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We provide a general framework for studying the dark energy cosmology in which a scalar field ¢ is
nonminimally and kinetically coupled to cold dark matter (CDM). The scalar-graviton sector is described
by the action of Horndeski theories with the speed of gravitational waves equivalent to that of light,
whereas CDM is treated as a perfect fluid given by a Schutz-Sorkin action. We consider two interacting
Lagrangians of the forms f (¢, X)p.(n.) and f,(n., ¢, X)J¢0,¢, where X = —0*¢0,¢/2, p. and n, are
the energy density and number density of CDM respectively, and J% is a vector field related to the CDM
four velocity. We derive the scalar perturbation equations of motion without choosing any special gauges
and identify conditions for the absence of ghosts and Laplacian instabilities on scales deep inside the sound
horizon. Applying a quasistatic approximation in a gauge-invariant manner, we also obtain the effective
gravitational couplings felt by CDM and baryons for the modes relevant to the linear growth of large-scale
structures. In particular, the n,. dependence in the coupling f, gives rise to an interesting possibility for
realizing the gravitational coupling with CDM weaker than the Newton gravitational constant G.
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I. INTRODUCTION

In spite of the numerous observational evidence for the
existence of dark energy and dark matter, the origins of
them have not been identified yet. Dark energy is respon-
sible for today’s cosmic acceleration [1-3], whereas dark
matter is the main source for the growth of large-scale
structures [4,5]. The standard cosmological paradigm is
known as the A-cold dark matter (ACDM) model, in which
dark energy and dark matter are attributed to the cosmo-
logical constant and weakly interacting nonrelativistic
particles, respectively. The ACDM model is overall con-
sistent with the current observational data, but there have
been tensions for today’s Hubble constant H, and the
amplitude og of matter density contrast between the high-
and low-redshift measurements [6-8].

The cosmological constant is not the only possibility
for the origin of dark energy, but there are also other
candidates like a time-varying scalar field ¢. If we allow
scalar nonminimal and derivative couplings to gravity,
Horndeski theories [9] are the most general scalar-tensor
theories with second-order field equations [10-12]. Mean-
while, the gravitational wave (GW) event GW 170817 [13]
constrains the speed of gravity ¢, to be very close to that
of light ¢, at the level |c,/c — 1| < 10715, If we strictly
demand that ¢, = ¢ without allowing any tuning among
functions, the Horndeski Lagrangian is restricted to be of
the form Ly = G» (¢, X) + G3(¢, X)Tep + G4(p)R, where
G, 5 are functions of ¢ and X, and G4 is a function of ¢
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alone multiplied by the Ricci scalar R [14-20]. In this
theoretical scheme, there are some dark energy models
fitting to the observational data better than the ACDM
[21,22]. Nevertheless, it is still a challenging issue to
alleviate the tensions of H, and og between the high-
and low-redshift measurements.

From the viewpoint of particle physics, it is natural to
expect that dark energy interacts with dark matter [23].
Such a coupling can potentially alleviate the coincidence
problem as to why the energy densities of two dark
components are of the same orders today. For a quintes-
sence scalar field ¢» whose continuity equation is sourced
by the term ﬂpcci}, where f is coupling constant, p. is the
CDM density, and gb is the time derivative of ¢, there exists
a scaling matter era characterized by a constant field
density parameter Q = 2/3%/3 followed by the dark energy
dominated epoch [24-27]. In this model, the likelihood
analysis with cosmic microwave background (CMB) tem-
perature anisotropies from Planck and other data give
rise to the upper limit § < 0.062 (95% C.L.), with a mild
peak of the marginalized posterior distribution around
/= 0.036 [28].

There have been also several phenomenological
approaches to the interacting dark energy scenario in which
the couplings with CDM are added to the continuity
equations by hand [29—44]. One of such examples is to
introduce the interacting term £Hp,. or EHppg to the right-
hand side of the CDM continuity equation, where & is a
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coupling constant, H is the Hubble expansion rate, and ppg
is the dark energy density. For the interaction £Hppg, the
recent joint data analysis based on Planck, the direct
measurement of H, galaxy clusterings, and cosmic shear
measurements shows that the model with negative & (i.e.,
the energy transfer from CDM to dark energy) significantly
reduces the tensions of H, and og between CMB and
low-redshift measurements below the 68% C.L. level [44].
A similar conclusion was also reached in Refs. [45,46]
for interacting models in which a subdominant fraction of
dark matter decays after the recombination epoch.

At the covariant level, the phenomenological interactions
mentioned above can render difficulties for defining physi-
cal quantities properly [47], e.g., the CDM velocity. This
problem manifests itself for the dynamics of cosmological
perturbations, leading to unphysical instabilities in the early
Universe [36,37]. In contrast, the Lagrangian formulation
of coupled dark energy and dark matter with their fully
covariant energy-momentum tensors does not give rise to
any ambiguities for physical quantities at the perturbation
level. In this vein, Pourtsidou ef al. [48] and Boehmer et al.
[49,50] constructed interacting theories of the dark sector
by using an action of the relativistic perfect fluid for CDM
(see also Refs. [51-53]). The variational approach to the
perfect fluid was originally advocated by Schutz and Sorkin
[54] in 1977 and was further developed by Brown [55] in
1993. The corresponding action, which we call the Schutz-
Sorkin action, contains an energy density p and a vector
field J# associated with the fluid four velocity, together
with Lagrange multipliers. Since both scalar and vector
degrees of freedom can be consistently implemented in this
framework, the Schutz-Sorkin action has been used to
describe perfect fluids in the late-time cosmology in scalar-
tensor and vector-tensor theories [56-67].

Neglecting the dependence of entropy density s, the
possible interacting Lagrangian between the scalar field
¢ and the CDM density p. is of the form L; =
—/=9f1(¢)p.(n.), where g is the determinant of metric
tensor g,,, f1(¢) is a function of ¢, and p, depends on
the CDM number density 7, [49]." The Schutz-Sorkin
Lagrangian contains the contribution £y, = —/=gp.(n,),
so the total effective CDM density is given by
pe = (14 f1)p.. As we will see later, the energy transfer
between CDM and the scalar field is particularly trans-
parent by considering continuity equations for p,. and ppg.
Indeed, this interacting model accommodates the coupled
quintessence scenario advocated in Refs. [23,25].

Since the Schutz-Sorkin action contains a vector field J%,
we can also think of the scalar derivative coupling J*;aﬂ(p.
Indeed, the interacting Lagrangian of the form L, =
fz(nc,fﬁ)J’Zé‘ﬂqb, where f, is a function of n,. and ¢, was
proposed in Ref. [50]. This coupling opened up a new

'As in Refs. [49,65,66], this interacting Lagrangian can be
written in the more general form L;, = —/=gp.(n., $).

window for the study of coupled dark energy. For instance,
the effective gravitational interaction with matter density
perturbations can be either weaker or stronger than the
Newton gravitational constant on scales relevant to the
linear growth of large-scale structures [59]. This is not
the case for the coupled quintessence with the interacting
Lagrangian £;,,; mentioned above, in that the scalar-matter
interaction is always attractive. Hence the signature of
different couplings can be probed from the observations of
galaxy clusterings and weak lensing. In particular, it will be
of interest to study whether models with the weak gravi-
tational interaction for the large-scale structure growth, as
indicated in current observations [28,68-71], can be con-
sistently constructed in this framework.

The couplings f1(¢) and f,(n.,¢) can be generalized
to include the dependence of field kinetic energy X =
—0"¢0,¢/2, such that the two interacting Lagrangians
are given by Eintl = _\/;_§f1(¢’x)pc(nc) and EintZ =
fa(n.,¢.X)J¢0,¢. The background cosmological dynam-
ics with the first interaction was recently discussed for a
canonical field with the potential V(¢) [72]. The interacting
Lagrangians £;,; and L;,» may also be partially related to
the theories in which CDM is conformally and disformally
coupled to the metric g, different from the metric g,, felt
by baryons [73-75]. So far, most of the past papers
considered the canonical scalar or k-essence field for the
dark energy sector, but we would like to extend the analysis
to more general coupled Horndeski theories satisfying
¢; = c. This allows the possibility for realizing the dark
energy equation of state wpg smaller than —1 [21,22].

In this paper, we provide a general framework of
coupled Horndeski scalar dark energy with two interacting
Lagrangians L;,; and L;,,, containing the X dependence in
f1 and f,. We derive the scalar perturbation equations of
motion on the flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) background in a gauge-ready form and obtain the
stability conditions in the small-scale limit. We also
compute the effective gravitational couplings of CDM
and baryons associated with the linear growth of large-
scale structures. This general formulation will be useful to
construct theoretically consistent models of coupled dark
energy and to confront them with observations.

This paper is organized as follows. In Sec. II, we derive
the background equations of motion on the flat FLRW
spacetime and discuss how dark energy and CDM interact
with each other. In Sec. III, we expand the total action up to
second order in scalar perturbations and obtain the pertur-
bation equations without fixing gauge conditions. In
Sec. IV, we identify conditions for the absence of ghosts
and Laplacian instabilities in the small-scale limit by
choosing several different gauges and show that they are
independent of the choice of gauges. In Sec. V, we apply
the quasistatic approximation to the perturbations deep
inside the sound horizon and derive the general expression
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of the effective gravitational couplings of CDM and
baryons. Section VI is devoted to conclusions.

We use the natural unit where the speed of light ¢, the
reduced Planck constant 7, and the Boltzmann constant kp
are equivalent to 1. The Newton gravitational constant G is
related to the reduced Planck mass M, as G = 1/(8zM gl).

The Greek and Latin indices denote components in space-
time and in a three-dimensional space-adapted basis,
respectively.

II. LAGRANGIAN FORMULATION OF
COUPLED DARK ENERGY

We consider the Lagrangian formulation of scalar-field
dark energy coupled to CDM. The scalar-graviton sector is
described by the action of Horndeski theories Sy with the
tensor propagation speed c, equivalent to 1. Besides CDM,
we also take baryons and radiations into account and
assume that they do not have direct couplings to the scalar
field ¢b. The noninteracting matter sector of perfect fluids is
described by the Schutz-Sorkin action S, [54,55]. For the
coupled action S;,; between CDM and ¢, we consider the
two types of interactions mentioned in the Introduction.
Then, the total action is given by

S =8+ Sy + Sines (2.1)

where

Sy = / B2/ GG ()R + Galh. X) + G, X) O,
(22)

Su==- [aalvTaln) + 0,00, (23

S = — / dxy/=af (. X)p.(n,)

+ / d*xf,(n.. ¢, X)Je0,p. (2.4)
Here, R is the Ricci scalar, G4 is a function of ¢ alone, G, 3
depend on both ¢ and X = —0*¢0,¢/2,andJ = ¢V, V,
is the d’ Alembertian with the covariant derivative operator
Vﬂ. The Schutz-Sorkin action (2.3) describes the perfect
fluids of CDM, baryons, and radiations, labeled by c, b, r,
respectively. The energy density p; is a function of each
fluid number density 7;, which can be expressed in terms of
the vector field J%, as

9w
ny=4/———.
g

The fluid four-velocity u;, is defined by

(2.5)

i
Uy, = . 2.6
Iu n[\/-_—g ( )
From Eq. (2.5), there is the relation ufu i = —1. The scalar

quantity ¢; in Sy, is a Lagrange multiplier, with the
notation of the partial derivative 0,¢; = 0¢;/0x".
Throughout the paper, we do not include the contribution
of entropy density s; per particle [54,55] to the matter
action. The vector degrees of freedom are generally present
in Sy, [60,63], but we do not take them into account as they
are irrelevant to the cosmological dynamics in scalar-tensor
theories.

