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We discuss a new formalism for light propagation which can be used within the regime of validity of
geometric optics, but with no limitation on the scales of interest: from inside the Galaxy to the ultralarge
scales of cosmology. One of our main results is that within this framework it is possible to calculate all
relevant observables (image magnification, parallax, position drift or proper motion) by simply differ-
entiating the photon trajectory with respect to the initial data. We then focus on a new observable, which we
name the distance slip: it is defined as the relative difference between the angular diameter distance and the
parallax distance. Its peculiarity lies in the fact that its value is independent of the momentary motions of
both the source and the observer and that for short distances it shows a tomographic property, being
proportional to the amount of matter along the line of sight. After describing further its properties and
methods of measurement, we specialize our study of the distance slip to cosmology. We show that it does
not depend on the Hubble constant H, and that its dependence on the other cosmological parameters is
different from other distance indicators. This suggests that the distance slip may contain new information.
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I. INTRODUCTION

In general relativity the spacetime geometry, related via
Einstein equations to the matter and energy content, leaves
an imprint on the light beams received by the observer,
affecting this way all the observable quantities, e.g., the
magnification of distant objects, their redshift, but also
on the parallax and proper motions. This is the physical
foundation of most—if not all—the methods we use to
extract information about our Universe by measuring
electromagnetic radiation and gravitational waves emitted
from distant sources.

Recently a new theoretical formulation of the problem of
light propagation in curved spacetimes within the geo-
metric optics approximation has been introduced in [1]. It
provides a new, covariant, frame-independent and unified
framework to calculate all the optical observables one can
construct from comparing the properties of neighboring
geodesic through the spacetime from the source to the
observer. It also extends the standard Sachs formalism (see
[2-4] and [5], the last one translated and reprinted in [6])
by considering the view of distant objects from various
observation points, displaced in both space and time,
instead of a single observer at a fixed spacetime event.
It is therefore particularly suited for calculating the parallax
effects as well as the time variations, also called the drifts,
of the values of optical observables registered by an
observer [7-10].
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In the literature different methods are proposed for
various observables, and for some observable more than
one method has been used (see e.g., [11] for a comparison
of four different approaches for the calculation of the
luminosity distance in the cosmological context). On the
other hand the main result of the new formulation of
[1] emphasizes the advantage of having a unified frame-
work: all the observables—the parallax, the magnification,
the position drift, the angular diameter distance etc.,—
registered by a given observer are expressed in terms of one
key quantity only, the so-called bilocal geodesic operators
(BGOs), and the kinematical variables characterizing the
momentary positions and motions of the source and the
observer with respect to their local inertial frames. In
addition the BGOs can be written as (nonlocal and non-
linear) functionals of the curvature tensor along the line of
sight, given by solutions of certain matrix ODEs [1,8].
Therefore, in their turn, the observables can be expressed
in terms of the curvature along the line of sight and the
momentary 4-velocities and 4-accelerations of both the
observer and the source. Finally, we remark that the bilocal
formulation provides a simple and transparent way to
investigate the dependence of the observables on the choice
of the frame by just changing the 4-velocities we plug into
the appropriate expressions. This is especially important for
the drift effects, which depend on the momentary motions
of the sources and the observer via a number of effects,
including the relative transverse motion, the aberration
effect, the Shapiro delay of light signals etc.
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The results presented in [1] are completely general.
However the case of spacetimes such that the null geodesic
equation can be integrated exactly up to quadratures turns
out to be particularly interesting. As we show here, this
property provides a shortcut for calculating the bilocal
geodesic operators between any two points connected by
a null geodesic without solving any additional (nonlinear)
ODE, besides the geodesic equation. Indeed, we show that it
is possible to obtain the components of the BGOs directly by
simply differentiating the null geodesic curve with respect to
the initial data. Within the bilocal formulation for geometric
optics, this means also that the general solution of the null
geodesic equation is the only quantity we need to obtain
expressions for observables like the angular diameter dis-
tance, the parallax, the parallax distance and the position drift
for any pair of source and observer, located at any two points
connected by a null geodesic. In this paper we describe this
method, which we call “the variation method,” and we
specialize our result for the observables to cosmology and in
particular to the Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetimes flat, open and closed. Note that a part
of the results derived for the FLRW metric here has already
been published in [12]: the authors derived there the
expressions for the transverse, spatial components of two
BGOs, called in their terminology the Jacobi and scale
matrices. In [12] they were derived as an intermediate result
when discussing the Hubble diagram for an inhomogeneous
swiss-cheese Universe model.

The main topic of our paper is a new observable
introduced in [1]: it is defined as the relative difference
between the parallax distance and the angular diameter
distance. We name it the distance slip and it can be
expressed as y = 1 — D3,,/ D3, (in the absence of strong
lensing)." It is an interesting observable in astrophysics for
three reasons. First, it can in principle be measured using
purely astrometric methods, by combining the parallax
distance—measured via parallax effects—with the angular
diameter distance—measured via the angular size of the
image. Second, it is a direct signature of the spacetime
curvature. This can be seen as follows: in a flat spacetime
the results of both distance measurements must coincide.
On the other hand, if curvature is present between the
source and the observer, it affects both methods of distance
determination and, as it turns out, it affects each of them
differently. Therefore the relative difference between the
two distances may serve as a direct measure of the
spacetime curvature along the line of sight. In this respect,
one can also prove that for short distances u is directly
related to an integral of the stress-energy tensor along the
line of sight, giving this way a new, tomographylike

'More precisely, the definition of the distance slip is
u=1-0D3%,/D3,, where 6 =+1. We may have 6 = —1 in
some situations, but only for strongly lensed objects. For more
details see Sec. IV.

method to map the dark and ordinary matter content of
the spacetime. Third, the value of the distance slip is
completely independent of the momentary motions of both
the observer and the source, eliminating this way any
possible measurement systematics or noise due to the
peculiar motions.

