
 

Particle physics model of curvaton inflation in a stable universe
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We investigate a particle physics model for cosmic inflation based on the following assumptions:
(i) there are at least two complex scalar fields; (ii) the scalar potential is bounded from below and remains
perturbative up to the Planck scale; (iii) we assume slow-roll inflation with maximally correlated adiabatic
and entropy fluctuations 50–60 e-folds before the end of inflation. The energy scale of the inflation is set
automatically by the model. Assuming also at least one massive right-handed neutrino, we explore the
allowed parameter space of the scalar potential as a function of the Yukawa coupling of this neutrino.
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I. INTRODUCTION

The standard model (SM) of elementary particle inter-
actions [1] has been proven experimentally to high pre-
cision at the Large Electron Positrion Collider [2] and also
at the Large Hadron Collider (LHC) [3,4]. At the LHC the
last missing piece, the Higgs particle has also been
discovered and its mass has been measured at high
precision [5,6], which made possible the precise renorm-
alization group (RG) flow analysis of the Brout-Englert-
Higgs potential [7,8]. The perturbative precision of this
computation is sufficiently high so that the conclusion
about the instability of the vacuum in the standard model
cannot be questioned. While the instability may not
influence the fate of our present Universe if the tunneling
rate from the false vacuum is sufficiently low (making the
Universe metastable), one may insist that the vacuum must
be stable up to the Planck scale. Indeed, if we assume that
the characteristic energy scale of particle interactions were
close to the Planck scale immediately after the big bang, the
Universe based on the SMwas unstable and could not exist,
which calls for an extension of the SM. Presently it is
widely accepted that such an extension should explain not

only open questions in particle physics—such as the origin
of neutrino masses—but also those in cosmology.
One of the vigorously studied questions in our under-

standing of the early universe is the physics of cosmic
inflation. Today the original idea for inflation [9] is not
favored because it is unclear how to define a proper
mechanism to explain the required reheating of the uni-
verse. A popular solution to this question of reheating is the
slow-roll scenario [10,11] in which the ground state starts
from an unstable position and rolls down very slowly to a
local or global minimum. The inflation stops when the
potential energy function becomes too steep, which leads to
a fast roll. In principle, the slow roll can start from a large
field value and proceed toward a minimum with a smaller
field value, or from a small (essentially vanishing) field
value to a larger minimum. These two cases are referred to
as large- and small-field slow roll [12]. A problem related to
large-field slow-roll is the initial value problem, namely
one has to explain why the ground state starts from a value
much larger than the typical energy scale of inflation.
Chaotic inflation [13] was devised to handle this problem,
but then one has to assume very large—again larger than
the scale of inflation—fluctuations. The origin of inflation
and especially the emergence of the inflationary potential is
still an open question in cosmology [14,15].
It is known that scalar fields can mimic the equation of

state required for the exponential expansion of the early
universe [10,11]. As the Higgs boson was discovered, we
know that at least one doublet scalar field exists in nature.
Hence, it may appear natural to assume that the Brout-
Englert-Higgs (BEH) field is the inflaton (see for example
Ref. [16]), but such a scenario was criticized, see for
instance Ref. [17]. Many types of scalar potentials have
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already been discussed in the literature as viable scenar-
ios for cosmic inflation [17]. There are three major
categories of scalar inflaton potentials with minimal
kinetic terms: (i) the large field, (ii) the small field
and (iii) the hybrid models. In the third case one
introduces more than one field, with one of those being
the inflaton and the other field switches off the expo-
nential expansion. In this sense it is not a real multifield
model. The case of hybrid models is excluded by
experimental observations because those predict a scalar
tilt ns larger than one in contradiction with the observed
structure of the thermal fluctuations of the cosmic
microwave background radiation (CMBR) resulting in
ns ¼ 0.9677� 0.0060 [18,19]. The tensor and scalar
power spectra of the CMBR suggest a small value for
the tensor-to-scalar ratio r, consistent with zero, which
emerges automatically in real multifield models with
curvaton scenario [20–23].
Here we consider the simplest possible extension of the

SM that has the potential to explain the emergence of the
inflationary potential. The complete particle physics
model of this new superweak force was published in
Ref. [24]. We study the renormalization group flow of the
scalar couplings of this extension of the SM at one-loop
order in perturbation theory. We find that for small values
of the new gauge couplings—as suggested by other
phenomenological considerations—the only relevant cou-
plings are the scalar ones and the largest Yukawa-
coupling in the neutrino sector if we assume similar
hierarchy of the latter as one can observe for u-type
quarks in the SM [25]. Hence, the precise formulation of
the gauge sector does not influence our conclusions, so in
this article we present only the scalar and relevant
Yukawa sector in detail. We also find that the extended
scalar sector can serve as a simple multifield model of
cosmic inflation with a curvaton scenario. We show that
in a fairly constrained region of the parameter space, the
model can provide a natural switch on and off mechanism
of inflation.

