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We propose a new class of gravity theories which are characterized by a nontrivial coupling between the
gravitational metric and matter mediated by an auxiliary rank-2 tensor. The actions generating the field
equations are constructed so that these theories are equivalent to general relativity in a vacuum, and only
differ from general relativity theory within a matter distribution. We analyze in detail one of the simplest
realizations of these generalized coupling theories. We show that in this case the propagation speed of
gravitational radiation in matter is different from its value in vacuum and that this can be used to weakly
constrain the (single) additional parameter of the theory. An analysis of the evolution of homogeneous and
isotropic spacetimes in the same framework shows that there exist cosmic histories with both an
inflationary phase and a dark era characterized by a different expansion rate.

DOI: 10.1103/PhysRevD.101.064002

I. INTRODUCTION

In recent years, we have witnessed considerable
advances in the accuracy and methodology of experimental
and observational investigation of gravitational phenom-
ena. The wealth of new data increasingly exacerbates a
puzzle that has been present for several decades, with
regard to our current understanding of the gravitational
interaction. On one hand, the detection of gravitational
waves (e.g., Refs. [1,2]) and the observation of the black
hole at the center of M87 [3] have brought extraordinary
confirmation of the predictions of general relativity (GR) in
the strong field regime. On the other hand, it has become
increasingly clear that GR alone is unable to correctly
describe the dynamics of objects at galactic and extra-
galactic scales [4], the current accelerated expansion of the
Universe [5], and the tension in the estimation of the
present value of the Hubble parameter [6].
As pointed out in Ref. [7], one way to interpolate

between these contrasting results is to reevaluate the
interaction between spacetime and matter, rather than
assuming that gravity behaves differently at different
scales. The motivation for such a point of view lies in
the realization that deviations from GR only appear in
spacetimes in which the role of matter cannot be neglected,
like cosmology and the gravitational behavior of galaxies
and clusters of galaxies.
Indeed, the weakest assumption in the construction of the

celebrated Einstein equations is the way in which matter
and spacetime are coupled to each other. A key principle
that guided Einstein was the local conservation of the
energy-momentum tensor (the divergence-free property),
which in the modern framework is encoded in the existence
of a natural variational principle able to generate the field

equations [8]. However, there is no compelling reason not
to consider more complicated connections between the
spacetime geometry (Einstein tensor) and the energy-
momentum tensor for matter.
If one is willing to consider the possibility that the

coupling between these objects is more complex than a
simple proportionality, one could consider the following
equation [7],

Gμν ¼ χμν
αβTαβ; ð1Þ

where the coupling tensor χμναβ is a generic, nonsingular,
fourth-order tensor which mediates (and generalizes) the
response of spacetime to a given matter distribution.
The structure of (1) can be engineered in such a way that

its phenomenology in vacuum is exactly that of GR. Such a
generalization avoids the difficulties that normally afflict
modifications of GR. In particular, many modified gravity
theories have a nontrivial vacuum phenomenology which
is strongly constrained by the measurement of post-
Newtonian effects and, more recently, gravitational wave
detections and black hole phenomenology. Equation (1) is
compatible with all these constraints. Phenomenological
differences only appear within a matter distribution, like in
the (very different) case of torsion in the Einstein-Cartan-
Sciama-Kibble theory [9].
Equation (1), although interesting, is still rather ambigu-

ous as a theory. In particular, (i) to avoid deviations from
GR in vacuum, one must provide a mechanism that drives
the coupling tensor χμναβ to the product of two Kronecker
deltas δαμδβν (up to a factor of 8πG) in vacuum, and (ii) one
should be able to construct a variational principle that
generates the gravitational field equations. A first objective
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of the present work is to construct such a theory. We find
that there is, in fact, a common solution of both of these
problems at the cost of a modification of Eq. (1).
In this article, we provide a fundamental motivation for

Eq. (1) in the framework of semiclassical gravity. This
motivation is useful because it provides a natural inter-
pretation for a key parameter as a vacuum energy in our
final theory. We then construct a general class of actions
that can generate an equation similar to (1) in which the
coupling tensor χμναβ is a function of a rank-2 tensor Aμ

α.
These actions contain no derivatives of Aμ

α, i.e., this field is
nondynamical (or auxiliary), and their variation leads to
(algebraic) equations which constrain Aμ

α to be a
Kronecker delta in a vacuum.
We should remark that the strategy of employing

auxiliary fields in modified gravity theories is not new.
In the literature, other theories characterized by a similar
setting have been explored. In Ref. [10], for example, it was
shown, under some rather general assumptions, that the
introduction of auxiliary fields in GR will generally
introduce higher derivatives of the energy-momentum
tensor in the field equations. One of the assumptions in
their approach is that the matter fields couple to the metric
in the usual way, so that the matter Lagrangian reduces to
the usual one in a local frame. In this article, we demon-
strate that one can avoid higher derivatives of the energy-
momentum tensor by relaxing this condition. In doing so,
we obtain an example of a theory which generalizes the
coupling between matter and gravity without introducing
dynamical degrees of freedom or introducing higher
derivatives of the matter fields.
We will study in detail an explicit example of such

theories [the Minimal Exponential Measure (MEMe)
model], and examine its basic features and phenomenology.
Remarkably, we will find that for a single perfect fluid, the
nondynamical auxiliary fields in the MEMe model induce a
vector disformal transformation [11,12] of the metric
within a matter distribution. While disformal generalized
matter couplings have been explored in the recent literature
[13,14], we are not aware of any disformal theory [11–16]
which avoids introducing degrees of freedom through the
use of auxiliary fields. A consequence of this is that
gravitational waves propagate at the speed of light in a
vacuum (consistent with the vacuum phenomenology of
GR), but propagate with a different speed within a matter
distribution. Additionally, we will show that MEMe cos-
mologies possess an unstable (de Sitter) inflationary era
and also a (de Sitter) dark energy era in which the
expansion rate is different. In fact, when a cosmological
constant is introduced, the presence of the coupling tensor
is able to alleviate, albeit not completely solve, the
coincidence problem.
The paper is organized in the following way. Section II

concerns a semiclassical gravity interpretation for (1),
which serves as a motivation for our work. Section III

explores the general features of the rank-2 theory, in
particular its derivation from a variational principle, the
classification of different subclasses of theories, and the
form of the field equations. In Sec. IV, the simplifications to
the theory that follow when the matter model is a perfect
fluid are described. Section V presents the MEMe model,
its exact solution in the case of a single perfect fluid, and its
general features. Section VI shows how data from gravi-
tational wave signals can constrain the parameters of
generalized coupling theories, and presents a parameter
constraint for the MEMe model. Section VII contains the
analysis of the cosmology of the MEMe model via phase
space analysis. Section VIII concludes with a summary and
discussion of future work.
We adopt the MTW signature “ð−;þ;þ;þÞ” [17] and

use natural units c ¼ 1, defining κ ¼ 8πG. Since index
placement is critical in our analysis, the placement of
indices in indexed quantities which appear as arguments in
functions and functionals will be indicated by dots.

II. SEMICLASSICAL GRAVITY FRAMEWORK

Here, we propose a framework for semiclassical
gravity which relaxes the coupling between matter and
the gravitational field. The purpose of this section is to
provide a fundamental motivation for generalized cou-
pling theories; in particular, this discussion will allow
us to later identify a key parameter in the theory with
the vacuum energy. We first sketch a derivation of the
semiclassical Einstein equations from the effective action.
A more detailed discussion of these topics may be found
in Refs. [18–22]. We then discuss a modification of this
derivation and obtain a framework in which the gravi-
tational field does not couple directly to matter, but is
mediated by a rank-4 tensor.
A quantum field theory for some field φ on curved

spacetime endowed with a classical metric gμν is defined by
a generating functional Z½J; g··�, which has the formal
functional integral expression

Z½J; g··� ¼
Z

DφeiðS½φ�þhJφixÞ; ð2Þ

where hXix ≔
R
X

ffiffiffiffiffijgjp
d4x, J is an external current,1 and

S½φ� is the action for matter fields. For the rest of this
section, we suppress the functional dependence on gμν, and
unless stated otherwise, Z½J� and all functionals constructed
from it are implicitly functionals of gμν. One can construct
the following actionlike functional W½J�:

1The external current J is typically introduced as a calcula-
tional tool for computing N-point correlation functions in
quantum field theory and is set to zero at the end of the
calculation; for additional details, consult Ref. [23].
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W½J� ≔ −i lnZ½J�: ð3Þ

FromW½J�, one may obtain the expression for the formal
expectation value ϕ ¼ hφi of the field φ,

ϕðxÞ ¼ δW½J�
δJðxÞ

����
J¼0

: ð4Þ

The field equations governing ϕ are obtained from the
effective action Γ½ϕ�, which may be implicitly defined as a
functional Legendre transformation of W½j�,

Γ½ϕ� ¼ −hjϕix þW½j�; ð5Þ

where now j is an external current defined by

jðxÞ ≔ δΓ½ϕ�
δϕðxÞ : ð6Þ

At this point, one can see that in the absence of the
external current j, the functional derivative vanishes, and
one recovers the principle of stationary action for Γ½ϕ�. To
one-loop order, the effective action has the form

