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It is widely believed that electroweak baryogenesis should be suppressed in strong phase transitions with
fast-moving bubble walls, but this effect has never been quantitatively studied. We rederive fluid equations
describing transport of particle asymmetries near the bubble wall without making the small-wall-velocity
approximation. We show that the suppression of the baryon asymmetry is a smooth function of the wall
speed and that there is no special behavior when crossing the sound speed barrier. Electroweak
baryogenesis can thus be efficient also with strong detonations, generically associated with models with
observably large gravitational waves. We also make a systematic and critical comparison of our improved
transport equations to another one commonly used in the literature, based on the vacuum expectation value
(VEV)-insertion formalism.
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I. INTRODUCTION

Electroweak symmetry exhibits a phase transition in the
early universe that is known to be a smooth crossover in the
standard model (SM) 16 [1], but could become first order if
new physics beyond the SM couples significantly to the
Higgs boson. A strongly first order electroweak phase
transition (EWPT) is one of the necessary requirements for
electroweak baryogenesis (EWBG) [2–5], and it could also
be a source of gravity waves that might be observed at LISA.
There is a perception that EWBG and observable gravity

waves would tend to be mutually exclusive, however, since
the latter require very strong phase transitions, which lead
to fast-moving bubbles, with wall velocity vw ∼ 1. This
makes it difficult for particle asymmetries to diffuse
efficiently in front of the wall and bias sphalerons to create
the baryon asymmetry. There may be some tension between
the two effects, but until recently there have been few
quantitative studies including transport of the particle
asymmetries [6–11]. Most works have focused on the
coexistence of observable gravitational waves with the

sphaleron washout condition v=T ≳ 1 [12–22], without
taking into account the problem of reduced particle trans-
port near the wall.
The theoretical deficit is in large part due to the fact that

transport equations for the particle asymmetries have been
derived using the approximation vw ≪ 1, making it impos-
sible to reliably predict the baryon asymmetry at large vw.
Since itwas believed thatvw ≲ 0.1 in the SM[23–25] and the
minimal supersymmetric standard model (MSSM) [26], the
small-vw approximation seemed adequate at the time. In
recent years, however, there has been increased interest in
two-step phase transitions involving a scalar singlet field
[27],which is able to generate stronger phase transitionswith
typically higher vw. Such transitions can more easily satisfy
the sphaleron washout constraint, and in addition can be a
strong source of gravitational waves. It is therefore timely to
revisit the transport equations relevant for EWBG and try to
extend their applicability to higher vw. We will show in
particular that nothing special happens when the wall speed
crosses the sound barrier, and that the baryon asymmetry
only vanishes smoothly in the extreme limit vw → 1.1

This work has two main goals. The first is to update the
fluid equations for the semiclassical force mechanism*jcline@physics.mcgill.ca
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1Throughout this work, vw is taken as a proxy for the relative
speed between the bubble wall and the plasma in front of it. In
realistic solutions of the fluid equations near the wall, it can
happen that this relative velocity, which is the relevant quantity
for diffusive transport, differs from the wall velocity as measured
with respect to the plasma at infinite distance.
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[28–33] to arbitrary wall velocities. This is strongly
motivated because the currently existing formulation [34]
breaks down for wall velocities exceeding the sound
speed. Our second purpose is to perform a quantitative
comparison between the semiclassical method and the
competing “VEV-insertion” approximation [35,36]. These
two approaches agree that the particle densities contributing
to the baryon asymmetry are determined by (quantum)
Boltzmann equations, but it remains controversial what
precise form they should take.
The semiclassical method is designed to be valid when

the de Broglie wavelength of the particles, of order the
inverse temperature T−1, is smaller than the typical width
of a bubble wall Lw. The interactions of particles with the
wall can then be treated as coming from a semiclassical
force that can be derived using the Wentzel-Kramers-
Brillouin (WKB) approximation [29,37,38], or from the
closed-time-path (CTP) formalism of the thermal field
theory [30–33,39–42]. In the semiclassical approach the
CP-violating force appears at the level of the Boltzmann
equations. It is straightforward to approximate them by a
set of moment equations with source terms induced by
the force, which can be determined systematically in an
expansion in powers of ðLwTÞ−1 (though the subleading
corrections have not been computed).
The VEV-insertion method is also derived starting

from the CTP formalism. Here quantum Boltzmann
equations are manipulated to yield their classical counter-
parts at the level of integrated particle densities. In this
approach the source term is not easy to extract and one
must make a rather drastic approximation, expanding a
two-point function to leading order in the spatially
varying Higgs field VEV vðzÞ [35,36]. This is known
as the VEV-insertion approximation. It can be regarded as
an expansion in powers of vðzÞ=T, which cannot be very
small inside the bubble if the phase transition is suffi-
ciently strong to avoid washout. It is hoped that since
vðzÞ is somewhat smaller inside the bubble wall, this can
still be a reasonable approximation. But if that is the
case, it must be capturing quite different physics from the
WKB approach, since the two formalisms cannot be
obviously reconciled, and in general they make quite
different predictions.
For example, EWBG in the MSSM was analyzed using

both formalisms [29,37,43–45], with the VEV-insertion
method giving significantly larger estimates for the asym-
metry. However, a systematic study of the differences
between the two methods is lacking in the literature, in
particular in comparing their predictions as a function of
parameters characterizing the bubble wall. We will
provide such a comparison in this work, for a prototypi-
cal model of CP violation in the wall. As was the case
for studies of EWBG in the MSSM, we will demonstrate
a large discrepancy between the predictions of the two
methods.

We start in Sec. II by arguing that the transport equations
should not suffer from any sort of critical behavior for
bubble walls that move near the speed of sound, but should
rather only do so as vw → 1. In Sec. III we review the
derivation of the WKB transport equations and the origin
of their vw dependence. We point out an inconsistency in
the approximations used in Ref. [34] (hereafter denoted
FH06), and remedy it by a more careful evaluation of the
coefficient functions for general values of vw. In Sec. IV we
introduce our fiducial model, and in Sec. V we compare
the predictions of the FH06 equations and our improved
fluid equations in the semiclassical approach. In Sec. VI
we quantitatively compare the semiclassical approach to
the VEV-insertion framework. Conclusions are given in
Sec. VII.