Now, we are considering interacting theories in which
CDM is coupled to the scalar field through the dependence
of both ¢ and X. The scalar quantities constructed from the
one derivative d,¢ correspond to X = —0/¢d,¢/2 and
Y = Ji0,¢. The first interacting action in Eq. (2.4) pos-
sesses the ¢ and X dependent coupling f (¢, X) with the
CDM density p.(n.). The second interacting action in
Eq. (2.4) contains the derivative coupling Y as the form
fa(ne, ¢, X)Y, where f, is a general function of n., ¢,
and X.

The theories in Ref. [49] can be recovered by choosing
the couplings f| = f(¢) and f, =0 with G4 = M§1/2,
G, = X = V(¢), and G;3 = 0, whereas the interactions in
Ref. [50] correspond to f; =0 and f, = f5(n.,¢). Our
analysis encompasses these two coupled dark energy
theories as special cases. We note that the analysis can
be extended to more general couplings2 containing the
nonlinear terms in Y, e.g., f>(n., ¢, X,Y) [48,51-53]. The
theories in which CDM is conformally and disformally
coupled to the metric g,, = A(¢. X)g,, + B(¢.X)0,¢0,¢
[73-75] may be accommodated in this extended class since
the term J’ZJf,g'W in the definition of Eq. (2.5) generates a
nonlinear term in Y. In this paper we focus on the
interacting theories containing the linear term in Y, leaving
more general couplings for a future work.

Variation of the action (2.1) with respect to £; leads to

B”J’; =0, forl=cb,r. (2.7)
Varying the action (2.1) with respect to J4 and using the
relation On;/0J] = J;,/(n;g), it follows that

1
a;lfc = ucupc.nc(l + fl) - ﬁ Mc;th.n(,J(claaQ’) + f2au¢v

(2.8)

for I =b,r, (2.9)

8/4fl = ulﬂpl,n, ’

where Pin, = ap[/anl and f2,nl. = af2/anc'

*We thank Edmund Copeland for pointing out this issue after
the initial submission of our paper on arXiv.
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A. Background equations of motion

We derive the field equations of motion on the flat

FLRW background given by the line element

ds? = =N%(1)dr* + a*(1)5,;dx'dx/, (2.10)

where N(7) is the lapse, a(t) is the scale factor, and 7 is the

cosmic time. Since the fluid four-velocity in its rest frame is

given by uf = (N1,0,0,0), Eq. (2.6) gives the relation
J(,) = n,,/—gu(}, 1.€.,

3 . ..
S = /d“X{% {Nsz(r/),X)— <¢5+33([5>G3(¢,X)+6<Z+a

- / d4X[N613{[1 +f1 (d’? X)]pc + Pp +pr} + a3(ncléc + nbl’bb =+ nrlér) - nca3f2(nc» ¢,X)¢],

where a dot represents the derivative with respect to . The
field kinetic energy X is given by
¥
x_ 9

el (2.14)

which contains the N dependence.

From Eq. (2.12), the number densities n; satisfy the
differential equations r; +3Hn; =0 (with I = ¢, b, r),
where H = d/a is the Hubble expansion rate. The pressure
of each matter component is given by

Pi(n;) = nPrn, — PI- (2.15)
In terms of p;(n;) and P;(n;), the conservations of particle
numbers translate to the continuity equations,

pr+3H(p;+ P;) =0. (2.16)

In what follows, we will consider the perfect fluid satisfy-
ing the weak energy conditions, i.e.,

p[ > 0, /)1 +P1 > 0 (217)

On the background (2.10), Egs. (2.8) and (2.9) reduce,
respectively, to

gc = _Npc,ng(l +f1) + (ncfZ,n(. +f2)¢’

f[ = _Npl,n,’

(2.18)

for I =b,r. (2.19)

Varying the action (2.1) with respect to N, a, ¢, using
Egs. (2.18)—(2.19), and setting N = 1 at the end, we obtain
the background equations,

C+ <l.52f1,xﬂc - nc¢3f2,X -~ (Y4 fi)pe=ppr—pr =0,
(2.20)

JY =n;a’. (2.11)
From Eq. (2.7), we obtain

N; =JY = n;a® = constant, (2.12)

which means that the particle number N, of each matter
species is conserved.
On the background (2.10), the action (2.1) reduces to

'2) G4<¢>} A [¢63<¢,X> - 6§G4<¢>} }

612

(2.13)

|
Cz—”%fz,n[&*‘ (14 f1)P.+P,+P, =0,
C3+[f1p— (i)zfl,Xqﬁ —d(fix+ §£2fl,XX)]pc + 3H¢"f1,xpc
- nc(3Han2,nC - 3¢ flyfz,x + 3H4‘52ncf2,XnC
- 453f2,x¢ - 453 & faxx) =0,

where

(2.21)

(2.22)

C = 6G4H? + Gy — §* Gy x — ¢ (Gsy — 3HPG x)

+6H(G, 4, (2.23)
C, = Cy +2q,H — Dggp + D7, (2.24)
Cy =2D,¢p +3D¢H — Ds +3HD;,  (2.25)
and

q, =2G,, (2.26)

D, = %Gz,x +Gsy + %ﬁéz(Gz,xx + Gs xp)
- %H&(ZG&X + ¢*Gs.xx), (2.27)

Ds = Gy — ¢*(Goxy + Gs 4p)

+3HP(¢*Gs.xp + 2Gyyy) + 6H* Gy, (2.28)
Dg = —¢"G; x —2Gy . (2.29)

D7 = §(Gax +2Gs 4 +2Gy4y) — HBF Gax +2Gyy).
(2.30)

As we will see in Sec. II B, the quantity g, is associated
with the no-ghost condition of tensor perturbations.
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The coefficients D, 547 appear in the second-order action
of scalar perturbations derived later in Sec. III.
As long as the condition

gy =4D,q, +3D% = 2q,(f1x + ¢*f1.xx)Pe

+2qn.9(3f2x + ¢ foxx) #0 (2.31)
is satisfied, Egs. (2.21) and (2.22) can be solved for H and
¢. As we will show in Sec. IV, the absence of scalar ghosts
requires that g, > 0, under which the background system
does not cross the singular point at which the correspond-
ing determinant vanishes (i.e., g, = 0).

We define the CDM density j, and the pressure P,
containing the effect of interactions with the scalar field, as

pe= 1+ f1)pe. (2.32)
P.=(1+f)P,, (2.33)
together with the CDM effective equation of state,
P, P,
We=—=—". (2.34)
Pe  Pe

The coupling f; modifies both the energy density and
pressure of CDM. For the pressureless dust (P, = 0), the

effective pressure P, vanishes.
On using the continuity Eq. (2.16), the energy density p,.
obeys

R A B fig+dfix .

o (2.35)

We can express Egs. (2.20) and (2.21) in the following
forms,

3MYH? = ppg + pe + Py + prs (2.36)

M2(2H +3H?) = —Ppg — P, =P, —P,.  (2.37)

where

poe = —Ga + ¢* Gy x + ¢2(G3,¢ —3H¢G; x) - 6H¢"G4,¢
+3(Myy = 2G)H? = §*f 1 xpe + e’ fox. (2.38)

Ppe = Gy + ¢*(Gs g + $Gsx) + 2G4 4(db + 2H)
+ 207Gy gy — (2H + 3H?)(M% = 2G,) — n2fs, .
(2.39)

Differentiating Eq. (2.38) with respect to ¢ and exploiting
Eq. (2.22), we obtain

_f1,¢ +dfix .

poE + 3H (ppg + Ppe) = 1+ 7 pcq.ﬁ. (2.40)

The sign on the right-hand side of Eq. (2.40) is opposite to
that of Eq. (2.35), showing the energy exchange between
the scalar field and CDM. For the couplings f(¢) =
e2¢/Mi _ 1 and f, = 0, where Q is a dimensionless con-
stant, the right-hand sides of Egs. (2.35) and (2.40) reduce,
respectively, to Qp}(/'b/Mpl and —Qﬁcgﬁ/Mpl. This corre-
sponds to the coupled dark energy scenario originally
proposed in Refs. [23,25].

The coupling f,(n.,¢,X) does not give rise to its
contribution to the right-hand sides of Egs. (2.35) and
(2.40). This reflects the fact that the interaction induced
by f>(n., ¢,X) corresponds to the momentum transfer
[48,51,52]. By defining P, = P, —n2f,, ¢ and Ppg =
Ppg + n2 fz_nl,_q'ﬁ, respectively, the right-hand sides of con-
tinuity equations for CDM and dark energy acquire the
terms —3Hn2f Mfd) and 3Hn? fz‘ncq'ﬁ, respectively. Here, we
do not choose these definitions of effective pressures to
show explicitly that the energy transfer solely comes from
the coupling f(¢.X). With p. and P. defined by
Egs. (2.32) and (2.33), the CDM effective equation of
state (2.34) is also equivalent to the standard value P./p..

B. Tensor perturbations
We consider the propagation of tensor perturbations £;;
obeying the traceless and transverse conditions 4! = 0 and
0;h;; = 0 on the flat FLRW background. The perturbed line
element containing £;; is given by

ds2 = —dt2 + az(t)(5u + hl])d.xldx] (241)

The nonvanishing components of 4;; can be chosen as
hiy = h(t,2), hyy = —hy(t,2), and hyy = hy = hy(t, 2),
where the two independent modes /; and /i, depend on
t and z. We expand the total action (2.1) up to second order
in hy, h, and use the background Egs. (2.21) and (2.22).
After the integration by parts, the resulting second-order
tensor action yields

S¥ = / dtd3x§2:a—3q, [/ﬂ —C—’z(ah-)ﬂ, (2.42)
= 4 Coa
where ¢, is defined by Eq. (2.26), and
c?=1. (2.43)

The tensor ghost is absent under the condition
q; =2G4 > 0. (2.44)

Since the propagation speed c, of tensor perturbations is
equivalent to that of light, the coupled dark energy theory
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given by the action (2.1) is consistent with the observa-
tional bound of ¢, constrained from the GW170817 event
[13]. The values of g, and ¢? are equivalent to those in the
uncoupled theories (f; = 0 and f, = 0), so the interaction
between the scalar field and CDM does not affect the
propagation of gravitational waves.

III. SCALAR PERTURBATION EQUATIONS
IN GAUGE-READY FORM

In this section, we first expand the action (2.1) up to
second order in scalar perturbations without choosing
any particular gauges. Then, we derive linear perturbation
equations of motion in the form ready for fixing any gauge
conditions, i.e., the gauge-ready form [64,76,77].

The general perturbed line element containing four scalar
metric perturbations a, y, ¢, E is given by [78-80]

ds? = —(1 + 2a)ds* + 20,ydedx’

where the perturbed quantities depend on ¢ and x'. The
scalar field ¢ is also decomposed as

¢ = (1) + 66, (3.2)
where ¢(t) is the background value and 8¢ is the
perturbation. In the following, we omit the overbar from

background quantities. The perturbation of field kinetic
energy X, expanded up to second order, is given by

O = 6 = ) + 3 | (5 ~ 24 = 13 (006 + 0y |

+ O(&%), (3.3)
where €" represents the nth order of perturbations.