II. PARTICLE PHYSICS MODEL

The particle content of the model coincides with that in
the standard model of particle interactions, supplemented
with one complex scalar field and three right-handed
neutrinos. The latter can be either Dirac- or Majorana-
type. While we present the relevant renormalization group
equations (RGE) for both cases, for the sake of definiteness
we present physical predictions only for the case of Dirac
neutrinos.

A. Scalar sector

Our scalar sector is defined similarly as in the SM,
but in addition to the usual scalar field ϕ that is an
SUð2Þ-doublet

ϕ ¼
�
ϕþ

ϕ0

�
¼ 1ffiffiffi

2
p

�
ϕ1 þ iϕ2

ϕ3 þ iϕ4

�
; ð1Þ

we assume the existence of a complex scalar χ that
transforms as a singlet under the SM gauge transforma-
tions. The gauge invariant Lagrangian of the scalar fields is

Lϕ;χ ¼ ½DðϕÞ
μ ϕ��DðϕÞμϕþ ½DðχÞ

μ χ��DðχÞμχ − Vðϕ; χÞ: ð2Þ

The covariant derivative for the new scalar χ is

DðχÞ
μ ¼ ∂μ − igZZμ ð3Þ

where Zμ is the new gauge field and gZ is the new gauge
coupling. In the renormalization group analysis below we
shall concentrate on the phenomenologically relevant case
when the new couplings are superweak gZ ≪ 1, hence
negligible in the scalar sector.
In Eq. (2) the potential energy is defined as

Vðϕ; χÞ ¼ V0 − μ2ϕjϕj2 − μ2χ jχj2 þ
1

2
ðjϕj2; jχj2ÞC

� jϕj2
jχj2

�

ð4Þ

where jϕj2 ¼ jϕþj2 þ jϕ0j2 and

C ¼
�
2λϕ λ

λ 2λχ

�
ð5Þ

is the coupling matrix. This potential energy function
contains a coupling term λjϕj2jχj2 of the scalar fields in
addition to the usual quartic terms. The value of the additive
constant V0 is irrelevant for particle dynamics, but as we
shall see, it is relevant for the inflationary model, hence we
allow a nonvanishing value for it. In order that this potential
energy be bounded from below, we have to require the
positivity of the self-couplings, λϕ, λχ > 0. The eigenvalues
of the coupling matrix are

λ� ¼ 1

2

�
λϕ þ λχ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλϕ − λχÞ2 þ λ2

q �
; ð6Þ

with λþ > 0 and λ− < λþ. In the physical region the
potential can be unbounded from below only if λ− < 0
and the eigenvector belonging to λ− points into the first
quadrant, which may occur only when λ < 0. In this case,
the potential will be bounded from below if the coupling
matrix is positive definite, i.e.,

detC ¼ 4λϕλχ − λ2 > 0: ð7Þ

If these conditions are satisfied, we find the minimum of the
potential energy at field values ϕ ¼ v=

ffiffiffi
2

p
and χ ¼ w=

ffiffiffi
2

p
where the vacuum expectation values (VEVs) are
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v ¼
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λχμ

2
ϕ − λμ2χ

4λϕλχ − λ2

s
; w ¼

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λϕμ

2
χ − λμ2ϕ

4λϕλχ − λ2

s
: ð8Þ

Using the VEVs, we can express the quadratic couplings as

μ2ϕ ¼ λϕv2 þ
λ

2
w2; μ2χ ¼ λχw2 þ λ

2
v2; ð9Þ

so those are both positive if λ > 0. If λ < 0, the constraint
(7) ensures that the denominators of the VEVs in Eq. (8)
are positive, so the VEVs have nonvanishing real values
only if

2λχμ
2
ϕ − λμ2χ > 0 and 2λϕμ

2
χ − λμ2ϕ > 0 ð10Þ

simultaneously, which can be satisfied if at most one
of the quadratic couplings is smaller than zero. We
summarize the possible cases for the signs of the couplings
in Table I.
After spontaneous symmetry breaking, we use the

following convenient parametrization for the scalar fields:

ϕ ¼ 1ffiffiffi
2

p eiT·ξðxÞ=v
�

0

vþ h0ðxÞ

�
ð11Þ

and

χðxÞ ¼ 1ffiffiffi
2

p eiηðxÞ=wðwþ s0ðxÞÞ; ð12Þ

with T ¼ ðT1; T2; T3Þ denoting the generators of the SU(2)
group, ξ ¼ ðξ1; ξ2; ξ3Þ and η being real functions. We can
use the gauge invariance of the model to choose the unitary
gauge when

