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Gravitational waves emitted by coalescing binary systems containing neutron stars (or other compact
objects) carry signatures of the stars’ internal equation of state, notably, through the influence of tidal
deformations during the binary’s inspiral stage. While the leading-order tidal effects for post-Newtonian
binaries of compact bodies in general relativity are due to the bodies’ mass-quadrupole moments induced
by gravitoelectric tidal fields, we consider here the leading effects due to current-quadrupole moments
induced by gravitomagnetic tidal fields. We employ an effective action approach to determine the near-zone
gravitational field and the conservative orbital dynamics, initially allowing for arbitrary (not just tidally
induced) current quadrupoles; our approach significantly reduces the complexity of the calculation
compared to previous derivations of the conservative dynamics for arbitrary multipoles. We finally
compute the leading contributions from gravitomagnetic tides to the phase and (for the first time) the mode
amplitudes of the gravitational waves from a quasicircular binary inspiral, given in terms of the bodies’
quadrupolar gravitomagnetic tidal Love numbers (tidal linear response coefficients in an adiabatic
approximation). In the phase, gravitomagnetic tides are suppressed by one post-Newtonian order relative to
gravitoelectric ones, but this is not always the case for the mode amplitudes. In the ðl; jmjÞ ¼ ð2; 1Þ and
(3,2) modes, for example, they appear at the same leading orders.
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I. INTRODUCTION

The much anticipated prospect of using gravitational
wave (GW) observations to probe the internal structure of
neutron stars (NSs) through the effects of tidal interactions
in NS binaries [1–13] has finally been realized with the first
detection by LIGO-Virgo of GWs from a binary NS
merger, GW170817 [14]. Among the multitude of astro-
physical questions that can be addressed using GW170817
together with the coincident trans-spectral electromagnetic
observations of the NS merger and its aftermath [15], the
measurement of tidal effects is one which relies only on the
GW signal. As pointed out in [1], the internal structure of
each NS, in particular its equation of state (EoS) [16],
influences the inspiral-stage GW signal primarily via a
single parameter λ known as the star’s (quadrupolar
gravitoelectric) tidal deformability/polarizability, or tidal

Love number (TLN), which measures the star’s leading-
order tidal deformation, its induced mass-quadrupole
moment, in response to its companion’s gravitational field.
The LIGO-Virgo Collaboration has used GW170817 to
place an upper bound on the binary’s effective TLN (a
certain mass-weighted sum of the TLNs of the two NSs)
[14], and this rather tangibly translates into an upper bound
of around 13 km for the NS radii (independently of the
uncertainty in the mass ratio and the spins) [17], already
ruling out some of the stiffer candidate EoSs.
The properties of the binary NS were inferred in [14] by

matching the GW signal to post-Newtonian (PN) [18,19]
frequency-domain waveform models [20] for binary inspi-
rals in general relativity (GR). The physics included in such
models naturally splits into various contributions to the
inspiral dynamics associated with the stars’ various multi-
pole moments.
Contributions which are independent of the nature of the

bodies comprising the binary, and which contribute at
the lowest orders in the PN approximation, arise from the
leading terms in the bodies’ multipole expansions: (i) the
“point-mass” contributions, depending only on the bodies’
masses (their mass monopoles), and (ii) contributions
which depend linearly on the bodies’ spins (their angular
momenta, or current dipoles). The inspiral dynamics at the
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point-mass and linear-in-spin levels is the same for a binary
NS as for a binary black hole, or any compact binary in
GR,1 and it has been calculated within the PN framework
[18,21,22], as well as within the effective-one-body [23–
28] and phenomenological [29–34] approaches which
combine PN (and other analytical) information with data
from numerical relativity simulations of binary black holes.
A body’s internal structure influences the inspiral

dynamics through contributions from its higher multipole
moments, starting with the mass quadrupole and the
current quadrupole, on through the infinite set of mass
multipoles which couple to the gravitoelectric tidal fields,
and the infinite set of current multipoles which couple to
the gravitomagnetic tidal fields [19,35–37].
The most important higher multipole, the body’s mass

quadrupole, represented by a symmetric trace-free (STF)
spatial tensor Mij [19], is determined in an adiabatic
approximation2 by two leading effects: (i) an intrinsic
spin-induced (oblate) deformation scaling as the square
of the spin Si [38], superposed with (ii) a tidally induced
(prolate) deformation proportional to the quadrupolar
gravitoelectric tidal field Eij due to the companion,3

Mij ¼ −
κ

mc2
S<iSj> − λEij þ � � � : ð1Þ

The coefficient κ, determining the spin-squared quadru-
pole, and the coefficient λ, which is the quadrupolar
gravitoelectric TLN, depend on the nature of the body.
For a black hole, κ ¼ 1 and λ ¼ 0 [38–44], while for a NS,
κ > 1 and λ > 0 are determined by the NS EoS (and the
NS’s mass m) [42,45–49]. For the spin-squared mass
quadrupole ∝ κ, the inspiral dynamics has been computed
at the leading (2PN) and next-to-leading (3PN) orders
[21,22,38,50,51].4 For the adiabatic tidal mass quadrupole
∝ λ, the inspiral dynamics has been computed at the leading
(formally 5PN) and next-to-leading (6PN) orders [1,5,53–
57].5 Precisely these structure-dependent contributions
were added to the point-mass and linear-in-spin dynamics

(through 3.5PN order) in the frequency-domain PN wave-
forms used to infer the properties of GW170817 in [14].6

As emphasized in [7,11–13,71], the measurement of tidal
effects (or of masses and spins) is sensitive to the accuracy
with which the point-mass, spin, and tidal dynamics are
described; exclusion of higher-order terms can significantly
bias the parameter estimation in some circumstances.
Apart from higher-PN-order corrections to the point-

mass dynamics, the spin terms, and the mass-quadrupole
Mij terms, we encounter at higher orders the contributions
from the bodies’ higher (STF) multipoles: the mass octu-
pole Mijk, mass hexadecapole Mijkl, etc., and the current
quadrupole Sij, current octupole Sijk, etc. For each multi-
pole, in the adiabatic approximation, the leading contribu-
tions arise again from spin-induced and tidal deformations,
according to

Mij ¼ κ̄2S<iSj> þ λ̄2Eij þ � � � ;
Sij ¼ σ̄2Bij þ � � � ;

Mijk ¼ λ̄3Eijk þ � � � ;
Sijk ¼ κ̄3S<iSjSk> þ σ̄3Bijk þ � � � ;

Mijkl ¼ κ̄4S<iSjSkSl> þ λ̄4Eijkl þ � � � ;
Sijkl ¼ σ̄4Bijkl þ � � � : ð2Þ

etc., with spin-induced κ̄l terms only for the even-l mass
multipoles and the odd-l current multipoles [entering at
lPN and ðlþ 1

2
ÞPN orders, respectively, where the multi-

pole order l ≥ 2 is the number of indices ij � � �], with tidal
λ̄l terms for all the mass multipoles proportional to the
gravitoelectric tidal tensors Eij��� [entering at ð2lþ 1ÞPN
order], and with tidal σ̄l terms for all the current-multipoles
proportional to the gravitomagnetic tidal tensors Bij���
[entering at ð2lþ 2ÞPN order]. Further contributions to
the multipoles, still within the adiabatic approximation, will
arise e.g., from spin-tidal couplings (e.g., adding a term
∝ BijkSk to Mij), proportional to the rotational-tidal Love
numbers [44,72–76] [entering at 6.5PN order or higher].
The leading gravitomagnetic tidal term, the σ̄2 term in

the current-quadrupole Sij, which (along with other more
general results concerning Sij effects in binaries) is the
subject of this paper, enters the inspiral dynamics at 6PN
order, the same order as the next-to-leading corrections to
the leading quadrupolar gravitoelectric tidal term ∝ λ̄2.
These are the only tidal terms contributing at 6PN order or
less in the adiabatic approximation.

1The universality (body independence) of the dynamics holds
for the contributions which are separately linear in each body’s
spin, including not only the “spin-orbit” terms which are linear in
one spin but also the S1 − S2 terms, which should be classified
here as part of the “linear-in-spin” dynamics.

