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We propose a new dark energy model for solving the cosmological fine-tuning and coincidence problems.
A default assumption is that the fine-tuning problem disappears if we do not interpret dark energy as vacuum
energy. The key idea to solving the coincidence problem is that the Universe may have several acceleration
phases across the whole cosmic history. The specific example we study is a quintessence model with
approximately repeated double exponential potential, which only introduces one Planck scale parameter and
three dimensionless parameters of order unity. The cosmological background evolution equations can be
recast into a four-dimensional dynamical system and its main properties are discussed in details. Preliminary
calculations show that our model is able to explain the observed cosmic late-time acceleration.
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I. INTRODUCTION

The cosmic late-time acceleration has been confirmed
for two decades [1,2]. The standard model to explain this
phenomenon is the ΛCDM model with the cosmological
constant Λ ¼ OðH2

0=c
2Þ, where H0 is the Hubble constant.

This model suffers from two tricky problems: the fine-
tuning and coincidence problems. The energy density of
vacuum given by quantum field theory should be of the
order of Planck scale density ρP ¼ 5.1 × 1096 kg=m3 while
the observed effective energy density of Λ is ρΛ ¼
1.4 × 10−26 kg=m3. The ratio of ρΛ and ρP is Oð10−120Þ.
If one interprets the origin of Λ as the vacuum energy, then
how to obtain ρΛ from ρP is a fine-tuning problem. There
are many attempts to explain the origin of this extremely
small ratio, e.g., spacetime foam [3–5] and quantum gravity
discreteness [6,7]. However, a mature theory in this way
seems far away from us [8]. If we abandon Λ but use a
dynamical field to explain the late-time acceleration, then
we can completely hide the vacuum energy at macroscopic
scales (i.e., solve the old cosmological constant problem)
with reasonable theories [9,10]. The popular dynamical
fields that used to explain the late-time acceleration include
quintessence [11–13], phantom [14], quintom [15–18], etc.
However, the coincidence problem still exists in these
dynamical dark energy models. In addition to the dark
energy model, modified gravity is also widely used to
explain the cosmic late-time acceleration [19]. However,
none of these gravity theories can naturally solve the
problems we are considering (see discussions in Ref. [20]
and references therein).

The coincidence problem states why the effective dark
energy density ρDE is comparable to the normal matter
density ρm at today. Note that it is controversial that whether
the cosmic coincidence is problematic [21–23]. If the cosmic
expansion is parametrized in terms of the redshift or
logarithmic scale factor, then the coincidence problem do
exist. But the problem disappears if we use the cosmic time
or linear scale factor to parametrize the expansion. We think
the most natural axis is the logarithmic scale factor because it
characterizes the order of magnitude of ρm. In this paper, we
give tacit consent to existence of the coincidence problem
described with the logarithmic scale factor. This is sub-
jective. Anyway, the solution to the possible coincidence
problem adds new motivation to the theory. It is believed that
some dynamical dark energy models can alleviate, but not
solve, the coincidence problem with the tracker property
[12,13,24–26]. However, we may rephrase the coincidence
problem as why the transition from matter-dominated
Universe to dark energy-dominated Universe occurs today.
In this sense, the tracker property does nothing to alleviate
the coincidence problem. Intuitively, the coincidence prob-
lem disappears if the Universe was dominated by normal
matters and dark energy alternately across the whole cosmic
history (see Ωϕ in Fig. 2 for an intuition). In this scenario,
ρDE tracks ρm in the view of long time period. But the
behaviors of ρDE and ρm are different in the view of short
time period. Another property is that the corresponding
dark energy equation of state (EoS) should be oscillating.
There are many works to discuss the oscillating dark energy
EoS, e.g., Refs. [27–38]. However, no model meets our
requirements (see Appendix).
In addition, we require that human-related parameters
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wide-used dark energy models [11–18] generally need a
parameter related to H0. The unnatural point is that H0 is
the value of the Hubble parameter at today (the time human
exist). Note that, as we discussed before, in this paper, we
use the logarithmic scale factor to parametrize the cosmic
expansion and thus H0 is a special value. In principle, the
fundamental physical constant that appears in cosmology
theory can be any value less than Planck scale values. In
other words, we may ask whether we can explain the
observed cosmic late-time acceleration with a parameter of
the order of Oð109H0Þ or Oð10−9H0Þ. Furthermore, we
require the desired model only introduces Planck scale
parameters and dimensionless parameters of order unity.
This requirement is subjective but adds new motivation to
the theory. Similar consideration was also discussed in
Ref. [39], which proposed a new dark energy model with
Oð100Þ scalar fields. Among the various modified
gravities, nonlocal gravity provides the possibility to
explain the late-time acceleration using only dimensionless
parameters of order unity [40,41]. However, observations
about the gravitational bound systems rule out these
theories [42,43].
How to construct a concrete dark energy model to