II. RELEVANCE OF WALL VELOCITY

The basic idea for reducing the full Boltzmann equations
to a set of coupled first order fluid equations for the
chemical potential and velocity perturbation, in the context
of electroweak baryogenesis, was set out in Ref. [28]. The
method was elaborated for the MSSM in Ref. [29] and for
general two-Higgs doublet models in Ref. [34]. In princi-
ple, one can always “integrate out” the velocity perturba-
tion and convert the coupled system into a single second
order diffusion equation for the chemical potentials, as was
done in Ref. [29]. However, this is complicated by the fact
that any particle that couples strongly to the Higgs boson
(as required to source electroweak baryogenesis) has a
mass that varies within the bubble wall, and therefore the
coefficients in the diffusion equation are functions of z, the
distance transverse to the wall. If one makes the crude
approximation of ignoring baryon violation by sphalerons
inside the bubble and taking the masses to vanish outside,
then the z-dependence goes away and Green’s function
techniques can be used to solve the diffusion equations.
However, this effectively approximates the wall as being
very thin, which is inconsistent with the semiclassical
expansion underlying the whole fluid approach. For quan-
titative results, one should numerically solve the coupled
equations keeping track of the full z-dependence of the
coefficients.
An important contribution of FH06 was to calculate all

of the coefficient functions KFH
i ðxÞ, where x ¼ mðzÞ=T,

appearing in the fluid equations. In their approach, these
functions are independent of the wall velocity vw, which
was achieved by expanding to leading order in vw.
Therefore one could question to what extent this formalism
can be accurate for walls with large wall velocities.
It is expected that diffusion lengths should diminish as

vw gets large. One can make a simple estimate to
quantify this statement, by asking what fraction F of
particles in the plasma are moving faster than the wall, in
its direction of motion. We would expect that only of
order is this fraction able to contribute to the diffusion
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tail for the CP asymmetry in front of the wall. It is
straightforward to show2 that

F ¼
1
2

R
∞
γwvwm

dpp2ð1 − vwE=pÞ=ðeβE þ 1ÞR
∞
0 dpp2=ðeβE þ 1Þ ð1Þ

for a massive fermion. In Fig. 1 we plot F versus vw
for particles with increasing values of m=T. It is clear
that nothing dramatic happens near the sound speed
vs ≅ 1=

ffiffiffi
3

p
; instead vw ¼ 1 is the only critical speed.

III. DERIVATION OF TRANSPORT
EQUATIONS

The Boltzmann equation acting on the unperturbed
distribution functions can be written in the wall frame as

ðvg∂z þ F∂pz
Þf ¼ C½f�: ð2Þ

For a fermion with a CP-violating complex mass term
m̂ðzÞ ¼ mðzÞeiγ5θðzÞ [29,31],

vg ¼
pz

Ew
; ð3Þ

F ¼ −
ðm2Þ0
2Ew

þ ssk0
ðm2θ0Þ0
2EwEwz

; ð4Þ

where 0 denotes ∂z. Here E2
wz ¼ E2

w − p2
jj and Ew is the

conserved wall frame energy. sk0 ¼ 1 for particles and −1
for antiparticles, and s ¼ �1 for the states that are the
eigenstates of the spin s in the z-direction in the frame
where the momentum of the state parallel to the wall pjj

vanishes. For the wall frame helicity eigenstates one should
replace [46]3

s → sh ¼ hγjj
pz

jpj≡ hsp; ð5Þ

where h ¼ �1 is the helicity and γjj ¼ Ew=Ewz is the
Lorentz boost for going to the frame where pjj ¼ 0. In
practice the difference between the two spin bases is small
[46]. In particular in the massless limit sh ¼ hsignðpzÞ.
Equation (3) is actually the definition of the physical
momentum pz from the group velocity determined by
the WKB dispersion relation [29,31]. It is convenient to
write this relation in a form that defines Ew in terms of the
physical momentum:

Ew ≈ E − shsk0
m2θ0

2EEz
≡ Eþ shsk0ΔE; ð6Þ

where E≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and Ez ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þm2

p
. Using these

variables, Eqs. (3) and (4) become

vg ¼
pz

E
þ shsk0

m2θ0

2E2Ez
; ð7Þ

F ¼ −
ðm2Þ0
2E

þ shsk0

�ðm2θ0Þ0
2EEz

−
m2ðm2Þ0θ0
4E3Ez

�
: ð8Þ

Equations (6)–(8) agree with those derived in [34] when
one sets sh → s.
For bosons there is no CP-violating semiclassical force

at this order in the gradient expansion [29]. However, the
CP-even kinetic force remains, and so all equations are
valid for bosonic degrees of freedom if one simply sets
sk0 ¼ 0 everywhere.
The starting point for deriving fluid equations from the

Boltzmann equation is to expand particle distribution
functions around the equilibrium distribution. Because
the kinetic momentum pz is conserved in collisions, the
expansion in the rest frame of the bubble wall looks like

f ¼ 1

eβ½γwðEwþvwpzÞ−μ� � 1
þ δf; ð9Þ

where γw ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2w

p
. Here μ is a pseudochemical

potential that defines the particle asymmetry and δf is
an extra term whose specific form should be left unspeci-
fied,4 except for stipulating that

0 0.2 0.4 0.6 0.8 1
v

w

0

0.1

0.2

0.3

0.4

0.5
F

FIG. 1. Fraction of plasma particles that can stay ahead of a
bubble wall moving at speed vw. Different curves are for fermions
with m=T ¼ 0, 1, 2, 3, 4 (top to bottom).

2By first doing the angular integral over cos θ ¼ pz=p.

3We correct a typo in Eq. (E3) of [46], by replacing jpzj → pz.4Unlike the perturbation in the chemical potential, whose
algebraic form is enforced by fast elastic scattering processes, the
form of the velocity perturbation is not predictable [29]. Thus,
assuming a specific ansatz for its shape in momentum space can
lead to unphysical behavior, in particular at large vw.
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Z
d3pδf ¼ 0: ð10Þ

This condition is just the definition of μ; it ensures that δf
does not affect the local particle density.

A. Classification by CP parity

Next observe that the semiclassical force in (8) contains
two distinct pieces: the first, the CP-even term, is equal
for particles and antiparticles while the second, the
CP-odd term, is opposite for particles and antiparticles.
The CP-even term is of first order in gradients while the
CP-odd term is of second order. Because of this hierarchy,
one can solve the CP-even and CP-odd equations sepa-
rately. To this end we introduce the definitions

μ≡ μe þ sk0μo;

δf ≡ δfe þ sk0δfo: ð11Þ

Using these together with Eq. (6) we can write Eq. (9) as

f ≈ f0w þ Δfe þ sk0Δfo; ð12Þ

where, expanding to leading consistent order in both CP-
even and CP-odd quantities,

Δfe ¼ −μef00w þ δfe;

Δfo ¼ ð−μo þ shγwΔEÞf00w − shγwΔEf000wμe þ δfo; ð13Þ

where the prime denotes d=dðγwEÞ and

f0w ¼ 1

eβ½γwðEwþvwpzÞ� � 1
: ð14Þ

The expansion (12) is also necessary for bosons. Even
though bosonic equations do not have direct CP-violating
sources at the order to which we are working, they can
inherit CP-violating perturbations from their interactions
with fermions.
To derive the CP-even equation we drop the CP-odd

parts proportional to sk0 in the expansion (12) and in
Eqs. (7) and (8) for the group velocity and the semiclassical
force. After this the Boltzmann equation (2) immediately
becomes

L½μe; δfe� ¼ Se þ δCe; ð15Þ

where the Liouville operator is defined as

L½μ; δf�≡ −
pz

E
f00w∂zμþ vwγw

ðm2Þ0
2E

f000wμ

þ pz

E
∂zδf −

ðm2Þ0
2E

∂pz
δf; ð16Þ

and the CP-even source term is

Se ¼ vwγw
ðm2Þ0
2E

f00w: ð17Þ

The collision term for the CP-even perturbation δCe is
model dependent, and we do not specify it further until
Sec. IV. TheCP-even equations (15)–(17) are valid for both
bosons and fermions, and are helicity independent, unlike
their CP-odd counterparts.