2The adiabatic approximation assumes that the body’s internal
dynamical time scales are much less than the orbital timescale,
which is a natural leading assumption for binaries of compact
objects in the PN regime.

3At Newtonian (0PN) order, the (gravitoelectric) quadrupolar
tidal field is given in our conventions by Eij ¼ −∂i∂jU, where U
is the Newtonian potential due to the companion, with U ¼
Gm0=r for a point-mass companion m0. The angle brackets h…i
in (1) denote STF projection of the enclosed indices.

4The conservative dynamics has been computed at 4PN
order [52].

5The conservative dynamics has been computed at 7PN
order [56].

6Going beyond the PN framework, tidal effects have been
included in effective-one-body models [53,56,56–62], which
have been compared to numerical simulations of NS binaries
[58,60–66], including dynamical (non-adiabatic) tidal effects in
[57,62,66], and in other phenomenological or semi-analytical
approaches based on numerical simulations and PN information,
e.g., [67–70].
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The process of determining how adiabatic tidal defor-
mations influence a binary inspiral and its GWemissions—
assuming some EoS for each body, assuming GR, and
treating the binary dynamics in the PN approximation7—
consists of three main steps:

(i) Calculate TLNs: given a star’s EoS and its mass,
solve (in full GR) for the equilibrium stellar structure
and then for linear perturbations induced by (sta-
tionary) asymptotic tidal fields, determining the
TLNs (which enter as parameters in the following
two steps) as the proportionality constants between
the inducedmultipoles and the perturbing tidal fields.

(ii) Conservative dynamics: determine solutions to the
PN field equations in the near zone along with
conservative orbital equations of motion for the
binary (and/or an action principle from which they
derive). This step could be done from the beginning
for the special case of adiabatic tidally induced
multipoles, or done for arbitrary multipoles and then
specialized.

(iii) Radiative dynamics: determine the GWs sourced by
the conservative motion, and the resultant radiation
reaction which drives the inspiral (e.g., by calculat-
ing the GW energy flux and enforcing energy
balance). A crucial output is the tidal contribution
to the phase of the frequency-domain PN waveform;
one can additionally compute tidal contributions to
the amplitudes of the tensor-spherical-harmonic
modes of the waveform.

In the following we review work on each of these steps,
(mostly) pertaining to the adiabatic quadrupolar gravito-
electric tidal effects with Mij ¼ λ̄2Eij and the adiabatic
quadrupolar gravitomagnetic tidal effects with Sij ¼ σ̄2Bij.
We also describe and put into context the original work of
this paper, which addresses the last two steps for the Sij case.

A. Tidal Love numbers

The quadrupolar gravitoelectric TLN λ,

λ ¼ −λ̄2 ¼ −
Mij

Eij
; ð3Þ

has been computed for relativistic stars in GR with a variety
of EoSs, including polytropes, realistic NS models, and
quark star models [42,46–49]. It can be expressed in terms

of the stellar radius R and the dimensionless apsidal
constant kel2 as

λ ¼ 2

3G
kel2R

5; ð4Þ

with kel2 in the range ∼0.05–0.15 for realistic hadronic EoSs
[46,47,49].8

The quadrupolar gravitomagnetic TLN σ,

σ ¼ σ̄2
2c2

¼ Sij
2c2Bij

; ð5Þ

has been computed for various EoSs (and with different
assumptions on the fluid state), e.g., in [42,44,48,72–
74,77]. It can be expressed as

σ ¼ 1

2c2
kmag
2 mR4; ð6Þ

where m is the stellar mass and kmag
2 is dimensionless.9

Following an analysis of gravitomagnetic tidal effects in
the context of PN gravity in [79], σ was first computed for
fully relativistic stars in [42,48]. The latter references took
the stellar fluid to be in a state of strict hydrostatic
equilibrium, the “static state,” and obtained positive values
for σ. It was subsequently argued in [77] that the fluid
should be in a nonstatic “irrotational state,” with nonzero
tidally induced currents but with the fluid having vanishing
vorticity, and calculations with this assumption yielded
negative values for σ.
An important development in the study of tidal defor-

mations was the discovery in [80] of approximately
universal, EoS-independent relations between the TLN λ
and the spin-induced quadrupole coefficient κ (and between
each of those and the star’s moment of inertia I). The
universality has been linked to the emergence of self-
similarity of the stars’ isodensity contours [81]. Such
universal relations have been analyzed for higher (gravito-
electric and gravitomagnetic) multipoles [82–86], for rota-
tional-tidal Love numbers [44,72–74], for the case of rapid
rotation [87,88], for dynamical configurations [89], for
magnetized NSs [90], in alternative gravity theories
[80,91–96], for extreme EoSs [97], and for use in parameter
estimation with binary inspiral GWs [9,82,98,99]; see [100]
for a review. Regarding some of the most recent calcu-
lations of particularly λ and σ for realistic NS EoSs, we note
that calculations using both the “static” [72] and “irrota-
tional” [74] fluid assumptions show universality for λ and σ

7While we assume, for the validity of the PN approximation,
that the binary (with masses ∼m, orbital radius r, and speed v)
satisfies the weak-field, slow-motion assumption Gm=rc2∼
v2=c2 ≪ 1, this does not mean that the gravitational field must
be weak everywhere in the system. Each body could have strong
internal gravity (as is the case for NSs and black holes), as long as
(roughly speaking) the field of one body is weak at the location of
the other; see [37]. The calculations of TLNs for NSs and black
holes are strong-field (not PN) calculations, the outputs of which
are fed into the PN treatment of the binary inspiral.

8Our definition of λmatches the λ’s defined in [46,47,54,55] and
is the same as the μð2Þ in [56]. Our kel2 matches that in [74].

9Our σ matches the σð2Þ in [56]. Our kmag
2 matches that in [74].

Our conventions for the normalizations of Eij and Bij are given in
(9) below, and our Mij and Sij match the Blanchet-Damour
multipoles [78]; see Footnote 14.
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at a ∼1% level (whereas for the rotational-TLNs, [72] finds
significant deviations from universality while [74] finds
universality at a ∼2.5% level).

B. Conservative orbital dynamics

To determine the effects of the tidal deformations (ormore
generally, of any nonzero higher multipoles) on the binary
dynamics according to GR, one must construct appropri-
ately parametrized solutions to the Einstein field equations
in the binary’s near zone. This problem has been treated, in
principle to all multipolar orders, at the level of the 1PN field
equations (which is sufficient to treat the mass multipoles at
leading and next-to-leading PN orders, and the current
multipoles at leading orders) in a series of works by
Damour, Soffel, and Xu and Racine and Flanagan [35–
37,101–103] which developed a general formalism for 1PN
celestial mechanics with arbitrarily structured bodies; we
will refer to this as the DSX-RF formalism. It provides
near-zone solutions to the field equations along with trans-
lational and rotational equations of motion for a system of n
bodies with arbitrary multipoles, specifying the system’s
conservative dynamics. In [54], the DSX-RF formalismwas
directly applied to compute the conservative dynamics for a
binary of bodies having arbitrary mass quadrupolesMijðtÞ,
through next-to-leading order in the Mij terms (to linear
order in Mij’s), finding an action principle governing the
orbital dynamics post hoc by matching to the equations of
motion; the results for arbitraryMij were finally specialized
to the case of adiabatic tidally inducedMij. A considerably
simpler route to an action for the conservative dynamics,
specializing from the beginning to the case of adiabatic tides,
was provided in [53,56] via a covariant effective action
treatment; results for the Mij case through next-to-leading
order were first presented in [53] and were derived in [56]
along with next-to-next-to-leading Mij and leading and
next-to-leading Sij and Mijk results. Very recently, the
leading conservative dynamics contributions due to adia-
batic rotational-tidal effects have been computed in [75,76];
both works employ the orbital equations of motion derived
from the DSX-RF formalism.
In this paper, in Sec. II, we first show how one can

efficiently compute the leading-order contributions to a
binary’s conservative orbital dynamics from arbitrary
current quadrupoles SijðtÞ via a simple covariant effective
action treatment, following e.g., the treatment of arbitrary
MijðtÞ in [57].10 We then obtain the specialized results for

the adiabatic case, Sij ∝ Bij, with an appropriate ansatz for
an action for the body’s (adiabatic) internal dynamics,
reproducing (the leading-order part of) the adiabatic tidal
Sij results in [56].
We emphasize that the effective action approach with

arbitrary multipoles, as implemented here for current
quadrupoles, fully reproduces the near-zone dynamics
derived from the DSX-RF formalism, but with much less
computational effort (as was the case for the effective action
approach specialized to adiabatic tidal multipoles in [56]).
The DSX-RF formalism works at the level of the field
equations and orbital equations of motion and employs
multipole coordinate systems (one global one and one
adapted to each body) with intricate transformations
between them; (relatively compact) action principles for
the orbital dynamics have been deduced post hoc by
matching to the (relatively lengthy) equations of motion
[54,75]. Our approach here employs a single global
coordinate system and arrives directly at an action principle
encoding both the field equations and the orbital dynamics,
the form of which is entirely fixed (at leading order) by the
requirement of general covariance of the effective action.