For quantities in the Schutz-Sorkin action (2.3), we
decompose the temporal and spatial components of J4
(with I =c¢, b, r) into the background and perturbed
parts, as

6%0,6j,

=N, +6I,, Ji= 20

(3.4)

where N/, is the conserved particle number, and 8J;, 6,
correspond to scalar perturbations. For baryons and radi-
ations, we recall that the Lagrange multipliers £, satisfy the
relations (2.9). The velocity potentials v; are defined by

Up = —ail)]. (35)
Since J;; = JVg0; + Jfgij = N0,y + 0;5j; at linear order
in perturbations, Eq. (2.6) gives

0i6j; = =N (O + 0jvy). (3.6)

From Eq. (2.8), the spatial derivative of £, associated with
CDM perturbations yields

at’fc = _{pc,n‘ (t)[l + fl (t)] - nc(t)fZ,nc(t)q.ﬁ(t)}aivc

+ f2(1)0;6¢, (3.7)

whose integrated solution is

fc = ‘A(t> - {pcVnc(t)[l +f1(t)] - nc(t)flnc(t>¢(t)}vc
+ f2(1)o¢. (3.8)

The time-dependent function A(¢) is determined by the
condition that 0y, computed from Eq. (2.8) coincides with

A(t) at the background level. Then, it follows that

¢ = / (en D1+ £1(7)]

— (1 (D) fon, (B) + F2(D)] () }d7
- {pc,n{,(t)[l + fl (t)} - nC(t)fZ,n{’,(t)é(f)}’[]c

+ f2(1)06. (3.9)

For baryons and radiations, Eq. (2.9) gives

t
;= —/ p[,n,(;)d;_pl.n,(t)vl’ for I'=>b,r. (3.10)

We define the density perturbation of each matter
fluid, as

5p1 = pl.;z,
a

61, = Ny (3¢ + QPE).  (3.11)

Then, the perturbation of n;, which is expanded up to
second order, is given by

2
Sny = opr 1(3;}1) — (3¢ + 8°E) Sp;
pI.n, 2a pl,n,
2E _ 2E
_ANile+9 2;3<3€ 7E) | O(),  (3.12)

whose first term on the right-hand side shows the con-
sistency with the left-hand side.

The fluid density p;, which depends on n;, is expressed
in the form

1
pl(nl) =PI +p1ﬂ,5nl + Epl,nlnlén% + 0(83)

on; 1 ony\ 2
=pr+ (P1+P1)I+(PI+P1)C%<I)
ny 2 ny

+0(), (3.13)
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where c¢? is the matter sound speed squared defined by

C2 o PI.n, o nlpl,n,n,
;I - - -
pl,n, pl,n,

In the interacting action (2.4), the coupling terms f; and f, are also expanded as

1 1
f1(@.X) = f1+ f140¢ + f1x0X + §f|,¢¢5¢2 + ifl,xxfsxz + f1x40X5¢ + O(%),

1 1 1
fo(ne, . X) = fo+ fondnc+ f246¢ + frx6X + Efz.ncnt.(sn% + §f2,¢¢5¢2 + Efz,xxfsx2

+ f20,00N:00 + f2.0 x61.6X + f2x46X5¢p + O(€),

where 0X and dn, are given, respectively, by Egs. (3.3) and (3.12).

A. Second-order action

(3.14)

(3.15)

(3.16)

We first expand the Horndeski action (2.2) up to quadratic order in scalar perturbations without using the background

Egs. (2.20)—(2.22). After the integration by parts, the second-order Horndeski action yields
Sy = /dzd%c(Lgat + Ly + L),

where

. 5>
Llf:llat — a3 |:D15¢2 + D2 (aa?)

2 2
+ (0D 2Ha)af + (D, + 31g0, =3t e + 50 { B~ b,

2

Py a¢)?
Ly = HsDG&p 3D;8¢ — 3(¢pDg — 2Hg,)a + 2q,~5 }g 3q,8° + t(f)

- (31545 + ZQZCI)% + 3 (CI(X + 562€ - C35¢> C:| N

LE=d’ [2qtc"+ 2B, — Dgbp — B3Sp + Buep + %% {a*(¢Dg — 2Hgq,)a}
+Cia+0C, (5 - %G2E> - 6354)} 0’E,
with the coefficients
D, = —%sz Giy +2H$Gsx + 5 ¢ Gsxg +2
=Gy — ! (Gz xgp + G3, ¢¢</>)¢ +3 ) (G3 X(/)(/)¢ Goxp —2G; 49)H b

(2G5 x + G; xx¢ ).

1
Ds = 2

3 .
2G2 x¢p T G349 — 2 (Gaxxpd” + 2Gs.xp)Hep + = (Gz xxp + Gaxpp) | 9.

Dy = —(Gyx +2G34)d — (Goxx + Gaxp)#* +3(3G3.x¢" + G3 xxd* + 2G4 4)H

063511-7
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2. ) . .
Bl :gqt, 32 = qt+3Hqt, B3 :D6+3HD6—D7, B4 :D7+3HD7 (322)

We recall that the coefficients C , 3 and D, 57 are given by Egs. (2.23)—~(2.25) and Egs. (2.27)—(2.30), respectively. The
coefficients D, 34 can be expressed by using g,, D|s¢7 and their time derivatives, as

24°D, = —2H¢, — (D¢ + HDg + D). (3.23)

2¢pD; = Ds + 3HDs — 3H<D7 +3HD;) = 3H[f} 4 —fl,x¢¢;72 - (fix +f1,xx<f"2)¢§]ﬂc - 9H2¢f1,XPc
+3Hn (3Hn.f>, — 3¢ ¢ fox + 3H¢')2ncf2,n(.x - (1'53f2.x¢ - 11;3 b frxx): (3.24)

D, = —2¢D, — 3HDj, (3.25)

where we used Eq. (2.22) for the derivation of Eq. (3.24). The second-order Horndeski action (3.17) is written in the gauge-
ready form. If we choose the flat gauge in which both { and E vanish, we have that L% = 0and LE = 0. In this case, what is
left in SH is the Lagrangian L alone. As we will see in Sec. IV A, we can also choose other gauges depending on the

problem at hand.
We also expand the sum of actions S;; + S;, up to quadratic order in scalar perturbations. After integrating out the fields

0j; by using the relation (3.6), the second-order action in the matter sector is given by the sum of S ) and Smt The former is
expressed in the form

S = / dedx (L + LS, + L), (3.26)
where
1 Ov;)? c?
Ly = H Pr+ PI 5 —dp; — 3H(1 + C%)épl}vl _E(pl +Py) ( azl) - 2(p; _{_ P[)‘Sﬂ%
1 y)?
— adp; — {( ) _ a2}], (3.27)
2 a?
L Z 3a’ { pr+ Pl + pral __PIC2:| (3.28)
I=c,b,r
1
LE = Z [(pI+P,)( —3Hc}v;) — pa+ Py (C—EGZEHWE. (3.29)
I=c,b,r

The latter interacting second-order action is given by
s2 = / ded3x(Li 418+ LE, + L 18+ LE)), (3.30)
int intl intl intl int2 int2 int2 :

where
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2

Py . ov,.)? c2
Lglitl_a |:{(pC+PC)?—5/)C—3H(1+C%)5/)C}f11ic— ( ) -

1
— P <
2(pc + C)fl a2 z(pc +P )

flépc

: o 2y (950
~ A = N1x)a+ df1x60 + 11450}, = pcf1X{¢ ¢—‘(26$) }

1 . .. . . .
+5{pe(freg + B frxxp) = 3HPGf 1 xp = Pe(Frpp — B F1x09) Y00° = pe(f14 — 6 f1.xp) 056

*Pc(flx+¢f1xx)(¢a 5¢) - ﬂc(f ¢f1X){(a)() (12}} (3.31)

LSy = =3 {{(pc +P)f1ve = pef1x0YE + po(fi = #°f1x)al — P Nils

+1{pe(frp— 4.52f1,x¢) —pep(fix + ¢2f1,xx) + 3HPc4sf1,x}5¢C] , (3.32)

. . . 1
Lfm =-a’ [{(Pc +Po)f1ve — Pc¢f1,x5¢}32E +p(f1 = ¢2f1‘X)a82E - Pcflé’azE + EPcfl (82E)2

+{pe(frp = 8 f1x0) = Ped(frx + °f 1 xx) + 3HPc45f1,x}5¢a2E} ’ (3.33)
and
82 . b C. n a 2 . C 2 n + C. n.n
Lﬂl‘g:_a nc|:{(pc+P) £ 5pc_3H(1+Cg)5pc}¢ _{ZPF ¢ cf2n ( U) _¢n (ZJ(‘(;CC+£C>];‘2.C()5P%
- b+ P, {anZ,nC5¢ - ¢’ (fax + ncf2,ncX)(¢a - 545) + [n.(3Hf>,, + d’fln(.qﬁ) - fz.xfl; Pl5¢}op.
. . 0? 06d)? 1 .. . . .
—bfax {¢5¢—f -4 >, ) } +5{0$ G 2xp + &' Frxxg) = 3Hne(fang + O Frnxs) + & Frxgp}od
15)
B g — B fax + B ) o= 58P + 5 fzx{( %) az}], (3.34)
. . .. 1.
LfntZ 3a3nc |:¢(ncf2,nl.vc - ¢f2X5¢)z: - ¢3f2,XaC - §¢ncf2.nré.:2
~{pFBfax + ¢ faxx) = 3Hn(fon, + & frnx) + ¢3f2,x¢}6¢c] : (3.35)
LilfltZ - Cl3l’lc |:¢"(ncf2,m Ve — ¢f2X5¢>82E - q.sncfln[é‘azE - ¢3f2,Xa82E + %qsncflnc (82E)2
~ {3 fax + ¢ faxx) = 3Hn(fon, +  frnx) + ¢3f2,x¢}6¢82E] : (3.36)

Now, we are ready for computing the total second-order action S? = Sg ) + S< + Smt On using the background
Egs. (2.20)—(2.22), the terms containing C;, C,, and C; in Egs. (3.18)—(3.20) cancel the sum of last contributions

to Egs. (3.27), (3.31), (3.34), last two contributions to Egs. (3.28)—(3.29), and the terms except for 4’ and 9%E in
Egs. (3.32)—(3.33) and (3.35)—(3.36). Then, the resulting full second-order action is given by

S / dtd3x(Lo + Ly, ). (3.37)

where
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) 96)2 . 9%8
Ly= a3{D15¢2 + D, ( a(f) + D35(/)2 + (D45¢ + Ds56¢p + Dg a2¢>a - (D65¢ D75¢) —f
82
+ (¢Dg = 2Ha)a~3 + (§"D1 + 3HJDs = 3H7q)?

Py . pr+ P c?
+ + P))v,—45 — v;0p; — 3H(1 + ¢3)v;6p; — o) = —L——5pF — ag
[;r{ Pr 1) 12 1001 ( 1) 1001 242 ( 1) 200, + P)) Pl L1

{3D65¢ 3D76¢ — 3(¢pDs — 2Hq,)a — Z3p,+P1)v,+2qt }c 3¢,

I=c,b,r

0*¢ (64)2 3
— (B16¢ +2q,a) —5- 2 +4q; ) + (2¢,8 +2By¢ — Dsdgp — B35¢+B45¢+ {a (¢Ds — 2Hg,)a}

+ ) (o + Py - 3Hc%v,)} E)ZE},

(3.38)
I=c.,b,r

and

¢ng.] 2. 52}( : ; (5U ')2
L., B — 3 — e P H 2 2 c
int — d |: (fl L+ P, ) { (pc c) a2 ope —3 (1 Cc)épc Ve {(/)c 1 c)fl ¢ncf2,nc} 242

13 12
_ { ( - ¢.52f1,x + ¢ nc{fZ,j(jﬁ:fZ.m.X})g + (q.ﬁf].x _ nc{ncflnc +Z YZP)i + ncfZ.,ncX)}) 6¢

c1’te 3H n, . n,. -d¢ . 82 0 2
- <f1.¢—" {n R/, ‘Z‘if;;"ﬁ) 291 Q'X})éaﬁ}épc—(fl,xpc—¢ncf2.x>{¢ ¢——( o¢) }

2a?

