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In this work, we study the evolution of a spatially flat Universe by considering a viscous dark matter and
perfect fluids for dark energy and radiation, including an interaction term between dark matter and dark
energy. In the first part, we analyze the general properties of the Universe by performing a stability analysis,
and then we constrain the free parameters of the model using the latest and cosmological-independent
measurements of the Hubble parameter. We find consistency between the viscosity coefficient and the
condition imposed by the second law of the thermodynamics. The second part is dedicated to constraining
the free parameter of the interacting viscous model (IVM) for three particular cases: the viscous model
(VM), interacting model (IM), and the perfect fluid case [Lambda-Cold Dark Matter (LCDM)]. We report
the deceleration parameters as q0 ¼ −0.54þ0.06

−0.05 , −0.58
þ0.05
−0.04 , −0.58

þ0.05
−0.05 , and −0.63þ0.02

−0.02 , together with the

jerk parameters as j0 ¼ 0.87þ0.06
−0.09 , 0.94

þ0.04
−0.06 , 0.91

þ0.06
−0.10 , and 1.0 for the IVM, VM, IM, and LCDM

respectively, where the uncertainties correspond at 68% confidence level. It is worth mentioning that all the
particular cases are in good agreement with LCDM, in some cases producing even better fits, with the
advantage of eliminating some problems that afflict the standard cosmological model.

DOI: 10.1103/PhysRevD.101.063516

I. INTRODUCTION

Dark energy (DE) and dark matter (DM) are the corner-
stones of the modern cosmology, being so far two of the
most intriguing mysteries for the understanding of our
Universe. In this vein, many attempts to comprehend the
composition of these dark entities have been developed in
recent years. The most important theories for DM are
supersymmetry models [1], scalar fields [2–4], interacting
dark energy [5–7], and charged particles coming from
unbroken Uð1Þ gauge symmetry featuring dissipative inter-
actions [8], among others; meanwhile, for DE, the most
interesting candidates can be summarized as the cosmologi-
cal constant (CC), phantom energy, quintessence, Chaplygin
gas, braneworlds, f(R), unimodular gravity, etc. (see
Refs. [9,10] for some reviews of DE models, and also see
Refs. [11–16]). Despite the efforts of the community, the
supersymetric DM and CC as dark energy are still the best

candidates to understand the cosmological observations.
However, laboratory experiments show no evidence of
supersymmetric particles, and the CC is afflicted with several
theoretical problems [17,18] when its origin is considered as
quantum vacuum fluctuations. A radical new form to address
these conflicts is to consider an interaction between the dark
components through the continuity equation [9,19,20].
On the other hand, cosmology with viscous dark fluids is

an interesting alternative to understand the accelerated
expansion of the Universe [21]. The viscous fluid models
could resolve the tension across different probes; for
instance, the value of the Hubble constant (H0) obtained
from Supernovae Ia type (SNIa) [22,23] is more than 3σ
the one estimated by cosmic microwave background
(CMB) Planck data [24], and the value of matter fluctuation
amplitude (σ8) measured from the large scale structure
observations differs from those determined from the
CMB Planck data under the LCDM cosmology [25,26].
The authors in Ref. [27] study a dissipative Universe with
interacting fluids having the nonequilibrium pressure*ahalmada@uaq.mx
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proportional to H0, they find that the decelerated-
accelerated transition occurs earlier than the transition
value when a nonviscous model is considered (for other
interesting models, see Refs. [28–30]).
Although there are two types of viscosity coefficients

known as the bulk and shear, the bulk viscosity is the one
that plays an important role in the Universe’s dynamics at
the background level because it satisfies the cosmological
principle. In contrast, one of the main characteristics of the
shear viscosity is that it could produce vortices or any other
chaotic phenomena at early epochs of the Universe evolu-
tion. Based on bulk viscosity, the viscous models have been
addressed using two approaches: the Eckart [31] and Israel-
Stewart (IS) [32] theories. For an extensive review of
viscous cosmology, see Ref. [33]. The main difference
between the theories is that the IS approach explored by
Refs. [34–36] solves the problem of the causality; i.e., the
propagation of the perturbations on the viscous fluids is
superluminal. Although IS formalism avoids the problem of
causality, this is more complex than the Eckart theory, and
only some analytical solutions exist for a bulk viscosity in
the form ξ ∼ ξ0ρ

s ([37–40]), with s ¼ 1=2 and ρ is the
energy density of the viscous fluid in an Universe filled by
only one fluid [41]. In contrast, Eckart’s scenario was the
first proposal to study the relativistic dissipative processes
as first-order deviations around the equilibrium and, and
despite the causality problem, it is widely used due to its
simplicity. For instance, some works related to Eckart’s
theory have investigated the dynamics of the Universe at
late times by considering a bulk viscous coefficient with a
constant [42–45], polynomial [46–48], and hyperbolic
[48,49] forms as functions of the redshift or in terms of
the energy density. Additionally, the authors in Refs. [45,50]
studied the Universe with several fluids, which is a more
realistic description of the Universe. In both theories, the
procedure to include the bulk viscous effects in the Einstein
field equations is through an effective pressure, written in
the form p̃ ¼ pþ Π, where p refers to the sum of the
traditional components such as the dust-matter (baryons and
DM), the DE, and the relativistic species (photons and
neutrinos), with Π is the bulk viscosity term. As a
consequence, the equation of state (EoS) generally turns
into an inhomogeneous one when the Π term is a variable
function. Furthermore, it is worth noticing that letting Π, or
any other dynamical variable, vary with time is an interest-
ing way to explain the recent results given by Ref. [51],
which concludes a preference of the DE component for a
dynamical EoS over a constant one. Regarding the physical
mechanism to generate such viscous effects, some proposals
point toward the decaying of DM particles [52,53] or any
other microscopic property as the self-interaction [29] of
DM particles.
Recently, the Experiment to Detect the Global EoR

