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We investigate the initial conditions of inflation in a Bianchi I universe that is homogeneous but not
isotropic. We use the Eisenhart lift to describe such a theory geometrically as geodesics on a field-space
manifold. We construct the phase-space manifold of the theory by considering the tangent bundle of the
field space and equipping it with a natural metric. We find that the total volume of this manifold is finite for
a wide class of inflationary models. We therefore take the initial conditions to be uniformly distributed over
it in accordance with Laplace’s principle of indifference. This results in a normalizable, reparametrization
invariant measure on the set of initial conditions of inflation in a Bianchi I universe. We find that this
measure favors an initial state in which the inflaton field is at or near its minimum, with a mild preference
for some initial anisotropy. Since inflation requires an initial field value with a large displacement from its
minimum, we therefore conclude that the theory of inflation requires finely tuned initial conditions.
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I. INTRODUCTION

Inflation [1–3] is the leading theory describing the early
Universe. In particular, inflation is often invoked as the
solution to the classic cosmological puzzles of the horizon
and flatness problems. Both of these are problems of fine-
tuning of the initial state of the Universe. There is nothing
preventing a completely flat and homogeneous universe
arising in the Hot Big Bang model, but it requires
incredibly specific initial conditions. It is therefore imper-
ative that inflation require less finely tuned initial con-
ditions if it is to solve these problems satisfactorily.
There has been much debate in the literature as to

whether the initial conditions required for inflation are
finely tuned [4–24]. However, there is still no consensus
with some authors claiming that inflation happens generi-
cally [25–28], while others argue precisely the opposite
[29–32].
The main reason for the differences in conclusion is the

infinite size of the space of allowed initial conditions. This
infinity must be regulated in order to obtain a finite number
for the likelihood of inflation and, as shown by [33,34], the
result one obtains can depend strongly on the choice of
regulator.
In [35] (hereafter F18), we constructed a measure of

initial conditions that is finite for a large class of infla-
tionary models and thus has no need for regularization. We
achieved this by using the Eisenhart lift [36,37] to describe
inflation as the geodesic motion on a field-space manifold.
We then took as our measure of initial conditions the
diffeomorphism invariant volume element of the tangent
bundle of that manifold. We found the total volume of the
tangent bundle to be finite provided the inflationary

potential diverges faster than φ2 as jφj → ∞ and is nonzero
everywhere. We were thus able to normalize our measure
without the use of a regulator.
In this paper, we extend the applicability of F18, whose

results were calculated for a flat, homogeneous, and
isotropic universe. We still assume the Universe to be flat
and homogeneous, but shall relax the assumption of
isotropy and thus consider a Bianchi I universe [38].
Although we do not observe anisotropy in the Universe
today, there is no reason to assume it was not present in the
early Universe. Indeed, smoothing out initial anisotropy is
one of the key achievements of inflation [39–41]. The aim
of this paper is therefore to see whether allowing for such
initial anisotropy changes the results of F18.

II. THE EISENHART LIFT

We begin by briefly reviewing the Eisenhart lift [36,37]
and showing how it can be used to describe scalar field
theories geometrically. Consider a theory withN degrees of
freedom, labeled by φi (collectively φ) and with a
Lagrangian L. Let us split the Lagrangian into two parts,

L ¼
ffiffiffiffiffi
jgj

p
½L1ðφÞ þ L2ðφÞ�; ð1Þ

where gμν with determinant g is the metric of spacetime.
Our results will not depend on the nature of this splitting,
but the most useful case will be when L1 contains the
kinetic terms and L2 contains the potential and interac-
tion terms.
We now add to our theory a vector field Bμ and consider

a new Lagrangian,
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L0 ¼
ffiffiffiffiffi
jgj

p �
L1 −

1

2

M4

L2

∇μBμ∇νBν

�
; ð2Þ

where M is an arbitrary mass scale, introduced to
keep dimensions consistent. Note that we can always set
M ¼ MPl through an appropriate redefinition of Bμ.
Varying (2) with respect to Bμ gives the equation of

motion,

∂μ

�
M2∇νBν

L2

�
¼ 0; ð3Þ

which implies

A ¼ M2∇νBν

L2

ð4Þ

is a constant of motion.
Varying (2) with respect to φi yields the other equation of

motion,

∇μ

� ∂L1

∂ð∂μφ
iÞ
�
−
∂L1

∂φi þ∇μ

�
A2

2

∂L2

∂ð∂μφ
iÞ
�
−
A2

2

∂L2

∂φi ¼ 0:

ð5Þ

As we have just seen, A is a constant. If we choose that
constant to be A ¼ � ffiffiffi

2
p

, we see that (5) reduces to

∇μ

�∂ðL1 þ L2Þ
∂ð∂μφ

iÞ
�
−
∂ðL1 þ L2Þ

∂φi ¼ 0: ð6Þ

These are exactly the equations of motion for Lagrangian
(1). Thus, the theory described by Lagrangian (1) and the
theory described by Lagrangian (2) yield exactly the same
classical predictions.
We can use this result to describe any homogeneous

scalar field theory in a geometric way, as was shown in
[35,37]. Such a theory will have a Lagrangian of the form

L ¼ 1

2
kijðφÞ _φi _φj − VðφÞ: ð7Þ

We now wish to apply the Eisenhart lift to this theory. Since
working with homogeneous fields is equivalent to working
in one dimension, the field Bμ has only one component B0,
which we can treat as another scalar field. For consistency
with previous work, we shall relabel this field B0 ≡ χ.
Taking L1 ¼ 1

2
kij _φi _φj and L2 ¼ −VðφÞ, we arrive at the

following equivalent Lagrangian:

L0 ¼ 1

2
kij _φi _φj þ 1

2

M4

V
_χ2 ¼ 1

2
GAB

_ϕA _ϕB: ð8Þ

Here ϕA ≡ fφi; χg, the indices A and B run from 1 toN þ 1
and

GAB ≡
� kij 0

0 M4

V

�
: ð9Þ

The Lagrangian (8) describes a system that follows the
geodesics of the N þ 1 dimensional field-space manifold
with metric (9). We can therefore describe any theory of the
form (7) in a purely geometric manner using this manifold.

III. INFLATION IN A BIANCHI I UNIVERSE

We shall study the theory of a single minimally coupled
scalar field in a universe described by Einstein gravity. We
therefore take the Lagrangian of the theory to be

L ¼
ffiffiffiffiffi
jgj

p �
−
1

2
Rþ 1

2
ð∂μφÞð∂μφÞ − VðφÞ

�
; ð10Þ

where R is the Ricci scalar.
As discussed in the Introduction, we shall restrict our

attention to spacetimes of Bianchi I type. The line element
in such a spacetime is given by

ds2 ¼ dt2 − a2xðtÞdx2 − a2yðtÞdy2 − a2zðtÞdz2: ð11Þ

Furthermore, we shall take the inflaton field to be homo-
geneous. With these restrictions, the Lagrangian (10)
becomes

L ¼ −ax _ay _az − ay _ax _az − az _ax _ay

þ 1

2
axayaz _φ2 − axayazVðφÞ: ð12Þ

This Lagrangian is of the form (7). We can therefore
introduce a new scalar field χ and use the Eisenhart lift to
construct an equivalent Lagrangian,

L0 ¼ 1

2
GAB

_ϕA _ϕB; ð13Þ

where ϕA ¼ fax; ay; az;φ; χg and

GAB ¼

0
BBBBBB@

0 −az −ay 0 0

−az 0 −ax 0 0

−ay −ax 0 0 0

0 0 0 axayaz 0

0 0 0 0 1
axayazVðφÞ

1
CCCCCCA
: ð14Þ

Notice that we have chosen to set M ¼ 1 in Planck units.
There is a one-to-one correspondence between trajecto-

ries of inflation in a Bianchi I universe and geodesics of
the five-dimensional manifold with coordinates ϕA and
metric GAB.
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IV. A MEASURE ON INITIAL CONDITIONS

Following the procedure from F18, we can use the field-
space manifold constructed in the previous section to define
a measure on the set of initial conditions for inflation. We
start by constructing the phase-space manifold for the
system described by (13). This is a ten-dimensional space
with coordinates Φα ¼ fϕ; _ϕg. As discussed in F18, the
natural metric for the phase-space manifold is the Sasaki
metric [42],

Gαβ ¼
�
GAB þ GCDΓC

AEΓD
BF

_ϕE _ϕF GCBΓC
AD

_ϕD

GACΓC
DB

_ϕD GAB

�
; ð15Þ

where ΓA
BC ¼ 1

2
GADðGBD;C þ GDC;B −GBC;DÞ is the

Christoffel symbol for the field-space manifold.
The invariant volume element of the phase-space

manifold,

dΩ ¼
ffiffiffiffiffiffiffiffiffiffi
detG

p
d10Φ ¼ detGd10Φ; ð16Þ

provides a natural measure on the initial conditions in this
model. As shown in F18, the measure (16) is equivalent to
the Liouville measure [25,30,43].
The Lagrangian (13) has five symmetries, which leave

the equations of motion invariant. These symmetries are
shifts of χ,

χ → χ þ c; ð17Þ
three spatial dilations,

ai → cai; _ai → c _ai; χ → cχ; _χ → c_χ; ð18Þ
for i ∈ fx; y; zg and time dilation,