ϕ0ðxÞ¼ 1ffiffiffi
2

p
�

0

vþh0ðxÞ

�
and χ0ðxÞ¼ 1ffiffiffi

2
p ðwþ s0ðxÞÞ:

ð13Þ

We can diagonalize the mass matrix (quadratic terms) of the
two real scalars (h0 and s0) by the rotation

�
h

s

�
¼

�
cos θS − sin θS
sin θS cos θS

��
h0

s0

�
ð14Þ

where for the scalar mixing angle θS ∈ ð− π
4
; π
4
Þ we find

tanð2θSÞ ¼ −
λvw

λϕv2 − λχw2
: ð15Þ

The squares of the masses of the mass eigenstates h and s
(mh and ms) are

M2
h=H ¼ λϕv2þλχw2∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλϕv2−λχw2Þ2þðλvwÞ2

q
ð16Þ

where Mh ≤ MH in out convention. At this point either
mh=s ¼ Mh=H or mh=s ¼ MH=h.
As Mh must be positive, the condition

v2w2ð4λϕλχ − λ2Þ > 0 ð17Þ

has to be fulfilled. If both VEVs are greater than zero–as
needed for two nonvanishing scalar masses–, then this
condition reduces to the positivity constraint (7), but with
different meaning. Equation (7) is required to ensure that
the potential be bounded from below if λ < 0, which has to
be fulfilled at any scale. For λ > 0, the potential is bounded
from below even without requiring the constraint (7). The
inequality in (17) ensuresMh > 0, which has to be fulfilled
as long as vw > 0 independently of the sign of λ.
The VEV of the BEH field and the mass of the

Higgs boson (at the scale equal to mass of the
t-quark) are known experimentally, vðmtÞ ≃ 262 GeV
and mHðmtÞ ≃ 131.55 GeV [8]. Introducing the abbrevia-
tion λSM ¼ 1

2
m2

H=v
2, we have λSMðmtÞ ≃ 0.126 and we can

distinguish two cases at the weak scale: (i) λϕðmtÞ >
λSMðmtÞ and (ii) λSMðmtÞ > λϕðmtÞ. Then we can relate
the new VEV w to the BEH VEV v and the four couplings
λSM, λϕ, λχ , λ using Eq. (16) as

wðmtÞ2ð4ðλϕðmtÞ − λSMðmtÞÞλχðmtÞ − λðmtÞ2Þ
¼ 4vðmtÞ2λSMðmtÞðλϕðmtÞ − λSMðmtÞÞ: ð18Þ

Using Eq. (18), it is convenient to consider w as a
dependent parameter and scan the parameter space
of the remaining three quartic couplings as done below.
We are not interested in the case of λϕðmtÞ ¼ λSMðmtÞ
because that prevents the model from interpreting neu-
trino masses [24].
In case (i) when λϕðmtÞ > λSMðmtÞ, then MH > mH, so

only h can be the Higgs particle and Mh ¼ mH, while

TABLE I. Possible signs of the couplings in the scalar potential Vðϕ; χÞ in order to have two nonvanishing real VEVs. Θ is the step
function, ΘðxÞ ¼ 1 if x > 0 and 0 if x < 0.

ΘðλÞ ΘðλϕÞ ΘðλχÞ Θð4λϕλχ − λ2Þ Θðμ2ϕÞΘðμ2χÞ Θð2λχμ2ϕ − λμ2χÞΘð2λϕμ2χ − λμ2ϕÞ
1 1 1 Unconstrained 1 Unconstrained
0 1 1 1 1 Unconstrained
0 1 1 1 0 1
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MH ¼ mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕ − λSM

λSM

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λϕλχ − λ2

4ðλϕ − λSMÞλχ − λ2

s
: ð19Þ

The positivity of M2
H, in addition to the constraint in (17),

also requires that

4ðλϕ − λSMÞλχ − λ2 > 0 or λϕ > λSM þ λ2

4λχ
: ð20Þ

In case (ii), m2
H > 2λϕv2 > M2

h, so only H can be
the Higgs particle and we can express the masses of the
scalars as in Eq. (19), with h and H interchanged, or
explicitly

Mh ¼ mH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λSM − λϕ

λSM

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λϕλχ − λ2

λ2 þ 4ðλSM − λϕÞλχ

s
ð21Þ

and MH ¼ mH, which does not require any further con-
straint to (17).
In principle, it may happen that one of the VEVs

vanishes at some critical scale tc. In that case, for
t > tc the only scalar particle is the Higgs boson.
Thus, beyond tc we do not need to assume the
validity of the extra constraints beyond the requirements
of stability and the new scalar sector affects only the RG
equations.