Signature (EDGES) [54] found that the amplitude of the
absorption signal of 21 cm temperature at the cosmic dawn

epoch (z ≈ 17) is larger than expected. In this vein, the
EDGES observations indicate that the baryons must be
cooler or the photons must be hotter than what is predicted
by the standard cosmology; thus, this phenomenon offers
another incentive to study the viscosity effects of the fluids
and their interactions [55,56]. Considering the first and
second laws of thermodynamics and assuming the Universe
is filled by a nonperfect DM fluid with ξ ∼ ρs, the authors
in Ref. [56] find that the temperature of the DM fluid
increases throughout the cosmic evolution due the bulk
viscosity ξ0 > 0, thus allowing the description of the
EDGES observations.
Therefore, in this work, we study a model that consists

of a flat Friedmann-Lematre-Robertson-Walker (FLRW)
Universe including three components: a nonperfect and
interacting fluid, composed by DM in which baryons are
included, which we will call dust matter (dm)1; the DE fluid
that will interact with dm in Eckart’s approach; and
radiation with its standard well-known behavior. We start
by analyzing the general dynamics of these components
through a stability analysis of the critical points. After that,
we perform a Markov chain Monte Carlo (MCMC)
procedure using the latest observational Hubble parameter
data (OHD) to constrain the free parameters of the model.2

Finally, we study particular cases of the model such as a
solely viscous model (without the interaction term), an
interacting model (without the viscosity term), and the
perfect fluid case that correspond to the LCDM model.
The paper is organized as follows. Section II presents the

background of the interacting nonperfect model and gives
the formulation of the dynamical system. In Sec. III, we
discuss the stability of the system around the critical points
and give bounds to the free model parameters. Section IV is
devoted to constraining the free parameters of the model
using the latest samples of OHD. In Sec. V, we discuss our
results, and, finally, we present our remarks and conclu-
sions in Sec. VI.

II. COSMOLOGY WITH DARK FLUIDS

The cosmological model under study consists of a
Universe in a flat FLRW spacetime which contains a
nonperfect fluid as dm that interacts with a perfect fluid
as the DE component, together with the radiation fluid.
Then, the energy-momentum tensor can be expressed as

Tμν ¼ ρuμuν þ p̃ðgμν þ uμuνÞ; ð1Þ

where gμν corresponds to the FLRW metric, p̃ ¼ pþ Π is
the sum of the total barotropic pressure of the fluids p and

1Other models in the literature separate the baryons from dark
matter.

2For instance, see Ref. [57] for another alternative to perform-
ing the dynamical system analysis in combination with the
Bayesian MCMC analysis.
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the bulk viscosity coefficient Π, ρ is the energy density of
the fluid, and uμ is the associated 4-velocity. Inspired by the
viscosity behavior in fluid mechanics, being proportional to
the speed, we have assumed Π ¼ −3ζH. Additionally, the
model supposes an energy exchange term Q between dm
and DE and a viscosity effect encoded in the terms that
contain the bulk viscosity coefficient ζ. In this approach,
the Friedmann, continuity, and acceleration equations are

H2 ¼ κ2

3
ðρr þ ρdm þ ρdeÞ; ð2Þ

_ρr þ 4Hρr ¼ 0; ð3Þ

_ρdm þ 3Hρdm ¼ 9H2ζ þQ; ð4Þ

_ρde þ 3γdeHρde ¼ −Q; ð5Þ

2 _H − 3κ2Hζ ¼ −κ2
�
ρdm þ 4

3
ρr þ γdeρde

�
; ð6Þ

where H ¼ _a=a, κ2 ¼ 8πG; G is the Newton gravitational
constant; and ρr, ρdm, and ρde correspond to the relativistic
species, dust matter, and dark energy densities respectively.
The EoS for each species are pr ¼ ρr=3, pdm ¼ 0, and
pde ¼ ðγde − 1Þρde, with γde being a constant that it is
related with the EoS as ωde ¼ γde − 1. Notice that the DE
component behaves as CC when γde ¼ 0.
In particular, in this work, we consider the typical ansatz

for the viscosity coefficient

ζ ¼ ξ

κ2

�
ρdm
ρdm0

�
1=2

; ð7Þ

where ρdm0 is the dm density at the present epoch and ξ is a
free parameter with units of ½ξ� ¼ ½eV�.
To study the cosmological model presented in Eqs. (2)–