realize the scenario described in the previous two para-
graphs? Technically, in the framework of quintessence, we
might be able to achieve this with a repeated double
exponential potential (see Fig. 1 for an intuition). Note
that the single steep exponential potential could realize
ρDE tracks ρm [44]. The model with double exponential
potential, in which one is steep and one is flat, presents
both early scaling and late-time accelerating solutions
[45]. If we repeat the double exponential potential
periodically, we may find a realization of the desired
model. The specific model is described in Sec. II and its
properties are analyzed in Sec. III.

II. THE MODEL

We consider cosmic expansion driven by a single scalar
field with normal matters including radiation and dust. The
action for this physical system is of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ

−
Lϕ

κ

�
þ Sm; ð1Þ

where κ ≡ 8πG=c4. For the normal matters, we know
the variation δSm ¼ − 1

2

R
d4x

ffiffiffiffiffiffi−gp
Tμνδgμν and Tμν ¼

ðρm þ pm=c2Þuμuν þ pmgμν. The EoS of normal matters
is defined as wm ≡ pm=ðρmc2Þ. We know wm ¼ 0 for the
dust and wm ¼ 1=3 for the radiation. For the scalar field,
we adopt Lϕ ¼ X þ VðϕÞ, where X ¼ 1

2
gμν∂μϕ∂νϕ. For

the potential, we do not repeat the double exponential
potential exactly, but assume

VðϕÞ ¼ V0 exp

�
−
λ1 þ λ2

2
ϕ −

αðλ1 − λ2Þ
2

sin
ϕ

α

�
; ð2Þ

where V0, λi, and α are parameters. In our conventions,
ϕ, λi, and α are dimensionless and ½V0� ¼ length−2.
Equation (5a) requires V0 > 0. For the first step, we can
assume λ1 > 0, jλ2j < λ1, and α > 0. Figure 1 plots VðϕÞ
for four cases. The α controls the period of oscillation. The
λ varies as λ1 → λ2 → λ1 → λ2 → � � � with ϕ increasing
[see Eq. (7b) for the definition of λ]. This potential can be
regarded as an approximate but simple realization of the
repeated double exponential potential. For suitable param-
eter settings, we expect the Universe is decelerating when
λ ≈ λ1 and accelerating when λ ≈ λ2. However, this is just
our initial idea. The system behaves much more complex as
we will see in Sec. III. Variation of the action with respect
to the metric gives the gravitational field equations

Gμν ¼ κTμν þΦμν; ð3Þ

whereΦμν ¼ ∂μϕ∂νϕ − gμνLϕ. Variation of the action with
respect to ϕ gives the scalar field equation□ϕ ¼ V 0, where
V 0 ≡ dV=dϕ. Hereafter we call the model described by
Eq. (2) as the sine oEoS model, where the first letter o
means oscillating and EoS means the equation of state.
Replacing the sine with the cosine in Eq. (2) does not
change the essence of the model as cosðxÞ ¼ sinðxþ π=2Þ.
To be consistent with current observations [46], we

assume the Universe is described by the flat Friedmann-
Lemaître-Robertson-Walker metric

ds2 ¼ −c2dt2 þ a2ðdx2 þ dy2 þ dz2Þ; ð4Þ

where a ¼ aðtÞ. For the normal matters, the energy-
momentum tensor is Tμ

ν¼diagf−ρmc2;pm;pm;pmg and
energy conservation is described by _ρmþ3ð1þwmÞHρm¼
0. For the scalar field, we can assume ϕ ¼ ϕðtÞ, which

