.

The points AT describe universes where only the kinetic
part of the scalar field contributes to the energy density of
the effective fluid. The total equation-of-state parameter is
calculated as

Wtot(Ai) =1+t— 4\/_ (28)

from which we infer that the coupling term 6°W(¢) also
contributes to the pressure term and modifies the equation-
of-state parameter from that of a stiff fluid as in the case of
general relativity. From Eq. (28) we observe that now
Wt can take values lower than —1. If we constrain
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Wii(AF)] < 1, then we find that ((A7) € [~ 1 \/é’ 0], for where the points Af correspond to w| =2zN and

2 o] = n+2xN, where N is an integer number. Hence,
point A{ and {(A7) € (0,1 \/7 5], for point A7. the linearized equation @ = i + dw around the stationary

In order to study the stability of the stationary point we points is
replace x = cosw and y = sinw from which we find the

equation
do 20+ 2 £ d(6w) _ 20+ A
i Ve cosw + cos (2w) + 5 sin (2w), (29) o 1+ 7 Sw, (30)

|
from which it follows that the points Af are stable when (1 £ L\/E’l) < 0, thatis {(A]) < 6*\‘//—_’1 for Af and {(A7) < 6‘—@

for A7. Now if we assume that the points describe accelerated solutions, that is, wy, (AT) < —1 and that they are attractors

we find for point A, {1 < 2\/, \/ {<— ‘/_}U{ 2\/</1< \/,— \/7<§< 6*‘/—’1}U{/1——2\/,

—§\£—C<—7}’ while for point AT we find {\égzgz 268 o ¢ _Eﬁ}u{z>2\[,?<g_§\@}.

The latter regions are plotted in Fig. 1.

The points AF depend on the three constants of the problem. Points are physically accepted when
E(E -2((22 +2)2=6)) > 0, that is when £ > 2((2{ + 4%) — 6), or when £ = 0. The equation-of-state parameter at
the points is calculated to be

420 4 2) £ V2/6E1 = 4((2¢ + )2 = 6)
3(4+&%) '

wtot(AZi) =-1-(20-4) (31)

In order to conclude about the stability of the stationary points we reduce the dynamical system to one equation with
dependent variable the (7). Hence, the linearized system around the stationary points @y, is

d(w)  \/3(4+ &) =220 + 2)2(V2(20 + 1) F 24/3(4 + &) —2(20 + 1)?)

from which it follows that the point A; is stable when {£ < 0, —L(;‘*ﬁz) <Z<—V6}U{E>0.V6<Z < [3(4+8)}

in which Z=2{+ 1. On the other hand, point A; is an attractor when {&>0,—v6<Z <7”6(;‘+§2)} U

{6<0,-\3(4+ &) <Z < Vo).

In Fig. 2, we present the region in the three-dimensional space of the free parameters {4, &, ¢} in which the points A5 are
attractors, and when the solution at the point is stable and describes an accelerated universe.

B. Family B
From the rhs of Egs. (19), (20), and (22) we find that the stationary points B = (B,, By, B,f) which belong to family B are

B = (£1,0,0), (33)

Bf = (£1,0.&),  V2I'9(&)& = A, (34)

Bt — (_M(z@o) +7) £ /38 - 2((2L(&) + A - ) |
’ V34 +8) ’

= (o, 1, i\@(zg(go) + A)), (36)

- (Bi;)z,e:o), VIPOE)E =4 (35)
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[ |
-1
-2

-5 0 5
A
FIG. 1. Region plot in the space of variables {4, {} where the

exact solutions at points AT describe stable accelerated universes.
The left region corresponds to point A}, while the right region
corresponds to point A7.

(244 V6 - (28(6) + )
BS_( s S ,o). (37)

The points B, By describe the same physical solution as
the points AT where the equation of state for the effective
fluid is wyo (BE, BE) = 1 £ %8¢,

At the points B there is no contribution to the evolution
of the field equation from the term Y (¢)@ since &(B5) = 0.
That is not true for the points BF where in general
E(By) #0 but because y(By) =0 the contribution of

10 ===

S — - . . . . - 3

FIG. 2. Region plot in the space of variables {&, (2¢ + 1)}
where the exact solutions at points A5 are stable. The blue area
corresponds to the values where point A} is stable, while the gray
area is for point Aj.

the term Y(¢)0 is neglected. In addition it is important
to note that the points B3 exist if and only if there exists a
real solution of the algebraic equation v/2I'©)(&))&, = A.