(6), we define the dimensionless dynamical variables as

x¼ κ2ρde
3H2

; y¼ κ2ρdm
3H2

; Ωr¼
κ2ρr
3H2

; z¼ κ2Q
3H3

: ð8Þ

From Eq. (2), it is straightforward to see that Ωr ¼ 1−
x − y. Then, the dynamical system can be written as [58]

x0 ¼ 3ðx − 1Þxγde − 3ξ0xy1=2 − xð4xþ y − 4Þ − zðx; yÞ;
ð9Þ

y0 ¼ 3γdexy − yð4xþ y − 1Þ − 3ξ0ðy − 1Þy1=2 þ zðx; yÞ;
ð10Þ

where 0 ¼ d=dN, N ¼ logðaÞ and

ξ0 ¼
ξ

H0y
1=2
0

: ð11Þ

In the latter equation, notice that y0 and H0 are the fraction
of dm and Hubble parameter at z ¼ 0, respectively.
Additionally, to convert the dynamical system in an
autonomous one, we have defined the variable z related
to the interaction term. In particular, we will explore the
form of Q as

Q ¼ βH
ρdeρdm

ρde þ ρdm
; ð12Þ

or in terms of the dimensionless variables [59]

zðx; yÞ ¼ β
xy

xþ y
; ð13Þ

where β is a dimensionless free parameter. It is evident that,
for β ¼ 0, the system described above corresponds to a
Universe with viscosity. For alternative forms of zðx; yÞ that
satisfy such conditions, see, for instance, Ref. [58]. In
addition, we express the deceleration parameter, effective
EoS, and jerk parameter as [58]

qðNÞ ¼ 1 −
�
2 −

3

2
γde

�
x −

1

2
y −

3

2
ξ0y1=2; ð14Þ

weffðNÞ ¼ 1

3
½1 − ð4 − 3γdeÞx − y − 3ξ0y1=2�; ð15Þ

jðNÞ ¼ qð2qþ 1Þ − q0; ð16Þ

where previous equations are written in terms of the
dimensionless variables.

III. STABILITY ANALYSIS

We start our stability study of the dynamical variables
defined in Eqs. (8)–(10) by finding the critical points and
the Jacobian matrix, which are, respectively,

P1 ¼ ð0; 0Þ; P2 ¼ ð0; 1Þ; P3 ¼ ð1; 0Þ ð17Þ

and

J ¼
�
Jxx Jxy
Jyx Jyy

�
; ð18Þ

where

Jxx ¼ 4 − 8x − y − 3ξ0y1=2 − β
y

xþ y
þ β

xy
ðxþ yÞ2 ; ð19Þ

Jxy ¼ −x −
3

2
ξ0xy−1=2 − β

x
xþ y

þ β
xy

ðxþ yÞ2 ; ð20Þ
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Jyx ¼ −4yþ β
y

xþ y
− β

xy
ðxþ yÞ2 ; ð21Þ

Jyy ¼ 1 − 4x − 2y −
9

2
ξ0y1=2 þ

3

2
ξ0y−1=2

þ β
x

xþ y
− β

xy
ðxþ yÞ2 : ð22Þ

The stability analysis of nonlinear systems consists in
studying the behavior of the perturbations around the
critical points using the matrix J and deciding if they
are stable or not. Notice that for a vector x⃗ ¼ ðx; y;Ωr; zÞ
that contains all the dynamical variables described in
Eq. (8) we considered a small perturbation x⃗ → s⃗þ δx⃗
around the critical (or equilibrium) point si; thus, an
associated system is obtained in the form δx⃗0 ¼ Jsiδx⃗,
where J is the previously mentioned Jacobian matrix at the
point si. Hence, the Hartman-Grobman theorem guarantees
that, for a critical point, there exists a neighborhood for
which the flow of the system of dynamical equations is
topologically equivalent to the linearized one [60,61]
(see also Refs. [62,63] for the dynamical system analysis
in cosmology). Hence, Table I summarizes the stability
condition for each critical point. The first point, P1 ¼
ð0; 0Þ, represents the radiation dominant epoch with q ¼ 1
and weff ¼ 1=3. Notice that this point is a saddle for β > 4
and unstable for β < 4. The latter condition guarantees the
evolution of the Universe to another critical point that is
expected to be P2.
The P2 point corresponds to the DM dominant epoch,

and it is stable in the region β > 3ð1 − ξ0Þ and ξ0 > −1=3.
On the other hand, P3 is a saddle point if β < 3ð1 − ξ0Þ and

ξ0 > −1=3 and an unstable point if β < 3ð1 − ξ0Þ and
ξ0 < −1=3. Notice that the latter condition does not satisfy
the second law of the thermodynamics that imposes ξ0 > 0
[64,65], and the saddle point gives a weaker condition for
ξ0 than the thermodynamic one. Moreover, structure for-
mation is explained by the existence of P2 in our dynamical
system in which the interaction term has no contribution.
Furthermore, Fig. 1 shows the fx; yg-phase space, repre-
senting in gradient color the intensity of the deceleration
(left panel) and jerk (middle panel) parameters and the
effective EoS (right panel). In this phase space, the
evolution of the Universe starts around the point P1 with
q ≈ 1, j ≈ 3, and an effective EoS weff ≈ 1=3. Then,
depending on the initial conditions of the Universe, it
could change to a state close to P2 with cosmographic
parameters q ≈ 1=2, j ≈ 1, and weff ≈ 0. As mentioned
before, this phase plays an important role in the structure
formation; for that reason, an evolution with y ¼ 0 should
not be allowed physically. The last stage of the Universe, in
which the accelerated expansion occurs, is when it moves
toward the point P3 with cosmographic parameters
q ≈ −1=2, j≲ 1, and weff ≈ −0.7.