FIG. 1. The potential of the sine oEoS model. The slope of the
solid curve at ϕ ¼ nπ (n is an integer) is written at the top of the
figure. V 0 ¼ 0 at points A, B, and C.

S. X. TIÁN PHYS. REV. D 101, 063531 (2020)

063531-2



gives X ¼ − _ϕ2=ð2c2Þ and Φμ
ν ¼ diagfX − V;−X − V;

−X − V;−X − Vg. Substituting the above results into the
gravitational and scalar field equations, we obtain

H2 ¼ 8πG
3

ρtot ; ð5aÞ

ä
a
¼ −

4πG
3

�
ρtot þ

3ptot

c2

�
; ð5bÞ

ϕ̈þ 3H _ϕþ c2V 0 ¼ 0; ð5cÞ
where ρtot ¼ ρm þ ρϕ, ptot ¼ pm þ pϕ, ρϕ ≡ ð−X þ VÞ=
ðκc2Þ, and pϕ ≡ ð−X − VÞ=κ. Equivalently, we can define
the EoS of the scalar field as wϕ ≡ pϕ=ðρϕc2Þ and Eq. (5c)
can be written as _ρϕ þ 3ð1þ wϕÞHρϕ ¼ 0. Equation (5c)
can be derived from Eqs. (5a) and (5b) as we expected. In
order to compare theoretical results with observations,
we define

Ωϕ ≡ 8πG
3H2

ρϕ; Ωm ≡ 8πG
3H2

ρm ¼ 1 −Ωϕ;

wtot ≡ ptot

ρtotc2
¼ Ωmwm þ Ωϕwϕ: ð6Þ

All the fitting parameters of the cosmological constraints
about the cosmic background evolution are enclosed in
fwtot; H0g. For example, the luminosity distance DLðzÞ ¼
ð1þzÞc
H0

R
z
0

dz̃
Eðz̃Þ, where E2ðzÞ ¼ expðR z

0
3½1þwtotðz̃Þ�

1þz̃ dz̃Þ. In this

paper, we do not fit real data because the chaos phenome-
non in the model makes the classical statistical methods
invalid (see Sec. III for detailed discussions). Instead, in the
next section, we discuss how well the sine oEoSmodel with
certain parameter settings can recover the ΛCDM model in
the late-time era.

III. MAIN PROPERTIES

Phase space analysis is a powerful tool for quantitatively
understanding the cosmological dynamics [47]. As in the
case of exponential potential [44], we define the dimen-
sionless variables

x1 ≡
_ϕffiffiffi
6

p
H
; x2 ≡ c

ffiffiffiffi
V

p
ffiffiffi
3

p
H
: ð7aÞ

As declared in the review paper [47], these two variables
were first introduced in Ref. [44]. Based on this definition,
we have Ωϕ ¼ x21 þ x22 and wϕ ¼ ðx21 − x22Þ=Ωϕ. For the
sine oEoS model, we also need