The distance slip seems fairly challenging to measure,
because for sources located at short distances its value is
quite small, and therefore very precise astrometric mea-
surements are needed to determine its value. However, as
we show in this work, p attains significant values (of the
order of 1) on cosmological distances. The difficult task
on these scales is to measure both the parallax and the
angular diameter distance of the same object. Distant
quasars seem very promising candidates for such a meas-
urement. Although parallax measurements on extragalactic
scales seem currently beyond the reach of available instru-
ments, in the near future, a realistic possibility of observing
the cosmic parallax of distant quasars is offered by the
Gaia mission, see [7,13] for recent discussions. In addition,
the measurements of the angular diameter distance or the
closely related luminosity distance, also required for
measuring the distance slip, have either been recently
proven possible, [14], or are already under way: in [15]
the authors present a new measurement of the expansion
rate of the Universe based on a Hubble diagram of quasars
up to redshift z ~ 6. The use of this kind of sources offers
new possibilities to test the ACDM concordance model in a
redshift range which is yet poorly explored, between the
farthest observed Supernove Ia and the cosmic microwave
background radiation (CMB).

On the one hand, exploiting new probes at our disposal,
e.g., using other sources for the very same observation, as
in [15], is one crucial way to take advantage of the huge
progress in observational cosmology: it has been evolving
rapidly during the last century and now it is considered a
precision science, offering an unprecedented opportunity
to test gravity on ultralarge scales and/or high redshift.
However, the success of precision cosmology depends not
only on accurate observations, but also on the theoretical
modeling, which must be understood to at least to the same
level of accuracy. Therefore, on the other hand, the
contribution from the theory side is also important: theo-
retical studies have to be targeted to a better interpretation
of the cosmological observations and potentially to provide
new, clean probes. In this respect, a unified and compre-
hensive approach valid for all observables, as the one
proposed in [1], would be particularly useful because it
may help to better understand and to keep track of different
approximations/assumptions that are commonly used in the
literature but that we may eventually want to relax. In our
work we specialize the machinery of [1] to the FLRW
spacetime and we focus our study on the new observable u
with the aim to investigate its potential use as a new
cosmological probe.
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The paper is organized as follows: in Sec. II we review the
formulation of geometric optics in terms of the BGOs and
we show how to calculate them using the variation of the null
geodesic curve with respect to initial data. In Sec. III we
derive the expressions of the Jacobi map, the magnification
matrix, the angular diameter distance, the parallax distance
and the position drift in terms of the BGOs. Section IV is
dedicated to the distance slip p: we discuss its general
properties and some issues related to its measurement. In
Sec. V we focus on cosmology: after discussing the
possibility of its measurement on cosmological scales, we
begin by reporting the expression for y in any FLRW metric,
flat and curved, of which we give a detailed derivation with
our new variation method in the Appendix. We investigate
the dependence of this new observable on the cosmological
parameters in the redshift range accessible to the observa-
tions and we also give and comment its expansion at low
redshift. We collect our final remarks in Sec. VI.

A. Notation

Greek indices (a,f,...) run from O to 3, while Latin
indices (i, j,...) run from 1 to 3 and refer to spatial
coordinates only. Latin indices (A, B, ...) run from 1 to 2.
Boldface indices denote tensors and bitensors expressed in a
semi-null frame(s) [as opposed to a coordinate frame(s)],
namely the Greek boldface (e, §, ...) run again from O to 3,
Latin boldface indices (i,j,...) from 1 to 3 and capital
boldface Latin (A, B, ...) again from 1 to 2. Dot denotes
derivative with respect to conformal time. The subscript O
denotes quantities evaluated at the observer position, i.e.,
f(lo)=fo=f(O), A being the affine parameter along
the null geodesic connecting observer and source. We will
use fo or f(O) depending on notational convenience.
Analogously, subscript £ denotes the point of emission
by the source. We use the unit system in which ¢ = 1.
The conventions regarding the sign of the Riemann tensor
and the metric are consistent with the Wald’s textbook [16].

II. FORMULATION

We begin by a short review of the bitensorial formalism
applied to geometric optics, for a longer discussion see [1].
Let yo be a null geodesic segment connecting the obser-
vation point xp, corresponding to the value 1y of the affine
parameter, with the emission point xg, corresponding to
an arbitrary value 4. We fix a coordinate system which
covers the neighbourhoods of both geodesic endpoints. The
geodesic curve x*(xf), £4,, 4) is function of the initial point
¥, and the initial tangent vector £, at the observer’s
position, and of the affine parameter value A.