IV. OBSERVATIONAL CONSTRAINTS

The expansion rate of the Universe is measured directly
by the OHD. Currently, the OHD sample is obtained from
the differential age technique and baryon acoustic oscil-
lation (BAO) measurements. In this work, we consider the
sample compiled by Ref. [66], which consists of 51 points
in the redshift region 0.07 < z < 2.36, to constrain the
free model parameters. It is worth noting that this sample
can yield biased constraints because the BAO points are

TABLE I. Critical points and stability conditions for the IVM.

Critical point (x, y) Eigenvalues Stability condition (ℜðλÞ < 0)

P1 (0,0) 4 − β, ∞ Saddle if β > 4
P2 (0,1) 3 − 3ξ0 − β, −1 − 3ξ0 β > 3ð1 − ξ0Þ and ξ0 > − 1

3

P3 (1,0) −4, ∞ Saddle

FIG. 1. fx; yg-phase space using h ¼ 0.701, Ωde ¼ 0.682, γde ¼ 0, β ¼ 0.200, and ξ0 ¼ 0.028 (see Sec. IV for details). On the left
(middle, right) panel, the bar color represents the value of the deceleration (jerk, effective EoS) parameters. The diagonal red dotted line
is the curve xþ y ¼ 1 for the case Ωr ¼ 0.

A. HERNÁNDEZ-ALMADA et al. PHYS. REV. D 101, 063516 (2020)

063516-4



estimated under a fiducial cosmology [66]. Thus, the figure
of merit is given by

χ2OHD ¼
X51
i¼1

�
Hthðzi;ΘÞ −HobsðziÞ

σiobs

�
2

; ð23Þ

where Hthðzi;ΘÞ −HobsðziÞ denotes the difference
between the theoretical Hubble parameter with parameter
space Θ and the observational one at the redshift zi, and
σiobs is the uncertainty of Hi

obs.
The data will be used not only to constrain our interacting

viscous model (IVM) with free parameter space Θ ¼
ðh;Ωde0; ξ0; βÞ but also the following particular models of
the IVM: an only interacting model (IM) by setting ξ0 ¼ 0,
an only viscous model (VM) with β ¼ 0, and the LCDM
model that is recovered by requiring ξ0 ¼ 0 and β ¼ 0.
To solve the equation system, Eqs. (8)–(13), we have used
Ωde0 for the initial condition of x and y0 ¼ 1 −Ωde0 −Ωr

for y, where Ωr ¼ 2.469 × 10−5h−2ð1þ 0.2271NeffÞ, with
Neff ¼ 3.04 as the number of relativistic species [67] and h
as the Hubble dimensionless parameter. To minimize the χ2

function for each model, we perform a Bayesian MCMC
analysis based on the EMCEE module [68]. For each free
model parameter, the n-burn phase is stopped following the
Gelman-Rubin criteria [69], i.e., after achieving a value
lower than 1.1. We obtain 5000 chains, each one with 500
steps, to explore the confidence region, taking into account a
Gaussian prior on the Hubble constant h and a flat prior for
the rest of the parameters (see Table II).
Figure 2 displays our MCMC analysis for the free

parameters with the two-dimensional (2D) contours at
68% (1σ), 95% (2σ), and 99.7% (3σ) confidence level
(CL) and their corresponding one-dimensional (1D) pos-
terior distributions for IVM (green color), IM (red), VM
(blue), and LCDM (gray) models. Table III shows the best-
fitting values for the free parameters and their uncertainties
at 68% (1σ) CL of the above-mentioned cases. It is
interesting to see that ξ0 and β are anticorrelated, which
is an expected result because both parameters are acting to
produce the accelerated expansion of the Universe. On the
other hand, with the existence of a viscous Universe or an
interacting dark sector (or both), we could establish an
upper bound on theΩde. Wewill discuss this bound in more
detail in the next section. Finally, Fig. 3 displays the best-fit
curves over the OHD sample.

V. RESULTS AND DISCUSSIONS

In this section, we describe the physical properties of the
Universe based on our results of the Bayesian MCMC
analysis shown in Table III. Figure 4 shows the evolution of
the dynamical components x ¼ ΩdeðNÞ, y ¼ ΩdmðNÞ, and
Ωr of the Universe described by IVM (top panel) and the
evolution of the qðNÞ, jðNÞ, and weffðNÞ parameters
(bottom panel). It is important to remark that the weff
behaves in concordance with standard cosmological model
predictions (with Planck data, wLCDM

eff ∼ −0.68 at z ¼ 0

[70]). In other words, the Universe is in the quintessence

TABLE II. Priors used in the MCMC analysis.

Parameter Prior

h Gauss (0.7324,0.0174)
Ωde0 Flat in [0, 1]
ξ0 Flat in [0, 1]
β Flat in [0, 3]

FIG. 2. MCMC analysis for the free parameters with 2D
contour at 1σ, 2σ, and 3σ and their 1D posterior distributions
for the IVM, IM, VM, and LCDM models.