λ≡ −
V 0

V
¼ λ1 þ λ2

2
þ λ1 − λ2

2
cos

ϕ

α
; ð7bÞ

ν≡ ffiffiffi
6

p
ðλ2 − μÞ ¼ −

ffiffiffi
6

p ðλ1 − λ2Þ
2α

sin
ϕ

α
; ð7cÞ

where μ≡ V 00=V. The cosmic evolution equations can then
be written as

dx1
dN

¼ −3x1 þ
ffiffiffi
6

p

2
λx22 þ

3

2
x1L; ð8aÞ

dx2
dN

¼ −
ffiffiffi
6

p

2
λx1x2 þ

3

2
x2L; ð8bÞ

dλ
dN

¼ νx1; ð8cÞ

dν
dN

¼ 3x1
α2

ðλ1 þ λ2 − 2λÞ; ð8dÞ

where L ¼ ð1 − wmÞx21 þ ð1þ wmÞð1 − x22Þ, N ≡ lnða=aiÞ
and ai is the value of the scale factor at any fixed time
point. Similar to the exponential and power-law potentials
[44,48], the parameter V0 disappears in the dynamical
system equations in our model. The evolution of this
physical system is completely described by trajectories
within the region x21 þ x22 ≤ 1, x2 ≥ 0, λ2 ≤ λ ≤ λ1 and
jνj ≤ ffiffiffi

6
p ðλ1 − λ2Þ=ð2αÞ. One constraint equation given by

Eq. (7) is

νðλÞ ¼ ν�ðλÞ ¼ �
ffiffiffi
6

p

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλ1 þ λ2Þ − λ2 − λ1λ2

q
: ð9Þ

The sign of the above equation is changeable with the
system evolution. This is why we do not substitute Eq. (9)
into Eq. (8c) to eliminate ν to obtain a three-dimensional
dynamical system. Using the four-dimensional dynamical
system Eq. (8) to characterize the evolution of the Universe
can avoid the sign selection problem, which is useful to the
following analyses.

A. Critical points and stability

We are now ready to find the critical points of the four-
dimensional dynamical system Eq. (8) and to perform the
stability analysis. We only consider the case where wm ¼ 0
or 1=3. Depending on the value of λ2, we have up to four
critical points which are listed in Table I. In principle, one
can directly obtain the stability of points A, B, and C from
Fig. 1. However we also perform the standard stability
analysis (see Ref. [47] for a lecture).
Point O means the Universe is dominated by normal

matters, which is unstable as we expected. Point C is the
only stable attractor and stands for the cosmological
solution where the Universe is dominated by scalar field
with wϕ ¼ −1. This is inconsistent with the physical
scenario we expected. Thus we would require λ2 ≥ 0 to
avoid point C for the viable model. This requirement also
makes the saddle point B disappear. Point A is a saddle
point and we will discuss more about it later. The terrible
thing is, unlike the results of most dark energy models
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(see Ref. [47] for a review), here the critical points do not
provide any quantitative information about the evolution of
the system for λ2 > 0.

B. The viable parameter space

We want to find the allowed region in the parameter
space in which the sine oEoS model could present a
reasonable cosmological background evolution. Our dis-
cussion strongly depends on the results of the exponential
potential. Here we summarize the main results obtained in
Ref. [44]. For the potential VðϕÞ ¼ V0 expð−λϕÞ, where λ
is a constant, if λ2 < 3ð1þ wmÞ, then point ðx1; x2Þ ¼
ðλ= ffiffiffi

6
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2=6

p
Þ is the only stable critical point and

represents a Universe dominated by the scalar field with
wϕ ¼ −1þ λ2=3. If λ2 > 3ð1þ wmÞ, then point ðx1; x2Þ ¼
ð ffiffiffiffiffiffiffiffi

3=2
p ð1þ wmÞ=λ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1 − w2

mÞ=ð2λ2Þ
p

Þ is the only stable
critical point and represents a scaling solution with Ωϕ ¼
3ð1þ wmÞ=λ2 and wϕ ¼ wm. Intuitively, in the sine oEoS
model, we may can use a large λ1 to realize ρϕ tracks ρm
and use a small λ2 to accelerate the Universe.
To solve the coincidence problem, we expect ρϕ and ρm