_ai → c _ai ∀ i; _χ → c_χ; _φ → c _φ: ð19Þ
In (17)–(19), c represents an arbitrary constant.
Because of these symmetries, there are redundancies in

our description of the initial conditions. Any two sets of
initial conditions related by one or more of the trans-
formations (17)–(19) are physically indistinguishable and,
in fact, represent the same Universe. We will therefore
integrate out these symmetries to construct a measure of
physically distinct initial conditions, as we did in F18.
In order to achieve this, we need to change variables to

isolate the redundant degrees of freedom. To this end, we
define the variables

Hi ≡ _ai
ai
; Hχ ≡ _χ

axayaz
; χ̃ ≡ χ

axayaz
: ð20Þ

Now, only χ̃ is affected by the transformation (17) and only
ai is affected by the transformation (18). Thus, these
symmetries have been isolated.

We further define

H1 ≡ 1

3
ðHx þHy þHzÞ; ð21Þ

H2 ≡ 1

6
ð2Hx −Hy −HzÞ; ð22Þ

H3 ≡ 1ffiffiffiffiffi
12

p ðHy −HzÞ; ð23Þ

which simplify the algebra by diagonalizing part of the
phase-space metric (15). Note that the isotropic case now
corresponds to H1 ¼ H, H2 ¼ H3 ¼ 0.
Finally, we isolate the symmetry (19) by defining

H1 ¼
1ffiffiffi
6

p ρ cos α cos γ; H2 ¼
1ffiffiffi
6

p ρ cos α sin γ cos δ;

H3 ¼
1ffiffiffi
6

p ρ cos α sin γ sin δ;

Hχ ¼ ρ
ffiffiffiffi
V

p
sin α sin β; _φ ¼ ρ sin α cos β; ð24Þ

so that only ρ is affected by time dilations. Note that the
angles defined above cover the ranges

α ∈
�
−
π

2
;
π

2

�
; β ∈ ½0; 2π�;

γ ∈
�
0;
π

2

�
; δ ∈ ½0; 2π�: ð25Þ

Using the above definitions, initial conditions of infla-
tion in this model are fully described by the initial values of
the variables,

Φα ¼ fax; ay; az;φ; χ̃; ρ;α; β; γ; δg: ð26Þ

Of these, χ̃, ax, ay, az, and ρ correspond to redundancies of
description since their initial values can be arbitrarily
changed by the symmetry transformations (17)–(19). We
will therefore integrate out these degrees of freedom.
This means that the physically distinct sets of initial

conditions can be parametrized by φ, α, β, γ, and δ. Of
these, φ, α, and β were used in F18 and control the initial
inflaton field value, the initial expansion rate, and the initial
inflaton field velocity, respectively. In addition to those, we
now have γ, which controls the total degree of initial
anisotropy and δ, which controls the direction of that
anisotropy.
There is one additional consideration we must take into

account. Varying the action (10) with respect to g00 (also
known as the lapse) yields the Hamiltonian constraint,
which can be expressed in the variables (26) as
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H ¼ 1

2
axayazρ2½−cos2α cosð2γÞ þ sin2α� ¼ 0; ð27Þ

whereH is the Hamiltonian of the theory (which is equal to
the Lagrangian for a kinetic-only theory such as (13). This
is an algebraic constraint on the variables (26) and so
describes a nine-dimensional submanifold of the phase
space, which we call the Hamiltonian hypersurface. Only
configurations that lie on the Hamiltonian hypersurface are
physically allowed initial conditions for inflation, and thus
we should use a measure based on this submanifold, not the
full phase space.
Following F18, we take the metric on the Hamiltonian

hypersurface to be that induced on it by virtue of being
embedded in the phase-space manifold. Explicitly, we
choose a set of coordinates Φ̃a (collectively Φ̃) on the
Hamiltonian hypersurface and encode the embedding
through Φα ¼ FαðΦ̃Þ. The induced metric is then given by