In addition the points B describe the same physical
solution as that of the points A3 respectively, while
Wtot(Bﬁﬁ) = Wiot (Aéc)

The two new sets of points, namely ij and BgE are of
special interest since they provide additional phases of the
cosmological evolution. The points B describe de Sitter
solutions since wy, (B3 ) = —1. That is, the effective fluid
source of the stationary points mimics the cosmological
constant. On the other hand, the stationary points B5i
provide scaling solutions which can be seen as generalized
versions of the scaling solution for the minimally coupled
scalar field in general relativity. Indeed the limit of general
relativity is recovered in the limit where { — O.

1. Stability analysis

We proceed by studying the stability of the stationary
points. To do that we prefer to reduce the dynamical
by one dimension by applying the change of variables
X = cosw, y = sin m, where the system (19), (20), and (22)
is reduced to the following set of equations:

i%) = 2{/21 sinw + % sin 2w) + g sinw,  (38)
% = ?§cos w(2E0 (&) = V22). (39)

For the points B the eigenvalues of the linearized
system are found to be

A V6
el(By) =F 7 ex(Bf) =1 i‘?(zéJrﬂ)» (40)
from which we can infer that BT is an attractor when A > 0
and (2 4+ 1) < —/6, while B7 is an attractor when 4 < 0
and (2¢ + 1) > /6.

For the stationary points B3 the eigenvalues are found
to be

el(BE) =1 :I:?(Zé’-i-ﬂ),
e)(By) = i\/ig (%5/1 + for,(?(fo))- (41)

Hence, at the point B; the solution is stable, when
(20 +2) <=6 and L2+ &I (&) < 0. Recall that
V2I€) (£9)&y = 4. In addition, point B; is a stable point
when (20 +2) > v/6 and %22 + &I (&) > 0.
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The eigenvalues of the linearized system at point Bf are derived to be

L 2V2(28+4) T V3E - 225 + )2 - 6)8

er(BY) = T (V2 + 2873 (&), (42)
(B = -1 4 DB+ D) F VIEVIE - 226 + 2 -6, (43)

6(4 + &)

however in order to infer about the stability, the parameter F (afo) should be determined. Indeed for /24 + 25(2)1" (éo) >0
the solution at point B] when & = 0 is stable in the region { V6 <204+1<0,4> 0} while when &; # 0 it is stable in
the regions {—v/6 < 20 + 1 < 0}, {(2¢ 4+ 1) > 0,/6(2¢ + 2) < 3&} and {(2¢ + 1) > 0,v6(2L 4+ A) < =3&,}. On the
other hand, when (v/24 + 2§%Ff§) (&)) < O the solution at point B when & = 0 is stable in the region {0 < 2{ + 1 <
V6,4 <0} while when & #0 it is stable in the regions {(2¢+ 1) < v6,V6(2¢ +4) > 3&),& < 0},
{(204+2) < V6,V6(20 +2) < =388 > 0}, {204 4> V6,V6(2L + 1) > 35, V6(1/(2{ + 1)* — 6 < 3&)}, and

{20 +2> V6,V6(20 +1) > 350’\/_( (20 +4)* =6 < =3&)}.
Similarly, when /21 + 25(2)1“( )(J;O) > 0 the solution at point B; when &, = 0 is an attractor in the region {0 < 2{ + 1 <

V6,1 > 0} while when &, # 0 it is an attractor in the regions {2¢ + 1 < v/6,4 < 0}, {2¢ +1 > 0}, {1 < 0,2¢ + 1 < 0}
and {V/6(2¢ 4 2) < 3&).V6(2L 4 A) < =3&,}. In addition when /24 + 2§3rf§)(50) < 0 the solution at point By & = 0is
stable in the region {2 + 4> —/6} while when & #0 it is stable in the regions {v6(2¢+4)> =3¢,
V6|20 + )| > 3[el}, {V6[20 +4] > =3£,v/6,/ (20 +4)* —6 < =3¢} and {V6[2¢ + 2| > 3¢,V/6/(20 +2)? — 6 < 3¢},

For the stationary points BF the eigenvalues are derived to be

(3+1/9 F 2Ma(&0) (L&) + D (BV2 +4V3C £(&0) + 2422 (&) + (3 + 2V8) (L))

er(B}) = - - @)
N V9 F 202(£0)(22(80) + D(BV2 +4V3L (&) + 242 (&) + D3+ 2VE) £(80) s
e)(By) =— 6 .