C. Gravitational radiation

The GW emissions and radiation reaction can be deter-
mined by appropriately matching a near-zone PN solution
to a far-zone multipolar post-Minkowskian solution, as
reviewed in [18]. The matching results in expressions for
the far-zone GW field given in terms of the binary system’s
radiative multipole moments, which are related in certain
ways to the system multipole moments which are encoded
in the near-zone PN solution, as reviewed in Sec. 3 of [18].
From the radiative multipoles, one can compute the GW
energy flux, and for (nonspinning or aligned-spin) quasi-
circular binaries, balancing the flux against the energy loss
from the near-zone dynamics determines the rate of inspiral
and allows a computation of the phase of the frequency-
domain GW signal, as in Sec. 9 of [18]. In addition to the
phase, one can compute the amplitudes of the tensor-
spherical-harmonic modes of the far-zone field directly
from the radiative multipoles. All of this formalism, which
has been developed and applied at high orders for point-
mass and spin effects, is directly applicable to binaries with
bodies having arbitrary higher multipoles.
The first analytic calculations of tidal effects in GW

signals were presented in [1], which derived the contribu-
tions to the phase from the leading adiabatic Mij tides, at
leading PN (Newtonian) order (which count as 5PN-order
contributions in terms of their scaling with frequency). The
next-to-leading (6PN) adiabatic tidal Mij corrections to the
phase were computed in [55], and the corresponding
leading and next-to-leading terms in the mode amplitudes
were computed in [5]. The leading ð2lþ 1ÞPN-order phase
contributions from gravitoelectric tides, with adiabatic tidal
Mi1���il for arbitrary l, were derived in [82]. The 6PN phase

10It was shown in [57] that the conservative dynamics with
arbitrary MijðtÞ is defined in the effective field theory approach
by the formal body action appearing below in our Eq. (10)
(without the Sμν term, and with the modification discussed in
Footnote 11), and that an equivalent form of the next-to-leading-
order arbitrary-MijðtÞ binary action from [54] can be reproduced
by taking results derived for the spin-squared quadrupole case
and making the replacement κ̄2ShiSji → Mij.
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contribution from the leading gravitomagnetic tides, with
adiabatic tidal current quadupoles Sij, was first derived
completely in [104], correcting omissions in an initial
calculation in [82], and later being confirmed in [75]. Very
recently, the 6.5PN phase contributions due to rotational-
tidal couplings have been computed in [75,76].
In this paper, in Sec. III, we reproduce the recent results

of [75,104] for the 6PN gravitomagnetic tidal contributions
to the GW flux and phase, and we present for the first time
the corresponding contributions to the GW mode ampli-
tudes, ∝ σ. We compute the ðl; mÞ mode amplitudes for
l ¼ 2 and 3 including all adiabatic tidal effects through
relative 1PN order. This includes new contributions from
quadrupolar gravitoelectric tides, ∝ λ, given here for the
first time, in particular the next-to-leading λ terms in the
(3,3) and (3,1) modes and the leading λ term in the (3,2)
mode. We point out that λ and σ terms appear at the same
leading PN orders in the (3,2) and (2,1) modes, in contrast
to the modes with lþm ¼ even (and the phase) where σ
terms are suppressed by one PN order relative to λ terms.
While the tidal (λ and σ) contributions to the (2,1) mode
(and more generally the odd-m modes) vanish for equal
masses and equal Love numbers, they do not vanish in that
case for the (3,2) mode (and more generally the even-
m modes).

II. CONSERVATIVE DYNAMICS

A. Covariant effective action for
monopole-quadrupole bodies

It is well known that the gravitational dynamics, in GR,
of a system of n (monopolar) point masses ma, with
a ¼ 1;…; n, having arbitrarily parametrized worldlines
xμ ¼ zμaðsaÞ with tangents _zμa ¼ dza=dsa in a spacetime
with metric gμνðxÞ, is formally defined by the action

S½za; g� ¼ −
X
a

mac2
Z

dτa þ Sg½g�; ð7Þ

where Sg is the Einstein-Hilbert action and

dτa ¼ dsa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðzaÞ_zμa _zνa

q
; ð8Þ

using the ð−;þ;þ;þÞ signature. Varying the action with
respect to one of the worldlines yields the geodesic
equation, and varying with respect to the metric yields
Einstein’s equation with a distributional stress-energy
tensor along the worldlines. These coupled equations can
be solved consistently, e.g., in the PN approximation, given
a way to properly regularize the infinite self-field contri-
butions (which, for our purposes below, amounts to simply
dropping all such infinite terms).
In order to describe, instead of a point mass, an extended

body with internal structure and dynamics, but which is still
localized on a scale small compared to the (external)

spacetime’s radius of curvature, it is natural to maintain
the description in terms of a worldline xμ ¼ zμðsÞ, but now
with additional degrees of freedom ψðsÞ defined along
the worldline. In an effective action approach, the way in
which these degrees of freedom can couple to the external
gravitational field is tightly constrained by general covari-
ance [18,57,105,106]. An effective Lagrangian can depend
on the worldline point z only through the metric and
invariant curvature tensors (the Riemann tensor and its
covariant derivatives) evaluated at z,11 and the leading
terms will thus be those linear in the (regularized) Riemann/
Weyl tensor Rμνρσ (of the exterior metric, which we assume
is a vacuum solution, so the Riemann tensor equals the
Weyl tensor).12 It is natural to split Rμνρσ into its electric
(even-parity) and magnetic (odd-parity) parts with respect
to the worldline’s normalized 4-velocity uμ ¼ dzμ=dτ ¼
_zμ=

ffiffiffiffiffiffiffiffi
−_z2

p
according to

Eμν ¼ Rμρνσuρuσ; Bμν ¼ R�
μρνσuρuσ; ð9Þ

where R�
μρνσ ¼ 1

2
ϵαβνσRμραβ is the dual of Rμρνσ, both evalu-

ated at the worldline point z. Both Eμν and Bμν are STF and
orthogonal to uμ. The full information of Rμνρσ can be
reconstructed from Eμν, Bμν, and uμ, e.g., as in Eq. (5.12) of
[107]. We can then write a general ansatz for the action for
our extended body, to linear order in Rμνρσ, by replacing
−mc2

R
dτ in (7) with

Sbody½z;ψ ; g� ¼
Z

dτ

�
−mc2 −

1

2
Mμν½ψ �Eμν

þ 2

3
Sμν½ψ �Bμν þ Lint½ψ �

�
; ð10Þ

11The Lagrangian could also depend on the worldline point
and metric through covariant parameter derivativesDψ=ds of the
worldline fields ψ , as is the case for actions encoding spin effects
[18,105,106] and for the action for dynamical mass-quadrupole
tides in [57], both of which require (only) the generalization
Lint½ψ � → Lint½ψ ; g; z� in (10), with the metric- and z-dependence
coming only from Dψ=ds. Here, we do not treat spin (current-
dipole) effects, as they are entirely decoupled from the leading-
order quadrupole effects we analyze here, and our ansatz (10) is
sufficient for this analysis. Note for example that the metric
dependence viaDψ=ds in Lint seen in the first term of Eq. (1.4) of
[57] affects the orbital dynamics only at next-to-leading order,
producing to the “frame-dragging Lagrangian” in Eq. (3.12) of
[57]; those contributions are related to the fact that next-to-
leading order mass-quadrupole effects cannot be disentangled
from spin effects, as discussed in [54].