B. CP-odd equation

In the CP-odd sector we must account for the helicity.
Because the relevant physical quantity for EWBG is the
left-handed chiral asymmetry in front of the wall, one often
concentrates only on the negative helicity sector,5 but to be
general we keep the full helicity dependence. Projecting out
the CP-odd part of the Boltzmann equation (2) requires
some work, but the final result is analogous to Eq. (15) up
to source and collision terms:

L½μo; δfo� ¼ So þ δCo; ð18Þ

where the CP-odd source term is

Soh ¼ −vwγwhsp
ðm2θ0Þ0
2EEz

f0vw

þ vwγwhsp
m2ðm2Þ0θ0
4E2Ez

�
f0vw
E

− γwf00vw

�
ð19Þ

and the collision integral δCo is again model dependent,
which we will specify later.
Setting h ¼ −1 and sp ¼ signðpzÞ, Eq. (19) agrees with

FH06 up to an overall sign. A number of CP-odd source
terms computed in FH06, proportional to μe and δfe, were
dropped during evaluation, since they are higher order in
gradients.

C. Moment expansion

One could solve μe;o and δfe;o directly from Eqs. (15)
and (18). It is more economical, however, to first reduce
them to a set of moment equations. Because of their
identical forms, the equations for both CP parities can
be treated simultaneously. We introduce moments by
integrating over p, being weighted by ðpz=EÞl, and divid-
ing by a normalization factor

5This is reasonable when masses vanish in front of the wall. If
this is not the case, one should compute the asymmetry in the
positive helicity sector as well, and project out the left chiral
asymmetry from both helicity contributions. Note that while
the Liouville terms are identical for both helicities, the sources
are equal and opposite. The collision terms are also helicity
dependent.
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N1 ≡
Z

d3pf00w;FD ¼ γw

Z
d3pf00;FD

≡ γwN̂1 ¼ −γw
2π3

3
T2; ð20Þ

where f0;FD is the equilibrium distribution function for a
massless fermion in the fluid frame. It is convenient to
normalize even the equations for a massive particle using
this universal factor, so that when several species of
particles are coupled through their interactions, the rates
in the collision terms are related in a simple way between
equations for different species. Then terms appearing in the
fluid equations can be expressed as averages over the phase
space of the form

hXi≡ 1

N1

Z
d3pX: ð21Þ

In particular, the integrals over δf define the velocity
perturbations

ul ≡
��

pz

E

�
l
δf

�
: ð22Þ

The lth moment of the evolution equation can then be
written as

��
pz

E

�
l
L

�
¼

��
pz

E

�
l
ðS þ δCÞ

�
: ð23Þ

Next we focus on the Liouville term (16), which contains
important vw dependence.

D. Liouville term

Our goal is to reduce the system (23) to a closed set of
equations for μ’s and the velocity perturbations (22). We
include only the two lowest moments, as has been done so
far in the literature [34,46,47].6 Taking the zeroth and first
moment of the Liouville operator we find

hLi ¼ −D1μ
0 þ u01 þ vwγwðm2Þ0Q1μ; ð24Þ

�
pz

E
L

�
¼ −D2μ

0 þ u02 þ vwγwðm2Þ0Q2μ

þ ðm2Þ0
�

1

2E2
δf

�
; ð25Þ

where 0 again denotes ∂z except when acting on the
distribution functions, where it denotes ∂γwE, and we
introduce the functions

Dl ≡
��

pz

E

�
l
f00w

�
; ð26Þ

Ql ≡
��

pl−1
z

2El

�
f000w

�
: ð27Þ

The D- and Q-functions are defined separately for bosons
and for fermions, since the distribution function f0w
differs in the two cases. In the small vw-limit they reduce
to the FH06-functions as D1 → −vwKFH

1 , D2 → KFH
4 , and

Q1 → KFH
2 . The Q2 term was, however, overlooked

in FH06.
Equation (25) contains two problematic terms: u2 is

higher order in the expansion than the order to which we are
working, and the last term is not obviously related to
velocity perturbations (22). To treat the first term we need
to introduce a truncation scheme, which relates u2 to u1.
(More generally one should relate the nth moment to
moments ul with l < n.) Here we adopt a simple linear
relation, henceforth denoting u1 ¼ u: u2 ≡ Ru, where R is
a function to be defined shortly.
To define the last term in (25) we need a further

factorization assumption. Following Ref. [29] and FH06,
for any X that does not correspond to a velocity perturba-
tion we replace

hXδfi → ½XðE=pzÞ�u; ð28Þ

½X �≡ 1

N0

Z
d3pXf0w; ð29Þ

where N0 is another normalization factor,

N0 ¼
Z

d3pf0w ¼ γw

Z
d3pf0 ≡ γwN̂0: ð30Þ

Unlike N1, N0 is defined in terms of the massive distri-
bution function f0 of the particle under consideration.
In Eq. (29), it may happen that X does not have any

power of pz to be canceled by the factor E=pz in Eq. (28).
Nevertheless the integral can be defined using the Cauchy
principal value. In particular,

�
1

2E2
δf

�
→

�
1

2pzE

�
u≡ R̄u: ð31Þ

After performing the singular angular integral using the
principal value prescription, we find

R̄ ¼ π

γ2wN̂0

Z
∞

m
dE ln

				 p − vwE
pþ vwE

				f0: ð32Þ

This should reduce to vwK̃FH
6 at leading order in vw, but due

to a mistake in the evaluation of K̃FH
6 in FH06 it does not.

6Reference [48] also considered a temperature perturbation,
but this is an ansatz for the distribution function, rather than a
systematic expansion in velocity moments.
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Following FH06 we use the factorization rule also to
define the truncation scheme,

u2 ¼
��

pz

E

�
2

δf

�
→

�
pz

E

�
u≡ Ru; ð33Þ

where the bracket average ½·� is defined in (29). Then R
becomes just the expectation value of the fluid velocity in
the wall frame,

R ¼ −vw; ð34Þ

which is an exact result. Comparing with FH06 R ¼
vwK̃FH

5 , this implies that K̃FH
5 ¼ −1 exactly. Although

unstated in FH06, it is indeed the case.
The factorization and the truncation rules are, of course,

somewhat arbitrary. It is therefore reassuring that the
R̄-term has but a weak effect on solutions: toggling between
the choice (32) versus setting R̄≡ 0 changes the final
baryon asymmetry at the level of a few percent. Moreover
the definition (34) for R is reasonable because −vw is
roughly the ratio between adjacent source terms, order by
order in the moment expansion.