+ 5 {pc(fixy + ¢2f1.xx¢)¢ = n.(3f2xp + ¢2f2,xx¢)¢¢ (190 — ¢2f1,x¢¢) —3HP.f 1 x4

2(pe + P. pe+ P. ‘

i 7 1 ' % 2 n C. n.n
+ nc(3an{f2,nC(/) + ¢2f2,n‘X(/)} _ ¢3f2,X(/)</))}5¢2 _ ) {f]cg _ (]’)Vl ( f2, . +n f2, ¢ ,)}5 2
~{pelf10 =" F1xp) + ' ncfrxp}adp =5 {pe(frx + & Frxx) = bne(Bfox + ¢ foxx) Hba - 5¢)°

- {[(pc + Pc)fl - qan%fZ,n‘]Uc - ¢(Pcf1.x - ¢ncf2X)5¢}(3§ + azE):| . (339)

The Lagrangian L;,, characterizes the interaction between CDM and the scalar field arising from nonvanishing couplings

f1 and f5.

B. Perturbation equations

We derive all the linear perturbation equations of motion in Fourier space with the comoving wave number k. Varying the
action (3.37) with respect to nondynamical fields a, y, v;, and E, it follows that

(D4 + 45(f1 x + 452f1 XX)Pe — ”c452(3f2x + 452f2 xx)}&ﬁ - 3(45D6 - 2H%)é;

+[Ds = (f1.9 = P f1 X¢)Pe A nefrxpl00 + [2¢ D, +6H¢$Ds — 6H>q, — ¢2(f1,x + ¢2f1.XX)
2

k .
+ ¢'ne(3fox + ¢ Faxx)la+ 5 20, = (D = 2Hg,) (¢ = °E) = D] = > opy
I=c.,b,r
i fl.53”c(f2.x +nefanx)
| fi—¢ fix+ b+ P.

8p. =0, (3.40)
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Dedp —24,{ - (D7 — 4.5f1,x,0c + ¢2”cf2,x)5¢ - (¢D6 —2Hgq,)a - Z (p1 + Pr)vy
I=c.b,r

- [ l(pc + Pc) - d)n%fz,nc]vc = O’ (3'41)

. 2 .
Sp; +3H(1 + ¢3)dp; + 3(p; + Pr)¢ + = (pr+P;)(v;+y—a*E) =0, forl=c,b,r, (3.42)

2q,6 + 2325 — Dgdp — (B3 + ¢f1,xpc - 4.52ncf2,x)5<'ﬁ + [By — {d’zfl,m + (i;(fl,x + (bzfl.xx)}ﬂc
1d

+ 3HP S 1x + dneA§ 2 ax + 8 faxx) + 6 Faxg} = 3H 02 f2,,x)06 + — 7 {a*($De = 2Hq,)a}
+ Z (pr + P)(0; = 3Hcivp) + [f1(pe + Pe) — (l.ﬁngfz,nf]f/c — [{3Hcif) - ¢<f1.(,b +df1x)}Hpe + Pe)
I=c.,b,r
+ n%{(¢ - 3H¢2)f2,nﬁ + d')z (fZ,nL.(/) + ¢Hf2,n£.X)} - 3Hd.)n§'f2,nﬁnl.]vc =0. (343)

These equations can be used to eliminate a, y, v;, and E from the action (3.37). In Sec. IV B, we will derive the stability
conditions of dynamical perturbations in the small-scale limit after the elimination of nondynamical perturbations.
Variations of the action (3.37) with respect to dynamical fields d¢, dp;, and ¢ lead to

Z+3HZ + 3(D; - d}fl,ch + qaanfZ,X)é: + M?g&ﬁ - [{fﬁ(f1,x¢ + ¢2f1,xx¢) —figp + 4.52f1,x¢¢}ﬂc
—3HP . f 1 xp — pnAP3faxp + 9 Foxxs) + O Foxpp} + 3HN2(Frng + G Frnxs)|0¢

+ {fl,(/; - M (3Hn f,, + d)ncfZ.n(.(/) - 4'5(/')'f2,x)] Ope —[Ds = (fi4— d’zfl,x(/;)Pc - 4'53”cf2,x¢]0‘

pe+ P,
K> . . .
2z [2D,6¢p — Dgat — D7y + B { — a*B4E + (f1xpe — Pnefax){6¢ + dp(x — a@’E)}] =0, (3.44)
1+ f UCEIAY BH(1+ f1) = p(f14 + df1x) + i {Bfon. = 3H(f20, + nefrnn)
- - v, — c - E— - n
1 Pc+Pc c c 1 |7 1.X PC‘FPC 2.n. 2.n. cJ 2,n.n,
I s 7 ¢3nc(f. +ncf g )
+ ¢ (fang + ¢f2,ngx)}} v = [1 +fi=— ¢ fix+ 2T et g
pe+ P
; nc(ncon +d)2f2X+q.§2ncf2nX):| : |: nc(3anf2n.+¢2ncf2n.¢_q.§¢;f2)()
- - e * DX Sep — - & & 2208
[(ﬁfl.x o P b= |f14 o T P. ®
¢ng(2f2 n. + ncon n):|
_ 1 2 _ e nened | s — 0, 3.45
/)c+Pc|:( +f1)c /)c+Pc P ( )
CZ
oy — 3Hc3 v, — ’P Sp;—a=0, forl=h,r, (3.46)
1
. ) . .k
W3HW+ Y (pr+ Pr) iy = 3Hc[v)) + [(pe + Po)f1 = dnifan e + 55 (a0 + 29,8 + B15g)
I=c,b,r

- [n%{¢f2n - 3H¢<f2,nc +ncfonn) + P (fong + Q;fZ,nCX)}
+ (pe + POBBHE 1 = d(f14 + Bf10)}ve =0, (3.47)

where

M} =-2D;, (3.48)
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Z=[2D, - (fix+ ¢2f1.xx)ﬂc + f/}nc(3f2,x + 4.52f2,xx)]5¢ +3Del + D, + 4.7(f1.,x + Qazfl,xx)ﬂc

- ¢2”c(3f2,x + 4.52f2.xx>]a - ¢f1,X o

c(ncfZ,nc + (i)sz,X + ¢2ncf2,ncX)

k> .
+ ? [D6Z - 612<D6E + D7E>]7

. . . . . 2k .
W =2¢,l — Debp+ (D7 — df 1 xpe + ¢ nef2x)0¢ + (pDg — 2Hg,)a + W%(Z - a’E).

The coefficient —2D3 contains the term —G, 44. For a
canonical scalar with the potential V(¢), ie., G, =
X = V(¢), the term -G, 4, reduces to V 4,, which corre-
sponds to the field mass squared. In Ref. [50], the scalar
perturbation equations were derived in coupled quintes-
sence with the interacting Lagrangian L;, = ¢J20,¢/n.,
where ¢ is a constant. They can be recovered by setting
f1=0, fr=q/n., Go=X-V, G3=0, Gy = M}/2,
pp =0, and p, = 0 in Egs. (3.40)-(3.42), (3.44), (3.45),
and (3.47).

On using Egs. (3.43) and (3.47), the time derivatives 4
and 8¢ are eliminated to give

qla+ 7+ ¢+ Hy — a*(E + 3HE))]

S
+c],<;(—a2E+—¢> =0, (3.51)
¢
where we used the relation B; = 24,/&. The above

perturbation equations of motion can be applied to any
choices of gauges.

IV. SMALL-SCALE STABILITY CONDITIONS

By using the second-order action of scalar perturbations
derived in Sec. III, we identify conditions for the absence of
ghosts and Laplacian instabilities in the small-scale limit.
Before doing so, we introduce commonly used gauge-
invariant variables and discuss several different choices of
gauges.

A. Gauge-invariant variables and gauge fixings

Let us consider the infinitesimal gauge transformation of
time and spatial coordinates of the forms 7 =t + & and
X = x' + 50, where & and ¢ are scalar quantities. Then,
the four scalar metric perturbations in the line element (3.1)
transform as [78-80]

=q-&, 7=y 4 — a2
=¢(-H®,  E=E-&

A

Y

(4.1)

The transformations of d¢, dp;, and v; are given, respec-
tively, by

5
pe+ P, Pe

(3.49)

i (3.50)

[
5 = 6 — pE°,

’[7] = 1}1—50.

(4.2)

5;)1 =6p; — pi&°,

Then, the following perturbed quantities are invariant under
the gauge transformation,

B ¢
Ulf—vl_ﬁ,

(4.3)

spe=o0-Lc ope=om -1t
H

R - C——.éqﬁ,
)

p)
Spra = Ops — g’&ﬁ,

Spix = p; + pi(x — A°E),
(4.5)

S = 8¢ + p(x — a*E),
VN = Uy +)(— GQE.

The gauge-invariant gravitational potentials first introduced
by Bardeen [78] are given by

‘I’:a+d£t()(—a2E), ®=(+H(y—d*E). (4.6)

We recall that the background CDM density containing the
effect of interactions is given by p. = (1 + f)p.. We also
introduce the corresponding gauge-invariant CDM density
perturbation, as

Spen = (14 f1)0pen + [f1.400n + fl,an(éébN - fi"P)]Pc-
(4.7)

The gauge choice corresponds to fixing the infinitesimal
scalars & and &. The latter can be fixed by choosing
E=0. (4.8)

There are several different gauge choices for the fixing of
&0, The representative examples are

i) ¢=0
(i) 8¢ =0

(flat gauge), (4.9)

(unitary gauge), (4.10)
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(iii)

In the flat gauge, the dynamical scalar perturbations are
given by o¢; = 8¢ and Op;; = Sp;, while, in the unitary
gauge, they correspond to R = ¢ and dp;, = dp;. We note
that the comoving curvature perturbation R [81,82] is
related to the Mukhanov-Sasaki variable 6¢; [83,84], as
R=—-(H/ (]5)5¢f. In the Newtonian gauge, the perturba-
tions in Eqgs. (4.5) and (4.6) reduce, respectively, to
o = 0¢, Opin = Opy, vy = V1, ¥ = a, and ® = (. For
this gauge choice, the gauge-invariant dynamical scalar
perturbations are R = ® — (H /)y (or ¢y = Spy —
(¢/H)®) and pyn.

x=0 (Newtonian gauge).  (4.11)

B. Stability conditions in the small-scale limit

In order to obtain conditions for the absence of ghosts
and Laplacian instabilities, we choose two different gauges
and show that the small-scale stability conditions are
independent of the choice of gauges.