FIG. 3. Best-fit curves for the IVM (red line), VM (blue dotted
line), IM (green dot dashed line), and LCDM (magenta star
markers). The black points with uncertainty bars correspond to
the OHD sample.
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region at late epochs (−2≲ N < 0), as dust matter
(weff ≈ 0) around −6≲ N ≲ 2, and takes values closer to
weff ∼ 0.3 in the radiation phase (N ≲ −6). In addition, the
deceleration parameter is q ≈ 1=2 in the dm epoch and
increases toward q → 1 in the radiation epoch. On the other
hand, the jerk parameter j is slightly below the value
expected from LCDM (j ¼ 1) in the region going from the
current epoch up to N ≈ −5 and takes the expected value
(j → 3) for N < −10 in the radiation dominated epoch. In
summary, the presented models successfully reproduce all
the expected epochs and are in good agreement with the
LCDM model.
For a better statistical assessment of different models

with different degrees of freedom, we use, besides χ2, the

following criteria. The Akaike information criterion (AIC)
[71,72] and Bayesian information criterion (BIC) [73] are
defined as AIC≡ χ2 þ 2k and BIC≡ χ2 þ 2k logðNÞ,
respectively, where χ2 is the chi-squared function, k is
the number of degrees of freedom, and N is the total
number of data, the model with the lowest value being the
one preferred by the data (see Table III). If the difference in
the AIC value between a given model and the best one,
ΔAIC, is less than 4, both models are equally supported by
the data. For the range 4 < ΔAIC < 10, the data still
support the given model but less than the preferred one. For
ΔAIC > 10, the observations do not support the given
model. Thus, as it is shown in Table III, when we compare
the IM or VM with respect to LCDM (the preferred
model), these models are equally preferred by the data
(OHDþ SNIa), with the IVM being the least preferred by
data. Similarly, the difference between a model and the best
one, ΔBIC, is interpreted as evidence against a candidate
model being the best model. If ΔBIC < 2, there is no
appreciable evidence against the model. In the range
2 < ΔBIC < 6, there is modest evidence against the
candidate model, and if 6 < ΔBIC < 10, the evidence
against the candidate model is strong; if ΔBIC > 10, the
evidence against is even stronger. Thus, we have a strong
evidence against IM and VM, and even stronger for IVM.
We estimate the deceleration-acceleration transition red-

shift takes place at zT ¼ 0.83þ0.06
−0.06 , 0.82

þ0.05
−0.05 , 0.83

þ0.05
−0.05 , and

0.83þ0.05
−0.05 for the IVM, VM, IM, and LCDM, respectively,

where the uncertainties correspond at 68% CL. These
values are consistent with those reported by Ref. [74] of
zLCDMT ¼ 0.64þ0.11

−0.06 within 1.5σ. On the other hand, they are
consistent with the one obtained by Ref. [27] (zT ∼ 0.74)
when an interacting viscous model is considered.
Additionally, our results are also compatible (within 1.8σ
and 1.1σ, respectively) with those found by Ref. [75]
using the nonparametric Gaussian process method with the
OHD data, zT ¼ 0.59þ0.12

−0.11 , and SNIa Pantheon sample,
zT ¼ 0.683þ0.110

−0.082 , and also the one value found by
Ref. [76], zT ¼ 0.64þ0.12

−0.09 , when performing an extension
of the standard Gaussian process to supernovae type-Ia,
BAO, and cosmic chronometers data.
Regarding the cosmographic parameters, we obtain the

deceleration one at z ¼ 0 as q0 ¼ −0.55þ0.06
−0.05 , −0.58

þ0.05
−0.04 ,

−0.58þ0.05
−0.05 , and −0.63þ0.02

−0.02 for the IVM, VM, IM, and

TABLE III. Best-fit values for the free parameters of IVM, IM, VM and LCDM models using the OHD sample. Additionally, it is
reported the χ2, AIC, BIC, ΔAIC≡ AIC − AICLCDM, ΔBIC≡ BIC − BICLCDM.

Model χ2 h Ωde0 ξ0 β AIC ΔAIC BIC ΔBIC

IVM 30.5 0.701þ0.012
−0.013 0.682þ0.040

−0.040 0.028þ0.033
−0.020 0.200þ0.260

−0.145 38.5 5.6 62.0 17.3
IM 29.2 0.707þ0.011

−0.012 0.721þ0.026
−0.037 0 0.283þ0.290

−0.197 35.2 2.3 52.8 8.2
VM 29.1 0.705þ0.011

−0.012 0.698þ0.038
−0.054 0.040þ0.035

−0.026 0 35.1 2.2 52.7 8.1
LCDM 28.9 0.715þ0.010

−0.010 0.753þ0.014
−0.015 0 0 32.9 0 44.6 0

FIG. 4. Top panel: Evolution of the dynamical variables x, y,
and Ωr for the IVM. Bottom panel: Evolution of the deceleration
(blue dot-dashed line) and jerk (green dashed line) parameters
and of the effective EoS (red solid line).