E. Sources and collision terms

Assembling the previous results, and including the
collision and source terms, the fluid equations can be
presented in full detail. Defining a vector w ¼ ðμ; uÞT,
the general form of the two moment equations may be
expressed as

Aw0 þ ðm2Þ0Bw ¼ Sþ δC; ð35Þ

where

A ¼
�−D1 1

−D2 R

�
; B ¼

�
vwγwQ1 0

vwγwQ2 R̄

�
; ð36Þ

and S ¼ ðS1; S2ÞT with S1 ¼ hSi and S2 ¼ hðpz=EÞSi, and
similarly for the δC vector. The form (36) is generic to both
CP-even and CP-odd sectors, which are only distinguished
by their respective source terms.
Let us consider the source terms first. In the CP-even

sector one finds using (17)

Sel ¼ vwγwðm2Þ0Qe
l; ð37Þ

with the definition

Qe
l ≡

�
pl−1
z

2El f00w

�
: ð38Þ

In the small-vw limit one finds Qe
2 → KFH

3 .

In the CP-odd sector, using Eq. (19) similarly gives

Sohl ¼ −vwγwh½ðm2θ0Þ0Q8o
l − ðm2Þ0m2θ0Q9o

l �; ð39Þ

where the coefficient functions are

Q8o
l ≡

�
sppl−1

z

2ElEz
f00w

�
; ð40Þ

Q9o
l ≡

�
sppl−1

z

4Elþ1Ez

�
1

E
f00w − γwf000w

��
; ð41Þ

with sp defined in (5). Setting sp → signðpzÞ one finds
that Q8o

2 → KFH
8 and Q9o

2 → KFH
9 in the small vw-limit.

Moreover, in previous work, the approximation S1 ¼ 0was
always made, because it isOðv2wÞ. For large velocities there
is no hierarchy between S1 and S2 and one must include
both sources.
It remains to consider the collision integrals. Both phase

space averages δC1 ≡ hδCi and δC2 ≡ hðpz=EÞδCi are
normalized using N−1

1 , Eq. (20). The collision term
moments are derived following Appendix A of Ref. [29],

δC1 ¼ K0

X
i

Γi

X
j

sij
μj
T
;

δC2 ¼ −Γtotu − vwδC1: ð42Þ

Here sij ¼ 1 (−1) if the corresponding species is in the
initial (final) state in the interaction with rate Γi, and Γtot ¼P

i Γi is the total interaction rate, including elastic channels
that do not contribute to the sum in hδCi. The normalization
factor

K0 ≡ −hf0wi ¼ −
N̂0

N̂1

ð43Þ

was neglected in FH06. For a massless fermion, for
example, K0 ≅ 1.1, Eqs. (42) are valid for both the CP-
even and the CP-odd cases.
Equations (35) obviously depend on a large number of

coefficient functions: Dl, Ql, R, R̄, Qe
l, Q

8o
l , Q9o

l , and K0.
Most of these depend on the wall velocity vw and the
dimensionless ratio x ¼ m=T. However, they are universal
and model independent. In practice, we compute them on a
grid of x and vw values and spline fit them. Explicit
expressions are given for all the integrals defining them in
the Appendix A.

F. Critical speed predictions

There is a widespread notion, apparently originating
from Ref. [49], that diffusion is inefficient for wall speeds
exceeding the plasma sound speed. This would mean in
particular that EWBG would not be feasible for detonation
walls, corresponding to very strong phase transitions, often
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invoked in the context of gravitational wave production.
This assertion is not true, as we shall show, but it turns out
that the FH06 equations are, quite fortuitously, consistent
with the false assumption.
We noted that the fluid equations can be written in the

matrix form Aw0 ¼ F½w�, where A is given in Eq. (36),
while in FH06 the A matrix is

AFH ¼
�
vwKFH

1 1

−KFH
4 −vw

�
; ð44Þ

setting K̃FH
5 ¼ −1 as mentioned above. One can solve for

the value of vw where A becomes singular (noninvertible)
using detðAÞ ¼ 0. If a solution exists for vw < 1, it implies
a critical speed vc beyond which diffusion is quenched. The
exact prediction using the A-matrix in (36) gives (recalling
that R ¼ −vw)

vc ¼ −
�
D2

D1

�
vw¼vc

⇒ vc ¼ 1; ð45Þ

whereas the approximate FH06-condition gives a different
velocity

v0c ¼
				K

FH
4

KFH
1

				
1=2

vw¼0

: ð46Þ

The dependence of v0c on m=T as obtained in the FH06-
case (46) is shown in Fig. 2 for a Fermi-Dirac distribution.
(The corresponding curves for bosons look similar.) For
light particles the quench limit is maximal and very close to
the sound speed, but this is a mere coincidence due to
inappropriate use of the small vw-approximation. Indeed,
from (45), employing full vw-dependent function, we
find that vc ¼ 1, in accordance with the arguments given
in Sec. II. Thus diffusion efficiency should go to zero

smoothly as vw → 1, with no particular features at the
sound speed, vw ¼ vs. We will show that this indeed is
the case.

IV. PHENOMENOLOGICAL MODEL

To illustrate the consequences of our improved transport
equations, we will compute the baryon asymmetry that they
predict in a prototypical model that gives rise to EWBG,
where the top quark mass has a z-dependent CP-violating
phase in the bubble wall. The mass term can be written as

mtðzÞðt̄LeiθðzÞtR þ t̄Re−iθðzÞtLÞ ð47Þ

in terms of the chiral components, where mt ¼ ytvðzÞ and
vðzÞ is the Higgs VEV that varies spatially within the wall.
It can occur in two-Higgs-doublet models or in singlet-
plus-doublet models where a dimension-5 operator such as
iðs=ΛÞQ̄3HtR contributes a phase to the top mass, if s also
gets a VEV in the bubble wall. In such a model, the
effective top quark mass term takes the form

ythðzÞt̄L
�
1þ i

sðzÞ
Λ

�
tR þ H:c:; ð48Þ

which implies

mtðzÞ ¼ ythðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ðzÞ=Λ2

q
;

θðzÞ ¼ tan−1
sðzÞ
Λ

: ð49Þ

Here we will not consider the CP-even equations, which
would be relevant for computing the wall speed and shape.
Instead, we concentrate on the CP-odd sector and take a
phenomenological approach, where vw is treated as a free
parameter, and the VEVs hðzÞ and sðzÞ are modeled as

hðzÞ ¼ vn
2

�
1 − tanh

z
Lw

�
;

sðzÞ ¼ wn

2

�
1þ tanh

ðz − δwÞ
Ls

�
: ð50Þ

We are primarily interested in the vw-dependence of the
results and therefore choose fiducial values for the other
parameters,

vn ¼
1

2
wn ¼ Tn; Λ ¼ 1 TeV;

Lw ¼ Ls ¼
5

Tn
; δw ¼ 0; ð51Þ

in terms of the nucleation temperature, taken to be
Tn ¼ 100 GeV.