With these eigenvalues and for ¢ (50) = const, i.e., {(&) = ¢, we find that the points B are spiral attractors when
9+ (24, + /1)(6/1 4v/3(2¢ + )T (&)) < 0, while point B is also stable when {2 =0,¢, #0 and I'Y (&) < 0} or
(254—/1) (Zjo) +v34<0:{A< O 2o + 4 < 0} or the region {/1 <0,0 <28+ A85+3+42<0}or{1> 0,8+

244> 0 2{o+4 <0} or {4>0,2{p+ 1> 0} or (2§0—|—/1) (éo) +v31>0:{3+44(3y +4) < 0}.
For the set of points B we find the eigenvalues

(\(BE) =500 +0), ealBE) g (26412 -6), (46)

from which we conclude that the points Bi are attractors for {{ < —v/15,-2v/15 <2+ 1 <0}, {—V15 < ¢ <0,
20 <20+4<0},{0<¢<V150<20+4<2¢} and {¢ > V15,0 <20+ 4 <215}

In Fig. 3 we present the phase-space diagram of the two-dimensional system in the variables {w, £} for different values of
the free parameters and for constant I'¢)(¢), i.e., Y(¢) = YoIn (Y, — Yoe‘%d)).

C. Family C

The third system of our consideration consists of the differential equations (19), (20) and (23). This dynamical system
admits the following stationary points:

Cf = (£1,0.5).  T'9(G) =0 (47)

ci—( 2V24 £ /8B (4 + &) - 227
=

_(Ct () —
S 1-(cs, )@) F€)(gy) = 0. (48)
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Family B for A=—1, {=—1,[()=2
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Phase-space diagrams in the two-dimensional space {w, ¢} for the dynamical system of Family B. The left plot is for

{2,£, T} = (=3,1,2) while the right plot is for (=1, —1,2). The points in the plots are the critical points in the specific region of the

variables.

(49)

Cgtz <0,i1,@),

4

defined in the space C = (C,,C,, C;).

The physical properties of the solutions at points Cf, C5
and Ci are described by those of points AT, A3 and By
respectively, where C5 should be seen as the special case of
AF with ¢ = 0. That is, points Cf,C5 describe scaling
solutions while points C5 describe de Sitter universes.

1. Stability analysis

In order to study the stability of the stationary points we
prefer to use the variables {w, {}.

_ 8ATO(Lo) + 8CoA — 447 + 66 + 28V (£, )TV (L) + 2£0EY (&, 4) F AEY (£, 4) + 24 + A?

The eigenvalues of points Ci are calculated as

e (CH) =1+ <\/§§0 +\/ig>,
) (CE) = i\@rf§>(0), (50)

from which we infer that point C{ is an attractor when
{2 < =6, Ffé) (o) <0}, while C; 1is an attractor
when {2 > v6.T'(¢y) > 0}.

As far as the linearized systems around the points C5 are
concerned the eigenvalues are found to be

L 8T (&) + 8Lpd — 427 + 667 + 28V (&, )T (Lo) + 240EY (£, 4) — AEY (£,4) + 24 — A?
e (Cy) =— (& 4) . (52)
where
D200 £,2) = (8Loh — 4% + 687 + 2T (o) (42 £ £Y) £ 200Y F 2EY + 24)°
F223(E - 4) =422 (Lo(E2 - 4) £ EY (80, £.2))
— 16T (¢0)A(=38" £ 8LoEY +48) + 3E(E +4)(2E £ V), (53)

and Y (&, 1) = 1/6(4 + &) — 42%. The stability conditions for that specific point will be determined in a specific application

later.
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FIG. 4. Phase-space diagrams in the two-dimensional space {w, '} for the dynamical system of Family C. Plots are for different values
of the free parameters as presented in the labels.

Finally, the eigenvalues of the linearized system at the points C5 are

Q(C5) = =3+ /9 -2400(@)).  ex(Ch) =~ (3 /o - 241y, (54)

where ¢, = w. Hence, the points C5 are stable when 0 < T¢)(¢,) < %
The phase-space diagram of the two-dimensional system in the variables {w, {} is presented in Fig. 4 for various values
of the free parameters {4, &} and for T€)(¢) = T2, that is, W(¢) = WoxTo.