B. Neutrino Yukawa sector

Neutrino oscillation experiments prove that neutrinos
have masses, which in a usual gauge field theoretical
description necessitates the assumption that right-handed
neutrinos exist. The existence of the new scalar allows for
gauge invariant Majorana-type Yukawa terms of dimension
four operators for the neutrinos

Lν
Y ¼ −

1

2

X
i;j

νci;RðcRÞijνj;Rχ þ h:c: ð22Þ

provided the superscript c denotes the charge conjugate
of the field. The Yukawa coupling matrix ðcRÞij is a real
symmetric matrix whose values are not constrained.
There are other gauge invariant Yukawa terms involving
the left-handed neutrinos (see Ref. [24] where all possible
terms are taken into account for neutrino mass gener-
ation), but those must contain small Yukawa couplings,
otherwise the left-handed neutrino masses would violate
experimental constraints. In our analysis below we
assume that at least one element of the diagonal matrix
OcROT , with O being a suitable orthogonal matrix, can
take any value in the range (0,2). We denote this element
by cν below.

III. RENORMALIZATION GROUP EQUATIONS

In order to study the values of the couplings at any
energy scale we use the RG equations,

dg
dt

¼ aβðgÞ ð23Þ

where the factor a ¼ ln 10 ensures that the RG-time t ¼
lnðμ=GeVÞ represents the energy scale μ ¼ 10t GeV rather
than μ ¼ et GeV and the variable g is a generic notation for
any of the five gauge couplings, the four most relevant
Yukawa couplings ct, cb, cτ, and cν, the two quadratic and
three quartic scalar couplings (14 equations in total). In
order to solve this coupled system of differential equations,
we need to specify the β-functions and the initial conditions
for the couplings.
At one-loop in perturbation theory, the β-function

of a dimensionless coupling g is computed from the
formula

β0ðgÞ ¼ M
∂
∂M

�
−δg þ

1

2
g
X
i

δZ;i

�
ð24Þ

where δg is the one-loop counterterm for a given vertex,
which is proportional to g, while δZ;i are the wave function
renormalization counterterms for all the i legs of the given
vertex. The one-loop β-functions are independent of the
renormalization scheme and so is the one-loop equation
Eq. (24) (see for instance Chapter 12 of Ref. [26]). We
computed those in perturbation theory at one-loop order for
the complete model of Ref. [24], and can be found
in Ref. [27].
In order to obtain the running of the scalar couplings, we

need the β-functions of the scalar sector. According to our
assumption on the smallness of the new gauge couplings,
we can set gZ ¼ 0. We also neglect the Yukawa couplings
of all charged leptons as well as the quarks, except that of
the t-quark. With these assumptions the β-functions
β0ðgÞ≡ b0ðgÞ=ð4πÞ2 of the gauge and Yukawa couplings
simplify to their forms in the standard model, while those in
the scalar sector become

b0ðμ2ϕÞ ¼ μ2ϕ

�
12λϕ þ 2

μ2χ
μ2ϕ

λþ 6c2t −
3

2
g2Y −

9

2
g2L

�
;

b0ðμ2χÞ ¼ μ2χ

�
8λχ þ 4

μ2ϕ
μ2χ

λþ 1

2
c2ν

�
with Dirac

¼ μ2χ

�
8λχ þ 4

μ2ϕ
μ2χ

λþ c2ν

�
with Majorana ð25Þ

neutrino for the quadratic, and
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b0ðλϕÞ ¼ 24λ2ϕ þ λ2 − 6c4t þ
3

8
g4Y þ 9

8
g4L þ

3

4
g2Yg

2
L − λϕð9g2L þ 3g2YÞ þ 12λϕc2t ;

b0ðλχÞ ¼ 20λ2χ þ 2λ2 −
1

8
c4ν þ λχc2ν with Dirac neutrino;

¼ 20λ2χ þ 2λ2 −
1

2
c4ν þ 2λχc2ν with Majorana neutrino;

b0ðλÞ ¼ 12λλϕ þ 8λλχ þ 4λ2 þ λ

�
1

4
c2ν þ 6c2t −

9

2
g2L −

3

2
g2Y

�
with Dirac neutrino;