12The fact that we can cleanly split Rμνρλ (or any functional of
the metric), at the location of some localized body, into an internal
part (locally generated by the body) and an external part (due to
the rest of the universe) corresponding to a vacuum solution, for
our purposes below, is ensured by the linearity of the 1PN field
equations (16) and (17).
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where the coefficients Mμν and Sμν, which we will identify
with the mass- and current-quadrupole moments,13 and the
internal Lagrangian Lint are some functionals of only the
internal degrees of freedom ψ . We take Mμν and Sμν to be
STF and orthogonal to uμ, as only these components
contribute in (10).
The body action (10), added to actions for other bodies

and the gravity action Sg, determines the body’s orbital
dynamics regardless of the details of the functionals Mμν,
Sμν, and Lint; varying the total action with respect to the
worldlines and the metric yields orbital equations of motion
and field equations in which MμνðsÞ ¼ Mμν½ψðsÞ� and
Sμν½ψðsÞ� (and their s-derivatives) enter as some thus far
arbitrary functions. A specification of the internal degrees
of freedom ψ and of the functionals Lint, Mμν, and Sμν

would require some model for the body’s internal structure,
but we can proceed with an analysis of the orbital dynamics
while leaving these details unspecified.
Here we are interested in the effects linear in the current-

quadrupoles Sμνa , for a binary, a ¼ 1, 2. Since we would
drop Sμν1 − Sμν2 terms, we need only consider one of the
bodies, say body 1, to have a nonzero quadrupole Sμν1 , and
we can restore the Sμν2 terms at the end of the calculation by
interchanging the bodies’ identities. We thus consider the
following action for our binary:

S½z1;ψ1; z2; g� ¼ S1½z1;ψ1; g� þ S2½z2; g� þ Sg½g�; ð11Þ

where we take body 2 to be simply a point mass,

S2 ¼ −m2c2
Z

dτ2; ð12Þ
and the body-1 term is

S1 ¼
Z

dτ1

�
−m1c2 þ

2

3
Sμν1 B1

μν þ Lint
1

�
; ð13Þ

where B1
μν ¼ uρ1u

σ
1R

�
μρνσðz1Þ, and where the current quadru-

pole Sμν1 ½ψ1� and the internal Lagrangian Lint
1 ½ψ1� are some

unspecified functionals of body 1’s internal degrees of
freedom ψ1. (We have dropped here the mass quadrupole
Mμν term seen in (10), as those electric-type tidal effects
can be treated independently from the magnetic-type ones
on which we focus here, working to linear order in the tidal
deformations.)

B. Leading-order post-Newtonian approximation

We now specialize to the PN approximation and assume
that the metric ds2 ¼ gμνdxμdxν can be written in the
following standard 1PN form [18,19], through Oðc−2Þ
relative to the Newtonian metric, in (spatially conformally
flat) coordinates xμ ¼ ðt; xiÞ ¼ ðt; xÞ (note x0 ¼ t in our
conventions; x0 ≠ ct),

ds2 ¼ −
�
c2 − 2U þ 2U2

c2

�
dt2 −

8

c2
Uidtdxi

þ
�
1þ 2U

c2

�
δijdxidxj þOðc−4Þ; ð14Þ

given in terms of the (gravitoelectric) scalar potential
Uðt; xÞ and the (gravitomagnetic) vector potential Uiðt; xÞ.
Adopting the harmonic gauge condition,

∂μð
ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0 ⇒ _U þ ∂iUi ¼ Oðc−2Þ; ð15Þ

Einstein’s equation with a stress-energy tensor Tμν¼ðT00;
T0i;TijÞ yields the harmonic-gauge 1PN field equations

∇2U ¼ −4πG
�
T00 þ Tii

c2

�
þ Ü
c2

þOðc−4Þ; ð16Þ

∇2Ui ¼ −4πGT0i þOðc−2Þ; ð17Þ
where ∇2 ¼ ∂i∂i and Tii ≡ δijTij. Note that we use the
Euclidean metric δij to raise and lower the spatial indices
i; j;…; for components of four-dimensional tensors, where
there is possible ambiguity, we leave indices in the position
in which the components are taken or explicitly clarify, as in
the case of Tii ¼ δijTij. In this section, we maintain proper
up-down contractions; in the following section, where this
becomes less feasible, we switch to the usual convention that
up/down placement of indices is irrelevant, and all spatial
indices are contracted with δij.
The gauge-fixed gravitational action (the Einstein-

Hilbert action plus a harmonic gauge-fixing term) for the
1PN metric (14) reads

Sg¼
Z

dtd3x
8πG

�
−∂iU∂iUþ

_U2

c2
þ 4

c2
∂iUj∂iUjþOðc−4Þ

�
:

ð18Þ
To evaluate the other terms in our binary action (11), we
choose both of the worldline parameters to be the coor-
dinate time, s1 ¼ s2 ¼ t, so that _zμa ¼ ð1; viaÞ where
via ¼ dzia=dt, and then the normalized 4-velocities are
given by uμa ¼ γað1; viaÞ with
c2

γa
¼ c2

dτa
dt

¼ c2−
v2a
2
þU−

4

c2
viaUiþ

Oðv2;UÞ2
c2

þOðc−4Þ; ð19Þ
where the potentials U and Ui are evaluated at za. For our
leading-order treatment of the current-quadrupole effects,
which we can treat as a linear perturbation of the
Newtonian point-mass dynamics, we will need to keep
at Oðc−2Þ only the term linear in the vector potential Ui,
while we can drop the other 1PN terms ∼ðv4; v2U;U2Þ=c2.
The viUi term contributes to the current-quadrupole
dynamics at leading order, even though it contributes to

13The factors of −1=2 and 2=3 in (10) are simply matters of
convention for the normalization of themultipoles. See Footnote 14.
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the point-mass dynamics only at next-to-leading (1PN)
order, as the Oðv2; UÞ2 terms.
Calculating the Weyl tensor of the 1PN metric (14), one

finds that its magnetic part B1
μν with respect to uμ1 at z1 is

given in the coordinate basis by

B1
ij ¼

2

c2
ϵklði∂jÞ∂kðUvl1 −UlÞ þOðc−4Þ;

B1
0i ¼ −

2

c2
vj1ϵ

k
lði∂jÞ∂kUl þOðc−4Þ;

B1
00 ¼ Oðc−4Þ; ð20Þ

where the derivatives of the potentials are evaluated at z1.

Given that the current quadrupole Sμν1 is symmetric (and
trace-free) and orthogonal to uμ1, one can solve for the
temporal components S001 and S0i1 in terms of the purely
spatial components Sij1 (and the components of uμ1). With
Sij1 ¼ Oðc0Þ, one finds S001 ¼ Oðc−2Þ ¼ S0i1 , and thus that
Sij1 þOðc−2Þ is an STF spatial tensor, and that Sμν1 B1

μν ¼
Sij1 B

1
ijþOðc−4Þ, given (20).