D. Family D

For the fourth system of our consideration, in which 1 # const, and from the system of equations (19), (20) and (21) we
find the stationary points D = (D,, D, D;) as follows:

D = (1,0,0), (55)

Dy =(1,0,2), 41 -T%W (%)) = ¢(A), (56)
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Dt — <—2ﬁ(2c +40) £V3(4+ )& - 2((20 + 208

V3(4+8)

DF = (0,+1,4),

A= DR ) A1 =TG) = <) (6T

Ao = —<2C + \éé) (58)
V3(4+ &) e (Df’i“‘))z’())' )

D = (—4@,& V3(4+8)E -8(ce)?

We observe that there are five sets of stationary
points with physical properties as described by points
Bf,By,By,B; and Bi respectively. We proceed by
studying the stability of the stationary points.

1. Stability analysis

As in the previous families of stationary points we study
the stability of the stationary points for the two-dimensional
system in the variables {w, 1}.

For the points D the eigenvalues are calculated as

2 Vo
e)(Dy) = i\/;é'(()% ex(D) = 1£5-¢(0),  (60)
from which we infer that point D is an attractor when
£(0) < —3, while Dy is an attractor when £(0) > 3.

—2(382 -2(45-6) +8L(A+{) F

The eigenvalues of the linearized system at points D5 are

(D) = 1 Y0 2c(a0) + )

er(Dy) = —\/g(ﬁ:(/lo) F ﬂo(ior,(j) (4o) +¢1(40)))-

Hence, point D is an attractor when (2{(4y) + 49) <
—V6 and £(2) > 24T (40) + ¢1(%)), while point Dy
is an attractor when (2((1) +4¢) > V6 and ((2o) >
=20 (ol (o) + C1(Ag))-

As far as the points D5 are concerned, the eigenval-
ues are

(A0 +20)\/2(38 = 2(25 — 6) + 8, (49 +{))

+\
el(D3) - 6(4+§2) ’ (61)

107 1 10 ‘ s
: :
5t 5 - 54 -
t ,:' A :
N0 o~ 0 X’ 1
[ "' I' ) :
:: ll ':’, J
-5n ,', H -5+ /::’ 1

L ,"
ottt ‘ -10h ‘ ‘ ‘ ]
-10 -5 0 5 10 -10 -5 0 5 10

4 4

FIG.5. Region plotin the {£, Z} plane where the exact solutions at points D5 are stable. The blue area corresponds to the values where
point D7 is stable, while the gray area is for point D3. The left panel is for Fﬁﬂ) (49) > 0 while the right panel is for Ff{l) () <O.
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(D) 20T

—38) (A0 (AT (2) + LilA0)) = ©)

(62)

in which & = &(4y) and ¢ = {(4).

In order to simplify the stability conditions, we need to
specify the unknown functions &(1), £(4) and T (2). In the
specific case where .f ¢ are constants, it follows that D7 is

an attractor when F (/10) > ( in the regions {/121" (/10) >,
Z<\6,E<-2,|8 <22 Z1{0<e<Z Vo4 +&) >2z),
and {-2<¢<0,¢<-%} whlle when T'tY(4,) <0

it is an attractor in the regions {2726 < &<,
2 27
\V6(4+ &) > =27}, - <g<2}, {Z > -/6,

0<&E<2 &< _\2/_26}’ and {& >2,& >
= 20 + 2. In addition, point D5 is an attractor when
Fﬁ )(Jo) > 0 in the regions {Z<1/6,0<&<2Z 2}, {Z<+/6,

2<g<=2}, {£<-%.2Z<\/6(4+&) <0}, and
{76 < ¢<2,}, while when F/1 )(do) < 0 it is an attractor
{& < —2725’}’ {-2<é < %}’
{Z> 6,6 <=2}, {£>0,\/6(4+¢&)>-27},

{Z > —\/5 Z <& <0}. The latter regions are plotted

in Fig. 5.
For the points D we find

\2/_26} where

in the regions

(=3 = V3y/A(DY)).
(=3 + V3y/A(DY)). (63)

ei(Dy) =
er(Dy) =

G\M—‘O'\l'—

with

A(DF) =3+ 423 — 429(2TD (A9) + ¢(49))
—88,(20) (Ao (TW (29) = 1) + £ (Ap))
F 2V6AAT D (A9) — 1) + £(A))Ei(dg).  (64)

We cannot extract additional conditions for the stability of
points A(Dj) without considering special forms of the

unknown functions.
The eigenvalues at points D7 are

80 F v2(/3(4 + E)& — 8(¢)?
3(4+¢)

ei(D5) = - g (65)