0 1 2 3 4 5 6
m/T

0.3

0.35

0.4

0.45
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0.55

v c

v′
c

FIG. 2. Naive prediction for the critical wall velocity from
FH06 equations, as a function of m=T. The correct value, using
the full vw-dependence of the Dl functions, is vc ¼ 1.
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A. Fluid equation network

With the tools and notation developed in the previous
section one can express the complicated equation network
in a compact form. Our system consists of four particle
species7 strongly coupled by the top-Yukawa interactions:
left and right helicity tops are, respectively, denoted by tL
and tR, left helicity bottom by bL, and the complex Higgs
particle by h. We neglect the small difference between
helicity and chirality of the fermions here. There are eight
dependent variables, combined into four 2-vectors wi ¼
ðμoi; uoiÞT for i ¼ tL; bL; tR; h, which obey

Atw0
tL þm20

t BtwtL − δCtL ¼ St;

Abw0
bL
þm20

b BbwbL − δCbL ¼ Sb;

Atw0
tR þm20

t BtwtR − δCtR ¼ −St;

Ahw0
h þm20

h Bhwh − δCh ¼ 0; ð52Þ

where the A- and B-matrices are defined in (36) and the
sources are Si ¼ ðSi1; Si2ÞT , Sil given by Eq. (39) taking
h≡ −1 for the left-handed fermions. In practice Sb is
negligible due to the smallness of the bottom Yukawa
coupling.
In addition to top-Yukawa interactions, we account for

theW boson interactions that tend to equalize the tL and bL
chemical potentials, the strong sphalerons, top mass inser-
tions (helicity flips) that damp the combination μtL − μtR
ðμhÞ, and Higgs damping from electroweak symmetry
breaking. These are the same collision terms as in
FH06. Explicitly δCi ≡ ðKi

0δC̄
i
1; δC

i
2ÞT, where

δC̄tL1 ¼ ΓyðμtL − μtR þ μhÞ þ ΓmðμtL − μtRÞ
þ ΓWðμtL − μbLÞ þ Γ̃SS½μi�;

δC̄bL1 ¼ ΓyðμbL − μtR þ μhÞ
þ ΓWðμbL − μtLÞ þ Γ̃SS½μi�;

δC̄tR1 ¼ −ΓyðμtL þ μbL − 2μtR þ 2μhÞ
þ ΓmðμtR − μtLÞ − Γ̃SS½μi�;

δC̄h1 ¼ Γ̃yðμtL þ μbL − 2μtR þ 2μhÞ þ Γhμh; ð53Þ

and δCi2 ¼ −Γi
totui − vwKi

0δC̄
i
1. Explicit equations for

light quarks are not needed, even though their chemical
potentials appear in the strong sphaleron rate Γ̃SS½μi� ¼
ΓSS

P
qðμqL − μqRÞ, since their chemical potentials can be

determined analytically. Light quarks are activated only by
strong sphalerons, and in the approximation of no Yukawa
mixing, μqR ¼ −μqL for all light species. Then using baryon
number conservation (neglecting electroweak sphalerons,
which are slow on the relevant time scale),
B ¼ P

qðnq − n̄qÞ ¼ 0, one finds

μqL ¼ −μqR ¼ Dt
0μtL þDb

0μbL þDt
0μtR ; ð54Þ

whereD0 ¼ hf00wi is a special case of the function (26) with
l ¼ 0, identical to KFH

1 for all vw, as can be shown by
partial integration. Using (54) the strong sphaleron rate can
be written as

Γ̃SS½μi� ¼ ΓSSðð1þ 9Dt
0ÞμtL þ ð1þ 9Db

0ÞμbL
− ð1 − 9Dt

0ÞμtRÞ: ð55Þ

Inelastic collisions induce mixing between the particle
species. Equations (52) are nevertheless linear in μi and ui,
and can be written in the compact matrix form

AU0 − ΓU ¼ S; ð56Þ

where UT ≡ ðwT
tL ;w

T
bL
;wT

tR ;w
T
hÞ, A¼ diagðAtL ;AtR ;AbL ;AhÞ

is tridiagonal, and the matrix Γ combines the m20
i Bi

and collision terms. The source vector is ST ¼
ðSTt ; STb ;−STt ; SThÞ with Si defined in Eq. (52). Because
of its block structure, A is easily inverted to yield

U0 ¼ A−1ΓU þ A−1S: ð57Þ

This system is best solved using relaxation methods [50]
since shooting tends to be unstable. The 8 × 8 matrix A−1Γ
is the Jacobian of the differential equation network and its
eigenvalues’ signs distinguish the growing and decaying
modes at the boundaries. This information may help to
improve the numerical stability in more complicated
systems.
Once the chemical potentials for the perturbations

are determined, the baryon asymmetry follows from inte-
grating them in the sphaleron rate equation. Following,
e.g., Ref. [51] (but including the full Lorentz-covariant
relations) we find8

ηB ¼ 405Γsph

4π2vwγwg�T

Z
dzμBL

fsphe−45Γsphjzj=4vwγw : ð58Þ

The seed asymmetry in Eq. (58) is the chemical potential
for left-handed baryon number, μBL

¼ 1
2

P
q μqL , which can

be written in terms of μtL , μbL , and μtR using baryon number
conservation:

7We differ from the notation of FH06 by keeping track of the
asymmetry in the right helicity sector with tR instead of its
conjugate tcR. The CP-odd asymmetries of the two species have a
relative sign, μtR ¼ −μtcR , since each CP-odd variable represents
the difference between the two C-conjugate species. Likewise,
the source for μtR corresponds to h ¼ 1, which is opposite to that
for μtcR.

8To our knowledge, the 1=γw factor in front has been omitted in
previous literature. It arises from the change of variable dt →
dz=ðvwγwÞ with z in the rest frame of the wall.

JAMES M. CLINE and KIMMO KAINULAINEN PHYS. REV. D 101, 063525 (2020)

063525-8



μBL
¼ 1

2
ð1þ 4Dt

0ÞμtL þ
1

2
ð1þ 4Db

0ÞμbL þ 2Dt
0μtR : ð59Þ

The function fsphðzÞ¼minð1;2.4Γsph

T e−40hðzÞ=TÞ is designed
to smoothly interpolate between the sphaleron rates in
the broken and unbroken phases. g� is the number of
degrees of freedom in the heat bath; in the standard
model g� ¼ 106.75.

V. COMPARISON TO FH06

We can now compare our improved fluid equations (52)
and (53) to those of FH06. The only difference between the
two lies in the definition of the various coefficient func-
tions, which we have renamed at the same time correcting
and generalizing them to arbitrary wall velocities. To
facilitate the comparison the results are collected in a
dictionary translating between the two naming schemes in
Table I. Our equations agree with those of FH06, when one
assumes h → −1 and sp → signðpzÞ in the sources and
replaces the coefficent functions according to Table I.
For the interaction rates we use the values given in [47]:

Γsph ¼ 1.0× 10−6 T, ΓSS ¼ 4.9× 10−4 T, Γy ¼ 4.2×10−3 T,
Γm ¼ m2

t =ð63 TÞ, and Γh ¼ m2
W=ð50 TÞ, where the top

mass is as given in (48) and m2
W ≡ g2hðzÞ2=4. Furthermore

the total interaction rates were defined as Γi
tot ¼ KFH

4;i =
ðDiKFH

1;i Þ with a quark diffusion constant Dq ¼ 6=T and a
Higgs diffusion constant Dh ¼ 20=T. The numerical
impact of the Higgs and bottom masses is found to be
quite small, and following FH06 we take them to be

massless. Many of these rates have been quite roughly
estimated, in some cases going back to the early refer-
ence [49], and deserve to be updated. We hope to make
better determinations in an upcoming paper.
We display dependences of the predicted baryon asym-

metry of the universe (BAU) normalized to the observed
value, BAU≡ ηB=ηB;obs, in Fig. 3. In both panels the thick
red solid lines labeled “CK-s” correspond to the improved
fluid equations with the spin-s source, where we set sp →
signðpzÞ and h ¼ −1 in Eqs. (39)–(41). The thick dash-
dotted blue lines labeled “FH-s” correspond to the same
spin-s source, but using the FH06 equations.9 Thin dashed

TABLE I. A dictionary between the CK (this work) and the
FH06 functions, depending upon x ¼ m=T and wall velocity vw.
They generally differ from each other at large vw. Functions that
are equivalent are marked by an equality sign in the middle
column. The double exclamation mark indicates functions that do
not agree even for small vw, and single exclamation marks signal
the source terms omitted in FH06.

CK FH06

D0ðxÞ = KFH
1 ðxÞ

D1ðx; vwÞ = −vwKFH
1 ðxÞ

D2ðx; vwÞ KFH
4 ðxÞ

Q1ðx; vwÞ KFH
2 ðxÞ

Q2ðx; vwÞ ! 0
R ¼ −vw = vwK̃FH

5

R̄ðx; vwÞ !! K̃FH
6 ðxÞ

Qe
1ðx; vwÞ ! 0

Qe
2ðx; vwÞ KFH

3 ðxÞ
Q8o

1 ðx; vwÞ ! 0
Q8o

2 ðx; vwÞ KFH
8 ðxÞ

Q9o
1 ðx; vwÞ ! 0

Q9o
2 ðx; vwÞ KFH

9 ðxÞ
K0ðxÞ !! 1
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FIG. 3. Predicted baryon asymmetry in units of observed
asymmetry for the fiducial profile as a function of the wall
velocity vw. From the logarithmic scale plot (upper panel) one can
appreciate the good agreement at small vw. Note the vanishing of
BAU for vw ≲ 10−5 due to the onset of thermal equilibrium. The
linear scale (lower panel) expands the large vw region more
relevant for strong transitions. The thin vertical line shows the
sound speed vs ¼ 1=

ffiffiffi
3

p
.

9We switched for the sign of the source in FH06, however, so
that the sign of the BAU matches in both cases.
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green lines labeled “CK-s, K0 ¼ 0” correspond to the case
where we set the K0-function to unity in the otherwise
accurate equations. The thin black dashed lines labeled
“CK-h” correspond to the improved fluid equations with
the helicity source, still taking h ¼ −1, but with sp given
by Eq. (5).
Clearly all approximations agree very well for vw ≪ 1 as

expected, since the two sets of functions largely agree in the
small vw-limit; for vw ≲ 0.01, the only significant differ-
ence between the CK and the FH06 solutions comes from
K0. For larger vw the predictions differ significantly, in
accord with our general arguments. In particular, the FH
prediction plummets as vw approaches the sound speed
vs ¼ 1=

ffiffiffi
3

p
, shown by the thin vertical line in the plots. The

more exact treatment, on the other hand, does nothing
special near vw ¼ vs; as expected the BAU smoothly
decays as vw → 1.
Using the spin-s source corresponds to identifying

chirality with the eigenstates of spin in the z-direction,
in the frame where the parallel momentum of the state
vanishes, whereas the helicity source identifies chirality
with helicity. The difference between the two is found to be
small, due to the two bases becoming degenerate in the
massless limit; in our example all fermions are massless in
front of the wall.
In Fig. 4 we show the dependence on Lw with vw ¼

0.5 held fixed. The FH prediction is substantially higher
than the accurate value, and its ratio to the correct
solution remains nearly constant. To summarize, our
results and those of FH agree reasonably well for small
vw, but the improved fluid equations should be used for
vw ≳ 0.1 to get accurate results, and for vw ≳ vs they are
essential, since the FH equations incorrectly predict a
vanishing BAU.

VI. COMPARISON TO OTHER FORMALISMS

There has been a long-standing divide among practi-
tioners of electroweak baryogenesis as to which transport
equations to use; yet no systematic comparison between
them has been made in the literature. We undertake to do so
in this section, continuing with the ansatz for the wall
profiles and spatially varying top quark mass (48) and (50)
introduced previously.
The VEV-insertion formalism is derived at the level of

the integrated particle densities, which is equivalent to
the formalism introduced in Refs. [49,52], consisting of
coupled second-order diffusion equations for the local
particle densities, in matrix form,

Dμ00 þ vwμ0 − δC½μ� ¼ S: ð60Þ

Here μ ¼ ðμtL ; μbL ; μtR ; μhÞT and S ¼ ðSt; 0;−St; 0ÞT , D ¼
diagðDq;Dq;Dq;DhÞ is a diagonal matrix of diffusion
coefficients, and δC½μ� is the inelastic collision integrals.
The unsourced equation for μbL is usually omitted in the
literature [53,54]. In this case baryon number conservation
(as discussed above) leads to conditions μqL ¼ μqR and
μbL ¼ −ðDt

0=D
b
0ÞðμtL þ μtRÞ [49,53]. In fact, this is a

reasonable approximation, as one can see from Fig. 5,
where we plot the chemical potentials for our fiducial
case (51) and for the spin-h source using our improved fluid
equations. For the purpose of comparing the formalisms,
however, we have included the bL degrees of freedom in the
diffusion equation networks.
In order to compare the system (60) to our improved

equations (52), we need to find the equivalent source term
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FIG. 4. Predicted baryon asymmetry (in units of observed
asymmetry for the fiducial profile. as a function of the Higgs
wall width Lw for fixed vw ¼ 0.5.
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FIG. 5. Chemical potentials from the improved fluid equations
for the fiducial case and for the spin-s source. In addition to the
chemical potentials in the network, we show light quark chemical
potential μq corresponding to Eq. (54) and the approximation
μbappL

≡ −ðDt
0=D

b
0ÞðμtL þ μtRÞ.
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to use in (60). The standard way to do this [29] is by
eliminating u from the WKB equations (35), neglecting all
ðm2Þ0μ and ðm2Þ0u terms in the derivation. It is easy to show
that this procedure yields the following results adequate for
the WKB picture,10,11

DWKB ¼ D2 − v2wD0

D0Γtot
;

SWKB ¼ S1
D0

−
vwS01 þ S02
D0Γtot

;

δCWKB ¼ K0

D0

δC̄½μ�; ð61Þ

where δC̄½μ� terms are given in (53). In the small vw-limit
Dα

WKB → Dα and SαWKB → DαS0α;2=hv2zi for each species
α ¼ q, h, in agreement with Ref. [29].
The VEV-insertion formalism predicts a very different

form for the source term in (60). We give a detailed
derivation in Appendix B. The result, normalized as in
Eq. (60), is