Γ½ϕ� ¼ S½ϕ� þ ℏΓð1Þ½ϕ� þOðℏ2Þ; ð7Þ

where S½ϕ� is the classical action evaluated on the expect-
ation value ϕ and Γð1Þ½ϕ� is a functional, the explicit
expression for which may be found in Ref. [18]. One
may therefore interpret the effective action Γ½ϕ� to be a
quantum corrected classical action. However, such an
action is divergent, and, as is customary in quantum
field theory, one typically adds counterterms in the
Lagrangian to absorb these divergences; i.e., we perform
a renormalization.
In curved spacetime, one can show that some of the

divergent terms in Γ½ϕ� are purely geometrical; our analysis
here focuses primarily on these terms. Therefore, an
appropriate regularization at one loop level can be obtained
by adding geometric counterterms to the effective action
[20,21,24]. In particular, these counterterms will have the
form

Sct½g··� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½γ0 þ γ1Rþ γ2;1R2

þ γ3;1C2 þOðR·
…

3Þ�; ð8Þ

where γi are coupling constants,R is the Ricci scalar,C2 ≔
CαβμνCαβμν is the square of the Weyl tensor, and the
remaining terms quadratic in curvature have been absorbed
into the topological Gauss-Bonnet integral. The total action
is therefore

Σsg½ϕ; g··� ¼ Γr½ϕ; g··� þ Sct½g··�: ð9Þ

where Γr includes ϕ-dependent counterterms. At this point,
one may recover the semiclassical Einstein action by
choosing the constants γi so that Sct½g··� completely cancels
all curvature terms except for the Einstein Hilbert term and
the vacuum energy term. Then, upon applying the sta-
tionary action principle to Σsg½ϕ; g··�, one obtains

Gμν þ Λgμν ¼ κTμν½ϕ�; ð10Þ
where Gμν is the Einstein tensor for the metric gμν and the
energy-momentum tensor Tμν½ϕ� depends on the renor-
malized coupling constants, the expectation value of the
field ϕ, and gμν.
Up to this point, the derivation we have presented is

standard [21]. We now discuss a similar procedure which
differs in that one drops the assumption that the metric that
appears in the effective action is the gravitational metric.
Instead, we postulate that the metric gμν is related to the
gravitational metric gμν in the following way,

gμν ≔ χμν
αβgαβ; ð11Þ

where the rank-4 tensor χμν
αβ is constructed from other

fields, which we shall specify later in this paper. We then
propose a choice of constants γi in the counterterm action
Sct½g··� such that all terms involving the curvature Rα

βμν in
the effective action are canceled, including the Einstein-
Hilbert term. In doing so, we effectively postulate that there
is some mechanism which strongly suppresses the curva-
ture terms in this model.
Assuming that the dynamics for coupling tensor χμναβ is

provided by an action of the form Sχ ½g··; χ····�, the action for
the renormalized one loop theory has the form

Σ½ϕ; g··; χ····� ¼ Γr½ϕ; g··� þ Sct½g··� þ SG½g··� þ Sχ ½g··; χ····�;
ð12Þ

where SG½g··� is the Einstein-Hilbert action.
The action Σ½ϕ; g··; χ····� now describes a framework in

which the metric tensor gμν is no longer directly coupled to
the matter fields; the coupling is mediated by the tensor
χμν

αβ. In the remainder of this article, we show that the
tensor χμναβ does not necessarily require the introduction of
additional dynamical degrees of freedom in the low-energy
classical limit and that one can construct χμναβ entirely
from nondynamical auxiliary fields. Also, since these
auxiliary fields do not introduce derivatives of the
energy-momentum tensor in the field equations, general-
ized coupling theories evade the no-go result of Ref. [10].
In fact, such a no-go result assumes that the matter fields
couple to gμν in the usual way, which is no longer the case
when the couplings between the matter fields and gμν are
mediated by the tensor χμναβ. We later identify and study a
theory that is natural in the sense that Sχ is simply the
vacuum energy term.
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III. COUPLING TENSOR THEORIES: GENERAL
CONSIDERATIONS

A. Couplings

Here, we explore a class of theories in which the rank-4
coupling tensor χμναβ is constructed from invertible rank-2
coupling tensors Aμ

α, with inverse Āμ
α. In particular, we

assume that χμναβ may be decomposed in the following
manner,

χμν
αβ ¼ ΨðA·

·ÞAμ
αAν

β; ð13Þ

where ΨðA·
·Þ is a scalar function of Aμ

α that has the
property Ψðδ··Þ ¼ 1 when Aμ

α ¼ δμ
α, where δμ

α is the
Kronecker delta. Note that Aμ

α ¼ δμ
α is a tensorial equa-

tion, but only when one index is raised and the other is
lowered—this is because δμα is a tensor,

2 but δμν and δμν are
not. For this reason, it is important to pay particular
attention to index placement when performing variations
—see Appendix A. To simplify the analysis, the coupling
tensors are assumed to be symmetric so that Aμ

α − Aμ
α and

Āμ
α ¼ Āα

μ. From these tensors, one constructs a physical3

metric gμν and its inverse gμν,

gμν ¼ ΨðA·
·ÞAμ

αAν
βgαβ; ð14Þ

gαβ ¼ Ψ−1ðA·
·ÞĀα

μĀβ
νgμν: ð15Þ

Unless explicitly stated otherwise, indices are raised and
lowered using the metric gμν and its inverse gμν. The
covariant derivative ∇̃μ is defined with respect to gμν. We
shall slightly abuse some terminology for the sake of
convenience: throughout this article, we shall refer to the
physical metric gμν as the “Jordan frame” metric and gμν as
the “Einstein frame” metric.
Of course, since Aμ

α are square matrices, Eq. (13) does
not describe the most general coupling that one can
construct from Aμ

α; one could alternatively construct4

χμν
αβ ¼ Θμ

αΘν
β from a general power series in Aμ

α, labeled
Θμ

α, with coefficients that are scalar functions of Aμ
α. For

instance, one may choose Θμ
α ¼ expðδμα − Aμ

αÞ. It is also
worth mentioning that one can also consider generalized
couplings constructed from one-forms. For instance, one
could consider a generalized vector disformal transforma-
tion of the form gμν ¼ ω2gμν þ σAμAν, where ω and σ are

functions of A2 ¼ gμνAμAν and auxiliary scalar fields ψ , but
one should be aware that unless ω and σ are independent of
Aμ, such a coupling introduces an additional dependence on
gμν, which will generate additional terms in the gravita-
tional equations. For the purposes of the present article, we
will not explicitly5 consider these alternative couplings,
restricting only to those which have the form given
in Eq. (13).
The idea of considering theories of gravitation with two

metrics related as in (14) or, more generally, in (11) offers
an interesting connection with continuum mechanics and
electromagnetism. Such relations have been studied before
in various realizations; see Refs. [13,14,25]. The difference
with respect to these works is that in the present work, the
behavior of the coupling tensor is explicitly given through a
variational principle.

B. Classification of theories

We wish to construct theories with the property that the
coupling tensors satisfy Aμ

α ¼ δμ
α in the absence of matter.

We do so by way of a variational principle, with a
functional of the form

SA½A·
·; g··� ¼ −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
FðA·

·Þ: ð16Þ

There is no unique functional that yields Aμ
α ¼ δμ

α as a
solution. However, it is straightforward to construct such
actions. A simple example is

SAq
¼ −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
A −

1

4
Aβ

αAα
β

�
: ð17Þ

It is also straightforward to verify that the variation with
respect to Aα

β yields the algebraic “equation of motion”
Aμ

α ¼ δμ
α, as intended. More generally, one can construct a

functional of the form

SAp
¼ −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
PðA·

·Þ; ð18Þ

where PðA·
·Þ is a polynomial function of Aα

β of finite order
satisfying the property Pðδ··Þ ¼ 1. We call this class of
theories polynomial class theories. The coefficients for
PðA·

·Þ which yield the solution Aμ
α ¼ δμ

α may be obtained
by factoring the derivative of PðA·

·Þ and demanding that at
least one of the factors be ðAμ

α ¼ δμ
αÞ. In particular, one

can choose coefficients in the polynomial PðA·
·Þ such that

2To see this, recall the expression δν
μ ¼ gμσgνσ .3In the sense that matter couples to gμν.4The reader might observe that this is similar to what is done

with tetrads eμa in the tetrad formalism. The main difference here
is that both indices of the tensor Θμ

α are in the coordinate basis
(there are no internal Lorentz indices). However, one can none-
theless imagine Θμ

α to be a transformation of the metric tensor
between one adapted to gravitational dynamics (the Einstein
frame) and one adapted to matter (the Jordan frame).

5One might, however, imagine that the tensor Aμ
α could in

principle be a composite field constructed out of other auxiliary
fields.
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∂P
∂Aα

β ¼ ðAα
σ − δα

σÞfβσ; ð19Þ

where fβσ is some quotient polynomial. It is not too difficult
to demonstrate that to second order, the form of the action
SAq

(17) is the one that uniquely yields the solution
Aμ

α ¼ δμ
α. One may note that higher-order polynomial

class theories may yield additional nondegenerate solu-
tions, but since Aμ

α must satisfy an algebraic equation, it
suffices to specify initial conditions that satisfy Aμ

α ¼ δμ
α.