Consider a perturbation of the initial data for the
geodesic at Ap, namely the variation position and the
tangent vector at the observer (x{,, ¢,). Then the deviation
at the other endpoint for a fixed value A¢ of the affine
parameter at linear order takes the form

oxt = Wxxﬂv5xl(/9 + WXLMDAflb’ (1)

where 6x{, and 6x* are the displacements at Ao and A
respectively, and Af’(‘g is the covariantly defined deviation
of the initial tangent vector, given by

ALY = 800 + T 45 (O)£%6x%,. (2)

Wix*, and Wy, ¥, are bitensors, mapping tangent vectors
from O to &, called the bilocal geodesic operators, or BGOs
(transport operators in differential geometry literature or
bundle transfer matrices in nonrelativistic geometric
optics [17]). They can be expressed as solutions of matrix
ODE:s along the fiducial geodesic y, involving the Riemann
tensor [1,12]. Namely, it follows from the 1st order GDE
that in a parallel-propagated frame Wyyx#, and Wy *,
solve the equations

d2
@WXX”I/ - Rﬂaﬂo'fal’ﬂﬂWXXo’p =0 (3)
d Iz n” a op c
@WXL v — Rl gl Wx %, =0 (4)
with the initial data
WXX”V|/1:/10 =, (5)
d
awxx”y‘x:zo =0 (6)
WXL”I/U:AO =0 (7)
d n
d_/IWXL vh:/{@ =, (8)

A. Bilocal geodesic operators from the variations
of the general solution of the geodesic equation

Equations (3)—(8) relate the bitensors Wyx and Wy,
directly to the curvature along y,, but they are not all that
useful in the cosmological setting. We present therefore
another way to evaluate them, based on direct differ-
entiation of the general solution of the geodesic equation.

Consider the general solution of the geodesic equation
x*(x,, €%, A), given in a particular coordinate system,
depending on the initial point x’(‘g at the observer’s position,
the initial tangent vector #%, at the observer’s position, and
on the affine parameter 4 at the emission point. The idea is
to express the BGOs, decomposed in the coordinate frames,
by the derivatives of this general solution with respect to
the initial data and by other geometric objects, such as the
Christoffel symbols. This is an entirely new method and, to
our knowledge, it has not been comprehensively discussed
in the literature so far. It can be applied whenever we know
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the general solution of the general geodesic equation or just
the null geodesic equation. The solution can be perturbative
or exact, possibly even given by implicit relations and
quadratures. We will now sketch this method briefly.

Note first that if we allow additionally for a variation of
the affine parameter A at the endpoint £ of the geodesic
segment, instead of (1) we obtain

5)(7” = WXXﬂU(SXIé) + WXL”DALﬂIb + f’;éﬂ, (9)

where 7 is the tangent vector to y, at £. This is because
for fixed initial data (i.e., 6x{, = 0 and Alj, = 0) a small
variation of the final value of 1 produces a shift of the
endpoint proportional to the tangent vector at the endpoint.
We can interpret relation (9) as follows: the total variation
of the geodesic endpoint with respect to the initial data and
the affine parameter, obtained by differentiating the general
solution x*(x{,, £%,, 4) and expressed in the basis given by
the variations 6x},,, A%, and 54, yields the components of
the bilocal geodesic operators Wyy, Wy, as well as the
tangent vector £ in the appropriate coordinate basis. We
can therefore regard the 4 functions x*(x%,, £, 1), repre-
senting the general solution of the general geodesic
equation, as analogs of the thermodynamical potentials:
their total derivatives give physically interesting quantities
as expansion coefficients (components) when expressed in
the correct basis of differentials. Keep in mind that it is
important that we take the variations in all components of
the initial data as well as the affine parameter, and that the
basis of expansion is precisely the one described above, i.e.,
(6x5, ALY, 62) in the chosen coordinate system.

For the practical purpose of a convenient calculation
of the bilocal geodesic operators, assume we are given the
functions x*(x{,, £, ) in a coordinate system. Then we
calculate their total variation with respect to all variables®

u u "
S — <8xy> s + <6x> 5% + <8x> i,
Ox 0/ toh al’ﬂ(’) xX0.A 94 x0.l0

(10)

We can now make use of (2) to change the basis of
variations from (8x{,, 5¢,, 51) to (6x},. A¢,, 51) and com-
pare the result with (9). We obtain the following relations:

Ox* Ox*
WXX’”Z/ = _( 6) Fgav(o)fa + ( y> (11)
40 X0 ¢ Ox lod

Ox*
a—
war = (5) (12)

*We use here the notation borrowed from thermodynamics,
where (‘g—f)v . means the partial derivative of F' with respect to x
with y and z kept fixed.

Ox*
Ho__
o= (8/1 )xo‘lo. (13)

They express the two geodesic bitensors (and the tangent
vector at &) explicitly in terms of the partial derivatives
of the solution of the geodesic equation. In the next section
we will demonstrate how these bitensors can then be used
directly to calculate the magnification matrix, the parallax
and the position drifts for any observers and sources located
at O and €& respectively. Therefore the method of endpoint
variations sketched here allows for calculating all those
three optical effects for any observer-source pair with one
calculation.

Now, in many physically interesting cases, including the
FLRW metric, we do not have a simple, closed form of
the general solution of the geodesic equation, but rather the
general solution for null geodesics. This restricts the type of
variations of the initial tangent vector we may consider, and
thus restricts the components of WWy; we may obtain by the
variational method. Note that it should nevertheless be
possible to recover the optical properties of the spacetime
just from that limited information. While the variational
method sketched above requires the knowledge of all
geodesics in the neighbourhood of a given one, we may
modify it a little bit to make it work even if only the general
solution for null geodesics is available.