StVEV ¼ vw
NcI

2π2D0T
m2

t ðzÞθ0ðzÞ; ð62Þ

where Nc ¼ 3 is the number of colors of the top quark and
I ≅ 0.4 is an integral given in Appendix B.
As for the diffusion term, no dependence of D on vw is

considered in the earlier literature in the VEV insertion
approach. Accordingly, we will use

Dα
VEV ¼ Dα: ð63Þ

As mentioned above, we employ the same equation net-
work for the WKB- and the VEV-insertion mechanisms, so
that slightly upgrading the network of Ref. [54] to include
bL, we set

δCVEV ¼ δC̄½μ�; ð64Þ

where as before δC̄½μ� corresponds to Eq. (53).
We can now compare the semiclassical and VEV-

insertion formalism predictions for the BAU on a level
playing ground, using the diffusion equations (60). The

results are shown in Fig. 6. The upper panel displays the
absolute value of the BAU≡ jηB=ηB;obsj as a function of the
wall velocity for our fiducial model (51) and for the spin-h
source. The thick solid black line corresponds to the
solution of the diffusion equation (60) with the WKB
variables (61). The dashed red line shows for comparison
the result of our earlier calculation with improved fluid
equations. The two semiclassical approximations agree
remarkably well, in particular for large vw.
Considering the VEV-insertion formalism, the thick

dash-dotted blue line (labeled “VEV-VEV”) displays the
result of using the parameters (62)–(64) in Eq. (60). The
VEV-insertion method predicts 10–50 times larger asym-
metry than does the semiclassical method. The thin dashed
green line (labeled “VEV-WKB”) shows the result of using
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FIG. 6. Predicted absolute value of the baryon asymmetry (in
units of observed asymmetry) for the fiducial model as a function
of wall velocity vw (top) and Higgs wall width Lw (bottom).
“CK-fluid” denotes the two-moment result derived previously;
“CK-diffusion” is the diffusion equation approximation (60) to
the two-moment network; “VEV-VEV” is the result from the full
VEV-insertion formalism; “VEV-WKB” is a hybrid result where
the diffusion and collision terms are the same as in the semi-
classical (CK) formalism, and only the VEV-insertion source
term is different.

10One should not confuse the diffusion coefficients with the
fluid equation coefficient functions Di. The latter are distin-
guished from the former by the fact that they are always
associated with a numeral index.

11Note that the numerator in the diffusion coefficient DWKB is
just the determinant of the matrix A in fluid equations (35). Thus,
the critical speed condition discussed in Sec. III F corresponds to
zero diffusion length. For vw > vc the diffusion length would be
negative, which is, of course, unphysical. This is why the FH06
solutions go to zero as vw → vc. However, in the improved
equations DWKB and hence the diffusion length remain positive
until vw ¼ 1.
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the VEV-insertion source, but the WKB diffusion constant
and collision terms from Eq. (61). For small vw the
difference between the VEV-insertion method and the
WKB method is dominated by the source terms.
However, for vw ≳ 0.4 a further deviation is caused by
the vw-dependence of the evolution equations.
The lower panel displays the dependence of BAU on the

wall width Lw for vw ¼ 0.5. For LwT ≳ 2 the two semi-
classical approximations agree very well. The difference at
small Lw is expected, because the diffusion approximation
neglects several m20 corrections included in the fluid
equations. As the wall width increases, the semiclassical
BAU decreases rapidly. This is the expected behavior as the
system becomes increasingly classical. The VEV-insertion
predicts a much slower decrease of BAU with Lw.
In our opinion, the semiclassical formalism is the more

reliable one. First, it has a clearly established small
expansion parameter: ðLwTÞ−1, and the results show the
expected behavior as a function of this parameter. Second,
it has been derived both using WKB methods [29,37,38]
and from the fundamental CTP formalism [30–33]. Third,
the semiclassical limit has been recently shown to arise
in a full quantum mechanical treatment without any
gradient expansion [55] (for earlier related work see [56]
and [57–63]).
In the VEV-insertion approach the expansion parameter

is not as clearly defined: in addition to expanding in powers
of mðzÞ=T, there is also a gradient expansion, which,
however, always results in fewer derivatives acting on the
source term than in the semiclassical approach, leading to
the different dependence on the wall width shown in Fig. 6.
Moreover, the source term is infrared singular, cured only
by introducing a damping term that is not related to the
quantum physics of the problem. This can be seen in
Eq. (B1), which blows up when the damping rate γ → 0.
The lack of convergence of the expansion in m=T was
recently investigated in Ref. [64], where it was shown that
higher order terms are small only if m=T <

ffiffiffi
α

p
, where α is

the relevant interaction strength of the fermion of mass m.
There is a claim in the literature that the m=T expansion
can be avoided [65], but this is based upon a phenomeno-
logical approach which, although superficially similar to
the VEV-insertion formalism, does not derive the transport
equations from first principles within the CTP formalism.

VII. CONCLUSIONS

In this paper we generalized the semiclassical fluid
equations for electroweak baryogenesis to the regime of
arbitrarily large wall velocities, showing that diffusion
remains relatively efficient for vw exceeding the sound
speed in the plasma. As a result, EWBG can be effective
even for very strong transitions corresponding to detona-
tions. We performed a detailed comparison between a new
improved network of fluid equations and the previous
formulation by Fromme and Huber [34]. For small wall

velocities vw ≲ 0.1 the two formulations agree reasonably
well, but for larger values, in particular for vw exceeding the
sound speed, the improved formalism is indispensable.
We then quantitatively compared the semiclassical fluid

equations to a competing framework, the VEV insertion
method. To do so required reducing the semiclassical fluid
equations, consisting of coupled equations for chemical
potentials and velocity perturbations, to a set of (WKB)
diffusion equations for the particle densities alone (while
retaining the full velocity dependence). This was necessary
because the VEV-insertion formalism is derived at the level
of particle densities, and does not lend itself to a more
accurate approximation of the Boltzmann equation in terms
of coupled moments (including the velocity perturbation).
The WKB diffusion equations agree very well with the

improved fluid equations in the semiclassical picture. The
VEV insertion method, on the other hand, predicts the BAU
is a factor of 10–50 times larger than in the semiclassical
method. This difference arises mostly (especially for small
vw) from the different source terms in the semiclassical and
the VEV-insertion schemes. We argued that the semi-
classical results are more reliable, as they have been derived
and verified in various different approaches and they, unlike
the VEV-insertion results, show the expected parametric
behaviors.
Although we have restricted our discussion to the CP-

odd perturbations in the plasma densities that govern the
baryon asymmetry, analogous diffusion equations exist for
the CP-even perturbations that determine the dynamics of
the bubble wall and ultimately its friction and terminal
speed [24]. The issues we have discussed here are also
relevant for those equations, which were analyzed more
recently by Ref. [66]. Although the authors of that paper
avoided making any small-vw approximations, their con-
clusions concerning the limiting speed of diffusion differ
from ours; they obtain the speed of sound rather than that of
light. We can trace this difference to the fact that they use a
specific ansatz for the form of the velocity perturbation δf
in Eq. (9), while we avoid such a choice, instead determin-
ing moments of δf using the rules (28) and (29).12

Finally, we caution that while our improved fluid
equations cure the incorrect dependence predicted by the
FH06 network at large vw, they still correspond to a low-
order expansion in moments of the particle distribution
functions f. One might reasonably expect that perturba-
tions δf could be highly non-Gaussian, such that going
beyond second order in the moment expansion could
significantly modify the results presented here. This is a
question that deserves further study.