A. HERNÁNDEZ-ALMADA et al. PHYS. REV. D 101, 063516 (2020)

063516-6



LCDM, respectively. When we compare these results with
the one obtained by Ref. [12] for the LCDM model,
qLCDM0 ¼ −0.54� 0.07, we find a deviation within 1.3σ.
Additionally, their corresponding values of the jerk param-
eter are j0 ¼ 0.87þ0.06

−0.09 , 0.94
þ0.04
−0.06 , 0.91

þ0.06
−0.10 , and 1.0. On the

other hand, when we compare our qVM0 and jVM0 values with
those obtained by Ref. [48] considering viscous models, we
find a deviation of about 1.3σ. Additionally, we find a
deviation on q0 within 1.2σ for IVM, IV, and VM to the one
value obtained in Ref. [76]. Figure 5 shows 1D posterior
distribution and 2D contours of the q0, j0, weffðz ¼ 0Þ,
and zT for IVM, IM, VM, and LCDM. Based on the IVM,
it is noteworthy that weff presents a positive correlation
(corr > 0.99) with q0 and a negative one (corr ¼ −0.87)
with j0. The deceleration-acceleration transition has a
negative correlation (corr ¼ −0.45) withq0 and a negligible
correlation with j0. Between the cosmographic parameters
(q0, j0), we find a negative correlation of corr ¼ −0.45.
Figure 6 displays the 1D posterior distribution of the

variables h and y0 ¼ Ωdm0 for the IVM (green), IM (red),
VM (blue), and LCDM (gray) together with the h-Ωdm0

contour at 1σ and 2σ CL. It is interesting to see that a
possible effect of the interaction and viscosity terms is to
increase the dm component at current epochs; nevertheless,
such contributions are consistent within 2σ CL to the value
of LCDM.
Only considering the DM component as the viscous one,

the authors in Ref. [77] argue that, in the presence of several
fluids in the Universe, it is difficult to distinguish which
fluid is producing the viscous effects at the background

level; in other words, there is degeneracy. However, as we
mentioned in the Introduction, when the DM fluid is
responsible for such dissipative effects, it means that, at
z < 1, the DM particles probably do not decay into
energetic relativistic particles, such as sterile neutrinos or
supersymmetric DM [52]. In this context, the DM particles
should have a mass of the order approximately 1 MeV and
a lifetime of order the Hubble time H−1

0 . Based on the
expression ζ ¼ 1.25ρhτe½1 − ðρl þ ρrÞ=ρ�2 presented in
Ref. [52], where ρ is the total energy density in the
Universe, ρh is the DM density for an unstable decaying
DM, ρl is the produced relativistic energy density, and τe ¼
τ=ð1 − 3HτÞ is the equilibrium time with τ being the
particle decaying time. Hence, we could give a bounded
relation for such densities and the decaying lifetime at z¼0

as 1.25κ2ρh0τe½1 − ðρl0 þ ρrÞ=ρ0�2=H0

ffiffiffiffiffiffiffiffiffiffi
Ωdm0

p
< 0.086,

0.098 at 95% CL for the IVM and VM, respectively.

VI. CONCLUSIONS

In this work, we have addressed a phenomenological
model for a flat Universe containing a radiation component
and a viscous fluid (dark matter plus baryons) that interacts
with a perfect fluid (DE), denoted as IVM. The IVM is
characterized by the parameter phase-space Θ ¼ ðh;Ωde0;
ξ0; βÞ. Furthermore, we studied some particular cases of the
model by considering the dm fluid as an interacting perfect
fluid (ξ0 ¼ 0) and as only viscous fluid (β ¼ 0). The latter

FIG. 5. 1D posterior distribution of the deceleration and jerk
parameters, effective EoS, and zT and 2D contours at 1σ, 2σ, and
3σ CL for IVM (green), IM (red) VM (blue), and LCDM (gray).

FIG. 6. 1D posterior distribution of the model parameters and
2D contour on the plane h vs Ωdm0 at 1σ (darker color) and 2σ
(lighter color) CL for IVM (green), IM (red) VM (blue), and
LCDM (gray). The best-fit values of h and Ωdm0 are represented
by cross (IVM), triangle (VM), circle (IM), and square (LCDM)
markers.
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consisted of the noninteracting perfect fluid (β ¼ ξ0 ¼ 0)
which corresponds to the LCDMmodel. In the first part of the
work, we studied the IVM from a dynamical approach. We
obtained the stability conditions for the critical points
presented in the Table I, which are in concordance with those
obtained by Ref. [58] when a linear interacting term of the
form zðxÞ ¼ αx is considered, with α being an appropriate
constant. Figure 1 shows the phase space of the dynamical
system in which the color gradient represents the value of the
deceleration parameter (q), jerk (j), and effective EoS (weff ).
The second part of the work consisted in performing a
Bayesian MCMC analysis using the largest sample of the
Hubble parameter data to obtain the best-fit parameters for
each model (Table III). Then, we reconstructed the deceler-
ation and jerk parameter and the effective EoS, as shown in
Fig. 4. We estimate the current values of the cosmographic
parameters as q0 ¼ −0.55þ0.06

−0.05 , −0.58þ0.05
−0.04 , −0.58þ0.05

−0.05 ,
−0.63þ0.02

−0.02 and j0 ¼ 0.87þ0.06
−0.09 , 0.94þ0.04

−0.06 , 0.91þ0.06
−0.10 , 1.0,

for the IVM, VM, IM, and LCDM respectively, which are

in agreement with those reported in the literature considering
other models [12,48]. Finally, although our results on BIC
suggest the models used are unfavorable over the LCDM
standard paradigm, they give an alternative to alleviate the
CC problems by adding some degree of freedom to LCDM.
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Constraining a causal dissipative cosmological model, Phys.
Rev. D 100, 083524 (2019).