¼ 12λλϕ þ 8λλχ þ 4λ2 þ λ

�
c2ν þ 6c2t −

9

2
g2L −

3

2
g2Y

�
with Majorana neutrino ð26Þ

for the quartic couplings where gL and gY are the left-
handed and hypercharge couplings. We solve this system of
simplified equations numerically for both types of neu-
trinos. Of course, for cν ¼ 0 the difference between the
equations for Dirac and Majorana neutrinos disappears. For
cν > 0 the qualitative behavior of the running couplings is
similar for the two types of neutrinos, but the larger
coefficients in front of cν for the Majorana neutrino results
in a stronger effect of the neutrino Yukawa coupling, and
eventually more constrained parameter space.
We fix the initial conditions for the standard model

couplings as done in the two-loop analysis of Ref. [8]
(using the two-loop MS scheme). Specifically, we set

gYðmtÞ ¼
ffiffiffi
3

5

r
× 0.4626; gLðmtÞ ¼ 0.648;

λSMðmtÞ ¼ 0.126; vðmtÞ ¼ 262 GeV; ð27Þ

and ctðmtÞ ¼ 0.937. Choosing some initial values of the
quartic couplings λϕðmtÞ, λχðmtÞ and λðmtÞ, we obtain the
couplings μϕðmtÞ and μχðmtÞ according to Eq. (9), with

wðmtÞ ¼ 2vðmtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λSMðmtÞðλϕðmtÞ − λSMðmtÞÞ
ð4ðλϕðmtÞ − λSMðmtÞÞλχðmtÞ − λðmtÞ2Þ

s
;

ð28Þ

determined from Eq. (18).

IV. CONSTRAINTS FROM STABILITY AND
PERTURBATIVITY

In order to constrain the parameter space of the new
couplings, spanned by λϕ, λχ , λ and cν, we require the
validity of the conditions of Table I, i.e., the stability of the
vacuum up to the Planck scale mP. Such studies have
already been presented for various hidden sector (usually
singlet scalar) extensions of the standard model in
Refs. [28–31]. In addition, we also check the validity of
the constraints set by the positivity requirement on the

scalar masses [Eq. (20) for case (i) and Eq. (17) for case
(ii)], from the initial conditions up to mP, but as long as
w > 0. A similar analysis was presented in Ref. [32], but
with Z2 symmetry assumed on the new gauge sector. Our
analysis is based on the simplest, but complete (in the sense
of renormalizable quantum field theory) extension of the
standard model gauge group described in Ref. [24].
As seen in Eq. (26), the β-functions are independent of

both μϕ and μχ , except of course their own β-functions,
which decouple from the rest. Thus, in the parameter scan
we focus on the four-dimensional parameter subspace
of cν, λϕ, λχ , λ by selecting slices at fixed values of cν.
In addition to the stability conditions, we also require that
the couplings remain in the perturbative region that we
defined by

λϕðtÞ < 4π; λχðtÞ < 4π; jλðtÞj < 4π: ð29Þ

We have restricted the region of the new VEV to
w < 1 TeV because a large value of w is likely to imply
large kinetic mixing between the two Uð1Þ gauge fields
[24], which is not supported by experiments (see, e.g.,
Ref. [33]). This restriction does not influence the allowed
regions for the quartic couplings significantly.
Figures 1 and 2 display our results for the allowed

regions for the initial conditions of λϕðmtÞ, λχðmtÞ and
λðmtÞ at three selected values of the Dirac neutrino Yukawa
coupling as shaded areas where the stability of the vacuum
and the constraints set by the positivity requirement on
the scalar masses are respected. In order to ease the
interpretation, we show projections of the allowed three-
dimensional region onto two-dimensional subspaces. We
also show the running couplings up to the Planck scale at a
point representing selected values of the initial conditions at
the electroweak scale. Although the new VEV w is not an
independent parameter, we find interesting to present the
projections also in the w − g subspaces where g denotes one
of the quartic couplings (see Fig. 3). The foremost con-
clusion is that the parameter space is not empty, but only for
case (i), i.e., when λϕðmtÞ > λSM. Thus the Higgs particle
has the smaller scalar mass always. In fact, we find that the
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allowed region for λϕðmtÞ is about [0.151, 0.241] (starting to
decrease only for cνðmtÞ > 1.5, while minMHðmtÞ≃
144 GeV. Clearly, the precise values may somewhat change
in an analysis at the accuracy of higher loops. Even in the
allowed region for λϕ, the parameter space for the other
couplings is constrained significantly and decreases slowly

with increasing Yukawa coupling of the right handed
neutrino up to cν ≃ 1. Above cν ≃ 1 the parameter space
vanishes swiftly. The maximal allowed regions for the
parameters are presented for the selected values of cν in
Table II. Thus we find that the stability of the vacuum
requires cν ≲ 1.65 for Dirac neutrinos (cν ≲ 1.15 for

FIG. 2. Left: same as Fig. 1 in the λϕðmtÞ − λχðmtÞ plane. Right: the running of the couplings up to the Planck scale in a selected point
of the parameter space.