3(44 + 8L + €/2(382 — 2(22

—6)+8(d +2)))

_(B(4+8)-8(0)) £V2LV/3(4+8)-8(C8)°

3(4+¢8%)

(66)

Therefore, point DI is an attractor when

{§:OO<§<‘/—€}' C>—ﬁ' {—2<§<0,C<§5}
or {£>0.0<0); < YoHE)

{{>0,6<0} or
{0<é< \/gcj }. On the other hand, point D5 is an attractor
E>0. {0<¢<3y {40+V6(4+&)>
0,4 + V6 <0} or E<0: {40+ /6(4+&)>0,(<
0} or {4¢ + /6 > 0,2¢ < /6}. Recall that in the latter, &
and ¢ correspond to £(0) and ¢(0). In Fig. 6 we present the
regions in the {£(0),{(0)} plane where the points DT are
attractors.

The phase-space diagram of the two-dimensional
system in the variables {w, A} is presented in Fig. 7 for
various functional forms of the free functions

{2(2).£(2). TP (2)}.

when

10}

.....

FIG. 6. Region plot in the {£, {} plane here the exact solutions
at points D? are stable. The blue area corresponds to the values
where point DY is stable, while the gray area is for point D5.
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V. CONCLUSIONS

We preformed an extended analysis of the dynamics of
the Einstein-aether cosmology with a scalar field coupled to
the aether field by generalizing the analysis presented in
Ref. [55]. Such an analysis is important in order to
understand the viability of the Einstein-aether scalar field
cosmology, as well as to understand the contribution of new
interaction terms, between the scalar field and the aether
field, in the gravitational field equations. In order to study
the dynamics of the cosmological evolution we studied the
field equations in dimensionless form by using the 6
normalization, and we determined the stationary points.
Each stationary point describes a specific phase in the
cosmological history of the model.

We assumed that the scalar field and the aether field
contribute to the gravitational integral a potential term of

"
78
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i \\\t;%/,ff & ‘Xv/f
o O\ //I | ;\g//j '
o WA

IR R R R R R

Family D for {=2A,E=A,T(A)=2/A

ab . ]
L W RN

AN

e\ Uy e}
2t Hr/,/,{/»/j;,\\ii\\wf/ 7\ v

N0

”'///’/ \\\\\T //ﬁ:\t\\\\

W=
T =

N
~2f \1;:::3:\;5:::: ]

S NS

N S
—4 Q\\E:\‘g'/(/ /} {\Q\w{/ //J

R S

Phase-space diagrams in the two-dimensional space {w, 4} for the dynamical system of Family D. Plots are for different forms

the form V(0.¢)=U($)+ Y(¢)0+1(W(p) — 1),
where U(¢),Y(¢) and W(¢) are arbitrary functions.
When W?(¢) =1, or in general when W(¢) = const,
the results of Ref. [55] are recovered. In addition when
W(¢) = const, U(¢) = Voe™ and Y(¢p) = Yoe?* the
results of Ref. [54] are recovered. Indeed when the function
W(¢) = const, in Ref. [55] it was found that there are three
families of stationary points, while in our consideration for
the arbitrary function W(¢) there are four families of
stationary points.

By writing the field equations with the use of the
Einstein tensor, we observe that the contribution of
W(¢) is similar with the coupling function of the scalar
field with gravity in Scalar-tensor theories. While in our
model the scalar field is only coupled with the aether field,
however there is an undirected coupling with the gravity.
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In particular W(¢) can be used to define an effective
varying gravitational “constant” k. = W=2(¢).

The first family of stationary points in Ref. [55], namely
Family A, consists of two sets of stationary points which
describe scaling solutions. The stationary points of Family
B are four pairs of stationary points, while the third family
of stationary points, namely Family C, are again four pairs
of stationary points. It is important to mention that in
Ref. [55] it was assumed that the parameter y is always
positive.

In the model of this work, the models of Families A, B
and D can be seen as the generalized versions of Families
A, B and C respectively. On the other hand, Family C
describes new stationary points provided by our model and
specifically by the nonconstant function W(¢).