are in the same order of magnitude many times across the
whole cosmic history. In the limit of α ≪ 1, Eq. (2) can be
approximately regarded as a single exponential potential
with λ ¼ ðλ1 þ λ2Þ=2. In this limit, we expect ρϕ tracks ρm
in both radiation and matter era, which requires
ðλ1 þ λ2Þ2=4 > maxð3½1þ wm�Þ ¼ 4, i.e., λ1 þ λ2 > 4.
Increasing α makes the scaling solution disappear and the
ratio ρϕ=ρm time-dependent. However, numerical results
show that generally λ1 þ λ2 > 4 is sufficient to satisfy the
requirement that ρϕ is in coincidence with ρm many times
even for α ¼ Oð1Þ. In addition, very large α is not allowed
because increasing α reduces the frequency of coincidence
as shown in Fig. 2. Comparing the left and right sides of
Fig. 2, we find the coincidence frequency is independent of
the initial conditions. The exact upper limit on α may be
subjective and a reasonable one can be α≲Oð1Þ.
To explain the cosmic late-time acceleration, we need wϕ

can be very close to −1 in some time period (see Eq. (51) in
Ref. [46] for observational constraints). In the limit of
α ≫ 1, locally we may can regard Eq. (2) as a single

exponential potential. The minimum value of wϕ should be
reached at λ ≈ λ2 and wϕ;min ≈ −1þ λ22=3. This result is
also numerically verified for α ¼ Oð1Þ. If we require
wϕ;min < −0.95 as given in Ref. [46], then λ2 < 0.39. In
addition, very small α is not allowed because decreasing α
increases the value of wϕ;min (and also wtot;min as shown in
Fig. 2). Unfortunately, the exact lower limit on α is not
obtained here. One important thing is worth mentioning.
For λ2 ¼ 0, the stability analysis summarized in Table I
shows point A is a saddle point. Interestingly, this point can
however attract many nontrivial solutions (see Fig. 3 for an
example, which shows the scalar field with sufficient low
kinetic energy will be trapped into point A). In order to
improve the robustness of the sine oEoS model, it is
reasonable to require λ2 > 0. In summary, the viable
parameter space should be λ1 þ λ2 > 4, 0 < λ2 < 0.39,
α ¼ Oð1Þ and V0 is arbitrary. If we assume ϕ ¼ Oð1Þ at the
onset of the cosmic big bang, it is reasonable to assume
V0 ¼ Oðl−2P Þ, where lP is the Planck length. The sine oEoS
model can explain the late-time acceleration with only
one Planck scale parameter and several dimensionless
parameters of order unity. In this sense no parameters
need fine-tuning in our model.
In this paper, we do not perform complete parameter

constraints with real data (see the next subsection for
reasons), but we do find a set of parameters that make
the sine oEoS model very close to the standard ΛCDM
model in the late-time Universe. For example, one can
easily verify Ωm ¼ 0.29, Ωϕ ¼ 0.71, wtot ¼ −0.70, and
dwtot=dN ¼ −0.61 at N ¼ 59.28 in Fig. 2(d), where
dwtot=dN can be calculated based on Eq. (8) and the
derivative of Eq. (6). In principle, we can set N ¼ 59.28
as today and set N equals to a number smaller than zero as
the beginning of the big bang if necessary. For the ΛCDM
model, we know Ωm ≈ 0.3, ΩΛ ≈ 0.7, wtot ≈ −0.7, and
dwtot=dN ≈ −0.63 at today. Therefore, it is reasonable to
believe that the sine oEoS model can well fit the obser-
vations about the late-time acceleration.

C. Chaos

Chaos appears in Figs. 2 and 3. We think two phenomena
are related to the emergence of chaos. One is that no critical

TABLE I. Critical points of the dynamical system Eq. (8) with existence and physical properties. The label column is consistent
with the labels in Fig. 1. The methods to analyze the stability are listed in the last column, in which linear stability theory is
performed to Eq. (8) while center manifold theory is performed to Eq. (5). Here b� ¼ ð−3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12

ffiffiffiffiffiffiffiffiffiffiffiffi
−λ1λ2

p
=α

p
Þ=2 and

c� ¼ ð−3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 − 12

ffiffiffiffiffiffiffiffiffiffiffiffi
−λ1λ2

p
=α

p
Þ=2, which give bþ > 0, b− < 0 and Reðc�Þ < 0.