FIG. 1. Accepted initial conditions (as shaded areas) in the λϕðmtÞ − λðmtÞ plane (left) and λχðmtÞ − λðmtÞ plane (right) for the stability
of the vacuum and perturbativity preserved up to the Planck mass at different values of the Dirac neutrino Yukawa coupling cν. The star
marks the point in the parameter space for which the example of the running couplings up to the Planck scale is presented in Fig. 2.

FIG. 3. Same as Fig. 1 in the wðmtÞ − gðmtÞ planes. Left: g ¼ λ, right: g ¼ λϕ and λχ .
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Majorana neutrinos). It is also interesting to remark that the
allowed regions are also very sensitive to the value of the
Yukawa coupling of the t quark. For instance, at ctðmtÞ ≃ 1.1
the allowed parameter space vanishes completely.

V. COSMOLOGICAL INFLATION

We now explore the cosmic inflation of the two-field
model with potential energy defined in Eq. (4). We consider
slow-roll inflation when the potential energy has a large,
almost flat area for small field values and a global minimum
at large values of the VEVs. Such a potential energy allows
for slow roll of the fields from small values toward the
global minimum, resulting in cosmic inflation. The
required form of the potential energy function appears
naturally at some high energy scale, for certain values of the
scalar couplings at the mass of the t-quark mt. As Eq. (8)
shows, the VEVs are inversely proportional to

ffiffiffiffiffiffiffiffiffiffi
detC

p
.

Fig. 4 shows the running of detC together with that
of the couplings from initial values at mt chosen from the
stability region. We see a narrow wedge—like an inverse
resonance—where detC becomes very small, implying
VEVs at around field values of 105 GeV. The figure shows
an examplewith vanishing Yukawa coupling cν of the right-
handed neutrino, but below we show that the value of cν
influences only the size of the parameter space of the scalar
couplings where this phenomenon leads to such potential
energy function that can support cosmic inflation in accor-
dance with current values of relevant observables.

The single-field inflationary models predict purely cur-
vature perturbations, resulting from energy density fluctu-
ations. Having multiple fields allows for multiple types of
fluctuations, hence several observable quantities, such as
the tilts corresponding to curvature, isocurvature (emerging
due to fluctuations in the relative number density of
particles) and a correlation angle Δ [34].
Following Ref. [35], we introduce a local rotation of

ðϕ; χÞ into ðσ; sÞ, with σ and s referring to the adiabatic and
entropy field. The adiabatic field is the path length along
the classical trajectory, while s remains a constant. Using
the power spectra PRðkÞ and PSðkÞ of these comoving
curvature and isocurvature fluctuations [36], as well as the
spectrum of the cross-correlation CRSðkÞ of the two fields,
the correlation angle is defined as the dimensionless ratio

cosΔ ¼ CRSðkÞ
P1=2

R ðkÞP1=2
S ðkÞ

: ð30Þ

As the fluctuations can communicate in super-horizon
scales, in order to acquire the observable primordial
fluctuations one has to evolve in time the curvature
R� and isocurvature fluctuations S� calculated at horizon
exit. This is achieved by applying the transfer
matrix [34]:

�
R

S

�
¼

�
1 TRS

0 TSS

��
R�
S�

�
: ð31Þ

The TRS and TSS transfer coefficients are related to the
correlation angle. At the first order in the slow-roll
expansion, we have

cosΔ ≃
TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

p and sinΔ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
RS

p ð32Þ

Also, at the leading order of the slow-roll expansion the
curvature power spectrum is

PR ¼ PR� ð1þ T2
RSÞ; ð33Þ

so PR� ¼ PR sin2Δ. As a result, a factor of sin2Δ appears
in the tensor-to-scalar ratio, as compared to the single-field
case: r ¼ 16ϵðsinΔÞ2.
The number of slow-roll parameters also increase. In the

single-field case, in addition to the parameter ϵ ¼ 3
2
ðpρ þ 1Þ,

FIG. 4. Running of the scalar couplings and of detC. g means
any of the couplings.