Family A consists of two pairs of stationary points which
describe scaling solutions of the points of Family A. The
stationary points of Families B and C consist of five pairs of
points, with four pairs describing scaling solutions and only
one pair describing a de Sitter universe. However all the
points have their equivalents in Families B and C by using
the presentation of Ref. [55]. Because the dimension of the
system is different from the case where W(¢) = const the
stability conditions and the physical variables are modified;
however when W(¢) = const we end up with the same
results as Ref. [55]. Family C for the model of our
consideration admits six stationary points in three pairs.
Two pairs describe scaling universes while the third pair of
points describe de Sitter universes. Recall that the de Sitter
solution is supported by cosmological observations to be
the attractor of the late-time cosmic acceleration phase of
the Universe.

From our analysis we found that the introduction of the
new potential term in the field equations modifies the
dynamics. However, while one may expect the stationary
points to be different we found that there is a one-to-one
correspondence between all the stationary points for
W(¢) = const and the case where W(¢) is an arbitrary
function. The only new stationary points are those of
Family C.

Consequently, when V(0,¢)=U(¢p)+ Y ()0 or
V(0,p) = U(p) + Y()0 + W?(¢)0?, the cosmological
history has a similar evolution. From the results of this
work we can conclude that the model V (6, ¢) = U(¢) +
Y ()0 + W?()6* can describe the basic cosmological
history, a similar result as that expected for the general
model V (0, ), since more degrees of freedom are intro-
duced. Of course the latter conclusion follows from the
evolution of the solution trajectories of the field equations.
Recall that when Y(¢) =0, that is, V(0,¢) = U(p) +
W2(¢)6? our model also describes the one considered by
Kanno et al. [50].

For the model with Y (¢) = 0 the field equations reduces
to that with £ = 0. Therefore, only the stationary points of
families A, C and D exist with the additional constraint

& = 0. Consequently, we can conclude that the introduction
of the function Y(¢) enriches the evolution of the cosmo-
logical history.

Let us now discuss the physical interpretation of the
critical points. Points A" and A5 describe scaling solutions
in general; however for specific values of the free para-
meters these solutions can also describe de Sitter space-
times. Consequently, for specific ranges of the free param-
eters the points of Family A can describe an unstable
scaling solution which describes the inflationary era, as
well as a future de Sitter attractor. The situation is similar
for the other families of critical points. Families B, C and D
can admit more than two sets of critical points, but that does
not mean that all those solutions can play a role in the
cosmological evolution, since the cosmological evolution
described by the field equations depends on the initial
conditions, as demonstrated by the phase-space diagrams
presented in Figs. 3, 4 and 7. Recall that Einstein-aether
theory has been tested as a dark energy alternative
in Ref. [34].

Nevertheless, if one would like to describe the complete
cosmological history then radiation and dust fluids should
be introduced in the field equations in order to describe the
radiation- and matter-dominated epochs. By performing a
similar analysis in a scenario with more matter sources in
the cosmological model, we except to find critical points
where the radiation fluid or the dust fluid contribute or
dominate in the cosmological evolution, in order to
describe the radiation and matter eras. Further, the exist-
ence of new critical points where all the fluid sources
contribute are expected to exist, similarly to the quintes-
sence and the scalar tensor theories; for more details we
refer the reader to the Appendix. On the other hand, we can
require the scaling solutions that we found before to
describe the additional eras of the cosmological evolution;
for example Brans-Dicke theory provides an ideal gas
solution and f(R) theory provides a radiation epoch
[57,71,72].

In addition, we remark that there exist other exact
solutions for the field equations (12), (13) and (14) except
for the scaling and de Sitter solutions. As it was discussed
in Ref. [55] because there are a greater number of unknown
functions than equations of motion one can construct
various analytical solutions which can describe well-stud-
ied cosmological solutions. For instance, if we assume
W(p) = Wop(1), p(t) = ¢pot and 0(t) = 0, coth (6yt) in
order to describe the A cosmology, it follows necessarily
that U(¢) = ¢ 2W3p?(0,)*coth?(6p¢p) —3) and Y(¢) =
— W30, coth (6y¢); however for different functional
forms of ¢(¢), the A cosmology can be recovered but
for different functions U(¢) and Y(¢). The main difference
between the various classical solutions that can be found is
the attractor of the solution: the scaling solution 0(¢) ~ r~!
or the de Sitter solution 6(r) ~ 6.
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Additional analyses should include cosmological obser-
vations, and the effects of the interaction term at the
perturbation level should also be studied. However, such
analyses are beyond the purpose of this work.