Another class of simple theories have actions of the form

SAe
¼ −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p jAjnEðA·
·Þ; ð20Þ

where jAj ¼ detðA·
·Þ, and again, EðA·

·Þ is a function
satisfying the property Eðδ··Þ ¼ 1. The variation of the
above takes the form

δSAe
¼ −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p jAjn

×

�� ∂E
∂Aβ

α þ nEĀβ
α

�
δAβ

α −
1

2
Egμνδgμν

�
; ð21Þ

and the variation with respect to Aβ
α yields an equa-

tion which may (after a straightforward integration) be
written as

∂ lnE
∂Aβ

α ¼ −nĀβ
α: ð22Þ

This suggests that EðA·
·Þ has the form

EðA·
·Þ ¼ exp ðk − fpðA·

·ÞÞ; ð23Þ

where k ¼ fpðδ··Þ and fpðA·
·Þ is a finite polynomial that, to

second order and above, satisfies the following:

∂ðnA − fpÞ
∂Aβ

α ¼ ðAα
σ − δα

σÞfβσ: ð24Þ

Again, fβσ is some quotient polynomial. The simplest case
is the choice fp ¼ nA (in which case k ¼ 4n). Since
Eq. (23) is an exponential, theories of this type will be
termed exponential class theories.
The theories considered so far are homogeneous, mean-

ing that the actions depend explicitly on the tensor Aμ
α or

its inverse, but not both. One can also construct inhomo-
geneous theories in which the action is an explicit func-
tional of both Aα

β and Āα
β. It can be difficult to obtain

analytical solutions for a general polynomial or exponential
class theory, and it will become increasingly difficult to
obtain analytical solutions for the more complicated inho-
mogeneous theories. For this reason, we will not study

inhomogeneous theories any further, and will focus on the
simplest theory which can be solved exactly for a per-
fect fluid.

C. Gravitational action

The theories described in the previous section are
constructed so that when Aμ

α ¼ δμ
α, the action SA has

the value

SA½δ··; g··� ¼ −
λV
κ
; ð25Þ

V ≔
R
d4x

ffiffiffiffiffiffi−gp
being the four-volume. This is enforced by

the requirement that when Aμ
α ¼ δμ

α, the integrand of the
action SA satisfies the property Pðδ··Þ ¼ Eðδ··Þ ¼ 1. Later,
we find that the parameter λ must be large in order to
maintain consistency with late-time experimental and
observational constraints, so we must add a counterterm
2λ in the gravitational action. In particular, we assume that
the dynamics for the gravitational metric gμν is provided by
an action of the form

Sg½g··� ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2Λ̃Þ

¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2ðΛ − λÞ�; ð26Þ

where Λ̃ is a gravitational parameter related to the observed
value of the cosmological constant Λ according to the
formula λ − Λ̃ ¼ Λ. It follows that in the generalized
coupling theories we have constructed, gμν satisfies
the vacuum Einstein field equations with cosmological
constant Λ ¼ λ − Λ̃,

Gμν þ Λgμν ¼ 0; ð27Þ

in the absence of matter. This result implies that general
coupling theories do not avoid the fine-tuning problem
associated with the cosmological constant, since one must
require jλ − Λ̃j=jλj ≪ 1 to fit observational data. However,
as we shall argue later, the fine-tuning problem can be
mitigated to some degree in the particular generalized
coupling theory we study.

D. Generalized coupling in matter action

Consider a matter action of the following form,

Sm ¼ Sm½ϕ; g··� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm½ϕ; g··�; ð28Þ

where ϕ (field indices suppressed) is a tensor field assumed
to be minimally coupled to the metric gμν. Up to boundary
terms, the variation of the matter action Sm has the
following form,
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δSm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
E½ϕ; g··�δϕ −

1

2
Tαβδgαβ

�
; ð29Þ

where E½ϕ; g··� is the Euler-Lagrange operator yielding the
field equations E½ϕ; g··� ¼ 0, and the Jordan frame energy-
momentum tensor is defined as

Tαβ ≔ −
2ffiffiffiffiffiffi−gp δSm

δgαβ
: ð30Þ

One may relate Tμν to the Einstein frame energy-
momentum tensor τμν by making use of the chain rule

τμν ≔ −
2ffiffiffiffiffiffi−gp δSm

δgμν
¼ −

2Ψ2jAjffiffiffiffiffiffi−gp δSm
δgαβ

∂gαβ
∂gμν : ð31Þ

Using Eq. (15), one may obtain the following:

τμν ¼ ΨjAjTαβĀα
μĀβ

ν: ð32Þ

The variation of gαβ, as given by Eq. (15), is

δgαβ ¼ Ψ−1Āα
μĀβ

νδgμν

−
�
2gσðβĀαÞ

τ þ Ψ−1gαβ
∂Ψ
∂Aσ

τ

�
δAσ

τ: ð33Þ

The variation of the action then takes the following form,

δSm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Ψ2jAjE½ϕ; g··�δϕ −

1

2
τμνδgμν

þ Ψ2jAj
�
TαβgσðαĀβÞ

τ þ
T
2Ψ

∂Ψ
∂Aσ

τ

�
δAσ

τ

�
: ð34Þ

where for convenience we define the “trace” T ≔ Tαβgαβ.
Note that, since the variation δSm depends on the variation
δAσ

τ, the presence of matter will contribute additional
terms to the field equation for Aμ

α, as we shall demonstrate
shortly.

E. General field equations

We can now join together the previous results and give
the general action for a generalized coupling theory. We
have

S½ϕ; g··; A·
·� ¼

Z
d4xfðR − 2½Λ − λð1 − FÞ�Þ ffiffiffiffiffiffi

−g
p

þ 2κLm½ϕ; g··�
ffiffiffiffiffiffi
−g

p g; ð35Þ

where F ¼ FðA·
·Þ. Upon variation with respect to the

metric and remembering that Aμ
α is independent of gμν,

one obtains

Gμν þ ½Λ − λð1 − FÞ�gμν ¼ κΨjAjĀα
μĀβ

νTαβ: ð36Þ

The form of this equation allows one to draw some general
conclusions on the physics of these models. We notice
immediately that the theory will generate a varying cos-
mological constant, which is dependent, via Aμ

α, on the
matter distribution. Additionally, the presence of the
quantity ΨjAjĀα

μĀβ
ν contracted with Tαβ “scrambles”

the gravitational sources in a nontrivial way.
Notice also the differences between the (36) and (1). In

Eq. (1), there is no effective cosmological term, and the
energy-momentum tensor is a function of the Einstein
metric gμν. This might suggest that the two theories are
completely different. However, as stated in Ref. [7], in (1),
χμν

αβ is completely general and thus can be chosen to return
the structure of (35). In this sense, the two equations are
still related.
The variation with respect to Aμ

α yields the field
equation for Aμ

α,

ðδμα−Aμ
αÞfνα¼Ψ2jAj

�
TαβgμðαĀβÞ

νþT
1

2Ψ
∂Ψ
∂Aμ

ν

�
; ð37Þ

where, as before, fμν is some tensor constructed from Aμ
α

such that

δF
δAμ

ν ¼ ðAν
α − δν

αÞfμα: ð38Þ

As we have anticipated, the matter action Sm contributes
additional terms to the field equation (37) for Aμ

α. These
additional terms will generally drive the coupling tensor
Aμ

α away from the condition Aμ
α ¼ δμ

α. However, since we
are assuming minimal coupling, Eq. (37) contains no
covariant derivatives of Aμ

α. Thus, the resulting field
equation is an algebraic equation for Aμ

α, and the condition
Aμ

α ¼ δμ
α is only violated at points where Tαβ ≠ 0. It

follows that at points where the energy-momentum tensor
Tαβ vanishes, the coupling tensors satisfy Aμ

α ¼ δμ
α. In

this sense, the field Aμ
α has the same behavior as the torsion

tensor in the context of Einstein-Cartan theory [9].
Before moving on to a specific example, we note that in

general, the energy-momentum tensor Tαβ contains factors
of gμν and gαβ, which generally introduce additional factors
of Aμ

α into the field equation. It follows that in general,
Eq. (37) can be a high-order algebraic equation for Aμ

α. For
example, in the context of a homogeneous polynomial
class theory, a matter action like Eq. (17) will lead to an
equation that is formally quadratic in Aμ

α. It is also possible
that Eq. (37) may admit no real solutions. This implies that
certain energy-momentum tensors Tαβ may require that
Aμ

α be complex valued. For complex-valued Aμ
α, one

generally has a complex metric gμν over a real manifold.
The resulting complex matter action Sm and the action
SA should be replaced with the respective real actions
ðSm þ S�mÞ=2 and ðSA þ S�AÞ=2 to ensure a consistent
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coupling to the real-valued gravitational degrees of freedom
gμν. Fortunately, this problem is not too severe; one can
show that upon expanding Aμ

α about δμα, one does not need
to consider complex values for Aμ

α until fifth order in the
expansion parameter. Also, the metric is only complex
within a matter distribution; in a vacuum, one has Aμ

α ¼
δμ

α so that gμν ¼ gμν. As we will show in the next section, it
turns out that for a single perfect fluid, this problem does
not arise in the specific theory we examine later in this
article—we will in fact obtain an exact real-valued solution
for Aμ

α.