The requirement for the perturbed geodesics to remain
null at linear order is equivalent to a constraint on the
admissible initial deviation vector:

ACS 0, =0, (14)
or

_Zoi

00

N A7 (15)

Assume we are just given the solution for past-directed
null geodesics, parametrized by the initial point and the
three spatial components of the initial tangent vector
x#(xly, £, 2). The number of independent variables is thus
reduced by one and the total variation reads

u " u
o = (ﬁ) o) + (@) 561, + <ai> 5.
0x{ fod ot o oA tolo
(16)

where i runs from 1 to 3. This formula needs to be related
to (9) in order to obtain the relation between the partial
derivatives and the bilocal operators. Note that admissible
deviation vectors Af’é, satisfying (14), can be parametrized
just by the spatial components AZ%,.

Let us introduce the notation Vy; % for the Wyy operator
acting on admissible vectors, and expressed in terms of
their spatial components, i.e., let
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Vit Al = Wy !, ALY, (17)

for all vectors Af’(’g satisfying (14). From (15) we can get an
exact relation to the components of Wy; :

2o
oo

VXL”i = WXLﬂi - WXL”O (18)

Briefly speaking, Vy; is the Wy, operator restricted to
variations of directions respecting the null conditions, and
expressed in a convenient, purely spatial parametrization.
On the other hand, its components constitute precisely
those combinations of components of Wy; which we can
be extracted from the variations of the initial data restricted
to null geodesics, i.e., those variations to which we have
access via the relation (16).

The reader may now check that for the restricted
variations we have

(SX” = Wxx'uyax’é) + VXL'uiAféQ + fgéﬁ (19)
Applying the identity AZL) = 5¢%, + I (O)£85xp, and

comparing with (16) we get the analog of relations
(11)—(13) for null geodesics

OxH . Ox*
W %=—<i> waVW+(y) (20)
o e X0l © Ox Lol
OxH
vt = (57 e1)
i al’ﬂ(’) X0,A
Oxt
M= (—) . 22
€ O ) v to (22)

The equations above allow to calculate the optical part of
the two geodesic bitensors in terms of partial derivatives
of the general solution of the null geodesic equation. They
constitute the first important result of this article. We shall
use them throughout the rest of the paper to calculate Wyy
and Vy, for the unperturbed FLRW solution.

III. OPTICAL OBSERVABLES FROM THE
BILOCAL GEODESIC OPERATORS

The main advantage of the BGOs lies in the fact that we
can express a number of observables of interest in a unified
framework via Wy and Vy; (or Wy, ) and the kinematical
variables describing the momentary motions of the source
and the observer in the moments of light emission and
observation respectively [1,8]. The observables in question
are the angular diameter distance D,,,, the luminosity
distance Dy,,,, the magnification matrix M4, the parallax
and the position drift (or proper motion) §,r4. We can
therefore consider not only observers and sources comov-
ing with the cosmic flow or defined in a particular gauge,

but also consider situations in which both are boosted
with respect to the large-scale flow, for example due to the
small-scale nonlinearities.

We first note that the Jacobi map can be expressed using
Wy or Vy;. Let e4 denote a parallel-propagated Sachs
basis of two vectors orthogonal to £# along y. Recall that
the Jacobi map D relates the initial direction deviation
with the displacement along a null geodesic for vectors
orthogonal to £#:

£ (1) = DAp(A)ALE, (23)

Adding two more vectors, a parallel-propagated, nor-
malized timelike vector #* and the null tangent ¥, we
obtain the parallel-propagated seminull frame (SNF)
(u*, ey, ¢*). In this frame the components of the Jacobi
map D simply coincide with the transverse components of
Vxr and Wy :

DAB = VXLAB = WXLAB' (24)

This allows us to write all the observables derived from the
Jacobi map in terms of the transverse components of the
BGOs. Note that we may use either Wy, or Vy; for this
purpose since their transverse components always coincide.
Substituting Vy; by Wy, is also possible for the other
observables discussed below, since they only make use
of the transverse components of Vy; . It is also noteworthy
that the values of D45 do not depend on the choice of the
timelike vector, making this way the formalism observer
frame-invariant [1,8].

The Jacobi matrix is directly related to the magnification
matrix M4 B, Which in turn relates the transverse displace-
ments along the null geodesics to the angles on the
observer’s sky:

50N = MA oat.
Namely, for an observer with 4-velocity u, we have

MAB = (lOﬂuIZQ)_lD_l AB

= (louuly) ™ Vxr )™, (25)

where (Vx;4g)™! denotes the inverse of the transverse
submatrix of Vy;.