12In fact, during the course of this work, we studied a number
of possible ansätze for δf before abandoning this approach,
because they all tend to predict critical speeds below vw ¼ 1,
contrary to the physical arguments that make us confident in this
value.
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APPENDIX A: EXPLICIT FORMS FOR
COEFFICIENT FUNCTIONS

All coefficient functions are expressed as integrals over
the distribution functions in the wall rest frame that in
general depend upon the local particle masses mðzÞ=T and
vw, and they can be fermionic or bosonic even though the
normalization factors Ni are taken to refer to massless
fermions. When evaluating these functions it is convenient
to Lorentz transform the integration variables,

E ¼ γwðEv − vwpzvÞ;
pz ¼ γwðpzv − vwEvÞ; ðA1Þ

where Ev and pxv are the variables in the plasma frame.
One can then use the fact that d3p=E is invariant and
γwðEþ vwpzÞ → Ev so that f0w → f0 (and similarly for the
derivatives of f0w). All coefficient functions can then be
written as a two-dimensional integral of a generic form

�
pn
z

Em VF 0w

�
¼ Tn−m−kKðF 0;V; n;mÞ; ðA2Þ

where k ¼ 0 for F 0w ¼ f0w, k ¼ 1 for F 0w ¼ f00w and
k ¼ 2 for F 0w ¼ f000w and the dimensionless integral

KðF 0;V; n;mÞ≡ −
3

π2γw

Z
∞

x
dw

Z
1

−1
dy

×
p̃wp̃n

z

Ẽm−1 Vðw; y; vw; xÞF 0ðwÞ; ðA3Þ

where p̃w ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − x2

p
, p̃z ¼ γwðyp̃w − wvwÞ, and Ẽ ¼

γwðw − vwyp̃wÞ. For Dl, Ql, Qe
l and for K1 the auxiliary

function V ¼ 1, while for the CP-odd source functionsQ8o
l

and Q9o
l a more complicated structure V ¼ sppz=Ez

appears. For the spin s eigenstates this means

V ¼ Vs ¼
jpzj
Ez

¼ jp̃zjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃2
z þ x2

p ðA4Þ

and for helicity eigenstates

V ¼ Vh ≡ V2
s

�
1 −

p̃2
z

Ẽ2

�−1=2
; ðA5Þ

where p̃z and Ẽ are as given below (A3). Explicitly then

TDl ¼ Kðf00; 1;l;lÞ;
T3Ql ¼ Kðf000; 1;l − 1;lÞ;
T2Qe

l ¼ Kðf00; 1;l − 1;lÞ;

T3Q8o
l ¼ 1

2
Kðf00;Vx;l − 2;lÞ;

T5Q9o
l ¼ 1

4
½Kðf00;Vx;l − 2;lþ 2Þ;

− γwKðf000;Vx;l − 2;lþ 1Þ�: ðA6Þ

In particular, one can show that some of the coefficient
functions are independent of the wall velocity or that their
vw-dependence factorizes simply

D0ðxÞ ¼
1

N̂1

Z
d3pvf00;

D1ðx; vwÞ ¼ −vwD0ðxÞ;

Q1ðx; vwÞ ¼
1

γwN̂1

Z
d3pv

2Ev
f000;

Qe
1ðx; vwÞ ¼

1

γwN̂1

Z
d3pv

2Ev
f00;

K0ðxÞ ¼
1

N̂1

Z
d3pvf0: ðA7Þ

All these integrals can easily be reduced to one-
dimensional integrals over Ev. The function R̄ is a special
case, whose one-dimensional integral representation was
already given in (32).

APPENDIX B: VEV-INSERTION SOURCE

The exact form of the VEV-insertion source has never
been derived for the model of CP-violation (48) adopted in
this work, but similar expressions have been worked out for
two-Higgs doublet models (2HDMs) where an analogous
source is present. In 2HDMs, there is an extra suppression
factor sin2ð2βÞ where tan β ¼ H2=H1 that is not present in
our model. The source term is therefore similar to Eq. (34)
of Ref. [67], except for some typos and an error in that
equation [68]. The correct expression is

SVEV ¼ vwNcmtðzÞ2θ0
2π2

Z
dkk2

× Im

�
Zp
tLZ

h
tR

nFðEh�
tR Þ − nFðEp

tLÞ
ðEp

tL − Eh�
tR Þ2

þ Zp
tLZ

p
tR

0þ nFðEp
tRÞ þ nFðEp

tLÞ
ðEp

tL þ Ep
tRÞ2

þ ðp ↔ hÞ
�
;

ðB1Þ
where the superscripts p, h refer to quasiparticle and hole
excitations in the hot plasma, taken to be in the electro-
weak symmetric phase, and nF denotes the Fermi-Dirac
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distribution function evaluated at a complex energy
E ¼ Eþ iγ, where γ is the damping rate (thermal width)
of the left- or right-handed top quark.
The error in the original expression for (B1) was that the

term “0” was originally “1,” which leads to a UV-divergent
integral. It is argued [69] that normal ordering removes this
term, although no derivation has ever been published. The
correction to a similar source term was mentioned in
Ref. [70] (see [31] of that paper).
The VEV-insertion source has the peculiar property of

being singular if the energies E are real. The regulating
damping rate is dominated by the QCD contribution [71]:

γ ¼ 5.7g2s
12π

T: ðB2Þ

The real parts of the energies are given approximately by

Ep ¼ k2 þ m2

mþ k
;

Eh ¼ kð1 − 0.45e−1.5ðk=mÞ2Þ ðB3Þ

(these are good analytic fits to the numerical solutions for
the poles of the thermally corrected propagators) with m
being the thermal mass for the chirality of interest [72],

m2
L ¼ ðg2s=6þ 3g22=32þ y2t =16ÞT2;

m2
R ¼ ðg2s=6þ y2t =8ÞT2: ðB4Þ

The wave-function normalization factors are given by

Z ¼ E2 − k2

m2
ðB5Þ

for each kind of particle or hole. Taking the known values
of the coupling constants, the integral in (B1) then becomes
I ≅ 0.40T. It is normalized in this form to be a source for
the diffusion equation for particle densities. To convert it to
a source for the top quark chemical potential, we use the
relation δn ¼ NcgtD0T2μ=6 for a chiral quark with gt ¼ 2

spin degrees of freedom. Hence St ¼ SVEV=ðD0T2Þ to
obtain Eq. (62).
The same source term has been derived recently in

Ref. [64] [see Eq. (55)], in a simpler form where no
distinction is made between particle and hole states, and the
quasiparticle dispersion relations are approximated by the
usual relativistic ones. We find that the numerical differ-
ence is slight, giving I ≅ 0.37T rather than 0.40T.
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