1. Flat gauge
Let us begin with the flat gauge characterized by { = 0
and £ =0. We first solve Egs. (3.40)—(3.42) for non-
dynamical perturbations a, y, v., v}, v, and substitute them
into Eq. (3.37). After the integration by parts, the resulting
second-order action is expressed in the form

s = [asa (»%'K;%_’;_i;zfagé_ FMT-ZBE),
(4.12)

where K, G, M, B are 4 x 4 matrices, and
X' = (8¢, Opei/ k, Spye/ k. Oprs /[ k). (4.13)
The leading-order terms in the components of matrices M
and B are of order k°. Taking the small-scale limit (k — o),

the nonvanishing matrix components of K and G are
given by

H?q,q, a’ pn2fs
K = 4.4 K= (1 L ¢z, >
(2HQI_¢D6) 2(pL+Pc) pc+Pc
2 2
() a (f) a
Ky =———, = 4.14
B 20py + Py) 200+ Py 1
D¢D7 — =c,b,r + P+ C+Pc_.n% ng .
G(lfl) — _D, + 67 [21_ b, (/’1 1) fl(ﬂ ) onzfr, ] 14_g1 + HG,
ZH% - ¢D6
_ (f1xpe = ¢nefaox)(2Hg, + $pDs)
2(2Hq, - ¢D6)
c® _ a’ : ) ¢ (2f 20, + Nefrnn,) (f) a’cy G — a’c? 15
» =575 |1+ fi)ce ; 33 44 = . (4.15)
2(pc+PC) pc+Pc 2(ph+Pb) z(pr+Pr)
|
where For the CDM perturbation dp,¢, the ghost is absent if
Kgfz) >0, ie.,
s (@16
gG=—->—°, 4.16 45n2f
2(2Hq, — ¢Dy) =1 ALY 4.18
! 6 qc +fl Do +Pc > ( )

and we used the relation (3.25). We recall that ¢, and ¢, are
defined, respectively, by Egs. (2.26) and (2.31). The scalar
ghost associated with the field perturbation d¢y; is absent for

(f)
Ky

(g, > 0), the condition K"

> (. Provided that there is no ghost in the tensor sector

> (0 translates to

q, > 0. (4.17)

Since ¢, contains the X derivatives of f| and f,, the X
dependence in f| and f, affects the no-ghost condition
of d¢ps.

Hence the coupling f| and the n, dependence in f, lead to
the modification to ¢g.. For baryons and radiations, the
positivities of Kgg) and KEQ
energy conditions (2.17).

Since all the off-diagonal components of K and G vanish
in the small-scale limit, the propagation speed squares
of four dynamical perturbations in Eq. (4.13) are simply
given by GEP/KEP, with i = 1, 2, 3, 4. For baryons and
radiations, G /K'Y and G\ /K] coincide with ¢Z and 2,
respectively. In contrast, the CDM propagation speed
squared yields

are ensured under the weak
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(f) 2 )
G 2 - c n + cJ 2.n.n, c
%_ 2%26%—[( C)fZ, B nf2,((]¢n ) (419)

_Kg (1+f1)(pc+Pc)_¢n%f2,nc

A

The existence of nonvanishing coupling f/ (¢, X) does not
modify the standard value é2 = c2, but the 1, dependence
in f, leads to the deviation of ¢2 from c2.

The propagation speed squared associated with the field

perturbation d¢; is given by

Q
—
=

BEN)
\

=L (4.20)

—_
)

To avoid the Laplacian instabilities of dp.; and d¢py, we
require that

>0, and 2>0. (4.21)

Under the no-ghost conditions g, > 0 and ¢, > 0, Ggf]) and
Ggfz) must be positive for the consistency with (4.21).

2. Unitary gauge

We also derive stability conditions of scalar perturba-
tions by choosing the unitary gauge characterized by é¢p =
0 and E = 0. After eliminating the nondynamical pertur-
bations a, y, v., v}, v, on account of Egs. (3.40)—(3.42), the
second-order scalar action (3.37) reduces to the form
(4.12), with the dynamical perturbations given by

X' = (R.5pu/k.5ppu/ k. 5pra/ k). (4.22)

In the small-scale limit, the nonvanishing components of K
and G are diagonal terms, with the same matrix compo-
nents for 8p.,/k, ppu/k, Op,/k as those obtained in the
flat gauge. Then, the stability conditions for CDM are
satisfied for g. > 0 and ¢2 > 0.

The nonvanishing matrix components associated with
the curvature perturbation R are

%)
SR L - (4.23)
(ZH‘It - ¢D6)
Gﬁ) = —q;
_ [Z[:c,b.r(pl + PI) +f1 (/)c + PC) - ¢n3f2,nc]g2
2Hq, — ¢Dg
+G, + HG,, (4.24)
where

2q?

G2 =
2Hq, — ¢Ds

(4.25)

Provided that the tensor ghost is absent (g, > 0), the
no-ghost condition K"

that K" is related to K\ given in Eq. (4.14), as

> 0 is satisfied for g, > 0. We note

W
K

il = % (4.26)
Kll

The propagation speed squared associated with the pertur-
bation R is

On using Egs. (2.20), (2.21), and (3.23), we find that there
is the following relation

P—‘QA
==

: (4.28)

SN
RS

where Ggfl) is given in Eq. (4.15). From Egs. (4.26) and
(4.28), the propagation speed squared (4.27) in the unitary
gauge is identical to the corresponding value (4.20) in the
flat gauge.

The matrix component GELP in Eq. (4.24) contains the
time derivative of G,, which generates the terms ¢,, Dg, and
¢ in ¢2. After eliminating these time derivatives by using
Egs. (2.20), (2.21), (3.23), and the relation B; = 262,/43, we
can express Eq. (4.27) in the compact form,

El

2= _ Dg +2B,Dg +24,(2D; + f1xpe = pn.frx)
' as
(4.29)

where g, contains the derivatives f x, f2x, f1.xx, and
f2.xx- This means that the derivative couplings f(X) and
f2(X) nontrivially modify the propagation speed of per-
turbation associated with the scalar field.

The above discussion shows that, in the small-scale limit,
the conditions for the absence of ghosts and Laplacian
instabilities for CDM and ¢ are independent of the choice
of gauges. Indeed, the analysis in the Newtonian gauge also
leads to the same stability conditions as those derived above
(as performed for the uncoupled case in Ref. [64]).

V. EFFECTIVE GRAVITATIONAL COUPLINGS
FOR NONRELATIVISTIC MATTER

We proceed to the derivation of the effective gravitational
couplings felt by CDM and baryons for perturbations deep
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inside the sound horizon. Since we are interested in the
cosmological dynamics in the late Universe, we ignore the
contribution of radiations to the background and perturba-
tion equations of motion. For CDM and baryons, we
consider nonrelativistic matter satisfying

P, =0, c¢2=0, forl=c,b. (5.1)
We caution that, even under the conditions (5.1), the n,
dependence in f2 gives rise to the nonvanishing sound
speed squared ¢2 for CDM while the effective pressure P,
vanishes, see Eqgs. (2.33) and (4.19). From Eq. (4.5), we
define the gauge-invariant matter density contrast,

. H
Uen +arHoey — (1 + ay)¥ +g

respectively, where

q'c _ ¢[pc¢fl,X
¢ a, = —

¢N

10 0
6[N5ﬂ )0] 3H(){—Cl E),

Pr PI

for I =c,b, (5.2)

where we used the continuity Eq. (2.16). From Eq. (3.42),
the matter density contrast obeys

2

) k )
51N+?01N+3q):0, (53)

where v;y and @ are gauge-invariant quantities defined in
Egs. (4.5) and (4.6).

From Egs. (3.45) and (3.46), the velocity potentials of
CDM and baryons satisfy

a, = ,
' Hg,

Taking the time derivatives of Eq. (5.3) for I = ¢, b and using Eqs. (5.4) and (5.5), it follows that

Sn+ 2+ a)Hon + 28N+ (1 +ay)—
a a

(362 + a + a2€¢)5¢N - @%501\1 = 0, (54)
=0, (5.5)

- Qﬁznc (fQ,X + ncfZ.nCX) - n%fZ,nJ ¢
- L= (5.6)

(1 +fl)pc_¢ncf2,n(. H¢

k? k? k> H 5¢
_?g aZFN_ (3 +a; +€¢02)5¢N

(5.7)

= 38 —3(2+a,)HD,

2

. . k .. .
5bN + 2H6bN + *2"1" == —3@ - 6Hq) (58)
a

The scalar perturbation equations derived in Sec. III B
can be expressed in terms of the gauge-invariant gravita-
tional potentials ¥ and @ as well as the other gauge-
invariant perturbations given in Eq. (4.5). First of all,
Eq. (3.51) translates to

H
YD =" Msp, (5.9)
¢
where
4
= . .1
M Hq, (5.10)

A. Quasistatic approximation for the modes
deep inside the sound horizon

In what follows, we employ the so-called quasistatic
approximation for the modes deep inside the sound horizon
[85-87]. Under this approximation scheme, the dominant
contributions to the scalar perturbation equations of motion
are the terms containing 8.y, ., Opn» and k*/a*. We also
take into account the field mass squared Mﬁ, appearing in
Eq. (3.44) to accommodate the case in which the field is
heavy at high redshifts as in f(R) models of late-time
cosmic acceleration [88-90]. The tachyonic instability can
be avoided for Mé > 0. Applying the quasistatic approxi-
mation to Egs. (3.40) and (3.44), it follows that

k2

P (2¢,® — Dbpx) — (1 + a2)qcpcSen — Ppdpn = 0,

(5.11)
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M35 + z—i [2%, <qscf + D+ M) S + De'¥ — ZHL.M‘”@}
+% [az%NH%Hal + ay(a +ea2)}6cN] =0, (5.12)
where we used Eq. (4.29), and
€a, = ijlz- (5.13)

The difference from the uncoupled Horndeski theories is that there exists the time derivative SCN in Eq. (5.12). We solve

Egs. (5.9), (5.11), and (5.12) for ¥, @, and d¢y to express them in terms of d,.y, d.n, and ;. In doing so, we introduce the
following dimensionless variables:

d’zL]sC% 26],612M2 A
A] = ag — oy, Az = 4H2qt2 quzd) s A3 = (1 + az)Al + 3C% + ay + az(al + 602),
D .
oy = —26¢ (5.14)
2Hq,

Then, ¥, @, and d¢y are expressed in the forms

a? 5.
Y=- 5 [{A1As + (14 a2) A2} qpben + (AT + Ar)pydpn + arq.0p. ], (5.15)
2q,Ak H
a2 5CN
O =_——" [{agAs + (1 + a2)A2}qpOen + (agd + A2)ppdpn + a2q.08p — 1| » (5.16)
24,0,k H
a2 Sen
oy =———— | A 1) Ap,0 . 5.17
N 2Hq, A ( 39cPcON T A1ppopN + A2qcpe H) (5.17)

The gravitational slip parameter is given by

y = @ _ lag(As + ayes ) + (1 + a2)As]qQcen + (agA; + A2)Q,6,n (5.18)
¥ [A1(As + ases) + (1 + a2) Ds)q Q.6x + (AT + Ar)Q0n .

where

Pe Pb S,
Q=-"P o ="1__ =%
T 3MAH? PTamAET T Hs,

(5.19)

We substitute Egs. (5.15), (5.17), and the time derivative of Eq. (5.17) into Eqgs. (5.7) and (5.8). In doing so, the terms on the
right-hand sides of Egs. (5.7) and (5.8) are neglected relative to those on their left-hand sides. We also introduce the
following dimensionless variables:

q: H A'i .
0, =—+~, €y =—, €, = (for i =1,2,3), (5.20)
oM H? HA,;
and
3a%q.Q, 3a,A,Q
b] :22QT, b2:—b1(1+2€H+aM+€A2—2a1 —2€a2), b3 :ﬁ, (521)