Putting everything together, inserting spatial integrals
and delta functions in S1 and S2 to evaluate the
potentials and their derivatives along the worldlines,
and using the notation ∂jk ¼ ∂j∂k, our total binary action
(11) becomes

S ¼
Z

dtd3x

�
δ3ðx − z1Þ

�
m1

�
−c2 þ v21

2
þ U −

4

c2
vi1Ui

�
þ 4

3c2
Sij1 ϵ

k
li∂jkðUvl1 −UlÞ þ Lint

1

�

þ δ3ðx − z2Þ
�
m2

�
−c2 þ v22

2
þU −

4

c2
vi2Ui

��
þOðv2; UÞ2

c2
þOðc−4Þ

�
þ Sg; ð21Þ

where Sg is given by (18), noting that the internal Lagrangian Lint
1 depends only on the internal degrees of freedom ψ1, not

on the worldlines or potentials.
Varying the action with respect to the potentials U and Ui yields the field equations

∇2U ¼ −4πG
��

m1 þ
4

3c2
Sij1 v

l
1ϵ

k
li∂jk

�
δ3ðx − z1Þ þm2δ

3ðx − z2Þ þ
Oðv2; UÞ2

c2

�
þ Ü
c2

þOðc−4Þ; ð22Þ

∇2Ui ¼ −4πG
��

m1vi1 þ
1

3
ϵij

kSjl1 ∂kl

�
δ3ðx − z1Þ þm2vi2δ

3ðx − z2Þ
�
þOðc−2Þ: ð23Þ

Comparing these with (16) and (17), we see that the forms
match and that we can read off the components T00 þ
Tii=c2 and T0i of the effective stress-energy tensor for our
system; they are the quantities in square brackets in (22)
and (23), respectively. The solutions which vanish at
infinity are

Uðt; xÞ ¼ Gm1

jx − z1ðtÞj
þ Gm2

jx − z2ðtÞj
þ 4G
3c2

Sij1 ðtÞvl1ðtÞϵkli∂jk
1

jx − z1ðtÞj
þ ½1PNp:m:� þOðc−4Þ; ð24Þ

Uiðt; xÞ ¼ Gm1vi1ðtÞ
jx − z1ðtÞj

þ Gm2vi2ðtÞ
jx − z2ðtÞj

þ G
3
ϵij

kSjl1 ðtÞ∂kl

×
1

jx − z1ðtÞj
þOðc−2Þ; ð25Þ

where we write [1PN p.m.] for theOðc−2Þ point-mass terms
that come from the Oðv2; UÞ2 and Ü terms in (22), which

we will not need. Note that the Ü term contributes Sij1 terms
only at Oðc−4Þ.14
Having solved the field equations for the potentials U

and Ui, we can now insert these solutions into the action to
find the reduced Fokker action depending only on the
worldlines (and the internal degrees of freedom). We

14We can now connect our normalization for Sij, with the
factor of 2=3 in (10), to the definitions of the body’s Blanchet-
Damour multipole moments [78]. From Eqs. (3.8)–(3.10) of [54],
with Φ ¼ −U and ζi ¼ −4Ui (and restoring factors of G set to 1
in [54]), dropping the external tidal terms and theOðc−2Þ terms in
U, the potentials generated by some body are given in terms of its
multipoles about some point r ¼ 0 by

G−1U ¼ M
r
−Mi∂i

1

r
þ 1

2
Mij∂ij

1

r
−
1

6
Mijk∂ijk

1

r
þ � � � ;

G−1Ui ¼
_Mi

r
−
1

2
ð _Mij − ϵijkSk þ

1

6
δijμÞ∂j

1

r

þ 1

6
ð _Mijk − 2ϵijlSkl þ

9

20
δijμkÞ∂jk

1

r
þ � � � ; ð26Þ

where μ… are “gauge moments.”We see that the normalization of
the Sij term in Ui matches that in (25).
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encounter several divergent self-field terms, which we can
simply drop; they are independent of the worldlines and
thus would not affect the orbital equations of motion. It is
important that we use the total action (21), including Sg;
note the separate contributions

S1þS2¼
Z

dt

�
1

2
m1v21þ

1

2
m2v22þ

2Gm1m2

jz1−z2j

þ8Gm2

3c2
Sij1 ðvl1−vl2Þϵikl∂1

jk
1

jz1−z2j
þLint

1

�
ð27Þ

and

Sg¼
Z

dt

�
−
Gm1m2

jz1− z2j
−
4Gm2

3c2
Sij1 ðvl1−vl2Þϵikl∂1

jk
1

jz1− z2j
�
;

ð28Þ

where ∂1
i ¼ ∂=∂zi1, and where we henceforth neglect to

note the 1PN point-mass and Oðc−4Þ corrections. Note that
the effect of adding Sg is to halve all the potential terms,
which were in a sense double-counted in S1 þ S2. Finally,
the total action (11) becomes S ¼ R

dtL where

L ¼ 1

2
m1v21 þ

1

2
m2v22 þ

Gm1m2

jz1 − z2j
þ 4Gm2

3c2
Sij1 ðvl1 − vl2Þϵikl∂1

jk
1

jz1 − z2j
þ Lint

1 : ð29Þ

One can confirm that the Sij1 contributions to the orbital
equations of motion obtained from varying the action

R
dtL

(29) with respect to z1 and z2 match those derived in [37], as
given in Eq. (1) of [104].
The Lagrangian can be simplified further by specializing

to the binary’s center-of-mass frame. We can fix the center
of mass to be at rest at the origin by setting to zero the
system’s mass dipole, which at the considered order yields
the Newtonian relation m1z1 þm2z2 ¼ 0.15 We thereby
obtain a reduced Lagrangian given in terms of the relative
position r ¼ z1 − z2 and velocity v ¼ v1 − v2,

L ¼ μv2

2
þ GμM

r
þ 4Gm2

3c2
Sij1 v

lϵi
k
l∂jk

1

r
þ Lint

1 ; ð30Þ

where r¼ jrj and ∂i ¼ ∂=∂ri, and where we define the total
mass M¼m1þm2 and the reduced mass μ¼m1m2=M.
The Lagrangian (30) determines the binary’s orbital

equation of motion, as the Euler-Lagrange equation for
rðtÞ. The Sij1 term appears as a linear perturbation of the

Newtonian (Keplerian) Lagrangian, in which Sij1 ðtÞ is a yet
unconstrained function of time which would be determined
by the body’s internal structure and dynamics.

C. Adiabatic tidal current quadrupole

In the adiabatic approximation, assuming that body 1’s
internal dynamical timescales are small compared to the
orbital timescale, it will develop a current-quadrupole
proportional to the instantaneous gravitomagnetic tidal
field, Sμν1 ∝ Bμν

1 , or equivalently Sij1 ∝ Bij
1 at leading order

[36,42,48,56,79]. With this relation, Sij1 is determined
by the orbital degrees of freedom, and we can obtain an
action for the orbital dynamics depending only on r and v.
The adiabatic relation Sij1 ∝ Bij

1 can be obtained from the
general binary action (30) with a simple ansatz for the
internal Lagrangain Lint

1 .
Let us first note that, given the solutions (24) and (25) for

the metric potentials in our binary, (the regular part of) the
general expression (20) for B1

ij evaluates to

B1
ij ¼

2Gm2

c2
vlϵklði∂jÞk

1

r
¼ 6Gm2

c2r3
vlϵklðinjÞnk; ð31Þ

where ni ≡ ri=r. We see that the Lagrangian (30) can be
written as

L ¼ μv2

2
þ GμM

r
þ 2

3
Sij1 B

1
ij þ Lint

1 : ð32Þ

To obtain an adiabatic current quadrupole, we can treat the
components Sij1 ðtÞ themselves as the body’s internal
degrees of freedom ψ1ðtÞ, to be varied along with rðtÞ
in the action, and posit that Lint

1 is quadratic in Sij1 .
Choosing the coefficients so that σ1 here (subscript 1 for

body 1) matches the quadrupolar gravitomagnetic TLN σð2Þ1

defined in [56], we will obtain

Sij1 ¼ 2c2σ1B
ij
1 ð33Þ

from the Euler-Lagrange equation for Sij1 if

Lint
1 ¼ −

1

6c2σ1
S1ijS

ij
1 : ð34Þ

Inserting the solution (33) into (32) with (34), we obtain a
reduced Fokker Lagrangian for the orbital dynamics in the
adiabatic approximation, with rðtÞ as the only remaining
degree of freedom,