The angular diameter distance to an object is formally
defined as the square root of the ratio between the cross-
sectional area of a luminous object and the solid angle
taken by its image in the observer’s celestial sphere [4].
It can be expressed as the determinant of the magnification
map in a Sachs frame:

Dang = |detA/IAB|_1/2 = (lOﬂué)‘ detDAB|1/2
= (louuy)| det Vy A |'/2. (26)
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The prefactor (lp,u},) in (25) and (26) represents the
relativistic light aberration effect: the same objects appear
larger or smaller for observers passing through the same
point O with different 4-velocities. The difference in the
apparent size is related to the difference of 4-velocities
and to the direction of observation, defined by the null
tangent vector £,

The emitter-observer asymmetry operator m*, deter-
mines how the effect of displacements on one end of the
null geodesics differ from the displacements on the other
one [1]. It was introduced first in [8] and it appears in the
expressions for the parallax and position drifts, or proper
motions. It can be read out from Wy expressed in a
parallel-propagated seminull frame:

mAa = WXXAa - 5Aa (27)

(recall that the boldface indices are used for geometric
objects decomposed in the seminull frame: capital Latin
indices A,B, ... run from 1 to 2, while Greek indices
M, v, ... tun from O to 3). Consider now the parallax matrix
14, relating the displacement of the position of observa-
tion in a transverse direction 8x4) with the apparent shift
of the source’s position 5¢4 on the observer’s sky, defined
with respect to parallel propagated directions on the
celestial sphere:

564 = —TTA 56x5. (28)

It can also be expressed using the BGOs. Namely, in [1] the
following relation has been derived:

Mg = (lp,ulp) ' D71 A0 (8% +m, Cp). (29)
It follows then that
My = (lOu”lé)_l(VXLAC)_lWXXCB- (30)

The parallax effect is used in astronomy to measure
distances to luminous sources in an astrometric technique
as the trigonometric parallax. The theoretical justification
of this method is based on the flat spacetime analysis of the
geometry of light rays and obviously requires a modifica-
tion if we want to include the curvature effects. The parallax
distance in a general, curved spacetime can be defined in
many ways [1,18], the differences coming from different
methods of averaging over the baseline orientation. In this
paper we use the one based on the determinant of the
parallax matrix, fully analogous to (26):

One can also prove that T4 is always a symmetric matrix,
but this is irrelevant for our purposes.

Dy = | det T4 p|71/2
= (louup)| det DA g| /2| det (6% 5 +m  “ )|~/
(31)
In terms of the BGOs D,,, is then given by
Dy = (lo,ul)| det Vgl - [ det Wy g|71/2 (32)

Finally we may consider the proper motions or position
drifts, i.e., the rate of change of the sources’ positions on
the observer’s celestial sphere in the observer’s proper time.
The position change is defined here with respect to the
fixed spatial directions given by a Fermi-Walker trans-
ported frame. For a source with momentary 4-velocity u’g
at £ and an observer with momentary 4-velocity u}, and
4-acceleration w’é) at O we have [8]:

1 B
Sort = (IOﬂuIé))_ID_IAB<<1 e it(g) - mA”u’é>
z

+wh, (33)

where 574 is the position drift rate in radians per a unit of
the observer’s proper time, z is the redshift measured by the
observer and i1, is the parallel transport of u¢ from O to £.
Again this quantity can be expressed directly using BGOs
in parallel propagated SNF:

1
Sort = (lOyulé)_l(VXLAB>_l <1 g Mlg; - WXXBpM'E9>

+ wh. (34)

We stress that in order to calculate any of these observables,
measured by any observer u», comoving or not, and with
respect to any source ug, we only need to evaluate the
BGOs Vy; or Wy, as well as Wy between two points
connected by a null geodesic. As we have shown above,
this can be done by varying the functional form of the null
geodesic, obtained exactly or perturbatively.

A. Remark

Although Egs. (24)-(26) and (29)-(34), relating the
observables to the BGO’s, have been derived using
a pair of parallel-propagated SNF’s at O and &, they can
also be applied given two arbitrary, unrelated SNF’s at
the two endpoints of yy. The only exception is Eq. (27),
which works only if the two frames are related by parallel
transport—if they are not, the Kronecker delta on the right-
hand side needs to be replaced by the parallel transport
operator expressed in the pair of BGO’s. As a consequence,
it worth noting that Egs. (26) and (31)~(32) for D,,, and
Dy, can be used with any pair of Sachs bases ey at
the endpoints O and &: the change of the SNF at any
endpoint corresponds at most to a rotation of the corre-
sponding Sachs basis [1,8] and both distance measures are
defined using determinants of the transverse submatrices of
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appropriate BGO’s, expressed in the chosen Sachs bases.
The determinants on the other hand are obviously insensi-
tive to rigid rotations.

IV. A NEW OBSERVABLE: THE DISTANCE SLIP

A. Definition and properties
In [1] the following dimensionless quantity has been
defined

detHAB
det MAB '

p= (35)
We can rewrite with the help of Eqgs. (25) and (29) in terms
of the emitter-observer asymmetry operator, and thus in
terms of the spacetime curvature:

u=1—det(#g+m, 1), (36)

m | 45 denoting here the transverse components of the full
operator mAﬂ. On the other hand, using Egs. (31) and (26),
it can be expressed in terms of the parallax distance and the
angular diameter distance from the observation point to a
single object far way:

—ae (37)

where ¢ = +1 defines the sign and depends on the parity of
the magnification matrix and the parallax matrix, i.e.,
o = sgn(det M4 )sgn(detTT4p). Note that for most objects
observed in the Universe we detect simple images, i.e.,
det M4 > 0 (inverted images may appear only for strongly
lensed objects, which are relatively rare) and the dependence
of the parallax on the displacement is not inverted either
(except, again, strongly lensed images), i.e., detIl*z > 0.
This means that for most objects we have simply
D?
D‘;ng . (38)

par

n=1-=

In other words, for a given observer and a given distant
source y measures the relative difference between the results
of two methods of distance determination: by the source’s
parallax and by its angular size. We will therefore call x4 the
distance slip.