3The definition of A, in Eq. (6.14) of Ref. [64] contains the term ¢, in the denominator, but the definition of A, in Eq. (5.14) of this
paper is different from the former in that g, is replaced by g7 to make A, dimensionless.
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where b; > 0 under the absence of ghosts and Laplacian/tachyonic instabilities. Then, it follows that

. 2+4a +by . 2by . o 3H?
1) ———=HS§ ——H —— 0N — == (G0 G, Q,0,n) =0, 5.22
N T 1—‘rb1 cN+1+b1 bN+l+b1a2 cN 2G( 820N + Gep bbN) ( )
. : Q.. 3H?
OpN + 2H6pN — 2Hq b3 Q—5cN 50 (GpeQeden + GppQyb4N) =0, (5.23)
b
where G =1/ (SHM]%I), and the effective gravitational couplings are given by
2q
G, = < 1 2N, 4+ A{A, + 362 1 A — - G, (5.24
T 20,5, + 32,0, (1 +a)" Ay + A3{A; + 3¢ +a; +ar(1 + ey +ay+ Ay —a; +ep, —€n,)}] (5.24)
2 .
G = 20,4, 1 34,0, [(1+az)(AT + Ay) + A {382 + a1 + ay(1 + ay + ey —€a, +€a))}]G, (5.25)
qc[A14; + (1 + ay)Ay]
Gy = G, 5.26
b 0A, (5.26)
A+ A,
Gpp = — G. 5.27
= (527)

The gravitational couplings G.. and G,.,, which are
multiplied by Q.5.n and Q,5,y respectively, affect the
growth of CDM density contrast 6.. Meanwhile, the
baryon density contrast §,y has the gravitational couplings
Gy, and G, multiplied by Q,6,x and .6y, respectively.
The baryon perturbation is affected by the evolution of the
CDM perturbation, and vice versa.

In the absence of matter couplings (f; = 0 = f5,), the
quantities a;, a,, by, b,, b3 vanish. In this case we have
g.=1,¢2=0and Ay = Ay, so that G, G, G, reduce
to the same form as G;,. We note that G, is equivalent to
the effective gravitational coupling G,y derived for
uncoupled Horndeski theories [64,87]. When the matter
couplings f; and f, are present, G, G}, G, are generally
different from Gy,,.

Since we are considering the case in which P. = 0 and
¢2 = 0, the effective CDM sound speed squared is

2 pn’
6% — _ ( f2,ng + ncfZ,nCnc)(pnc (528)

(1 +f1)pc - ¢n3f2.nc '

Apart from the specific coupling satisfying the condition
2fo. +nefann =0, the n. dependence in f, leads to é2
different from 0. For ¢2 > 0, the growth of 8,y is prevented
by the positive pressure induced by the coupling f5(n..),
whereas, for ¢2 < 0, there is the additional enhancement of
O besides the growth induced by gravitational instabil-
ities. For the consistency with the observed galaxy power
spectrum in the linear regime of perturbations, the effective
sound speed squared needs to be much smaller than 1, say,

|¢2| <1072 in unified perfect fluid models of dark energy
and dark matter [91]. We note that the ¢» and X dependence
in f, and f, does not modify the value of ¢2.

The above results have been obtained for the gauge-
invariant density contrasts (5.2) for CDM and baryons.
There is also the gauge-invariant CDM density perturbation
(4.7) containing the effect of coupling f;. Dividing 5})CN by
the background total CDM density p. = (1 + f|)p., the
corresponding density contrast is

5o g Fre¥nt ixd(0dy — )
cN = ﬁc cN 1 +f1 .

(5.29)

Under the quasistatic approximation, the terms containing
opns &j)N, and ¥ in Eq. (5.29) are suppressed relative
to .. Indeed, this property can be confirmed by the
solutions (5.15) and (5.17) in the small-scale limit. In this
case, we have SCN ~ .y and hence the effective gravita-
tional couplings for 5. are approximately the same as
those derived above for the perturbations deep inside the
sound horizon.

B. Concrete theories

On using the general formulas (5.24)—(5.27), we com-
pute the effective gravitational couplings for specific
theories and the choice of couplings. We consider three
different cases: (i) f1 = f1(#). f2=0. (i) f1 = f(9).
f2 = fane.¢), and Gid) £, =0, f, = fo(n,. X).
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1. Theories with f=f;(¢) and f,=0

In this case, we introduce the dimensionless coupling

_Mufiy

0= 1+ f

(5.30)

Then, the right-hand sides of Egs. (2.35) and (2.40) reduce
to Qp /My and —Qp /My, respectively, showing that
the quantity Q characterizes the strength of nonminimal
coupling f,(¢). The quantities a,, a,, q., ¢2, and A5 are
given, respectively, by

a; = 0x, a2:0’ QC:1+fl7
2=0, A;=A+0x (5.31)
where
x= 4 . (5.32)
My H
Since the coupling f, is absent, ¢2 vanishes. From
Egs. (5.24)-(5.27), it follows that
G x + Ap)?
Gcc:_(1+f1) 1+u’
' A,
G A A
G, =— [1 + M}
o, Ay
G A(Ox+4y)
Gp. =— (1 1+ —,
be Q[ ( + fl) |: + A2
G A?
Gp=—(1+2 5.33
=70 ( + Az) (5.33)

As long as the stability conditions of tensor and scalar
perturbations are satisfied, it follows that Q, > 0,
qg.=1+f, >0, and A, > 0. Hence both G,.. and G,
are positive, with the positive scalar-matter interactions
characterized by (Qx+ A)>/A, >0 and A3/A; > 0.
According to our knowledge, the gravitational couplings
(5.33) have not been explicitly derived in coupled
Horndeski theories given by the action (2.2).

In the following, we specify the scalar-graviton sector to
the minimally coupled k-essence given by the action,

M2
Sy = /d“x,/—g [TPIR + Gy(¢, X)] (5.34)
We also consider a light-mass scalar field satisfying

q,a° M
q,c3k

<1, (5.35)

in A, of Eq. (5.14). We also adopt the condition (5.35) for
the theories discussed later in Secs. V B 2 and V B 3. Then,
we have

Qt - lv qucg - 2M12)1G2,X7 ay = 07
x2

ag = 0, A] = O, Az = EGZ’X‘ (536)
From Eq. (5.33), we obtain

20?
Gcc:G(1+f1) L+, G, =G,

GZ,X
Gye = G(1 + 1), Gy, = G. (5.37)

The coupling term 2Q%/G, x in G, coincides with that
derived in Refs. [86,92]. For a canonical scalar field given
by the Lagrangian G, = X — V(¢), the scalar-matter inter-
action in G, reduces to the well-known form 2Q? [28,93],
which enhances the growth rate of CDM perturbations.

2. Theories with f1=f;(¢) and f,=f,(n..¢)

Besides the nonminimal coupling f; = f(¢), we con-
sider the case in which the second interaction of the form
f2 = f2(n., @) is present. For concreteness, we focus on
the couplings,

fi="r1(e).

f2=cpni + Fy(¢).  (5.38)

where f, F, are functions of ¢, and c,, p are constants. If

p=-1, (5.39)
then the CDM sound speed squared (5.28) yields
2 =0. (5.40)

For p # —1, the gravitational instability of CDM perturba-
tions is strongly modified by the additional pressure arising
from the nonvanishing ¢2, unless |¢2| is very much smaller
than 1. Hence we focus on the case p = —1 in the following
discussion. Together with the coupling Q defined in
Eq. (5.30), we introduce the following dimensionless
quantities,

_MpQ, _ P
o T 3MAH?

(5.41)

and consider a light scalar field whose mass M, is in the
range (5.35).

For the scalar-graviton sector, we adopt a canonical
scalar field given by the action

2
M,

Su= /d“x\/—_g[TR +X-V(gp)|, (5.42)

where V(¢) is the field potential. Then, it follows that
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(T4 f1)Q0x + (3 +€4)L,

F1)Qc(ep — ey +qx) +Qp [(Q + q)x — 3 — ey

Qp,

2, (5.43)
14+ 11)Q +Qy,° ' '

Q

qc:1+fl+

C

— (1+fl)Qch
’ (I+)Q +Qp,"

a; = , ar =
1 (1+ /1) +Qy, ?
and
2
aM:O, aB:(), AIIO, AZI?
(1+
€p, =0, €r, = 2(ey — €n), €p, =

(ESACETD . (5.44)

The quantity x, which is defined by Eq. (5.32), is expressed as x = €y/2A,, where ¢ = +1 for qb > (0 and e = —1 for ¢ < 0.
The effective gravitational couplings (5.24)—(5.27) reduce, respectively, to

Gee =G(1+f1)|14+20% -Q,

2A,(1 =2Qq) —4e02A, +3Q;, (1 + 20%)

2Q.(1+ f1)A,
2[Q.(1 4 f1) + Q147 +3Q7F

Gcb:G

Compared to the values given in Eq. (5.37), the n,
dependence in f, modifies both G.. and G.,. We note
that there is no modification to the gravitational couplings
from the term F,(¢) in f,.

If we consider the theories with [50]

f1=0, (5.46)
ie., O =0, Eq. (5.45) gives
Goe =Goy =G 222,
T T TRQ QA + 392
Gpe = Gpp = G, (5.47)

where G.. matches with that derived in Eq. [59]. Since
A, > 0and Q. > 0, the gravitational couplings with CDM
can be smaller than G (i.e., G.. = G, < G) for

Q;, >0, ie., c,p>0. (5.48)
This is an explicit example in which the n,. dependence in
[ allows the possibility for realizing weak gravity on
scales relevant to the linear growth of large-scale structures.
We note that, under the absence of ghosts and Laplacian
instabilities, the effective gravitational coupling in
uncoupled Horndeski theories is destined to be larger than
G [19,64]. Hence, the coupled model with weak gravita-
tional interactions can be observationally distinguished
from uncoupled Horndeski theories. It is of interest to
explore further whether the coupled dark energy model
with the coupling f, < nZ! can be in better fit to the
observational data in comparison to the ACDM model. In
the presence of nonvanishing f;(¢), the gravitational

2Q.0,(1 + f1) +Qp, (24, +3Q;) ’

Gpe = G(1 + f1), Gy, = G. (5.45)

couplings G.. and G, in Eq. (5.45) differ from those in
Eq. (5.47), so the observational signatures are different.

3. Theories with f,=0 and f,=f,(n.X)

Finally, we study the effect of X-dependence in f, on the
effective gravitational couplings. For concreteness, let us
consider the functions

f1=0, far=pn7'Xs,

where f and s are constants. For this choice of f,, the CDM
sound speed squared ¢2 vanishes. On using the definition of
fluid four-velocity (2.6), the interacting action (2.4) can be
written as

(5.49)

Sint = /d4x\/:§ﬁXsu58ﬂ¢. (5.50)
On the flat FLRW background (2.10) with N = 1, the term
ué‘aﬂqﬁ is equivalent to ¢ Then, the above interacting
Lagrangian is proportional to >, For the scalar-graviton
sector, we adopt the minimally coupled k-essence
described by the action (5.34). Then, Egs. (2.38) and
(2.39) reduce, respectively, to

poE = —Gy + ¢§2G2,x +2spp™ (5.51)
Ppp = Gy + ™", (5.52)
where 3 = 275p. For the power,
1
s=3 (5.53)
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the last terms in Egs. (5.51) and (5.52) are proportional to
452, i.e., the same time dependence as the standard kinetic
term X in G,. If s # 1/2, the last terms in Eqgs. (5.51) and
(5.52) can dominate over X either in the asymptotic past or
future. In the following, we focus on the model with the
power (5.53). Then, it follows that

e Bx*(3 + 2¢,) . pe
1 — 0.2 az - 2.0
3Q, + px 3Q, + px
px o
=1+4+—, 2=0, 5.54
9. =1+3g (5.54)

where x is defined by Eq. (5.32), and
0, =1, gqu5=2M}(Gyx +8), ay=0, ag=0,
2

Ay = X—(Gz,x + ).