G̃ab ¼
∂Fα

∂Φ̃a

∂Fβ

∂Φ̃b Gαβ: ð28Þ

We therefore take as our measure of initial conditions the
invariant volume element on the Hamiltonian hypersurface,

dΩ̃ ¼
ffiffiffiffiffiffiffiffiffiffi
det G̃

q
d9Φ̃: ð29Þ

We choose to use (27) to eliminate the variable α and
thus describe the Hamiltonian hypersurface using the
coordinates

Φ̃a ¼ fax; ay; az;φ; χ̃; ρ; β; γ; δg: ð30Þ

The embedding is then described by

Fα ¼ fax; ay; az;φ; χ̃; ρ; arctanð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosð2γÞ

p
Þ; β; γ; δg: ð31Þ

Note, however, that Fα only exists if

γ ≤
π

4
: ð32Þ

Therefore, as well as fixing the value of α, the Hamiltonian
constraint also restricts the allowed degree of anisotropy.
With this in mind, we can proceed to calculate the

induced metric on the Hamiltonian hypersurface using (28).
However, as in F18, we find this metric to be singular with
G̃6a ¼ G̃a6 ¼ 0 for all values of the index a. Here 6 refers to
the ρ coordinate. We must therefore introduce a regulari-
zation technique in order to obtain a sensible measure.
We will use the following, parametrization independent,

regularization method which was also used in F18. We
consider a submanifold very close to the Hamiltonian
hypersurface where H ¼ ϵ and calculate the volume
element on this hypersurface before taking the limit ϵ → 0.

Let us denote the induced metric on the surface H ¼ ϵ
by G̃abðϵÞ. Then the invariant volume element on this
surface is

dΩ̃ðϵÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det G̃ðϵÞ

q
d9Φ̃ ≈

ffiffiffi
ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
adj½G̃ð0Þ�αβdG̃αβ

dϵ

����
ϵ¼0

s
d9Φ̃;

ð33Þ

where adj½G̃�αβ is the adjugate of G̃αβ and we have used
Jacobi’s identity [44] to evaluate the derivative of the
determinant. We see that the volume element is propor-
tional to

ffiffiffi
ϵ

p
and is thus singular when ϵ → 0 as expected.

However, this overall factor will drop out when the measure
is properly normalized and we can safely ignore it. We can
therefore take the limit in a sensible fashion at which point
the approximation in (33) becomes exact.
We perform this calculation using the variables (30) and

find

lim
ϵ→0

dΩ̃ðϵÞ ¼
ffiffiffi
ϵ

2

r
a3xa3ya3zρ2

sinðγÞ
cos3ðγÞ

1ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp d9Φ̃: ð34Þ

As explained earlier, the initial values of χ̃, ax, ay, az, and
ρ are redundant degrees of freedom and so we integrate
them out to obtain a measure on the physically distinguish-
able initial conditions. We therefore obtain the main result
of this paper,

dP ¼ 1

N
sinðγÞ
cos3ðγÞ

1ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp dφdβdγdδ; ð35Þ

where dP is the measure on the initial conditions and

N ¼
Z

2π

0

dβ
Z π

4

0

dγ
Z

2π

0

dδ
Z

∞

−∞
dφ

�
sinðγÞ
cos3ðγÞ

1ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp �

¼ 2π2
Z

∞

−∞

1ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp dφ ð36Þ

is a normalization constant.
Notice that, just as in F18, the normalization constantN

is finite provided the inflationary potential diverges quicker
than φ2 as jφj → ∞ and is nonzero everywhere. Therefore,
the measure (35) is well defined and requires no regulari-
zation for this class of inflationary theories.

V. CONCLUSIONS

We have used the Eisenhart lift to describe inflation in a
Bianchi I universe as the geodesic motion on a five-
dimensional field-space manifold with metric (14). The
tangent bundle of that manifold, equipped with a natural
metric, provides a phase-space manifold that describes all
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possible sets of initial conditions for inflation in a Bianchi I
universe.
We have shown that, once the Hamiltonian constraint has

been taken into account and all redundant degrees of
freedom have been integrated out, the total volume of this
phase-space manifold is finite provided the inflationary
potential is strictly positive and diverges quicker than φ2 as
jφj → ∞. This is the same class of theories found in F18.
We can therefore employ Laplace’s principle of indiffer-
ence [45] to argue that the initial conditions should be
uniformly distributed over this manifold. This results in the
well-defined, normalized measure (35).
The measure (35) factorizes into two parts,