IV. PERFECT FLUID ANSATZ

Since we construct generalized coupling theories by way
of a variational principle, it is appropriate to appeal to the
variational principle for relativistic fluids, as discussed in
Refs. [26–31]. The variational principle for a relativistic
perfect fluid may be formulated on an arbitrary background
spacetime, which need not satisfy the Einstein equations, so
that the relativistic Euler equations

gαβ∇̃βTαγ ¼ 0 ð39Þ

are in general independent of the contracted Bianchi
identities. We remind the reader that ∇̃μ is the covariant
derivative compatible with the Jordan frame metric gμν, and
that matter is assumed to be minimally coupled to gμν.
Equation (39) leads to another reason for appealing to a

variational principle. In generalized coupling theories, the
contracted Bianchi identities do not imply that Eq. (39) is
divergence free, but only that the source of the Einstein
tensor satisfies the divergence-free property on shell; the
relativistic Euler equations must be supplied by a varia-
tional principle. One can, on the other hand, show from the
diffeomorphism invariance of the matter action that
Eq. (39) must hold on shell. For a more detailed discussion,
we refer the reader to Appendix B.
Variational principles for perfect relativistic fluids usu-

ally involve constrained variations, and are formulated in
terms of gradients of velocity potentials, so the covariant
(lowered index) fluid four-velocity uμ does not have a local
dependence on the metric [28,31]. In terms of uμ, the
energy-momentum tensor for a perfect fluid takes the form

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð40Þ
It should be stressed that in general, uμuμ ¼

uμuνgμν ≠ −1; the fluid four-velocity only has unit norm
with respect to the Jordan frame metric

uμuνgμν ¼ −1: ð41Þ
Note that, since for a perfect fluid the trace is

T ≔ Tαβgαβ ¼ 3p − ρ; ð42Þ

only one factor of gαβ appears in the field equation (37).

For perfect fluids, it is appropriate to employ the
following ansatz for the solution,

Aβ
α ¼ Yδβα þ Zuβuα; ð43Þ

where uμ is the fluid four-velocity. This ansatz will be
justified in the next section for the specific model we study,
but it can be considered nonetheless general for the case of
a single perfect fluid. It is straightforward to show that
the inverse of Aμ

α as given in Eq. (43) is (assuming
Y þ εZ ≠ 0)

Āα
β ¼

1

Y

�
δβ

α −
Z

Y þ εZ
uαuβ

�
; ð44Þ

where

ε ≔ uμuμ: ð45Þ

Now, one can define a timelike unit vector Uμ by
rescaling uμ (which is also assumed to be timelike, so
that ε < 0),

Uμ ≔ uμ=
ffiffiffiffiffiffi
−ε

p
; ð46Þ

and it follows that uμuν ¼ −εUμUν. Equation (43) may
then be written in the alternate form

Aμ
α ¼ Yδμα − εZUμUα: ð47Þ

This form for Aμ
α is useful for computing the determi-

nant jAj ¼ detðA·
·Þ, which reads

jAj ¼ detðA·
·Þ ¼ Y3ðY þ εZÞ: ð48Þ

V. MINIMAL EXPONENTIAL MEASURE MODEL

Consider a matter action of the following form,

Smλ
¼ Sm −

λ

κ

Z
d4x

ffiffiffiffiffiffi
−g

p
; ð49Þ

where Sm is given by Eq. (28) and

ffiffiffiffiffiffi
−g

p ¼ ffiffiffiffiffiffi
−g

p jAjΨ2: ð50Þ

If the factor Ψ2 is chosen such that the variation of the
volume element

ffiffiffiffiffiffi−gp
yields the desired field equations for

Aμ
α, then one may interpret the parameter λ in Eq. (49) to

be something akin to a vacuum energy density generated by
matter fields. This is in fact the interpretation provided by
the semiclassical procedure outlined in Sec. II. In the
framework of effective field theory, the value of λ then
corresponds to the energy scale at which a field theoretical
description for matter breaks down.
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To construct such a theory, we seek an expression for the
factor Ψ such that the variation of

ffiffiffiffiffiffi−gp
yields the field

equation Aμ
α ¼ δμ

α in a vacuum. AssumingΨ is an explicit
function of Aμ

α only, Eq. (50) shows that the volume
element in Eq. (49) has the same form of the integrand of
the action SAe

for an exponential class theory in Eq. (20).
Hence, if we wish to recover the field equation

Aμ
α ¼ δμ

α, Ψ should have the form of an exponential of
a polynomial in Aμ

α. The simplest such form for Ψ is

Ψ ¼ exp

�
4 − A
2s

�
: ð51Þ

This form forΨ introduces an exponential of the simplest
polynomial of Aμ

α into the Jordan frame measureR
d4x

ffiffiffiffiffiffi−gp
, and for this reason, we call the resulting theory

the Minimal Exponential Measure model, or the MEMe
model. Defining the parameter

q ≔
κ

λ
; ð52Þ

the variation of the volume functional is

−
1

q
δ

Z
d4x

ffiffiffiffiffiffi
−g

p ¼ −
1

q

Z
d4x

ffiffiffiffiffiffi
−g

p jAjΨ2

×

��
Āσ

τ −
1

s
δτ

α

�
δAσ

τ −
1

2
gμνδgμν

�
;

ð53Þ

which leads to the parameter choice s ¼ 1. The variation of
Sm with respect to Aσ

τ yields the field equations

Āα
β − δβ

α ¼ q½TμνgανĀμ
β − ð1=4ÞTδβ

α�: ð54Þ

Upon multiplying through by Aμ
β, we obtain an expres-

sion that is formally linear in the components of Aμ
α,

Aβ
α − δβ

α ¼ q½ð1=4ÞTAβ
α −Tβνgαν�: ð55Þ

We note here that the MEMe model is the simplest
homogeneous theory that one can construct in the sense
that one obtains an equation that is effectively linear in Aμ

α.
The trace of Eq. (55) yields an equation linear in the trace

A ¼ Aα
α,

A − 4 ¼ qTðA=4 − 1Þ; ð56Þ

which implies that A ¼ 4, which in turn implies Ψ ¼ 1, so
that remarkably, all exponential factors disappear on shell.
Note that in deriving this result, we have not yet made any
assumption about the matter model; this result holds for any
energy-momentum tensor.

We now consider the case of a perfect fluid. To justify the
ansatz for Aμ

α given in Eq. (43), we consider the con-
traction of Eq. (55) with the vector uα. The result is

Aβ
αuα ¼ −uβ

1þ qρ
4½4 − qð3p − ρÞ� ; ð57Þ

and it follows that Aβ
αuα ∝ uβ, which is consistent with the

ansatz for Aμ
α given in Eq. (43).

To obtain explicit expressions for Y and Z, we use the
ansatz (43) to rewrite the field equation (55) in the form

Wα
β ¼ W1δβ

α þW2uβuα ¼ 0; ð58Þ

where

W1 ¼
1

4
Y½4 − qð3p − ρÞ� þ pq − 1;

W2 ¼
qðpþ ρÞ
ðεZ þ YÞ2 þ

1

4
Z½4 − qð3p − ρÞ�; ð59Þ

i.e., Eq. (55) is reduced to the two scalar equationsW1 ¼ 0
and W2 ¼ 0. As W1 is completely independent of ε and Z,
it can be used to find an explicit expression for Y:

Y ¼ 4ð1 − pqÞ
4 − qð3p − ρÞ : ð60Þ

The trace of the ansatz (43) is A ¼ 4Y þ εZ, and since
(56) implies A ¼ 4, we obtain the following expression
for εZ,

εZ ¼ 4ð1 − YÞ ¼ 4qðpþ ρÞ
4 − qð3p − ρÞ ; ð61Þ

where we have used Eq. (60) for Y in the second equality.
We then solve the equationW2 ¼ 0 to obtain an expression
for Z,

Z ¼ −
qðpþ ρÞ½4 − qð3p − ρÞ�

4ðqρþ 1Þ2 ; ð62Þ

and from (61), we obtain the expression for ε,

ε ¼ −
16ðqρþ 1Þ2

½4 − qð3p − ρÞ�2 : ð63Þ

Using Eq. (49) and Eq. (26) [cf. Eq. (36)], we obtain the
gravitational field equations

Gμν þ ½Λ − λð1 − e4−AjAjÞ�gμν ¼ κeð4−AÞ=2jAjĀα
μĀβ

νTαβ;

ð64Þ

where the determinant jAj is given by the explicit
expression

JUSTIN C. FENG and SANTE CARLONI PHYS. REV. D 101, 064002 (2020)

064002-8



jAj ¼ 256ð1 − pqÞ3ðqρþ 1Þ
½4 − qð3p − ρÞ�4 : ð65Þ

It is useful to write Eq. (64) in the form

Gμν ¼ κTμν; ð66Þ

where Tμν is the effective energy-momentum tensor
defined by

Tμν ¼ T1UμUν þ T2gμν; ð67Þ

and

T1 ¼ jAjðpþ ρÞ;

T2 ¼
jAjðpq − 1Þ þ 1

q
−
Λ
κ
: ð68Þ

Notice that, though q appears in the denominator of the
first term in T2, jAj is a function of q. Thus, in the limit
q → 0,

T1 → pþ ρ;

T2 → p − Λ=κ: ð69Þ

In motivating the MEMe model, we have put forward the
interpretation of λ=κ ¼ 1=q as a form of vacuum energy
density for quantum fields. If the MEMe model is regarded
to be a low energy description for some quantum gravity
theory, it is natural to expect the vacuum energy 1=q to be
the Planck energy density, but whether this is the case
ultimately depends on the specific details of the funda-
mental theory. Barring any specific knowledge about the
underlying theory, we point out that q can in principle be
independent of the Planck scale. In fact, it turns out that the
parameter q sets the scale at which gμν fails to be a suitable
spacetime metric and thus provides a natural regularization
scale for quantum fields. To see this, note that for positive
q, the determinant jAj vanishes when pq → 1, or when the
pressure (assuming w > 0) is on the order 1=q. In this limit,
Aμ