[41] A. B. Burd and J. D. Barrow, Inflationary models with
exponential potentials, Nucl. Phys. B308, 929 (1988).

[42] G. L. Murphy, Big-bang model without singularities, Phys.
Rev. D 8, 4231 (1973).

[43] T. Padmanabhan and S. M. Chitre, Viscous universes, Phys.
Lett. 120A, 433 (1987).

[44] I. Brevik and O. Gorbunova, Dark energy and viscous
cosmology, Gen. Relativ. Gravit. 37, 2039 (2005).

[45] B. D. Normann and I. Brevik, Characteristic properties of
two different viscous cosmology models for the future
universe, Mod. Phys. Lett. A 32, 1750026 (2017).

[46] M. Xin-He and D. Xu, Friedmann cosmology with bulk
viscosity: A concrete model for dark energy, Commun.
Theor. Phys. 52, 377 (2009).

[47] A. Avelino and U. Nucamendi, Exploring a matter-
dominated model with bulk viscosity to drive the accel-
erated expansion of the universe, J. Cosmol. Astropart.
Phys. 08 (2010) 009.

[48] A. Hernández-Almada, Cosmological test on viscous bulk
models using hubble parameter measurements and type ia
supernovae data, Eur. Phys. J. C 79, 751 (2019).

[49] V. Folomeev and V. Gurovich, Viscous dark fluid, Phys.
Lett. B 661, 75 (2008).

[50] B. D. Normann and I. Brevik, General bulk-viscous sol-
utions and estimates of bulk viscosity in the cosmic fluid,
Entropy 18, 215 (2016).

[51] G.-B. Zhao, M. Raveri et al., Dynamical dark energy in light
of the latest observations, Nat. Astron. 1, 627 (2017).

[52] J. R. Wilson, G. J. Mathews, and G. M. Fuller, Bulk vis-
cosity, decaying dark matter, and the cosmic acceleration,
Phys. Rev. D 75, 043521 (2007).

[53] G. J. Mathews, N. Q. Lan, and C. Kolda, Late decaying dark
matter, bulk viscosity, and the cosmic acceleration, Phys.
Rev. D 78, 043525 (2008).

[54] R. A. Monsalve, T. J. Mozdzen, J. D. Bowman, A. E. E.
Rogers, and N. Mahesh, An absorption profile centred at 78
megahertz in the sky-averaged spectrum, Nature (London)
555, 67 (2018).

[55] R. Barkana, Possible interaction between baryons and dark-
matter particles revealed by the first stars, Nature (London)
555, 71 (2018).

[56] J. R. Bhatt, A. K. Mishra, and A. C. Nayak, Viscous dark
matter and 21 cm cosmology, Phys. Rev. D 100, 063539
(2019).

[57] T. Biswas, R. Brandenberger, A. Mazumdar, and T.
Multamaki. Current acceleration from dilaton and stringy
cold dark matter, Phys. Rev. D 74, 063501 (2006).

[58] Y. Leyva and M. Sepúlveda, Bulk viscosity, interaction and
the viability of phantom solutions, Eur. Phys. J. C 77, 426
(2017).

[59] W. Zimdahl and D. Pavón, Scaling cosmology, Gen. Relativ.
Gravit. 35, 413 (2003).

[60] D. M. Grobman, Homeomorphisms of systems of differ-
ential equations, Dokl. Akad. Nauk. 128, 880 (1959).

[61] P. Hartman, A lemma in the theory of structural stability of
differential equations, Proc. Am. Math. Soc. 11, 610 (1960).

[62] A. A. Coley, Dynamical systems and cosmology, 291
(Springer, Netherlands, 2003).

[63] G. Leon and C. R. Fadragas, Cosmological dynamical
systems, arXiv:1412.5701.

[64] W. Zimdahl and D. Pavón, Expanding universe with positive
bulk viscous pressures?, Phys. Rev. D 61, 108301 (2000).

STABILITY ANALYSIS AND CONSTRAINTS ON INTERACTING … PHYS. REV. D 101, 063516 (2020)