Label ðx1; x2; λ; νÞ Existence Ωϕ Eigenvalues Stability Method

O ð0; 0; λ; νÞ All λ2 0 ½0; 0; 3ðwm−1Þ
2

; 3ð1þwmÞ
2

� Saddle Linear stability theory
A (0,1,0,0) λ2 ¼ 0 1 ½0; 0;−3;−3ð1þ wmÞ� Saddle Center manifold theory
B ð0; 1; 0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−6λ1λ2
p

=αÞ λ2 < 0 1 ½0;−3ð1þ wmÞ; bþ; b−� Saddle Linear stability theory
C ð0; 1; 0;− ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−6λ1λ2
p

=αÞ λ2 < 0 1 ½0;−3ð1þ wmÞ; cþ; c−� Stable Center manifold theory
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point is stable for λ2 ≥ 0. The other is that the evolution of
the scalar field is not attracted to the scaling solution when
λ ≈ λ1 as shown in the shaded region in Fig. 2(f). This is
understandable since the only stable critical point for
VðϕÞ ∝ expð−λ1ϕÞ is a spiral (see [44] and note that λ1
is large enough in our model), not a node, and the λ ≈ λ1
part in the sine oEoS model is too short to successfully
attract the scalar field. In contrast, the only stable critical
point for VðϕÞ ∝ expð−λ2ϕÞ is a node [44] and can attract
the scalar field faster. This result violates our initial idea
that the Universe is decelerating when λ ≈ λ1 and accel-
erating when λ ≈ λ2. However, the model can still be used

to realize the desired scenario and to solve the fine-tuning
and coincidence problems (see discussions in Sec. I and the
previous subsection).
The worse thing is that chaos make cosmological

constraints tricky. In some classical dark energy models,
the tracker property makes the cosmic late-time evolution
independent of the dark energy initial conditions
[12,13,26]. In this case, we do not need to consider these
initial conditions in the cosmological constraints. However,
in the sine oEoS model, the late-time evolution depends on
the initial conditions of the scalar field. Furthermore, if we
set N ¼ 0 as the beginning of the big bang and set N ¼ 60
as today, then the dependence should be quite strong. The
consequence is that we have to consider the initial con-
ditions as fitting parameters in the cosmological constraints
and the resulting posterior distribution used in the classical
statistical analysis changes dramatically with respect to
these parameters. There should be many peaks in the
posterior distribution, which makes the contour plots not
reflect the parameter distributions correctly.

IV. DISCUSSION

In conclusion, qualitatively, the scenario described in
Sec. I seems like a natural and simple way to eliminate both
the fine-tuning and coincidence problems. Quantitatively,
we have demonstrated the availability of the sine oEoS
model proposed in this paper. However, our model seems to
lead to some tricky consequences. The central problem is
that the cosmic evolution strongly depends on the initial
conditions in our model. On the one hand, this dependence
leads to the technical difficulty in quantitatively con-
straining the model’s parameters with observational data.

(a)

(b)

(c)

FIG. 3. Evolution of Ωϕ and wtot for the sine oEoS model.
The parameters are wm ¼ 0, λ1 ¼ 5, λ2 ¼ 0, and α ¼ 0.4. The
initial conditions are x2;0 ¼ 0.1, λ0 ¼ 0, ν0 ¼ 0, x1;0 ¼ 0.2, 0.1,
and 0.05 for the first, second, and third row, respectively.