α and gμν fail to be invertible, so that gμν cannot serve as a
spacetime metric. Thus, q sets the scale at which the usual
formulation of quantum field theory on a spacetime back-
ground given by gμν breaks down, and, as consequence,
1=q provides a natural regularization scale for the vacuum
energy of quantum fields. This scale can in principle be
independent of the Planck scale, as it concerns the break-
down in the effective spacetime metric gμν, rather than the
gravitational metric gμν. In this sense, the MEMe model is
phenomenologically compatible with a regularization scale
for vacuum energy far below the Planck scale.
It is worth remarking that the breakdown of the descrip-

tion of the MEMe model as a bimetric theory does not
imply that the model itself breaks down. Indeed, in the limit

pq → 1, the gravitational metric gμν remains well defined,
and the gravitational field equations have the form

Gμν ≈ ðλ − ΛÞgμν: ð70Þ

A similar mechanism is present in the case of negative q,
which corresponds to a negative vacuum energy density for
matter fields. For negative q, the determinant jAj vanishes
in the limit ρq → −1. In this case, one can also recover
Eq. (70), but now λ is negative valued. This suggests that
for negative λ, one has a de Sitter phase in the limit
ρq → −1, or when the density ρ approaches the regulari-
zation scale 1=jqj. We will revisit this in greater detail when
we discuss the evolution of cosmologies obtained from the
MEMe model.
The early de Sitter phase aside, there are more funda-

mental reasons to choose a negative value of q, or
equivalently, a negative λ. One might suppose, for example,
that in the fundamental theory, the fermionic contribution to
the vacuum energy dominates, which would also imply a
negative vacuum energy density and a negative value for λ.
We remark that a negative vacuum energy density may be
of particular interest in the context of string theory,6 in
which a negative vacuum energy density is natural [33]. A
stronger case can me made if one imagines the MEMe
model to be some limit of a dynamical theory; if ðλ=κÞ ffiffiffiffiffiffi−gp
is interpreted to be potential for some dynamical theory,
then dynamically stable solutions should lie at a minima of
the potential. When evaluated on the solution Āσ

τ ¼ δτ
σ,

the second derivative of the potential taken with respect to
Aμ

α, becomes

λ

κ

∂2 ffiffiffiffiffiffi−gp
∂Aμ

α∂Aν
β

����
Āσ

τ¼δτ
σ

¼ −
λ

ffiffiffiffiffiffi−gp
κ

δμβδ
ν
α: ð71Þ

The solution Āα
τ ¼ δτ

σ corresponds to a minimum of the
potential if λ < 0, and the same solution is a maximum of
the potential if λ > 0. A negative λ is therefore required to
ensure the dynamical stability of the solutions, assuming
that the MEMe model is a limit for some dynamical theory.
Earlier, we pointed out that generalized coupling models

still suffer from the fine-tuning of the cosmological con-
stant (in particular, Λ=jλj ¼ jλ − Λ̃j=jλj ≪ 1), and the
MEMe model is no exception in this regard. However,
we have argued that the vacuum energy in the MEMe
model is independent of the Planck scale. If the magnitude
of the vacuum energy is far below the Planck scale, the fine-
tuning problem becomes less severe than that of the
standard cosmological constant problem.

6An important consideration, which falls beyond the scope of
this article, is whether any theory which reduces to the MEMe
model in some limit must lie in the “swampland,” in particular
whether the MEMe model is incompatible with vacua allowed by
string theory [32].
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VI. PROPAGATION SPEED FOR
GRAVITATIONAL WAVES

The MEMe model can be thought of as a bimetric theory,
and unless the two metrics are related by a conformal
transformation, bimetric theories generally have the prop-
erty that the light cones defined by each metric do not
necessarily coincide. To see this, we consider the form of
the Jordan frame metric gμν for a perfect fluid given the
ansatz (43) for the tensor Aμ

α,

gμν ¼ Ψ½Y2gμν − εZð2Y þ εZÞUμUν�; ð72Þ

which we note is a type of vector disformal transforma-
tion [12].
Since electromagnetic waves propagate according to the

metric gμν, and linearized gravitational waves propagate on
a background metric gμν, Eq. (72) may be used to compute
the relative propagation speed between light and gravita-
tional waves. The relationship between propagation speeds
can be computed explicitly by considering a vector kμ that
is null with respect to the gravitational metric gμν. In an
orthonormal frame (defined with respect to gμν) adapted to
uμ, Eq. (72) yields the dispersion relation

−ð1þ ΨZðY þ εZÞÞðk0Þ2 þ ðkÞ2 ¼ 0: ð73Þ

The speed of gravitational waves cg with respect to the
metric gμν is then given by the expression

cg ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΨZðY þ εZÞ

p
; ð74Þ

where c is the speed of light. It is straightforward to show
that if q > 0, then for sufficiently small energy densities,
cg < c. We now define the quantity

Δ ≔ ðcg=cÞ2 − 1 ¼ ΨZðY þ εZÞ: ð75Þ

For the MEMe model, Δ has the expression

Δ ¼ −
qðpþ ρÞ
1þ qρ

≈ −qðpþ ρÞ þ q2ρðpþ ρÞ þOðq3Þ;

ð76Þ

i.e., the theory predicts that gravitational waves propagating
within a matter distribution will travel at a different speed
compared to gravitational waves in a vacuum. It is worth
pointing out that the difference in propagation speed is not
necessarily a problem in the MEMe model. A generic
argument is given in Ref. [34] and says that bimetric
theories admitting two different speeds of light do not lead
to causal paradoxes, so long as the system is well posed.
For positive q or ρq < −1, gravitational waves in the

MEMemodel slow down in the presence of matter (Δ < 0),
so that they will refract in a manner similar to that of light in

a medium. On the other hand, if q is negative and
ρ < 1=jqj, then gravitational waves can exceed the speed
of light (Δ > 0). To lowest order in q, the amount by which
gravitational waves speed up or slow down in a medium is
linear in the energy density. The Earth provides a relatively
dense medium through which detectable gravitational
waves propagate,7 so one may constrain the parameter q
using the uncertainty in time delay for gravitational waves.
Recall that for a pair of gravitational wave detectors, the
order of the arrival and time delay for gravitational wave
signals can localize the source to a circular ring in the sky.
However, such a localization assumes that gravitational
wave signals propagate at cg ¼ c; cg > c will tend to
“widen” the predicted localization rings (more precisely,
the enclosed solid angle increases), and cg < c will tend to
“narrow” the predicted localization rings. If one has an
optical counterpart, then the location of the optical source
in the sky may be different from the apparent localization
if q ≠ 0.
The gravitational detection GW170817 and its optical

counterpart GRB170817A may be used to place a con-
straint on jqj [35]. The signals were localized in the
southern sky. The signal first arrived at the Virgo detector,
then at the LIGO-Livingston 22 ms afterwards, and finally
at LIGO-Hanford, 3 ms after its appearance at LIGO-
Livingston [1]. This order of events, combined with the fact
that the signal was localized in the southern sky, indicates
that the GW signal passed through the Earth. There is no
significant discrepancy between the localization of
GW170817 and the position of the signal GRB170817A,
so we may immediately place a rough constraint on jqj
from the uncertainty in the difference of arrival times
between different gravitational detectors, which we esti-
mate to be roughly 5%. From the uncertainty in the time
delay, one expects the uncertainty in cg to also be roughly
5%, so that jqj < 0.1=ρE. On average, the energy density of
the Earth is ρE ∼ 5 × 1012 J=m3, which places the follow-
ing upper bound on jqj:

jqj < 2 × 10−14 m3=J: ð77Þ

Fundamentally, λ=κ ¼ 1=q in the MEMe model corre-
sponds to the vacuum energy density for quantum
fields, but phenomenologically, the value of jqj sets the
value of the energy density at which the model breaks
down. The highest energy scale probed to date is the TeV
scale, which from l ∼ ℏc=E, corresponds to a length scale

7One can use the constraints on the speed of gravitational
waves from GW170817 and GRB170817A [35] to place con-
straints on q (see for instance Ref. [36]), but this actually places a
much a weaker constraint on jqj than the propagation of
gravitational waves through the Earth because the average energy
density of baryonic and dark matter (Λ does not significantly
affect our result here) in the Universe is 30 orders of magnitude
smaller than the average energy density of the Earth.
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l ∼ 2 × 10−19 m. In a similar manner, one may use this to
compute an inverse energy density via the expression
jqj ¼ l4=ℏc, so that if one expects new physics at the
TeV scale, then one might expect jqj ∼ 5 × 10−50m3=J,
which is about 35 orders of magnitude smaller than the
constraints from GW170817; Eq. (77) is still a rather weak
constraint. Of course, our analysis here is preliminary,
and a more careful analysis may provide stronger con-
straints on λ.