L ¼ μv2

2
þ GMμ

r
þ 2

3
c2σ1B1

ijB
ij
1

¼ μv2

2
þ GMμ

r
þ 12G2m2

2σ1
c2r6

ðv2 − ðv · nÞ2Þ; ð35Þ

15One can verify that there is no c−2Sij contribution to the mass
dipole, either from Sec. IVof [54], e.g., or by computing the mass
dipole (at t ¼ 0) as the Noether charge of the boost symmetry of
the Lagrangian (29).
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having used (31) in the second line. One can confirm that
this agrees with the leading gravitomagnetic contribution to
the effective action for adiabatic tides derived in [56]; see in
particular their Eq. (4.8).
Since (35) is rotation invariant, the motion is confined to

a plane. It is convenient to use polar coordinates ðr;ϕÞ in
the orbital plane, so that (35) becomes

L ¼ μ

2
ð_r2 þ r2 _ϕ2Þ þGMμ

r
þ 12G2m2

2σ1 _ϕ
2

c2r4
: ð36Þ

The resultant Euler-Lagrange equations for r and ϕ read

μ̈r ¼ μ _ϕ2r −
GMμ

r2
−
48G2m2

2σ1 _ϕ
2

c2r5
; ð37Þ

d
dt

�
μr2 _ϕþ 24G2m2

2σ1 _ϕ

c2r4

�
¼ 0: ð38Þ

The conserved energy resulting from time-translation
invariance via E ¼ við∂L=∂viÞ − L is

E ¼ μ

2
ð_r2 þ r2 _ϕ2Þ − GMμ

r
þ 12G2m2

2σ1 _ϕ
2

c2r4
: ð39Þ

1. Circular motion

Specializing to circular orbits, for which r is constant, it
follows from (38) that _ϕ≡ ω is constant. We can then solve
for the orbital radius r as a function of the orbital angular
frequency ω by setting ̈r ¼ 0 in (37). We find, to linear
order in σ1,

r ¼
�
GM
ω2

�
1=3

�
1þ 16m2σ1ω

4

m1Mc2

�
: ð40Þ

Using this in (39) yields the gauge-invariant expression for
the energy as a function of the frequency,

E ¼ −
μ

2
ðGMωÞ2=3

�
1 −

88m2σ1ω
4

m1Mc2

�

¼ −
μc2

2
xð1 − 88νX3

1Σ1x6Þ: ð41Þ

For the second line, we define the mass ratios

X1 ¼
m1

M
; X2 ¼

m2

M
; ν ¼ X1X2 ¼

μ

M
; ð42Þ

the dimensionless frequency parameter x ∼ v2=c2 which
counts PN orders,

x ¼ ðGMωÞ2=3
c2

; ð43Þ

and a dimensionless version Σ1 of body 1’s quadrupolar
gravitomagnetic TLN σ1,

Σ1 ¼
Gσ1

ðGm1=c2Þ5
¼ k2;mag

1

2

�
R1c2

Gm1

�
4

; ð44Þ

where the stellar radius R1 and the dimensionless constant
kmag
2 → k2;mag

1 for body 1 are as in (6).

III. GRAVITATIONAL RADIATION

A. System multipole moments

The far-zone (post-Minkowskian) gravitational-wave
field is determined in the PN approximation by the multi-
pole moments of the entire binary system, which are
encoded in the near-zone PN gravitational field [18]. We
will denote the system’s mass multipoles by IL and its
current multipoles by JL, using the multi-index notation
L ¼ i1 � � � il. For our purposes, at the order of the 1PN field
equations, these moments agree with both the source
moments IL and JL and the canonical moments ML and
SL defined in [18].
The system multipoles can be computed in two different

ways. First, if one has the components of the system’s
(effective) stress-energy tensorTμν, then themoments (about
xi ¼ 0, which we assume has been fixed to the system’s
center of mass) are given at 1PN order by the integrals [18]

IL ¼
Z

d3x

��
T00 þ Tjj

c2

�
xhLi þ T̈00

2ð2lþ 3Þc2 x
jjhLi

−
4ð2lþ 1Þ _T0j

ðlþ 1Þð2lþ 3Þc2 x
hjLi

�
þOðc−4Þ;

JL ¼
Z

d3xT0kϵjk<ilxL−1>j þOðc−2Þ; ð45Þ

where xL ¼ xi1 � � � xil , etc. For our m1 − Sij1 −m2 system
fromSec. II, the componentsT00 þ Tii=c2 andT0i are given,
respectively, by the quantities in square brackets in the first
and second lines of (21). Inserting these into (45) for l ¼ 2,
3, integrating, and using (only) the leading-order center-of-
mass-frame relations m1z1 ¼ −m2z2 ¼ μr (not yet special-
izing to adiabatic tides or to circular orbits), we find the
system’s quadrupoles and octupoles,

Iij¼μrhiji þ½1PNp:m:�

þ8X2

9c2
ϵkl<ið2Sj>l

1 vk− _Sj>l
1 rkÞþOðc−4Þ;

Jij¼−δμϵkl<irj>kvlþSij1 þOðc−2Þ;

Iijk¼−δμrhijki þ½1PNp:m:�þ 2

c2
X2
2ϵ

lm<ið3rjSk>m
1 vl

−vjSk>m
1 rl−rj _Sk>m

1 rlÞþOðc−4Þ;

Jijk¼ð1−3νÞμϵlm<irjk>lvmþ8

3
X2S

<ij
1 rk>þOðc−2Þ; ð46Þ
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with rij ¼ rirj, etc., and where we define the antisymmetric
mass ratio

δ ¼ m1 −m2

M
¼ X1 − X2: ð47Þ

Note that the T̈00 term in IL in (45) contributes only to the
omitted 1PN point-mass terms here.
In a second equivalent way to compute the system

multipoles at relative 1PN order, one can start from the
expression for the near-zone 1PN metric potentials (rather
than starting from a stress-energy tensor), as discussed in
Sec. IV of [54]. In Sec. III C, we describe the implementa-
tion of that procedure to compute the same multipoles
given in (46), while also including a mass quadrupole Mij

1

for body 1, working to relative 1PN order in the Mij
1 terms.

B. Energy flux and waveform phasing for adiabatic
tides and quasicircular orbits

The energy flux (or power) _E carried away from the
system by gravitational radiation is given in terms of the
system multipoles, to relative 1PN order, by [18]

_E ¼ −
G
5c5

hIð3Þij I
ð3Þ
ij i

−
G
9c7

�
1

21
hIð4ÞijkI

ð4Þ
ijki þ

16

5
hJð3Þij J

ð3Þ
ij i

�
þOðc−8Þ; ð48Þ

where FðnÞ ¼ dnF=dtn, and where h� � �i denotes a suitable
time average (which is trivial for the case of circular orbits).
The time derivatives of the system multipoles are to be
computed using the PN conservative dynamics, which we
will take here to be the circular orbit with adiabatic
gravitomagnetic tides.
In Cartesian coordinates ðX; Y; ZÞ, for circular orbits in

the X − Y plane, we have

riðtÞ ¼ rðcosωt; sinωt; 0Þ ¼ rniðtÞ;
viðtÞ ¼ rωð− sinωt; cosωt; 0Þ≡ rωλiðtÞ;
eiZ ¼ ϵijknjλk; ð49Þ

where λi is the unit vector in the direction of the velocity
and eiZ is the unit vector in the Z-direction. The time
derivatives of the system multipoles are most easily
calculated by first expressing them in terms of only
niðtÞ, λiðtÞ, eiZ, and constants, and using

_ni ¼ ωλi; _λi ¼ −ωni; _eiZ ¼ 0: ð50Þ

Using the adiabatic relation (33) with (31) to replace Sij1 , we
find the following Newtonian point-mass and leading-order
gravitomagnetic tidal contributions (dropping others) to the
system quadrupoles from (46),

Iij ¼ μr2nhiji þ 16GMX2
2ω

2σ1
3c2r

ð5nhiji þ 4λhijiÞ;

Jij ¼
�
−δμr3ωþ 12GMX2ωσ1

r2

�
nhiejiZ : ð51Þ

Note that only these σ1 terms will contribute to the flux (48)
at 1PN order; the Sij1 term in Iijk (or Jijk) would contribute
to _E at Oðc−4Þ.
It is then straightforward to thrice differentiate (51) and

insert the results into (48), using (40) to eliminate r in favor
of ω. Dropping all contributions except for the Newtonian
point-mass and leading σ1 terms, and using the definitions
(43) and (44), we find the flux to be

_E ¼ −
32c5

5G
ν2x5

�
1þ 2

3
X4
1ð114X2 − 1ÞΣ1x6

�
: ð52Þ

In the stationary phase approximation, the phase ψ of the
frequency-domain GW signal is determined as a function of
the orbital angular frequency ω by the flux _EðωÞ and the
conservative orbital energy EðωÞ via [108]

d2ψ
dω2

¼ 2

_E

dE
dω

: ð53Þ

Substituting our results (41) and (52), working again to
linear order in the tidal perturbation, and twice integrating
(dropping integration constants), we find

ψðωÞ ¼ 3

128νx5=2

�
1 −

20

21
X4
1ð1038X2 − 1ÞΣ1x6

�
: ð54Þ

Our result (52) for the flux matches that first derived in
[104] and later confirmed in [75,76]. Our result (54) for the
phase matches those found in [75,104].