Since the angular diameter distance in related to
the luminosity distance D,,, and the redshift by the
Etherington’s reciprocity relation Djyy, = Dyng(1 + 2)?
[4,19,20], we can also express u using Dy, and z:

2

D
p=1- (14272 (39)

par

The distance slip as an observable has a number of peculiar
properties, not shared by the standard observables like the

redshift or the luminosity distance, which we will now
briefly summarize. These properties hold for any spacetime
as long as we may use the first order geodesic deviation
equation approximation and the distant observer approxi-
mation. For proofs and longer discussion see [1].

1. Independence from momentary motions
of the observer and the emitter

Consider a spacetime with fixed emission and observa-
tion points £ and O, connected by a null geodesic. The
parallax distance and the angular diameter distance depend
on both the spacetime geometry as well as the momentary
4-velocity of the observer u/, at the moment of observation:

Dang = Dang [gﬂl/’ u‘é)] (40)

Dpar EDpaI[gywul(lQ]’ (41)

where g, denotes here the spacetime geometry. Note that
they do not depend on the momentary 4-velocity of the
emitter in the moment of light emission u’g, or any other
quantities describing the motions of both the emitter and
observer, such as the momentary 4-accelerations. The
independence of D,,, from the emitter’s rest frame is a
standard result (see [4]), which can be seen as a conse-
quence of the Sachs shadow theorem [2]. The independ-
ence of D, of the emitter’s motion on the other hand is a
fairly straightforward consequence of the relativistic paral-
lax definition as given by a momentary measurement,
using light emitted in a single moment along the source’s
worldline, see [1]. The remaining dependence of both
distances on uj, is due to the standard light aberration
effect, described by special relativity: small regions of the
sky appear larger or smaller depending on the observer’s
4-velocity. This dependence appears in (26) and (31) as the
common prefactor £, u,. The reader may check, however,
that ¢ does not depend on any kinematical variables
describing the momentary motions of the source and the
observer, because in the ratio Dﬁng / D%ar, appearing in its
definition (37), the u/,-dependent prefactors cancel out.
The remaining expression is a functional of the spacetime
geometry only:

1= plGu). (42)

In other words, for a given spacetime and two events &
and O, connected by a null geodesic, we can be sure that
any emitter-observer pair will measure the same value of y
when passing through £ and O respectively.

2. Distance slip as a functional of the curvature
along the line of sight

Let y, denote the null geodesic connecting £ and O, A be
its affine parameter and £* its tangent vector. One can show
that the distance slip u can be expressed as a nonlinear
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functional of the curvature tensor along y,. Namely, let ¢/
denote the Sachs basis, i.e., two parallel propagated,
normalized and orthogonal spatial vectors, perpendicular
to ##. Then we can define the matrix m, 45 of the
transverse emitter-observer symmetry operator as the sol-
ution of the following ODE in that basis:

d2
e Ap— RApcl™Pm ) Cp = RA ypt°?  (43)
with the initial data at O:
d
ami AB|20 =0 (44)
my AB|/10 =0. (45)

m, 45 will now denote the solution at £ Then we can

apply (36):
,u:l—det(éAB—i—mlAB). (46)

We see therefore that ¢ depends on the spacetime geometry
via the Riemann tensor along y, or, more precisely, via

the transverse components of the optical tidal tensor
R:, G EVCP:

= /"[RA(l/iBfaf/}|yo]' (47)

The reader may check that 4 given by (46) is independent of
the choice of the parallel-transported Sachs frame.

3. Distance slip as a curvature detector

In a flat space we have y = 0 along any null geodesic.
This can be seen directly from Egs. (43)-(46) if we
substitute R*,,, = 0. Alternatively, we note that in a flat
spacetime both methods of distance determination must give
the same result for the same object, i.e., Dyyy = Dpyr = D,
where D is the spatial distance between O and &, calculated
on the 3D hypersurface of the observer’s rest frame. Since
all images are simple in a flat spacetime and the parallax
map is not inverted we have y = 0 from (38). Conversely,
any deviation of u from O means that the spacetime must
be curved somewhere along y, between points O and &.
Note that this property makes y somewhat similar to the
angle deficit of a geodesic triangle in 2-dimensional non-
Euclidean geometry. Namely, the measurement of the angle
deficit probes curvature within a finite region of the
manifold, defined by the interior of a geodesic triangle,
and the same way the measurement of 4 probes the curvature
along the fiducial null geodesic y, in the segment between
the emission and the observation points.

4. Tomographic property for short distances

One can prove that for short distances or weak curvature
u can be expanded as a series in the powers of the curvature
tensor:

2
. / "R, 040 (3¢ - 2)d2 + O(R?) (48)
A

O

A
_ 8G / T 0 (A — 1)di+ O(R?),  (49)

Ao

where O(R?) denotes terms involving quadratic and higher
powers of the Riemann tensor and for the second equality
we make use of Einstein equations. The leading order linear
term should be sufficient whenever the impact of curvature
on light propagation is small. This is always true if the
distance between O and £ is short in comparison to the
characteristic scale of the curvature of the spacetime. In
the cosmological setting this condition means that the
distance is small with respect to the Hubble radius and
that the null geodesics y, does not stay for too long in
strongly overdense regions.