A, =0,
! 2

Ay =0. (5.55)

Substituting Eqgs. (5.54) and (5.55) into (5.24)—(5.27), we
obtain

G x + 2 px*
Grx + F 3Q,

-1
G..=G,, = G<1 + ) . (5.56)

Gbc - be - 1 (557)
From Eq. (5.54), the ghost does not appear from the CDM
sector for # > 0. Moreover, the condition G, x + p>0is
required for the positivity of g,c? in Eq. (5.55). Then, the
second term in the parentheses of Eq. (5.56) is positive, so
that G.. = G, < G. This is the explicit example in which
the X dependence in f, leads to the realization of weak
gravity on cosmological scales.

The interacting action (5.50) with the power (5.53) can
be further generalized to the theories containing the non-
linear dependence of u’éﬁﬂqﬁ, e.g.,

S = / Er /TGO, P). (5.58)
By setting s = 0, the interacting action (5.58) recovers the
theory studied in Ref. [52] as a special case. The detailed
analysis of cosmological dynamics for the extended cou-
pling (5.58) is given in Ref. [94] (which was submitted one
month after the initial submission of this paper).

VI. CONCLUSIONS

We studied the interacting dark energy scenario in which
a scalar field ¢ is coupled to the CDM perfect fluid given by
the Schutz-Sorkin action (2.3). The scalar-graviton sector is
described by the Horndeski action (2.2) with the tensor
propagation speed squared equivalent to that of light. We
considered the new interacting action (2.4) containing the

X dependence in the couplings f; and f,. Our analysis is
sufficiently general in that it accommodates a wide variety
of nonminimal and derivative couplings studied in the
literature [23,25,49,50,59,72]. Moreover, unlike most of
past related papers, we did not restrict the dark energy field
to quintessence or k-essence.

In Sec. II, we derived the background equations of
motion on the flat FLRW background in the forms (2.20)—
(2.22). As long as the quantity ¢, defined by Eq. (2.31)
does not vanish, the dynamical system can be solved for H
and ¢. Indeed, the stability analysis performed in Sec. IV
leads to the condition g, > 0 to avoid the ghost associated
with the scalar perturbation. We also identified the total
CDM density j, and pressure P, containing the effect of
interactions with the scalar field, as Eqgs. (2.32) and (2.33).
We showed that CDM interacts with dark energy according
to Egs. (2.35) and (2.40), whose signs on the right-hand
sides are opposite to each other.

In Sec. III, we expanded the action up to second order in
scalar perturbations without fixing any gauge conditions.
We explicitly computed the quadratic-order actions arising
from Sy, Sy, Sine and finally took the sum of them on
account of the background equations. The final second-

order action SEZ) is of the form (3.37), where L;, is the
Lagrangian arising from the couplings f; and f,. In
Sec. III B, we also obtained the full linear perturbation
equations of motion in the gauge-ready form, i.e., ready for
choosing any particular gauges.

In Sec. IV, we first introduced a number of gauge-
invariant perturbed quantities and discussed several differ-
ent gauge choices. In the flat and unitary gauges, we
derived the second-order actions of dynamical scalar
perturbations after eliminating nondynamical quantities
and identified stability conditions in the small-scale limit.
The conditions for the absence of ghosts and Laplacian
instabilities are independent of the gauge choices, i.e.,
Egs. (4.17), (4.18), and (4.21), where ¢2 and c? are given,
respectively, by Eqs. (4.19) and (4.29).

In Sec. V, we derived the effective gravitational cou-
plings for CDM and baryon density perturbations by
using the quasistatic approximation for the modes deep
inside the sound horizon. We obtained the Bardeen gravi-
tational potentials ¥, @, and the field perturbation d¢y in
the gauge-independent manner. The difference from the

uncoupled case is that the time derivative Sen appears in the
expressions of ¥, @, é¢y given by Egs. (5.15)-(5.17).
Taking the time derivative of ¢y in Eq. (5.17) gives rise to
the second derivative 8, so we need to solve Eq. (5.7) for
b, to obtain the closed-form equation for 5. As a result,
the CDM and baryon density contrasts obey Egs. (5.22) and
(5.23), respectively, with the effective gravitational cou-
plings (5.24)—(5.27).

We applied our general formulas of G, G, Gp.., Gy, tO
three different forms of couplings and discussed how they
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reproduce the effective gravitational couplings known in
the literature. In particular, the n. or X dependence in f,
offers an interesting possibility for realizing G.. and G,
smaller than G. In uncoupled Horndeski theories, the gra-
vitational couplings are usually larger than G. Moreover,
the presence of matter couplings f and f, gives rise to the
values of G.., G, Gp., Gy, generally different from each
other, while this is not the case in uncoupled Horndeski
theories. These properties show that the coupled theories
with weak gravitational interactions can be observationally
distinguished from uncoupled theories.

In this paper we did not construct particular models of
coupled dark energy, but it is of interest to do so to
observationally probe the signature of interactions with
CDM. First of all, theoretically consistent models need to
satisfy all the small-scale stability conditions derived in

Sec. I'V. The next step is to predict observational signatures
of models both at the background and perturbation levels,
e.g., the dark energy and CDM equations of state and the
growth of perturbations. Then, the models should be
confronted with numerous observational data associated
with the cosmic expansion and growth histories. These
interesting issues are left for future works.

ACKNOWLEDGMENTS

R.K. is supported by the Grant-in-Aid for Young
Scientists B of the JSPS No. 17K14297. S. T. is supported
by the Grant-in-Aid for Scientific Research Fund of the
JSPS No. 19K03854 and MEXT KAKENHI Grant-in-Aid
for Scientific Research on Innovative Areas “Cosmic
Acceleration” (No. 15H05890).

[1] E.J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).
[2] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).
[3] A. Joyce, B. Jain, J. Khoury, and M. Trodden, Phys. Rep.
568, 1 (2015).
[4] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep.
267, 195 (1996).
[51 G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279
(2005).
[6] P.A.R. Ade er al. (Planck Collaboration), Astron. As-
trophys. 594, A13 (2016).
[71 A.G. Riess et al., Astrophys. J. 826, 56 (2016).
[8] H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454
(2017).
[9] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
[10] C. Deffayet, X. Gao, D. A. Steer, and G. Zahariade, Phys.
Rev. D 84, 064039 (2011).
[11] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Prog.
Theor. Phys. 126, 511 (2011).
[12] C. Charmousis, E.J. Copeland, A. Padilla, and P. M. Saffin,
Phys. Rev. Lett. 108, 051101 (2012).
[13] B.P. Abbott ef al. Phys. Rev. Lett. 119, 161101 (2017).
[14] L. Lombriser and A. Taylor, J. Cosmol. Astropart. Phys. 03
(2016) 031.
[15] P. Creminelli and F. Vernizzi, Phys. Rev. Lett. 119, 251302
(2017).
[16] J.M. Ezquiaga and M. Zumalacarregui, Phys. Rev. Lett.
119, 251304 (2017).
[17] J. Sakstein and B. Jain, Phys. Rev. Lett. 119, 251303 (2017).
[18] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and
I. Sawicki, Phys. Rev. Lett. 119, 251301 (2017).
[19] L. Amendola, M. Kunz, I. D. Saltas, and I. Sawicki, Phys.
Rev. Lett. 120, 131101 (2018).
[20] R. Kase and S. Tsujikawa, Phys. Rev. D 97, 103501 (2018).

[21] S. Peirone, G. Benevento, N. Frusciante, and S. Tsujikawa,
Phys. Rev. D 100, 063540 (2019).

[22] S. Peirone, G. Benevento, N. Frusciante, and S. Tsujikawa,
Phys. Rev. D 100, 063509 (2019).

[23] C. Wetterich, Astron. Astrophys. 301, 321 (1995).

[24] L. Amendola, Phys. Rev. D 60, 043501 (1999).

[25] L. Amendola, Phys. Rev. D 62, 043511 (2000).

[26] B. Gumjudpai, T. Naskar, M. Sami, and S. Tsujikawa,
J. Cosmol. Astropart. Phys. 06 (2005) 007.

[27] L. Amendola, M. Quartin, S. Tsujikawa, and I. Waga, Phys.
Rev. D 74, 023525 (2006).

[28] P.A.R. Ade et al. (Planck Collaboration), Astron. As-
trophys. 594, A14 (2016).

[29] N. Dalal, K. Abazajian, E. E. Jenkins, and A. V. Manohar,
Phys. Rev. Lett. 87, 141302 (2001).

[30] W. Zimdahl and D. Pavon, Phys. Lett. B 521, 133 (2001).

[31] L.P. Chimento, A.S. Jakubi, D. Pavon, and W. Zimdahl,
Phys. Rev. D 67, 083513 (2003).

[32] B. Wang, Y. g. Gong, and E. Abdalla, Phys. Lett. B 624, 141
(2005).

[33] H. Wei and S. N. Zhang, Phys. Lett. B 644, 7 (2007).

[34] L. Amendola, G. Camargo Campos, and R. Rosenfeld,
Phys. Rev. D 75, 083506 (2007).

[35] Z.K. Guo, N. Ohta, and S. Tsujikawa, Phys. Rev. D 76,
023508 (2007).

[36] J. Valiviita, E. Majerotto, and R. Maartens, J. Cosmol.
Astropart. Phys. 07 (2008) 020.

[37] J. Valiviita, R. Maartens, and E. Majerotto, Mon. Not. R.
Astron. Soc. 402, 2355 (2010).

[38] M. B. Gavela, D. Hernandez, L. Lopez Honorez, O. Mena,
and S. Rigolin, J. Cosmol. Astropart. Phys. 07 (2009) 034.

[39] B. M. Jackson, A. Taylor, and A. Berera, Phys. Rev. D 79,
043526 (2009).

[40] V. Faraoni, J. B. Dent, and E. N. Saridakis, Phys. Rev. D 90,
063510 (2014).