C. Waveform mode amplitudes for adiabatic
tides and quasicircular orbits

The far-zone post-Minkowskian gravitational wave field
can also be expressed directly in terms of the system’s (PN)
multipole moments [18,109]. We will follow here the
conventions of Sec. II of [109]. The polarization waveforms
hþ and h× defined by Eqs. (6) and (10) of [109] are given
by Eq. (11) of [109] as

hþ − ih× ¼
X∞
l¼2

Xl
m¼−l

hlmðTRÞ−2YlmðΘ;ΦÞ; ð55Þ

where −sYlm are the spin-weighted spherical harmonics as
defined by Eqs. (4) and (5) of [109], in the spherical
radiative coordinate system ðT; R;Θ;ΦÞ, with TR ¼ T −
R=c being the retarded time. The mode amplitudes hlm are
given by Eqs. (13) and (19) of [109] as
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hlm¼ 8πG
Rclþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2Þðlþ1Þ

lðl−1Þ

s �
ULþ

2ilVL

ðlþ1Þc
� ðYL

lmÞ�
ð2lþ1Þ!! ;

ð56Þ

where UL and VL are the system’s radiative multipole
moments, given to relative 1PN order by the lth time
derivatives of the PN source/canonical multipoles ILðtÞ and
JLðtÞ evaluated at the retarded time,

UL ¼ IðlÞL ðTRÞ þOðc−3Þ;
VL ¼ JðlÞL ðTRÞ þOðc−3Þ; ð57Þ

and where ðYL
lmÞ� are the complex conjugates of the STF

spherical harmonics YL
lm. The STF harmonics are related to

the usual scalar spherical harmonics Ylm ¼ 0Y
lm and the

radial unit vector Ni by

YL
lmN

L ¼ YlmðΘ;ΦÞ;
Ni ¼ sinΘðcosΦeiX þ sinΦeiYÞ þ cosΘeiZ; ð58Þ

where ðeiX; eiY; eiZÞ is the Cartesian orthonormal triad.
Defining the complex vector

ζi ¼ eiX þ ieiY; ð59Þ
the STF harmonics YL

lm for l ¼ 2, 3 and m ≥ 0 are given
explicitly by

Yij
22¼

1

4

ffiffiffiffiffiffi
15

2π

r
ζhiji; Yij

21¼−
1

2

ffiffiffiffiffiffi
15

2π

r
ζ<iej>Z ; Yij

20¼
3

4

ffiffiffi
5

π

r
ehijiZ ;

Yijk
33 ¼−

1

8

ffiffiffiffiffi
35

π

r
ζhijki; Yijk

32 ¼
1

4

ffiffiffiffiffiffiffiffi
105

2π

r
ζhijekiZ ;

Yijk
31 ¼−

5

8

ffiffiffiffiffi
21

π

r
ζhiejkiZ ; Yijk

30 ¼
5

4

ffiffiffi
7

π

r
ehijkiZ : ð60Þ

For circular orbits in the X − Y plane, as in (49) with ωt ¼
ϕ (where we can identify the Cartesian frame there with that
used here), it is useful to note that

ni þ iλi ¼ e−iϕζi: ð61Þ
Finally, note that the mode amplitudes with m < 0 can be
found from those m > 0 via hl;−m ¼ ð−1ÞlðhlmÞ�, as in
Eq. (78) of [109].
Equations (56)–(61) allow an explicit computation of the

amplitudes hlm for l ¼ 2, 3, to relative 1PN order, given
expressions for the PN source quadrupoles Iij and Jij and

octupoles Iijk and Jijk. For ourm1 − Sij1 −m2 system, these

are given above in (46), for general orbits and arbitrary Sij1 .
We gave the specializations of Iij and Jij to adiabatic tidal

Sij1 and to circular orbits in (51), and the specializations of
Iijk and Jijk can be found analogously.

For comparison with the contributions from gravitomag-
netic tides ∝ σ1 ∝ Σ1, we will also include here the
contributions to h2m and h3m from the leading adiabatic
gravitoelectric tides, proportional to the quadrupolar grav-
itoelectric TLN λ1 for body 1, with an adiabatic tidal mass
quadrupole Mij

1 ¼ −λ1Eij, working to relative 1PN order.
For this, we borrow several results from [54,55], and we
compute for the first time the relative-1PN gravitoelectric
tidal contributions to Iijk and Jijk. We will also restore here
the 1PN point-mass terms which we have thus far dropped.
To compute all of those contributions to the system

quadrupoles and octupoles, also reproducing the Sij1 con-
tributions given above in (46), one can use Eqs. (4.5) and
(4.6) of [54], yielding the system multipoles IL ≡ML

sys and
JL ≡ SLsys (for l ¼ 2, 3), via the intermediate moments ZiL

sys

(for l ¼ 2, 3, 4) and μLsys (for l ¼ 2, 3). This gives the
system multipoles in terms of the global-frame body
multipoles ML

g;A and ZiL
g;A for each body A ¼ 1, 2. The

latter are given in Eqs. (B4) and (B5) of [54], which include
the mass quadrupole Qij for one of the bodies. In using
those equations from [54], as well as others from [55]
below, one must note that those references took body 2 to be
the onewith amass quadrupole, and they defined the relative
position zi ¼ zi2 − zi1, as opposed to our definition ri ¼
zi1 − zi2 here. Thus, to translate from [54,55] to our con-
ventions, one should simply exchange 1 ↔ 2 everywhere in
[54,55] (without flipping the signs of zi → ri, ni, vi, etc.).
The global-frame body multipoles we need to insert into
Eqs. (4.5) and (4.6) of [54] are thus given by (B4) and (B5) of
[54] under 1 ↔ 2, where then Qij ≡Mij

1—plus contribu-
tions from body 1’s current quadrupole Sij1 . These can be
found either from Eqs. (B2) and (B3) of [54] or by
comparing Eqs. (4.1) of [54] to our (24) and (25) above
(with Φg ¼ −U and ζig ¼ −4Ui). One finds that the neces-
sary additions are given by

Mij
g;1 → Mij

g;1 þ
8

3c2
vk1ϵ

klðiSjÞl1 ;

Zijk
g;1 → Zijk

g;1 þ
8

3
ϵilðjSkÞl1 ; ð62Þ

with all the other moments in (B4) and (B5) of [54] (under
1 ↔ 2) unchanged, and with those being the only nonzero
global-frame body moments. These involve also the spin
Si ¼ Si2 → Si1 (which cannot be droppedwhen treatingmass
quadrupoles at 1PN order in general, as discussed in [54],
but which can be consistently dropped for adiabatic tidal
mass quadrupoles). Finally, onemust note that the Blanchet-
Damour mass monopole M2 ð→ M1Þ appearing in the
second line of Eq. (B4) of [54] is not a constant. It is
given by Eq. (3.30) in terms of nM2 which is a constant
(→ m1 here), UQ given by Eq. (2.28), and Eint

2 [which is
given by Eq. (6.3) in the adiabatic approximation]; all Eqs.
from [54]. The other monopole, of the body without higher
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multipoles, is a constant; the M1 there becomes m2 here.
Note also χ2;1 → X1;2 ¼ m1;2=M.
One then has the system multipoles IL ¼ ML

sys and JL ¼
SLsys expressed in terms of m1 and m2, and zi1, z

i
2, S

i
1, M

ij
1 ,

Sij1 , E
int
1 , and their time derivatives. To express zi1 and zi2 in

terms of ri ¼ zi1 − zi2, one must use the 1 ↔ 2 translation of
Eqs. (5.2)–(5.4) of [54], which result from setting to zero
the system’s mass dipole Mi

sys, given by Eq. (4.8) of [54].