VII. COSMOLOGY

We now explore the features of cosmological models
built on the field equations (64) of the MEMe model. We
will accomplish this task by employing dynamical systems
techniques. Dynamical systems tools have now been used
for a long time to explore cosmological models in GR (see,
e.g., Ref. [37] and references therein) and modified gravity
(e.g., Ref. [38]). We will perform here a quick phase space
analysis with the aim of evaluating the potential of (64) to
provide a theoretical framework for an inflationary/dark
Universe.
The first step in constructing the cosmological model is

to select a class of reference observers. This step, which is
often made tacitly in GR, is crucial in the context of
theories like the MEMe model. A choice which is akin to
the selection of fundamental observers in GR is the “Jordan
velocity” uμ of the matter fluid. However, such a choice
would pose a serious problem: the field uμ is only a valid
velocity frame if ε is different from zero, i.e., qρ ≠ −1.
We prefer to use frames which have no such limitations,

so as to avoid spurious singularities. A convenient choice is
a frame Ūμ which is parallel to uμ so that it is still
orthogonal to the three-surfaces of homogeneity described
by hμν ¼ gμν þ uμuν and therefore prevents any “tilting”
effect [39]. In this way, we can suppose that for a
homogenous and isotropic fluid source, the metric of the
spacetime in the frame specified by Ūμ has the Friedmann-
Lemaître-Robertson-Walker form

ds2 ¼ −dt2 þ S2ðtÞ
�

dr2

1 − kr2
þ r2dΩ2

�
; ð78Þ

where k ¼ −1, 0, 1 is the spatial curvature, dΩ2 the
infinitesimal solid angle, and S is the scale factor.
In the Ūμ frame, the cosmological equations can be

written as

3q

�
H2þ k

S2

�
¼256κð1−pqÞ3ðqρþ1Þ2

½4þqðρ−3pÞ�4 þqΛ−κ; ð79Þ

6qð _H þH2Þ ¼ −
256κðpq − 1Þ3ðqρþ 1Þ½2 − qðρþ 3pÞ�

½4þ qðρ − 3pÞ�4
þ 2ðqΛ − κÞ; ð80Þ

where H ¼ _S=S and we have assumed a barotropic
equation of state p ¼ wρ for the fluid. There is, however,
an important caveat: the equations above only correspond
to the equations for the MEMe model if uμ is well defined.
We must therefore require that jAj ≠ 0 (ε ≠ 0) in our
analysis. In the same way, either gασ∇̃σTαβ ¼ 0 or
∇αTαβ ¼ 0 give the conservation law

_ρ¼−
3Hρðwþ1Þ½q2ρ2wð3w−1Þþρðq−7qwÞþ4�

q2ρ2wð3w−1Þ−qρð3w2þ13wþ2Þþ4
: ð81Þ

As in GR, the three equations above are redundant. The
structure of the above equations shows that in the MEMe
model, the gravitation of a perfect fluid is very different
form the GR equivalent.
Let us now construct the phase space. Assuming H > 0,

we define the dimensionless variables

χ ¼ qH2

κ
; K ¼ k

H2S2
; ð82Þ

Ω ¼ κρ

3H2
; L ¼ Λ

3H2
; ð83Þ

choosing also a dimensionless time variable N ¼
log ðS=S0Þ and indicating with a prime the derivative with
respect toN . The cosmological equations may be rewritten
as the autonomous system

χ0 ¼ 2ðL − 1Þχ þ 256ð3χΩþ 1Þð3wχΩ − 1Þ3½3χΩð1þ 3wÞ − 2�
3½3ð1 − 3wÞχΩþ 4�4 −

2

3
;

Ω0 ¼ 1

3
Ω
�
2

χ
þ 6ð1 − LÞ − 256ð3χΩþ 1Þð3wχΩ − 1Þ3½3χΩð1þ 3wÞ − 2�

3½3ð1 − 3wÞχΩþ 4�4

−
9ðwþ 1Þð3wχΩ − 1Þ½3ð3w − 1ÞχΩ − 4�

4 − 3ð3w2 þ 13wþ 2ÞχΩþ 9wð3w − 1Þχ2Ω2

	
;

L0 ¼ 1

3
L

�
2

χ
þ 6ð1 − LÞ − 256ð3χΩþ 1Þð3wχΩ − 1Þ3½3χΩð1þ 3wÞ − 2�

3½3ð1 − 3wÞχΩþ 4�4
	
; ð84Þ
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together with the constraint

L − K −
256ð3χΩþ 1Þ2ð3wχΩ − 1Þ3

3χ½3ð1 − 3wÞχΩþ 4�4 −
1

3χ
¼ 1; ð85Þ

given by Eq. (79).
Although not immediately clear from the form of the

(84), the system admits three invariant submanifolds
Ω ¼ 0, L ¼ 0, and χ ¼ 0. Therefore, a global attractor
can only exist at the origin. Setting to zero the lhs of (84),
we find two fixed points (A and B) and two lines of fixed
points (L1 and L2). Notice that in the case w ¼ 0, L2

becomes asymptotic.
The solutions associated to the fixed points can be found

using the modified Raychaudhuri equation (80) written in
the form

_H
H2

¼ 128ð3χ�Ω� þ 1Þð3wχ�Ω� − 1Þ3½3χ�Ω�ð3wþ 1Þ − 2�
3χ�½3ð1 − 3wÞχ�Ω� þ 4�4

þ χ� − 1þ 1

3L�
; ð86Þ

where the asterisks indicate the values of the dynamical
variables at a fixed point.
Using (86), we obtain the result thatA and B correspond,

respectively, to a Milne and Friedmann solution, whereas
lines L1 and L2 correspond to de Sitter solutions with time
constants

γ1 ¼
ffiffiffiffi
Λ
3

r
;

γ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λq − κ

3q
þ 256κðqρ0 þ 1Þ2ðqρ0w − 1Þ3

q½4þ 3q4ρ40ð1 − 3wÞ4�

s
; ð87Þ

respectively. The cosmology then presents two different
exponential expansion phases. Notice that the points in line
L2 are related to the behavior of the system in the limit
pq → 1mentioned at the end of Sec. V. As we have written
our equations in the frame Ūμ, the boundary ρq ¼ −1 does
not correspond to any visible feature of the phase space.
Nonetheless, one should bear in mind that physical orbits
only correspond to Ωχ ≠ −1 (and indeed Ωχ < −1).

Writing the conservation law (81) in the same way as
the modified Raychaudhuri equation, we can deduce the
behavior of the matter energy density at a fixed point,

_ρ

ρ
¼ 3Hðwþ1Þð1−3wχ�Ω�Þ½3χ�Ω�ð3w−1Þ−4�
9wð3w−1Þχ2�Ω2�−3ð3w2þ13wþ2Þχ�Ω�þ4

; ð88Þ

where H is given by the modified Raychaudhuri equa-
tion (86). Apart from L2, the behavior of matter is the usual
one. At the fixed point L2, the corrections to GR return a
peculiar behavior in the energy density. In particular, the
energy density remains constant even if the spacetime is
expanding. This implies that orbits near to this point have a
very slowly decreasing energy density.
The Hartmann-Grobmann theorem can be used to

deduce the stability of the fixed subspaces. It turns out
that the lines are always attractors and the fixed points are
saddles. In particular, as point A (the origin) is a saddle, no
global attractor is present in the phase space. Therefore,
orbits will go toward the lines L1 and L2.
The fixed points with their stability and the associated

solutions for the scale factor and matter energy density are
given in Table I. We illustrate the phase space in Figs. 1
and 2.
As the phase space is not compact, one should study the

behavior at infinity; however, for the purpose of this work,
this analysis is not very relevant. This happens because, as
we have mentioned, our equations cease to be valid if
jAj ¼ 0, i.e., in the subspaces 3wΩχ ¼ 1 and 3Ωχ ¼ −1,
respectively. Consequently, all asymptotic fixed points that
lie beyond the line L1 and/or the boundary 3Ωχ ¼ −1 are
irrelevant for our purposes. The same conclusion holds
for the asymptotic points at fΩ → ∞; χ → 0g and
fΩ → 0; χ → ∞g: they do not constitute physically rel-
evant states for the cosmology.
As we know from Secs. V and VI that q must be small,

and if we wish to have a de Sitter phase at high densities, q
must also be negative. If we assume high densities at an
early time, we expect that physically relevant initial
conditions will be close to 3Ωχ ¼ −1 (ρq ¼ −1) at high
Ω. Therefore, one expects initial conditions for physical
meaningful orbits to be close to the subspace 3Ωχ ¼ −1.
Relevant orbits stemming from this subspace “bounce”
against the general Friedmann fixed point (B), and then,
maintaining a low value for χ, the orbits evolve toward one

TABLE I. Fixed point, stability, and associated solutions for the system (84).

Point fχ;Ω; L; Kg Attractor Repeller Scale factor Energy density Jordan scale factor

A f0; 0; 0;−1g Never Never S ¼ S0ðt − t0Þ ρ ¼ 0 SJ ¼ S
B f0; 1; 0; 0g Never Never S ¼ S0ðt − t0Þ

2
3ðwþ1Þ ρ ¼ ρ0

ðt−t0Þ2 SJ ¼ 16½ðt−t0Þ2−qρ0w�2
½qρ0ð1−3wÞþ4ðt−t0Þ2�2 S

L1 fχ0; 0; 1; 0g 0 ≤ w ≤ 1 Never S ¼ S0eγ1ðt−t0Þ ρ ¼ 0 SJ ¼ S
L2 f 1

3wΩ0
;Ω0; 1þ wΩ0; 0g 0 < w ≤ 1 Never S ¼ S0eγ2ðt−t0Þ ρ ¼ ρ0 SJ ¼ 16ð1−qρ0wÞ2

ðqρ0ð1−3wÞþ4Þ2 S
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of the attractors of L1. In Fig. 3, we give examples of these
types of orbits.
These scenarios are interesting from the point of view of

inflationary dark cosmology. In fact, they both admit an
early and late accelerated expansion phase with different
effective cosmological constants and thus solve naturally
the “graceful exit” problem. The final value of the cosmo-
logical constant is Λ, while the inflationary expansion is
given by a de Sitter solution with time constant very close
to Λþ λ. The differences in the two histories are related to
the expansion rate, the length, and time of occurrence of the
decelerated expansion phase.
Another observation concerns the case in which the

cosmological constant is zero. In this case, because of the
existence of the invariant submanifold L ¼ 0, the dynamics
is represented by the lower planes of Figs. 1 and 2. It is clear
that we still recover an inflationary phase, but no dark energy
era is dynamically achievable as in the L ¼ 0 subspace, as
the only finite attractor is point A. In principle, there are
homoclinic orbits that start at fΩ → ∞; χ → 0g and bounce
against point B, but even neglecting the unphysical nature of
the initial point, the picture in Fig. 3 suggests that these orbits
never represent accelerated expansion.
It is worth noticing that the scale factor S we have

deduced is not the one “measured” by the observers at rest

FIG. 2. A representation of the finite phase space of the system
(84) in the case of radiation w ¼ 1=3 and q < 0. The represen-
tation is constructed reporting on the χ < 0, Ω > 0, L > 0 faces
of the octant the invariant submanifolds χ ¼ 0, Ω ¼ 0, L ¼ 0.
The black line corresponds to line L1, and, differently form the
dust case, there is no singular plane. This phase space is
qualitatively very similar to the one in Fig. 1.