TABLE II. Maximal allowed regions of the couplings required by stability of the vacuum and perturbativity of the couplings up to the
Planck scale for selected values of the Yukawa coupling of the right-handed neutrino cνðmtÞ and w < 1 TeV set explicitly.

cν λðtÞ λχðtÞ ðμϕðtÞ=GeVÞ2 ðμ2χðtÞ=GeVÞ2 wðtÞ=GeV MHðtÞ=GeV
0.0 ½−0.26; 0.23� [0.011,0.191] ½−4362; 4962� ½1122; 5802� [213,1000] [144,558]
1.0 ½−0.24; 0.22� [0.031,0.181] ½−4362; 4362� ½1142; 5482� [220,1000] [144,557]
1.5 ½−0.26; 0.22� [0.141,0.211] ½−3742; 4962� ½1112; 6032� [203,994] [144,598]
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describing the deviation from the equation of state of the de
Sitter space-time (ρ ¼ −p, with ρ denoting the energy
density and p is the pressure), there is only one other slow-
roll parameter η, which essentially measures the acceler-
ation of the fields. In our example we have three η
parameters that can be expressed approximately from the
potential as

ηij ≃mP
2
∂ijV

V
; ij ¼ ϕϕ; χχ;ϕχ; ss; σσ; sσ ð34Þ

(note that ηϕϕ þ ηχχ ¼ ησσ þ ηss), while

ϵ ≃
1

2
mP

2

�∂σV
V

�
2

: ð35Þ

In principle, inflation is possible only until both ϵ and ηij
are small, resulting in the slow roll.
To set the exact conditions of slow roll, we numerically

solved the equations of motion, namely

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ 0;

χ̈ þ 3H _χ þ ∂V
∂χ ¼ 0; ð36Þ

with the integration variable transformed to the number
of e-folds N, and terminated the process, when any
of the slow-roll parameters reached unity. We set the
starting point of the trajectory at vanishing field values.
For the parameter values of the potential energy we used
values allowed by the perturbativity and stability conditions
mentioned in Sec. II, namely jλj, λi ∼ Oð10−1–10−2Þ and

μ2i =GeV
2 ∼ Oð1–3 × 104Þ. For such values we have

found that the ηij parameters increase much faster than
ϵ, reaching 1, while ϵ remaining small, about Oð10−30Þ.
Hence, we set the end of inflation by the condition ηij ¼ 1.
In practice the parameter ηχχ increases the fastest. We show
an example of such a trajectory in Fig. 5. This trajectory
induces N > 200 e-folds. The value of η�ss refers to the
value of ηss at 60 e-folds before the end of inflation.
The smallness of ϵ in our model contradicts to the

swampland conjecture that states that it has to be O(1)
during inflation [37]. If the conjecture finds a proof, then
our model will be excluded, but at present it is not yet the
case. Strictly speaking, this conjecture, if it were true,
would forbid the slow-roll models of inflation, which
stimulated a lot of activity aiming at refining the conjecture
(see, e.g., [38,39]). In this context, we have not studied if
our phenomenological model remains a consistent theory at
the Planck scale, and thus it has similar status as many other
studies of inflationary models. The model of slow-roll
inflation we propose here is based on a scalar potential that
is not connected to an exact de Sitter vacuum, but have an
equation of state that resembles that of the de Sitter
vacuum, with ϵ ¼ 0 meaning exact coincidence. The very
small value of ϵ implies exponential inflation, whose end is
marked by the increasing acceleration of the new scalar
field χ, giving a distinct role (or necessity) for χ in the
particle physics model (in addition to stabilizing the
vacuum up to the Planck scale).
The observables are constructed from the slow-roll

parameters taken 50–60 e-folds before the end of inflation.
This corresponds to an even smaller ϵ, which reduces the
tensor-to-scalar ratio, r ¼ 16ϵðsinΔÞ2 to essentially zero.
Such a small r is not excluded by current cosmological

FIG. 5. Left: A possible trajectory of the rolling of the scalar fields. The black dots denote the extrema of the potential. Right:
Projection of the trajectory onto the ϕ − χ plane. The red star denotes the end of the inflation on the trajectory, marked with a red dot
on the three-dimensional picture.
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measurements. The smallness of r however is in conflict
with the traditional cosmological normalization

V0 ≃ rð1.6 × 1016 GeVÞ4: ð37Þ

This conflict may be resolved by assuming that the
adiabatic and entropy fluctuations were maximally corre-
lated at 50–60 e-folds before the end of inflation, implying
cosΔ ¼ 1, and hence predicting zero for the tensor-to-
scalar ratio. The case of Δ ¼ 0, i.e., maximally correlated
fluctuations are referred to as the curvaton scenario. In this
case, the various tilts coincide.