We note from (49) that in the leading, linear order the
Weyl tensor drops out of the integral, leaving only the
stress-energy tensor contracted twice with the null tangent.
The cosmological constant drops out as well, since the term
Ag,,, contracted twice with null vector £#, vanishes too. In
the end we are left in (48) with just the integral of the stress-
energy tensor of the matter (dark and baryonic). Therefore
u depends in the leading order only on the gravitating
matter content, both dark and ordinary, along the line of
sight. The linear kernel A¢ — 1 in the integral makes the
result more sensitive to the matter distribution closer to the
observer than far away.

Note also that mass concentrations located off the optical
axis may easily influence the exact position of the emitter’s
image on the observer’s sky due to gravitational light
bending and at the same time cause a sizable image
distortion due to tidal forces. However, as we can see from
(48), they cannot directly influence y in the leading order,
unless they happen to be positioned exactly between the
observer and the emitter along y,. Thus y yields a weighted
integral of the matter density located precisely between the
source and the emitter, reminiscent of tomography.

B. Methods of measurement

One of the main advantages of u as an observable is that
it can be measured using purely astrometric methods, by
comparing the parallax distance with the angular diameter
distance to the same object. As we already noted, the latter
can be also measured indirectly, by measuring the luminosity
distance and the redshift, see Eq. (39). Therefore the objects
we use for measurements must be standard rulers or standard
candles for which we can additionally measure the parallax
effect. The standard method of parallax determination uses
the periodic, annual motion of the Earth, but it is applicable
only to fairly close sources. For sources at extragalactic
distances it has been suggested to use the motion of the
Solar System with respect to the CMB frame [18,21]. Both
methods need to deal with the problem of separating the
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parallax signal from the effects of peculiar motions. In this
subsection we will discuss the first method of measurement
as well as some of the issues connected with calibration,
postponing the discussion of the second one to Sec. V.

1. Parallax distance determination using the annual
parallax in a curved spacetime

The definition of the parallax distance (31), introduced in
[1], requires the determination of the exact position of the
object simultaneously from at least 3 points of view, by three
comoving observers (the classic parallax in the terminology
of [1,18]). The measurements must be performed at the
moment the observers cross the future light cone centered at a
single point on the source’s worldline. This way all observers
register the light emitted by the source at the same moment.
In the distant observer approximation this can be achieved
by appropriate timing of observation using an appropriate
null time coordinate, see [1]. This kind of simultaneous
measurement from many points of view is not feasible in
astronomy, and the standard trigonometric parallax measure-
ments actually use the time variations of the apparent
positions due to the annual Earth’s motion, see [22]. In a
flat spacetime this is easy to justify, because for sufficiently
short timescales the apparent position on the sky (i.e., the
single-worldline parallax defined in [1]) for Earth-based
observers varies with time according to the formula*

804 (1) = v* - 1y, — Dby (1), (50)

t, being the appropriate null time coordinate related to the
barycentric time, 5x%(#;,) the momentary position of the Earth
with respect to the Solar System barycenter. The first term in
corresponds to the peculiar motion of the source with constant
angular velocity 4 and the second one is the “pure” parallax
effect we want to measure.

Note that both terms are easy to separate since the first
one is linear, while the second one is periodic with the
period of one year corresponding to the Earth’s orbit. This
decomposition is the cornerstone of all practical parallax
measurements, including those performed from the space
observatory Gaia, [22]. It is currently feasible only for
objects at galactic distances, with the record distance of
around 20 kpc obtained to a water maser source by the Very
Long Baseline Array (VLBA) observatory [23].

Fortunately, it turns out that it is possible to determine
the parallax matrix and the parallax distance in a curved
spacetime, with all relativistic corrections, in a very similar
way assuming that the gravitational field does not vary very
much on short scales. More precisely, as was also shown
in [1], for a source which is in free fall and for the observer
in a gravitationally bound system, undergoing a periodic
motion around a free falling barycenter, the variation of the

We neglect here the contribution from the aberration, since it
is commonly subtracted from the parallax measurements.

apparent position is given by the peculiar motion, i.e., drift
of the source across the sky with constant angular velocity
v*, and a periodic signal proportional to the observer’s
transverse displacement with respect to the barycenter. The
result is that the apparent position variation for short times
is given by a relation with the same structure of the one in
flat spacetime, Eq. (50), namely5