063516-9

https://doi.org/10.1088/1475-7516/2017/11/005
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.1051/0004-6361/201628890
https://doi.org/10.1051/0004-6361/201628890
https://doi.org/10.1103/PhysRevD.98.043526
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1103/PhysRevD.98.043528
https://doi.org/10.1007/s13538-011-0051-0
https://doi.org/10.1007/s13538-011-0051-0
https://doi.org/10.1103/PhysRevD.88.123004
https://doi.org/10.1088/1475-7516/2018/02/024
https://doi.org/10.1088/1475-7516/2018/02/024
https://arXiv.org/abs/1908.04281v1
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1103/PhysRev.58.919
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1142/S0218271817300245
https://doi.org/10.1103/PhysRevD.53.5483
https://doi.org/10.1103/PhysRevD.53.5483
https://doi.org/10.1023/A:1026690710970
https://doi.org/10.1023/A:1026690710970
https://doi.org/10.1142/S0218271898000334
https://doi.org/10.1103/PhysRevD.96.124020
https://doi.org/10.1103/PhysRevD.96.124020
https://doi.org/10.1088/1475-7516/2018/12/017
https://doi.org/10.1088/1475-7516/2018/12/017
https://arXiv.org/abs/1812.05009
https://arXiv.org/abs/1812.05009
https://doi.org/10.1103/PhysRevD.100.083524
https://doi.org/10.1103/PhysRevD.100.083524
https://doi.org/10.1016/0550-3213(88)90135-6
https://doi.org/10.1103/PhysRevD.8.4231
https://doi.org/10.1103/PhysRevD.8.4231
https://doi.org/10.1016/0375-9601(87)90104-6
https://doi.org/10.1016/0375-9601(87)90104-6
https://doi.org/10.1007/s10714-005-0178-9
https://doi.org/10.1142/S0217732317500262
https://doi.org/10.1088/0253-6102/52/2/36
https://doi.org/10.1088/0253-6102/52/2/36
https://doi.org/10.1088/1475-7516/2010/08/009
https://doi.org/10.1088/1475-7516/2010/08/009
https://doi.org/10.1140/epjc/s10052-019-7264-8
https://doi.org/10.1016/j.physletb.2008.01.068
https://doi.org/10.1016/j.physletb.2008.01.068
https://doi.org/10.3390/e18060215
https://doi.org/10.1038/s41550-017-0216-z
https://doi.org/10.1103/PhysRevD.75.043521
https://doi.org/10.1103/PhysRevD.78.043525
https://doi.org/10.1103/PhysRevD.78.043525
https://doi.org/10.1038/nature25792
https://doi.org/10.1038/nature25792
https://doi.org/10.1038/nature25791
https://doi.org/10.1038/nature25791
https://doi.org/10.1103/PhysRevD.100.063539
https://doi.org/10.1103/PhysRevD.100.063539
https://doi.org/10.1103/PhysRevD.74.063501
https://doi.org/10.1140/epjc/s10052-017-4946-y
https://doi.org/10.1140/epjc/s10052-017-4946-y
https://doi.org/10.1023/A:1022369800053
https://doi.org/10.1023/A:1022369800053
https://doi.org/10.1090/S0002-9939-1960-0121542-7
https://arXiv.org/abs/1412.5701
https://doi.org/10.1103/PhysRevD.61.108301


[65] R. Maartens, Causal thermodynamics in relativity, arXiv:
astro-ph/9609119.

[66] J. Magaña, M. H. Amante, M. A. García-Aspeitia, and V.
Motta, The Cardassian expansion revisited: Constraints
from updated hubble parameter measurements and type ia
supernova data, Mon. Not. R. Astron. Soc. 476, 1036
(2018).

[67] E. Komatsu et al., Seven-year wilkinson microwave
anisotropy probe (WMAP *) observations: Cosmological
interpretation, Astrophys. J. Suppl. Ser. 192, 18 (2011).

[68] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J.
Goodman, emcee: The MCMC Hammer, Publ. Astron.
Soc. Pac. 125, 306 (2013).

[69] A. Gelman and D. B. Rubin, Inference from iterative
simulation using multiple sequences, Stat. Sci. 7, 457
(1992).

[70] N. Aghanim et al., Planck 2018 results. VI. Cosmological
parameters, arXiv:1807.06209.

[71] H. Akaike, A new look at the statistical model identification,
IEEE Trans. Autom. Control 19, 716 (1974).

[72] N. Sugiura, Further analysts of the data by Akaike’s
information criterion and the finite corrections, Commun.
Stat. 7, 13 (1978).

[73] G. Schwarz, Estimating the dimension of a model, Ann.
Stat. 6, 461 (1978).

[74] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C.
Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and
D. Wilkinson, A 6% measurement of the Hubble parameter
at z ∼ 0.45: Direct evidence of the epoch of cosmic re-
acceleration, J. Cosmol. Astropart. Phys. 05 (2016) 014.

[75] J. F. Jesus, R. Valentim, A. A. Escobal, and S. H. Pereira,
Gaussian process estimation of transition redshift, arXiv:
1909.00090.

[76] B. S. Haridasu, V. V. Luković, M. Moresco, and N. Vittorio,
An improved model-independent assessment of the late-
time cosmic expansion, J. Cosmol. Astropart. Phys. 10
(2018) 015.

[77] H. Velten, J. Wang, and X. Meng, Phantom dark energy
as an effect of bulk viscosity, Phys. Rev. D 88, 123504
(2013).

A. HERNÁNDEZ-ALMADA et al. PHYS. REV. D 101, 063516 (2020)

063516-10

https://arXiv.org/abs/astro-ph/9609119
https://arXiv.org/abs/astro-ph/9609119
https://doi.org/10.1093/mnras/sty260
https://doi.org/10.1093/mnras/sty260
https://doi.org/10.1088/0067-0049/192/2/18
https://doi.org/10.1086/670067
https://doi.org/10.1086/670067
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://arXiv.org/abs/1807.06209
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1080/03610927808827599
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1088/1475-7516/2016/05/014
https://arXiv.org/abs/1909.00090
https://arXiv.org/abs/1909.00090
https://doi.org/10.1088/1475-7516/2018/10/015
https://doi.org/10.1088/1475-7516/2018/10/015
https://doi.org/10.1103/PhysRevD.88.123504
https://doi.org/10.1103/PhysRevD.88.123504