In the curvaton scenario we have to find a new condition
to set the scale of inflation ðV0Þ1=4. Neglecting ϵ we have:

ns − 1 ¼ 2ηss ð38Þ

Considering ηss as a function of V0 (see Eq. (34) with V0 in
V in the denominator), we normalize it to produce the scalar
tilt in agreement with the most recent data, ns ≃ 0.966,
yielding V0 ≃ 5 × 1042 GeV4, which corresponds to the a
scale of inflation V1=4

0 ≃ 5 × 1010 GeV.
Having fixed the value of V0, we propose the following

inflationary scenario. The scalar potential energy is given

FIG. 6. Projections of the allowed regions of the parameter space of scalar couplings onto the λ − λχ plane (left) and λ − λϕ plane
(right) at three different ranges of the scale of inflation and at three selected values of the cν Yukawa coupling.
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by Eq. (4). After the big bang the characteristic energy scale
of particle interactions is near the Planck scale, hence the
scalar fields are fluctuating around zero. As the universe
expands, the characteristic energy scale decreases and the
scalar couplings run according to their renormalization
group equations, exhibiting the wedge for detC at an
energy scale μinf (around 1016 GeV) that we call the
characteristic energy scale of inflation [40]. At this scale
the global minimum of the potential energy function
increases to about 105 GeV and the fields start to roll
slowly toward this minimum, resulting in cosmic inflation.
This accelerated expansion continues until the acceleration
(second time derivative of the fields) remain negligible in
the equation of the motion, determined by max ηij ¼ 1.
After this the universe starts its Hubble expansion, decreas-
ing the characteristic energy scale, and the global minimum
of the scalar potential quickly returns to small field values
as observed today, preventing any further inflationary
periods.

VI. PREDICTING THE SCALAR COUPLINGS

The cosmological inflation as described in the previous
section occurs only in a restricted region of the parameter
space of the scalar couplings, which we define at the
electroweak scale (mt).
The wedge in the running of detC appears only for

λðmtÞ < 0. We have scanned this side of the parameter
space by selecting fixed initial values for the scalar
couplings λϕðmtÞ, λχðmtÞ, and scanning the allowed initial
values of the third one to find those points where the wedge
in the running of detC appears with a minimum≲Oð10−4Þ.
During this scanning, we need to search only for those
points where wðmtÞ—given by Eq. (28), with
λSMðmtÞ ¼ 1

2
mHðmtÞ2=vðmtÞ2 ≃ 0.126—and the masses

of the scalars given by Eq. (16) remain positive. We find
that the parameter space is constrained to a shell on the
surface of the region allowed by the conditions of stability
and perturbativity of V. The width of the shell is affected by
the allowed depth of the minimum of detC: the smaller
detC, the thinner the shell. Furthermore, we have also
found that the minimum value of the location of the wedge
μinf is around 1014 GeV, depending slightly on cνðmtÞ.

In Fig. 6 we present the results of such scan of the
parameter space. These plots show different planar pro-
jections of the three dimensional parameter space, spanned
by λϕðmtÞ; λχðmtÞ, and λðmtÞ. The shape and size of the
supported regions is affected by the choice of cνðmtÞ, as
seen in the titles of the figures. We find that the parameter
space of the scalar couplings is not empty, but constrained
strongly if we assume that cosmic inflation took place as
described above. This assumption constrains the smallest
value of wðmtÞ to around 265 GeV.

VII. CONCLUSIONS

We proposed a particle physics model of cosmic infla-
tion. It requires at least two scalar fields. We explored the
parameter space where the scalar potential remains
bounded from below up to the Planck scale. We found
that in a small region of the parameter space of the scalar
couplings allowed by the requirement of stability, the
determinant of the scalar quartic coupling matrix becomes
very small at an energy scale around 1016 GeV. As a result
the field values at the global minimum of the scalar
potential increase significantly, allowing for an accelerated
expansion of the universe by a slow-roll model of inflation.
We assume the curvaton scenario of inflation, i.e., max-
imally correlated adiabatic and entropy fluctuations at
50–60 e-folds before the end of inflation, which implies
vanishing tensor-to-scalar ratio. To set the scale of inflation
(the normalization of the potential at vanishing field
values), we required that the model reproduces the mea-
sured value of the scalar tilt. The inflation stops when the
parameter that measures the acceleration of the fields starts
to increase quickly. After this the position of the global
minimum of the potential decreases preventing the appear-
ance of another period of inflation. The model is consistent
with observations as long as the tensor-to-scalar ratio is
measured to be very small, r ≪ 1.

ACKNOWLEDGMENTS

This work was supported by Grant No. K 125105 of the
National Research, Development and Innovation Fund in
Hungary.

[1] S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
[2] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD

Collaborations, LEP Electroweak Working Group, SLD
Electroweak Group, SLD Heavy Flavour Group), Phys.
Rep. 427, 257 (2006).

[3] Atlas experiment–Public results, https://twiki.cern.ch/twiki/
bin/view/AtlasPublic/StandardModelPublicResults.

[4] Summaries of cms cross section measure-
ments, https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsCombined.

[5] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 90,
052004 (2014).

[6] V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C
75, 212 (2015).
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