One can confirm that there are no Sij1 contributions to Mi
sys

at 1PN order by also computing it via the procedure
outlined in the previous paragraph. Next, to specialize to
adiabatic tidal multipoles, one uses Eqs. (6.3) and (6.6) of
[54] with 1 ↔ 2 for Qij → Mij

1 and Eint
2 → Eint

1 and our
(31) and (33) above for Sij1 . One can then also consistently
drop all contributions from the spin Si1.
At this point, one has the system multipoles in terms of

only m1, m2, the quadrupolar gravitoelectric TLN λ → λ1
for body 1, its quadrupolar gravitomagnetic TLN σ1, and
the relative position ri and its time derivatives. One can
next specialize to the case of circular orbits, as in (49)
above. Here one requires the radius-frequency relation rðωÞ
resulting from the conservative orbital equations of motion.
The point-mass and λ → λ1 contributions to rðωÞ are given
to 1PN order by Eq. (2.9) and (2.10) of [55] under 1 ↔ 2,
and to this we add the σ1 contribution in our (40) above.
After this, one has the system multipoles in terms of m1,
m2, λ1, σ1, the orbital angular frequency ω, and the unit
vectors ni and λi as in (49) and their time derivatives which
are easily computed via (50). As we did for σ1 in (44), we
define the dimensionless version of λ1,

Λ1 ¼
Gλ1

ðGm1=c2Þ5
¼ 2

3
k2;el1

�
R1c2

Gm1

�
5

; ð63Þ

where the stellar radius R1 and the dimensionless constant
kel2 → k2;el1 for body 1 are as in (4).
The resultant expressions for Iij, Jij, Iijk, and Jijk can be

inserted into (56) and (57), computing the time derivatives
with (50), and computing the various STF contractions of
the unit vectors, to find the mode amplitudes h2m and h3m.
Finally, in the following expressions for the modes, we

let body 2 also have adiabatic tidal quadrupolesMij
2 and Sij2 ,

with dimensionless TLNs Λ2 and Σ2. The extra contribu-
tions can be found simply by exchanging the bodies’
identities—being careful to note that this involves sign
flips for the contributions to the odd-m modes. One can see
that the tidal contributions to the odd-m modes must be
antisymmetric under the exchange of the bodies’ identities,
e.g., for the Sij contributions, as follows. First, ri ¼ rni ¼
zi1 − zi2 and v

i ¼ vi1 − vi2 flip signs under the exchange, and
thus also Sij1 ↔ −Sij2 since Bij

1 ↔ −Bij
2 due to two powers

of ni and one power of vi in (20). One then sees from (46)
that the Sij contributions to Jij and Iijk flip signs while
those to Iij and Jijk do not; a similar analysis leads to the
same conclusions for the Mij contributions. Finally, we
note that, exclusively, Iij contributes to h22, Jij to h21, Iijk
to h33 and h31, and Jijk to h32.
Using the dimensionless frequency parameter x from

(43), our final results for the mode amplitudes, through
relative 1PN order in the point-mass and tidal terms, are

h22¼−
GM
Rc2

8νxe−2iϕ
ffiffiffi
π

5

r ��
1−

107−55ν

42
xþOðx3=2Þ

�

þ
�
Λ1x5X4

1

�
3ð1þ2X2Þþ

63−15X2−205X2
2−45X3

2

14
xþOðx3=2Þ

�
þΣ1x6X4

1

�
112

3
X2þOðxÞ

�
þð1↔2Þ

��
;

h21¼−
GM
Rc2

8i
3
νx3=2e−iϕ

ffiffiffi
π

5

r �
δð1þOðxÞÞþ

�
Λ1x5X4

1

�
9X2

1−4X2

2
þOðxÞ

�
þΣ1x5X4

1ð−12þOðxÞÞ−ð1↔2Þ
��

;

h33¼
GM
Rc2

3iνx3=2e−3iϕ
ffiffiffiffiffiffi
6π

7

r �
δð1−2ð2−νÞxþOðx3=2ÞÞþ

�
Λ1x5X4

1

�
−18X2

2þ3X2

−2þ9X2þ25X2
2þ10X3

2

2
xþOðx3=2Þ

�

þΣ1x6X4
1ð12X2ð4−9X2ÞþOðxÞÞ−ð1↔2Þ

��
;

h32¼−
GM
Rc2

8

3
νx2e−2iϕ

ffiffiffi
π

7

r �
ð1−3νþOðxÞÞþ

�
Λ1x5X4

1ð12X2ð1−2X2þ3X2
2ÞþOðxÞÞþΣ1x5X4

1ð32X2þOðxÞÞþð1↔2Þ
��

;

h31¼−
GM
Rc2

i
3
νx3=2e−iϕ

ffiffiffiffiffiffi
2π

35

r �
δ

�
1−

2

3
ð4þνÞxþOðx3=2Þ

�

þ
�
Λ1x5X4

1

�
−18X2

2þX2

10−133X2þ259X2
2−130X3

2

2
xþOðx3=2Þ

�
þΣ1x6X4

1ð12X2ð4−17X2ÞþOðxÞÞ−ð1↔2Þ
��

;

ð64Þ
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while h20 is zero up through the orders given here for h22,
and h30 is zero up through the orders given here for h32.
The point-mass terms match those given e.g., in [109].

The Λx5 terms in h22, h21, h33, and h31 and the Λx6 term in
h22 match those first computed in [5]. The Λx6 terms in h33
and h31, the Λx5 term in h32, and all of the Σ terms have
been computed for the first time here.

IV. DISCUSSION

We have considered the leading-order effects of the
bodies’ current-quadrupole moments Sij on the dynamics
of a binary system according to GR, eventually specializing
to the case of adiabatic tidal Sij’s to find the leading
gravitomagnetic tidal effects. We showed how the
conservative contributions to the dynamics from arbitrary
Sij’s can be efficiently computed from an effective action
approach, starting directly from the general 1PN metric,
which greatly streamlines the calculations compared to
previous treatments.
Wewent on to calculate the leading gravitomagnetic tidal

effects in the GWs emitted by the binary, reproducing
recent results for the phase of the frequency-domain PN
waveform, and deriving for the first time the leading
gravitomagnetic tidal contributions to the amplitudes of
the spherical harmonic modes of the waveform. We gave
the mode amplitudes hlm for l ¼ 2 and 3 including all

adiabatic tidal effects through relative 1PN order, which
also includes new contributions from gravitoelectric tides.
We see in (64) that, in h21 and h32, the gravitomagnetic Σ

terms contribute at the same leading PN orders as the
gravitoelectricΛ terms, namelyOðx5Þ or 5PN order relative
to the leading point-mass terms. This is in contrast to the
othermodes (and the phase) in which the leadingΣ terms are
suppressed by a factor of x relative to theΛ terms, the former
starting at 6PN order and the latter at 5PN order. While h21
vanishes for equal masses and equal TLNs, h32 does not.
These results may prove useful in comparisons between PN
waveforms and numerical simulations of inspiralling binary
NSs, and in parameter estimation studies of GW signals.
Based on the GW phasing alone, it was concluded in

Ref. [110] that gravitomagnetic tidal effects are likely not
discernible in LIGO-Virgo observations of binary NS
inspirals, but that they could be measured with an ideal
GW170817-like event observed by a third-generation GW
detector with a signal-to-noise ratio on the order
of ρ ∼ 2000.
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