(a) (b)

(d)

(f)

(c)

(e)

FIG. 2. Evolution of the dark energy relative energy densityΩϕ and the total effective EoS parameter wtot for the sine oEoS model. The
parameters are wm ¼ 0, λ1 ¼ 4.5, λ2 ¼ 0.2, α ¼ 0.5, 0.75, and 1.0 for the first, second and third row, respectively. The initial conditions
are x1;0 ¼ 0.75, x2;0 ¼ 0.5, λ0 ¼ 0.3, ν0 ¼ νþðλ0Þ, and ν0 ¼ ν−ðλ0Þ for the first and second column, respectively. The plots start at
N ¼ 0 and end at N ¼ 60. Here wλ2 ¼ −1þ λ22=3 and λnormalized ≡ ð2λ − λ1 − λ2Þ=ðλ1 − λ2Þ ¼ cosðϕ=αÞ, which is plotted in the
subplots (d) and (f) and can be used to track the position of ϕ in VðϕÞ. Note that λnormalized ≈ 1 corresponds to λ ≈ λ1 and λnormalized ≈ −1
corresponds to λ ≈ λ2.
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On the other hand, the strong dependence in a sense is
another fine-tuning problem if the allowed initial condi-
tions are very rare. Figure 2 indicates that reasonable initial
conditions and parameter settings do exist. However,
whether these available initial conditions and parameter
settings are widespread needs further exploration.
In addition to explaining the cosmic late-time acceler-

ation, our model also provides an acceleration phase for the
early Universe. This early acceleration can be used to solve
horizon problem, which is related to the inflation theory
[49]. However, at least for now, we cannot conclude that
our model provides a successful inflationary scenario. The
reason is that many issues including the flatness problem
and the initial conditions of perturbations have not been
analyzed in this paper. Perhaps even worse, Eq. (2) involves
an exponential potential with an extra sine function and
current observational data disfavor the exponential type of
inflation potentials [50]. This do not directly disable our
model in the early Universe and further analysis is needed.
Work is currently underway to provide a quantitative
analysis of the inflationary stage for our model.
Over the past forty years, cosmologists have been

convinced that the Universe has gone through two accel-
eration phases: inflation (the early-time acceleration) and
the late-time acceleration. In Sec. I, we pointed out that
multiacceleration scenario may be the key to solving the
cosmological coincidence problem. There are other clues
suggesting that the middle-time cosmic evolution may
differ from the predictions of the standard cosmological
model, e.g., the early dark energy scenario recently
proposed to ease the Hubble tension [51–54]. We are
publishing this paper in the hope that it will highlight the
problem: Is there acceleration phase in the middle-time
Universe?
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APPENDIX COMMENTS ON THE EXISTING
OSCILLATING DARK ENERGY MODELS

Here we discuss whether the existing oscillating dark
energy models [27–38] can realize the physical scenario
that the Universe is dominated by normal matters and dark
energy alternately across the whole cosmic history. Solving
the energy conservation equation _ρþ 3ð1þ wÞHρ ¼ 0,
we obtain

ρ ∝ exp

�Z
z

0

3½1þwðz̃Þ�
1þ z̃

dz̃

�
¼ exp

�
3

Z
N

0

1þwðÑÞdÑ
�
;

ðA1Þ

where z is the redshift, N ≡ lnða0=aÞ and a0 is the value of
the scale factor at today (note that here the definition ofN is
different from that in the main text). For the normal matters,
Eq. (A1) gives the dust density ρdust ∝ ð1þ zÞ3 and the
radiation density ρr ∝ ð1þ zÞ4. For the dark energy with
sin z-type oscillation wDE ¼ w0 þ w1 sin z [27], Eq. (A1)
gives ρDE ∝ ð1þ zÞ3þ3w0 for high redshift (note that
limz→þ∞

R
z
0
sin z̃
1þz̃ dz̃ ¼ const.). In this case, on the one hand,

ρDE cannot track the normal matter density in both the early
and late-time Universe. On the other hand, no deceleration-
acceleration transition occurs in the early Universe.
Thus this model cannot realize the desired scenario.
For the dark energy with sinN-type oscillation w ¼ w0 þ
w1 sinðw2N þ w3Þ [28,29], the model satisfies our require-
ment if there is only one type of normal matter in the
Universe. However, the realistic Universe contains radia-
tion and dust. Thus this model is also invalid. Similar
discussions also apply to the other type of EoS discussed in
Refs. [30–38].
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