dP ¼ dPFRWdPanis; ð37Þ

where

dPFRW ¼ π

N
1ffiffiffiffiffiffiffiffiffiffiffi
VðφÞp dφdβ ð38Þ

is the measure for the initial conditions in an FRW universe
and

dPanis ¼
1

π

sinðγÞ
cos3ðγÞ dγdδ ð39Þ

is the measure for the anisotropies. The normalization
constants are chosen so that the measures (38) and (39) are
individually normalized. This separation allows us to
analyze independently the initial inflaton field configura-
tion and the initial spacetime geometry.
The measure (38) is identical to the one found in F18,

and thus many of the same conclusions will still hold. In
particular, provided N is finite, we find that the region of
phase space in which the inflaton field is displaced from its
minimum takes up a significantly smaller fraction of the
measure than the region of phase space with the inflaton at
or near its minimum. Thus, under this measure, initial
conditions that lead to significant inflation are indeed finely
tuned. A full analysis of this measure, including quantita-
tive results, can be found in F18.
The measure on the initial spacetime geometry, which in

our case is restricted to an initial anisotropy parametrized
by γ and δ, is given by (39). We see that this measure is
independent of the inflationary potential and is uniform
over δ. The measure can therefore be considered as a
distribution on the degree of anisotropy present in the initial
state of the Universe, which is independent of the infla-
tionary model. This distribution is shown in Fig. 1.
As we can see in Fig. 1, the measure slightly favors

anisotropic universes over isotropic ones. However, if
inflation does occur, it will dilute any initial anisotropy
by an exponential amount. Therefore, anisotropy will only
be observable today if it was initially exponentially large.

Such initial conditions represent a tiny fraction of the
measure (39), despite the mild enhancement of anisotropic
universes. We therefore see that the inclusion of anisotropy
has a negligible impact on the results of F18.
While we have relaxed the assumption of isotropy in this

paper, we have still considered a patch of the Universe that
is flat and homogeneous. Since inflation only requires a
small patch of the Universe to be homogeneous in order to
begin [46–49], this assumption is far weaker than the one
made in the Hot Big Bang model. We defer investigation of
the effects of inhomogeneities on the measure (35) for
future work, but note that allowing for such inhomogene-
ities can only make inflation less likely [22–24]. Thus, the
results of this paper (and indeed F18) should be thought of
as upper bounds on the likelihood of inflation.
Since we are only focusing on one patch, there will be

others, and one might argue that even if very few patches
undergo inflation, those that do will grow to be exponen-
tially larger than those that do not [19] leading to a Universe
whose volume is dominated by patches that underwent
inflation. However, such volume weighting arguments are
inherently problematic. Since most models of inflation lead
to an infinite universe, both the inflationary and noninfla-
tionary patches occupy an infinite volume [50–52]. Thus, it
is ambiguous which occupies a greater fraction of the
volume of the Universe.
Furthermore, these arguments inevitably lead to the

so-called youngness paradox [51,53]. In most models,
inflation is eternal and new universes are being born all
the time. So, it is difficult to understand why we live in such
an old universe. There are e10

37

times as many universes
that were born even one second later than ours.
We note that, as in F18, the measure (35) is finite only if

the inflationary potential is strictly positive. Restricting our
attention to such potentials can be justified by considering
the cosmological constant [54]. If a cosmological constant
is the true cause of the current era of accelerated expansion,

FIG. 1. Measure on the initial anisotropy of the Universe as
given by (39).
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then the minimum of the inflaton potential that we are
currently in must necessarily be greater than zero. Thus,
excluding a deeper minimum that would lead to instability,
the potential must be greater than zero everywhere.
However, recent work on the string theory swampland

conjectures has placed doubt on the possibility of a truly
eternal cosmological constant (see [55] and references
therein). This has led some to embrace alternatives to
the cosmological constant such as quintessence [56–58]. If
dark energy was indeed described by quintessence, then the
inflationary potential could pass through zero leading to a
divergent phase-space volume. We note, however, that no
evidence for quintessence has so far been found and the
swampland conjectures remain unproven. The simplest
explanation of late time acceleration therefore remains

the cosmological constant, which leads to a strictly positive
inflationary potential and a finite measure.
Relaxing the assumption of isotropy does not solve the

fine-tuning issues observed in F18. In the manifold of all
possible initial conditions for a single scalar field in a
Bianchi I universe, the set that allows N > 60 e-foldings of
inflation represents only a tiny fraction. It is therefore far
from clear that inflation truly solves the fine-tuning puzzles
that it was designed for.
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