FIG. 1. A representation of the finite phase space of the system
(84) in the case of dust w ¼ 0 and q < 0. The representation is
constructed reporting on the χ < 0, Ω > 0, L > 0 faces of the
octant the invariant submanifolds χ ¼ 0, Ω ¼ 0, L ¼ 0. The
black line of point corresponds to L1, whereas the red line
represents the intersection of the singular plane 3χΩþ 4 ¼ 0,
which is present for w ¼ 0.

FIG. 3. Three different orbits in the case of dust w ¼ 0 and
q < 0. The blue and magenta orbits correspond to cosmic
histories with a matter era close to that of GR. The yellow
region corresponds to decelerating expansion, while the red
surface delineates the 3Ωχ ¼ −1 (qρ ¼ −1) part of the phase
space. For the sake of clarity here, we did not show the initial
point of these orbits, as it is located far in the Ω direction, close to
the surface 3Ωχ ¼ −1.
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with respect to matter, and therefore it is not in itself a
physically meaningful quantity. Fortunately, for our choice
of frame and symmetries, the behavior of the Jordan frame
scale factor SJ is easy to calculate. Using Eq. (72), we can
easily show that

SJ ¼ ΨY2S ¼ 16ð1 − pqÞ2
½4þ qðρ − 3pÞ�2 S: ð89Þ

We will use this relation to calculate SJ corresponding to
the solutions at the fixed points (see Table I). For negative q
and 0 < w < 1=3, SJ differs from S by a factor of order
unity as long as ρ ≤ 1=jqj, so SJ remains well defined when
the determinant of the Jordan frame metric vanishes. On the
other hand, for positive q and 0 < w < 1=3, SJ vanishes as
the pressure p approaches 1=q. Among the fixed points, the
biggest difference between S and SJ is present in the
solutions associated to point B, which only differ signifi-
cantly at small t. These results suggest that critical con-
straints for the MEMe model can be found by looking
closely at the phenomenology of the matter dominated era.

VIII. CONCLUSIONS

In this article, we have proposed a new class of modified
gravity theories in which the interaction of matter and
spacetime is mediated by a rank-4 tensor χμν

αβ ¼
ΨðA·

·ÞAμ
αAν

β, where Aμ
α are nondynamical auxiliary

fields. It is tempting to compare the role of this field with
the one that the Higgs field has in particle physics: as the
Higgs field determines the inertial mass of particles, χμναβ

in a sense determines the active gravitational mass of
matter. However, unlike the case of the Higgs mechanism,
the fundamental mechanism that leads to a generalized
coupling theory is not immediately evident at the present
stage of investigation. Nonetheless, we have attempted to
motivate generalized coupling theories in a framework that
is more fundamental than simply specifying an action for
the classical theory; in particular, we constructed the
gravitational field equations via a procedure analogous
to the one used to construct the semiclassical Einstein field
equations. While this construction does require some fine-
tuning, it provides a natural interpretation of λ as the
vacuum energy and may be useful as a starting point for
finding a more fundamental theory from which a general-
ized coupling theory emerges as a limit.
It has been pointed out that auxiliary field theories can

emerge in a strong coupling limit, as in the case of
Ref. [40], and one might imagine that a generalized
coupling theory also emerges in some limit. Alternately,
one may imagine that the MEMe model emerges as the
result of integrating out degrees of freedom in a more
fundamental theory. However, even under such scenarios,
fine-tuning problems remain; in order to obtain an effective
action able to generate Eq. (1), we were forced to postulate

the existence of some mechanism which suppresses the
terms constructed from the curvature invariants for the
metric gμν. The need for such a mechanism may perhaps
provide some guidance for constructing a more fundamen-
tal theory. In particular, a more detailed analysis is needed
to determine whether a generalized coupling theory can
naturally emerge from some effective field theory, or
whether one must go beyond the framework of effective
field theory to justify the suppression of curvature terms.
In light of the semiclassical derivation we have pre-

sented, it is also tempting to construct a fundamentally
semiclassical theory (in the sense that gμν is fundamen-
tally classical) from the generalized coupling theories we
have studied. A major obstacle to constructing such a
theory concerns the fact that the time evolution for
quantum fields depends on the background spacetime
geometry, which is in turn dependent on the state of the
quantum field. This interdependence will generically
introduce nonlinear time evolution in quantum states
[41,42]. One way around this issue might be to employ
some sort of measurement-feedback scheme for objective
collapse models, which has been successfully imple-
mented in Newtonian toy models [43], but a complete
relativistic implementation of this approach is presently
lacking. Even if a relativistic implementation can be
constructed, one might expect the renormalized parame-
ters in Σ½ϕ; g··; χ····� to be scale dependent, so that the
resulting energy-momentum tensor Tμν is not unique; this
nonuniqueness forms another obstacle to constructing a
fundamental theory with our framework. Indeed, any
attempt to construct a fundamental theory within our
framework must supply a mechanism to regulate the
divergences of quantum field theory. In the absence of
such a mechanism, we take the conservative view that our
proposed theory is a low energy/coarse grained descrip-
tion for a more fundamental (and fully quantum) theory.
The generalized coupling theories we propose share

features with other modified gravity theories. We have
shown explicitly that a convenient framework of analysis
is to interpret them as bimetric theories of gravity.
Bimetric theories also modify the gravitational properties
of standard matter in a manner akin to nonminimally
coupled theories. Nonetheless, our generalized coupling
theories have an advantage over these other frameworks in
that the vacuum phenomenology remains essentially that
of GR. Of course, whether one is truly in a vacuum
depends on the details of the definition of matter in a
gravitational theory. In GR, the source of the Einstein
equations is modeled as a continuum, and in theories like
the one we have proposed, one has to ask how well this
approximation works in a given framework. Consider for
example the issue of a photon traveling between two
galaxies in a cosmological setting. Should one consider it
as traveling in vacuum or in a continuum? In classical
cosmology, these problems become almost irrelevant, but
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they might be of crucial importance in the generalized
coupling case.
On a cosmological level, the field equations (36) show

clearly the presence of a dynamical cosmological constant
and a modification of the gravitational response to the
thermodynamical potentials ρ and p for a fluid. The field
equations (36) also share a common structure with many
well-studied cosmological models like Loop Quantum
Cosmology [44], the Randall-Sundrum type II braneworld
model [45], and some effective cosmological models, e.g.,
Refs. [46,47]. Whether our theory can be related to any of
those theories and how this can happen remains to be
determined.
We have constructed a simple realization of our gener-

alized coupling theories, which we call the Minimal
Exponential Measure model, given by the action

S½ϕ; g··; A·
·� ¼

Z
d4x

�
½R − 2Λ̃� ffiffiffiffiffiffi

−g
p

þ 2κ

�
Lm½ϕ; g··� −

λ

κ

� ffiffiffiffiffiffi
−g

p 	
; ð90Þ

where gμν ¼ eð4−AÞ=2Aμ
αAν

βgαβ [see (26) and (49)], and
Λ̃ ¼ Λ − λ. This choice of gμν is the simplest that one can
make which does not require the choice of a particular form
for the action of Aμ