063511-21


https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2012.01.001
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1016/j.physrep.2014.12.002
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/0370-1573(95)00058-5
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1016/j.physrep.2004.08.031
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1007/BF01807638
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1103/PhysRevD.84.064039
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1143/PTP.126.511
https://doi.org/10.1103/PhysRevLett.108.051101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1088/1475-7516/2016/03/031
https://doi.org/10.1088/1475-7516/2016/03/031
https://doi.org/10.1103/PhysRevLett.119.251302
https://doi.org/10.1103/PhysRevLett.119.251302
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251304
https://doi.org/10.1103/PhysRevLett.119.251303
https://doi.org/10.1103/PhysRevLett.119.251301
https://doi.org/10.1103/PhysRevLett.120.131101
https://doi.org/10.1103/PhysRevLett.120.131101
https://doi.org/10.1103/PhysRevD.97.103501
https://doi.org/10.1103/PhysRevD.100.063540
https://doi.org/10.1103/PhysRevD.100.063509
https://doi.org/10.1103/PhysRevD.60.043501
https://doi.org/10.1103/PhysRevD.62.043511
https://doi.org/10.1088/1475-7516/2005/06/007
https://doi.org/10.1103/PhysRevD.74.023525
https://doi.org/10.1103/PhysRevD.74.023525
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1103/PhysRevLett.87.141302
https://doi.org/10.1016/S0370-2693(01)01174-1
https://doi.org/10.1103/PhysRevD.67.083513
https://doi.org/10.1016/j.physletb.2005.08.008
https://doi.org/10.1016/j.physletb.2005.08.008
https://doi.org/10.1016/j.physletb.2006.11.027
https://doi.org/10.1103/PhysRevD.75.083506
https://doi.org/10.1103/PhysRevD.76.023508
https://doi.org/10.1103/PhysRevD.76.023508
https://doi.org/10.1088/1475-7516/2008/07/020
https://doi.org/10.1088/1475-7516/2008/07/020
https://doi.org/10.1111/j.1365-2966.2009.16115.x
https://doi.org/10.1111/j.1365-2966.2009.16115.x
https://doi.org/10.1088/1475-7516/2009/07/034
https://doi.org/10.1103/PhysRevD.79.043526
https://doi.org/10.1103/PhysRevD.79.043526
https://doi.org/10.1103/PhysRevD.90.063510
https://doi.org/10.1103/PhysRevD.90.063510

RYOTARO KASE and SHINJI TSUJIKAWA

PHYS. REV. D 101, 063511 (2020)

[41] V. Salvatelli, N. Said, M. Bruni, A. Melchiorri, and D.
Wands, Phys. Rev. Lett. 113, 181301 (2014).

[42] B. Wang, E. Abdalla, F. Atrio-Barandela, and D. Pavon,
Rep. Prog. Phys. 79, 096901 (2016).

[43] E. Di Valentino, A. Melchiorri, and O. Mena, Phys. Rev. D
96, 043503 (2017).

[44] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi,
arXiv:1908.04281.

[45] Z. Berezhiani, A. D. Dolgov, and I. I. Tkachev, Phys. Rev. D
92, 061303 (2015).

[46] A. Chudaykin, D. Gorbunov, and I. Tkachev, Phys. Rev. D
97, 083508 (2018).

[47] N. Tamanini, Phys. Rev. D 92, 043524 (2015).

[48] A. Pourtsidou, C. Skordis, and E. J. Copeland, Phys. Rev. D
88, 083505 (2013).

[49] C. G. Boehmer, N. Tamanini, and M. Wright, Phys. Rev. D
91, 123002 (2015).

[50] C. G. Boehmer, N. Tamanini, and M. Wright, Phys. Rev. D
91, 123003 (2015).

[51] C. Skordis, A. Pourtsidou, and E. J. Copeland, Phys. Rev. D
91, 083537 (2015).

[52] A.Pourtsidou and T. Tram, Phys. Rev. D 94, 043518 (2016).

[53] M. S. Linton, A. Pourtsidou, R. Crittenden, and R. Maartens,
J. Cosmol. Astropart. Phys. 04 (2018) 043

[54] B. FE. Schutz and R. Sorkin, Ann. Phys. (N.Y.) 107, 1 (1977).

[55] J. D. Brown, Classical Quantum Gravity 10, 1579 (1993).

[56] A.De Felice, J. M. Gerard, and T. Suyama, Phys. Rev. D 81,
063527 (2010).

[57] D. Bettoni, S. Liberati, and L. Sindoni, J. Cosmol.
Astropart. Phys. 11 (2011) 007.

[58] D. Bettoni and S. Liberati, J. Cosmol. Astropart. Phys. 08
(2015) 023.

[59] T.S. Koivisto, E. N. Saridakis, and N. Tamanini, J. Cosmol.
Astropart. Phys. 09 (2015) 047.

[60] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S.
Tsujikawa, and Y. 1. Zhang, J. Cosmol. Astropart. Phys. 06
(2016) 048.

[61] J. Dutta, W. Khyllep, and N. Tamanini, Phys. Rev. D 93,
063004 (2016).

[62] J. Dutta, W. Khyllep, and N. Tamanini, J. Cosmol.
Astropart. Phys. 01 (2018) 038.

[63] R. Kase and S. Tsujikawa, J. Cosmol. Astropart. Phys. 11
(2018) 024.

[64] R. Kase and S. Tsujikawa, Int. J. Mod. Phys. D 28, 1942005
(2019).

[65] N. Frusciante, R. Kase, N. J. Nunes, and S. Tsujikawa, Phys.
Rev. D 98, 123517 (2018).

[66] N. Frusciante, R. Kase, K. Koyama, S. Tsujikawa, and D.
Vernieri, Phys. Lett. B 790, 167 (2019).

[67] S. Nakamura, R. Kase, and S. Tsujikawa, J. Cosmol.
Astropart. Phys. 12 (2019) 032.

[68] E. Beutler et al. (BOSS Collaboration), Mon. Not. R.
Astron. Soc. 443, 1065 (2014).

[69] L. Samushia et al., Mon. Not. R. Astron. Soc. 439, 3504
(2014).

[70] E. Macaulay, I. K. Wehus, and H. K. Eriksen, Phys. Rev.
Lett. 111, 161301 (2013).

[71] A. Vikhlinin et al., Astrophys. J. 692, 1060 (2009).

[72] B.J. Barros, Phys. Rev. D 99, 064051 (2019).

[73] J. Gleyzes, D. Langlois, M. Mancarella, and F. Vernizzi,
J. Cosmol. Astropart. Phys. 08 (2015) 054.

[74] R. Kimura, T. Suyama, M. Yamaguchi, D. Yamauchi, and S.
Yokoyama, Publ. Astron. Soc. Jpn. 70, 5 (2018).

[75] F. Chibana, R. Kimura, M. Yamaguchi, D. Yamauchi, and S.
Yokoyama, J. Cosmol. Astropart. Phys. 10 (2019) 049.

[76] J.c. Hwang and H. r. Noh, Phys. Rev. D 65, 023512 (2001).

[77] L. Heisenberg, R. Kase, and S. Tsujikawa, Phys. Rev. D 98,
123504 (2018).

[78] J. M. Bardeen, Phys. Rev. D 22, 1882 (1980).

[79] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1
(1984).

[80] V.F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992).

[81] V.N. Lukash, Sov. Phys. JETP 52, 807 (1980).

[82] D. H. Lyth, Phys. Rev. D 31, 1792 (1985).

[83] V.F. Mukhanov, JETP Lett. 41, 493 (1985).

[84] M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

[85] B. Boisseau, G. Esposito-Farese, D. Polarski, and A.A.
Starobinsky, Phys. Rev. Lett. 85, 2236 (2000).

[86] S. Tsujikawa, Phys. Rev. D 76, 023514 (2007).

[87] A. De Felice, T. Kobayashi, and S. Tsujikawa, Phys. Lett. B
706, 123 (2011).

[88] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

[89] A. A. Starobinsky, JETP Lett. 86, 157 (2007).

[90] S. Tsujikawa, Phys. Rev. D 77, 023507 (2008).

[91] H. Sandvik, M. Tegmark, M. Zaldarriaga, and I. Waga,
Phys. Rev. D 69, 123524 (2004).

[92] L. Amendola, Phys. Rev. Lett. 93, 181102 (2004).

[93] L. Amendola, Phys. Rev. D 69, 103524 (2004).

[94] R. Kase and S. Tsujikawa, arXiv:1911.02179.

063511-22


https://doi.org/10.1103/PhysRevLett.113.181301
https://doi.org/10.1088/0034-4885/79/9/096901
https://doi.org/10.1103/PhysRevD.96.043503
https://doi.org/10.1103/PhysRevD.96.043503
https://arXiv.org/abs/1908.04281
https://doi.org/10.1103/PhysRevD.92.061303
https://doi.org/10.1103/PhysRevD.92.061303
https://doi.org/10.1103/PhysRevD.97.083508
https://doi.org/10.1103/PhysRevD.97.083508
https://doi.org/10.1103/PhysRevD.92.043524
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.88.083505
https://doi.org/10.1103/PhysRevD.91.123002
https://doi.org/10.1103/PhysRevD.91.123002
https://doi.org/10.1103/PhysRevD.91.123003
https://doi.org/10.1103/PhysRevD.91.123003
https://doi.org/10.1103/PhysRevD.91.083537
https://doi.org/10.1103/PhysRevD.91.083537
https://doi.org/10.1103/PhysRevD.94.043518
https://doi.org/10.1088/1475-7516/2018/04/043
https://doi.org/10.1016/0003-4916(77)90200-7
https://doi.org/10.1088/0264-9381/10/8/017
https://doi.org/10.1103/PhysRevD.81.063527
https://doi.org/10.1103/PhysRevD.81.063527
https://doi.org/10.1088/1475-7516/2011/11/007
https://doi.org/10.1088/1475-7516/2011/11/007
https://doi.org/10.1088/1475-7516/2015/08/023
https://doi.org/10.1088/1475-7516/2015/08/023
https://doi.org/10.1088/1475-7516/2015/09/047
https://doi.org/10.1088/1475-7516/2015/09/047
https://doi.org/10.1088/1475-7516/2016/06/048
https://doi.org/10.1088/1475-7516/2016/06/048
https://doi.org/10.1103/PhysRevD.93.063004
https://doi.org/10.1103/PhysRevD.93.063004
https://doi.org/10.1088/1475-7516/2018/01/038
https://doi.org/10.1088/1475-7516/2018/01/038
https://doi.org/10.1088/1475-7516/2018/11/024
https://doi.org/10.1088/1475-7516/2018/11/024
https://doi.org/10.1142/S0218271819420057
https://doi.org/10.1142/S0218271819420057
https://doi.org/10.1103/PhysRevD.98.123517
https://doi.org/10.1103/PhysRevD.98.123517
https://doi.org/10.1016/j.physletb.2019.01.009
https://doi.org/10.1088/1475-7516/2019/12/032
https://doi.org/10.1088/1475-7516/2019/12/032
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stu1051
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1093/mnras/stu197
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1103/PhysRevLett.111.161301
https://doi.org/10.1088/0004-637X/692/2/1060
https://doi.org/10.1103/PhysRevD.99.064051
https://doi.org/10.1088/1475-7516/2015/08/054
https://doi.org/10.1093/pasj/psy083
https://doi.org/10.1088/1475-7516/2019/10/049
https://doi.org/10.1103/PhysRevD.65.023512
https://doi.org/10.1103/PhysRevD.98.123504
https://doi.org/10.1103/PhysRevD.98.123504
https://doi.org/10.1103/PhysRevD.22.1882
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1016/0370-1573(92)90044-Z
https://doi.org/10.1103/PhysRevD.31.1792
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1103/PhysRevLett.85.2236
https://doi.org/10.1103/PhysRevD.76.023514
https://doi.org/10.1016/j.physletb.2011.11.028
https://doi.org/10.1016/j.physletb.2011.11.028
https://doi.org/10.1103/PhysRevD.76.064004
https://doi.org/10.1134/S0021364007150027
https://doi.org/10.1103/PhysRevD.77.023507
https://doi.org/10.1103/PhysRevD.69.123524
https://doi.org/10.1103/PhysRevLett.93.181102
https://doi.org/10.1103/PhysRevD.69.103524
https://arXiv.org/abs/1911.02179