From the above results we see that maybe it is not
necessary to introduce more nonlinear interactions between
the scalar field and the aether field, at least in the context of
the cosmological solutions.
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APPENDIX: STATIONARY POINTS IN THE
PRESENCE OF MATTER

In this appendix, we consider the existence of a dust fluid
in the cosmological model, which does not interact with the
aether or the scalar fields. The only field equation that is
modified is Eq. (12) which becomes

Lwe(pyer

1.5

(A1)

where p,, is the energy density of the fluid.

2
Al = (—2\/;5, O),

54

Because the second-order differential equations (13) and
(14) remain the same, when we introduce the pressureless
fluid, we infer that the field equations in the dimensionless
variables (19)—(23) are the same. However, the constraint
equation (24) reads

Q, =1-x*—y? (A2)

where now the new variable Q, = %, describes the
energy density of the dust fluid source constrained in the
range 0 < Q, < 1.

There are two main differences with the results
presented in Sec. IV. First, the critical points are not
necessarily points on the unitary circle in the two-
dimensional space {x,y}, but they are located in the
unitary disk with its center at the point (0,0). Moreover,
because of the introduction of the extra variable ,,, the
dimension of the dynamical system has been increased by
one. We present the additional points for the field
equations where Q,, is different from zero. However,
we do not perform a complete analysis, that is, we do not
calculate the new stability conditions.

In Family A, the additional critical points are

\/_(fi V34 + &) —165/1)
2v22

from which the energy density of the dust fluid is calculated as

Q, (A1) =132 (A3)
and
m 20 3¢
Q, (A7) =1- /12+7——iﬁ\/34+§2 1602, (A4)

Point A}" is physically accepted when || < % A/ , while for the points A”‘( ) it follows that they are physically

accepted when 3(4 +¢&)—16{A>0 and 0 <
E<o: {g_ W) 1414+ \/6(4+E) =0}  or

6-272+|¢| 3(4+8)
{ﬁ < C <-

(AL,

2
) 2(2¢ + A)

or {2(2{ + 1)

2(%)
{4+§

) < 1. Hence, for point A”‘( +) we find the constraints

<e< TNV L 6@ E) <0} or

16,1 , =44+ 1/6(4 + &) < 0}, while when §>0 {46+ V6 =0,v/6+21=0} or {¢>
‘25 AL+ \/6(4+ &) <0} or {g<
§4C+2/1+ 62> 6} with {2 < £, F 42+ /6(4 + &) > 0}.

=4+ \/6(4+E) 0,4, + 20+

12 = 22}

As far as the phys1cal properties of the exact solutions at those new critical points are concerned, we observe that both the
fluid sources contribute to the cosmological solution. However, in general for these points we find that the parameter for the
equation of state for the effective fluid of the scalar and aether fields is different from zero at these points, which indicates

that they are not tracking solutions.
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In Family B we find the critical points

BY = (A7,0).BY, = (A%, &),
Bgn = (Allnvéo)’B:‘n(:t) = (A;n(i),o),

where /2T, (&))&) = A. We easily observe that the sets of
points {BY", BY'} and {B3, . B, } have similar physical
properties as points A" and A?( i
For Family C the additional stationary points are

respectively.

1'=(1.0.0) and C3,, = (A%,

0),
where C7' describes a universe dominated by the pressure-

less fluid, while C?( " have the same physical properties as

points A2’”< 1) However, for points Cg? I because { = 0 we

find that the exact solutions at Oy

) describe tracking

solutions, that is, the effective fluid of the scalar and aether
fields behaves like the dust fluid.

Finally for Family D the new critical points are
found to be

Dy = (A7.0). Dy, = (A3, &).

Dy = (A}.&). D, = (A7,,.0).

with a one-to-one physical correspondence with points
Bn‘l_Bm

1 P4+

In the generic scenario that the additional matter source
has a pressure term of the form p,, = (y — 1)p,, where the
limit y = 1 corresponds to the dust fluid source, the field
equations (19)—(23) in the dimensionless variables are
modified as

B (@ 1) B+ 2V60) — B+ Ve + 4 (2 - e+ e, (A5)
Y (1= 1) 4 33+ 38) + VO VED) + 2y - 1), (A6)
% = \/gxﬂ(é + AW () = 1)), (A7)
% = gxg(zgr@(g) - V24), (A8)

¢ V6
== T)CF(C) (©), (A9)

from which we find the same families of stationary points which now depend on the equation-of-state parameter for the

ideal gas y.
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