α.
The MEMe model has three appealing features: (i) it is

equivalent to GR in a vacuum; (ii) its (single) additional
parameter λ corresponds to a regularization scale that can
in principle be independent of the Planck scale; and
(iii) for negative q (with ρjqj < 1), the MEMe model
has inflationary behavior at early times without requiring
additional dynamical degrees of freedom. Furthermore, a
dynamical systems analysis indicates that the MEMe
model can qualitatively describe cosmic histories which
include an inflationary era, a graceful exit, and a dark
energy era. There are a number of interesting questions
that stem from these results. One might be concerned that
the duration of the inflationary era is too dependent on the
initial conditions. This is true if one thinks about inflation
purely in terms of de Sitter expansion. Figure 3 shows that
there is a wide volume of the phase space which
corresponds to accelerated inflation; therefore, a wide
variety of parameter choices and initial conditions might
lead to an inflationary phase of the right duration. The
exact calculation, however, cannot be immediately made
on the basis of the phase space analysis we have presented
and will be left for future work. One might also ask
whether, given the complex form of Eq. (81), the MEMe
model is also able to predict the established sequence of
cosmic eras, i.e., the fact that the Universe at early time is
dominated by relativistic particles (w ¼ 1=3), succes-
sively by nonrelativistic matter (w ¼ 0), and then by
spatial curvature. One can show that this is the case by

recalling that q must be small. Expanding in q to first
order, Eq. (81) reads

_ρ ≈ −
3

4
Hρðwþ 1Þð3qρðwþ 1Þ2 þ 4Þ: ð91Þ

Choosing the integration constant so that when a ¼ a0,
ρ ¼ ρ0, one obtains

ρd ¼
4ρd;0a30

4a3 þ 3qρd;0ða3 − a30Þ
ð92Þ

ρr ¼
3ρr;0a40

3a4 þ 4qρr;0ða4 − a40Þ
ð93Þ

for w ¼ 0; 1=3, respectively. Since in our model we
considered only ρq < −1, ρd and ρr must always be finite,
and we can neglect the singularity in the above expres-
sions. For ρq < −1, the behavior of both ρd and ρr follows
closely the behavior of the standard cosmological model.
This indicates that in MEMe cosmologies, the cosmic eras
have the same chronological ordering as in the standard
cosmological model.
It should be stressed, at this point, that the interesting

cosmic histories we have found are only achievable through
some (additional) fine-tuning. Indeed, we have to ensure
thatΛ ≪ jλj, but, as we have argued, this fine-tuning can be
made less severe than that of the cosmological constant
problem because, again, λ can in principle be independent
of the Planck scale. A future research target will also be to
determine whether the MEMe model can fit the observa-
tional data available so far. Such a task will entail a full
analysis of the cosmological phenomenology to determine,
for example, the inflationary power spectra for primordial
fluctuations, the cosmic microwave background spec-
trum, etc.
Since one can view the MEMe model (and indeed any

generalized coupling theory) as a bimetric theory in the
presence of matter, the MEMe model predicts a different
propagation speed for gravitational waves within matter
distributions. We were able to obtain a constraint on the
parameter q ¼ κ=λ from the timing uncertainty of gravi-
tational wave detections; however, this constraint is weak
compared to the value of q that one expects if new physics
appears at the TeV scale. One can in principle obtain
stronger constraints on q by studying gravitational waves
propagating through dense matter distributions, for instance
the gravitational waves from the ringdown of a NS-BH
merger propagating through the cloud of ejecta from the
disrupted neutron star. Another interesting phenomenon
predicted by the MEMe model is the refraction of gravi-
tational waves by matter. These will also be the focus of
future studies.
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APPENDIX A: VARIATION OF
THE TRACE

In this Appendix, we examine the variation of the trace
A ¼ Aσ

σ. The purpose of this is to address a potential
objection to the fact that we assume A to be independent of
gμν. For instance, one might argue that, since A ¼ Aμνgμν, A
is dependent on gμν so that the variations will ultimately
depend on gμν.
The key point we wish to make here is that index

placement matters when choosing the variables we vary,
and that this choice determines whether the variations of A
depend on gμν. To see this, consider the variation of
A ¼ Aμνgμν,

δA ¼ gμνδAμν þ Aμνδgμν: ðA1Þ
If we regard Aμν and gμν to be independent, the above

expression suffices. However, if we instead demand that
Aμ

ν and gμν are independent variables, then we must rewrite
δAμν in terms of δAμ

ν and δgμν. In particular, we perform
the variation of Aμν ¼ gνσAμ

α∶

δAμν ¼ gνσδAμ
σ þ Aμ

σδgνσ

¼ gνσδAμ
σ − Aμ

σgναgβσδgαβ

¼ gνσδAμ
σ − Aμβgναδgαβ: ðA2Þ

The second line makes use of δgνσ ¼ −gναgβσδgαβ,
which follows from the condition δðgμσgνσÞ ¼ 0.
Plugging this result back into (A1) yields

δA ¼ gμνgνσδAμ
σ − Aμβgμνgναδgαβ þ Aμνδgμν

¼ gμνgνσδAμ
σ − Aμνδgμν þ Aμνδgμν: ðA3Þ

The last two terms cancel, and one obtains the result

δA ¼ δσ
μδAμ

σ: ðA4Þ
This demonstrates that A is independent of gμν if we

choose Aμ
ν and gμν to be independent variables.

APPENDIX B: DIVERGENCE-FREE
PROPERTY

Here, we show using variational methods that the source
Tμν of the Einstein tensor must satisfy ∇μTμν ¼ 0 if the

field equations are satisfied. We also demonstrate that
the field equations also imply gασ∇̃σTαβ ¼ 0. Though
the general proof is standard, and can be found in text-
books (Refs. [48,49], for instance), we present it here to
demonstrate that both Tμν and Tαβ must satisfy the
divergence-free property on shell. Consider first an action
of the form, defined on some domain U,

S½g··; A·
·;φ� ¼ SEH½g··� þ SA½g··; A·

·� þ Sm½g··; A·
·;φ�; ðB1Þ

where SEH is the Einstein-Hilbert action. The variation has
the form

δS ¼
Z
U
d4x

ffiffiffiffiffiffi
−g

p �
1

2κ
ðGμν − κTμνÞδgμν

þ Ψ2jAj
q

Wμ
νδAμ

ν þ Ψ2jAjE½φ; g··�δφ
�
; ðB2Þ

where SA and Sm are assumed to have a volume element of
the form d4x

ffiffiffiffiffiffi−gp ¼ d4x
ffiffiffiffiffiffi−gp Ψ2jAj, and

Tμν ≔
−2ffiffiffiffiffiffi−gp δðSA þ SmÞ

δgμν
;

Wα
β ≔

qffiffiffiffiffiffi−gp δS
δAα

β ;

E½φ; g··� ≔ 1ffiffiffiffiffiffi−gp δS
δφ

: ðB3Þ

Now, consider a differomorphism generated by a vector
field wμ which vanishes on the boundary ∂U,

wμj∂U ¼ 0: ðB4Þ

The action S, being constructed from covariant quan-
tities, is diffeomorphism invariant; under the boundary
condition (B4), a diffeomorphism generated by wμ cannot
change the value of the action, so that for an infinitesimal
diffeomorphism of the form

x → xþ ϵwμ; ðB5Þ

the first-order variation of the action resulting from the
diffeomorphism must satisfy δS ¼ 0. If the infinitesimal
parameter ϵ is constant, the variation of the metric takes the
form:

δϵgμν ¼ ϵ£wgμν ¼ 2ϵð∇ðμwνÞÞ: ðB6Þ

Upon integrating by parts and making use of the Bianchi
identities ∇μGμν ¼ 0 and Eq. (B4), the condition δS ¼ 0
yields
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ϵ

Z
U
d4x

ffiffiffiffiffiffi
−g

p
wν∇μTμν

¼ −
Z
U
d4x

ffiffiffiffiffiffi
−g

p

×

�
Ψ2jAj
q

Wμ
νδϵAμ

ν þ Ψ2jAjE½φ; g··�δϵφ
�
: ðB7Þ

If the field equations E½φ; g··� ¼ 0 and Wα
β ¼ 0 are

satisfied, one has

ϵ

Z
U
d4x

ffiffiffiffiffiffi
−g

p
wν∇μTμν ¼ 0; ðB8Þ

and if one demands that δS ¼ 0 for any infinitesimal
diffeomorphism, Eq. (B8) must hold for all wμ, and it
follows that ∇μTμν ¼ 0. This demonstrates that ∇μTμν ¼ 0

holds if the field equations E½φ; g··� ¼ 0 and Wα
β ¼ 0 are

satisfied.
A similar argument may be used to demonstrate that Tαβ

satisfies the divergence-free property on shell. In particular,
one may show that on shell, gασ∇̃σTαβ ¼ 0. Recalling that
Sm ¼ Sm½φ; g··� [cf. (28)], the variation of Sm takes the
form (29)

δSm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
E½φ; g··�δφ −

1

2
Tαβδgαβ

�
; ðB9Þ

where Tαβ is defined in Eq. (30). Under the diffeomor-
phism (B5), the variation in gαβ has the form

δϵgαβ ¼ ϵ£wgαβ ¼ 2ϵ∇̃σðgσðαwβÞÞ; ðB10Þ

and upon demanding δSm ¼ 0, one obtains

ϵ

Z
U
d4x

ffiffiffiffiffiffi
−g

p
wβgασ∇̃σTαβ ¼ −

Z
d4x

ffiffiffiffiffiffi
−g

p ½E½φ; g··�δϵφ�:

ðB11Þ

On shell, E½φ; g··� ¼ 0, and upon demanding that δSm ¼
0 for all wμ, gασ∇̃σTαβ ¼ 0. Note that this result depends
only on the diffeomorphism invariance of Sm, and does not
require that gμν satisfy the gravitational field equations—
the argument is valid for any metric gμν. This demonstrates

that the property gασ∇̃σTαβ ¼ 0 is independent of the
Bianchi identities. We note that both ∇μTμν ¼ 0 and

gασ∇̃σTαβ ¼ 0 require that the field equations E½φ; g··� ¼
0 are satisfied, and that ∇μTμν ¼ 0 depends also on the
equationWα

β ¼ 0. Furthermore, one can derive ∇μTμν ¼ 0

without including the Einstein-Hilbert action. Thus, the
view that the divergence-free property of the energy-
momentum tensor is enforced by the gravitational field
equations is somewhat inaccurate from a fundamental
perspective. A more accurate view is that the diver-
gence-free property and local conservation laws follow
from the diffeomorphism invariance of the action and the
field equations.
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