864 (1) = v* - 1, — T poxg (1) (51)

where the apparent velocity of the source’s proper motion
v* and the parallax matrix 1" are again constant, 7, is a
null time coordinate related to the barycenter time and 6xp
is the momentary displacement of the observer with respect
to the barycenter. v4 corresponds to the proper motion of
the source as observed from the Solar System’s barycenter,
given by Eq. (33): it depends on the 4-velocity of the
barycenter up, the 4-velocity of the source ug, but in the
curved spacetime it also involves the gravitational light
bending effects. Just like in the flat case the first term grows
linear in time, while the second one has the annual
periodicity of the Earth’s orbital motion. Moreover, we
see that the periodic component of the signal is given by
the product of the constant parallax matrix Iz and the
transverse components of the observer’s position. Both
terms should therefore be easily separable in the observa-
tional data if the measurement is made over many orbital
periods and the components of IT4z should be possible to
determine after removing the linear drift from the data.
The result above holds for any curved spacetime as long
as the curvature scale is much larger than the size of the
object we observe and of the Solar System. Therefore,
under the assumptions above, the standard method of
parallax determination by decomposing the apparent
motion of the source into the constant proper motion
and periodic parallax should work well even if we take
into account all relativistic corrections (gravitational light
bending, Shapiro delays) to the light propagation due to the
curved spacetime.® The only small modification we need to
introduce in nonflat geometry is that we cannot a priori
assume that the parallax angle’s direction is exactly
opposite to the transverse displacement of the observer,
as in (50). This proportionality of vectors holds if and only
if the parallax matrix itself is proportional to the unit
matrix, i.e., [1*5 = D, ~'6* 5. This may happen for exam-
ple if the geometry is rotationally symmetric with respect to
the optical axis. However, if the light between the source

Here we neglect again the aberration effects and also the light
bending effects from the Solar System bodies, which are under
control and subtracted from the parallax measurements.

Note, however, that the corrections due to the nonflat
geometry within the Solar System, i.e., light bending and Shapiro
delays due to the Sun and large planets, need to be taken into
account separately [22].
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and the observer undergoes shear due to tidal forces the
parallax matrix can in principle be any symmetric matrix.
The data analysis should therefore assume a more general
form of the periodic term, i.e., a linear relation between the
momentary position of the Earth and the apparent position
on the barycentric celestial sphere, given by a symmetric
matrix, as assumed in (51).

The need to consider [ as a linear mapping in two
dimensions rather than a rescaling should pose no problem
for sources located sufficiently far from the ecliptic. For
these sources the projection of the Earth’s orbit on the
transverse plane is an ellipse with semiaxes of comparable
size, 6x%, probes both transverse dimensions and therefore
we can obtain all components of IT4 ; from the measurement.
However, for sources close to the ecliptic the projected
Earth’s orbit degenerates to a line or an extremely elongated
ellipse. In that case only one baseline direction is probed by
the Earth’s motion and we may obtain only 2 out of 3
independent components of IT4 ;. This is sufficient if we for
some reason may also assume that the shear effects are
negligible.

Another issue we would like bring up is connected with
the problem of the fixed reference frame. Recall that the
parallax is currently measured using the position variation
with respect to the nonrotating frame given by a set of
distant “fixed quasars” [18,24]. On the other hand, strictly
speaking, the definition of parallax in (28) calls for the
comparison of the apparent positions using the parallel
transport between the observation events. Physically this
means that we should use the local inertial frame, deter-
mined by the inertial effects within the Solar System, to
define the notion nonrotating directions with respect to the
barycenter. The results of these two measurements are in
general different, the difference being due to a possible
slow, secular rotation of one frame with respect to the other,
caused for example by the peculiar motions of the quasars.
For precise measurements this difference, as well as the
variability and individual motions of the “fixed quasars,”
need to be taken into account, [18].

Finally we note here also one important subtlety regard-
ing the simultaneous measurements of Dy, and D,,: recall
that the standard methods of measurement for the lumi-
nosity distance, either using the period-luminosity relation
in variable stars (RR Lyrae, Cepheids) or the Type Ia
supernova, require calibration on short distances. This is
achieved with the help other methods available in the
distance ladder for sufficiently close objects. The methods
of calibration for variable stars make use of various
astrometric techniques of distance determination [25,26],
including the trigonometric parallax distance measure-
ments for stars contained within the Milky Way [27-31].
Therefore, in order to avoid a vicious circle in the distance
ladder calibration and the data analysis we need to separate
clearly the local measurements of parallax and luminosity
distance, for which we neglect the distance slip and which

we then may use for calibration purposes only, and the
measurements made at larger distances, which we use for
the determination of y using the calibration obtained from
the short-distance data.

V. COSMOLOGICAL APPLICATIONS

In this section we will show that the properties of x4 make it
a particularly interesting observable in the cosmological
context. Before that, however, we must note that its meas-
urement is much more difficult that on shorter distances. The
measurement of the distance slip, as we mentioned, requires
the determination of both the angular diameter distance, or
equivalently the luminosity distance and the redshift, as well
as the parallax distance. As for the former two, we need to
note that different types of standard rulers or candles are
available on extragalactic distances than on the galactic
scales. Obviously the need for a simultaneous measurement
of the parallax together with the luminosity or angular
diameter distance strongly restricts the type of sources that
may be used for measurements on cosmological scales. We
will now briefly discuss the problems of determination of
each of the quantities involved and go through the possible
sources, as they appear in the recent literature.

Let us discuss first the measurement of the parallax.
On extragalactic or cosmological scales the 1 AU baseline
provided by the Earth’s motion may be too small for an
effective measurement of the parallax. It was therefore
suggested to use the motion of the whole Solar System with
respect to the CMB frame for the measurement, [21], which
provides the baseline of around 78 AU yearly, with the
signal growing secularly over the years. We refer the reader
to Ref. [18] and references therein for the first studies on
the cosmic parallax and to Ref. [9] for a more detailed
discussion of the methods and feasibility of the measure-
ments. Here we just note that separating out of the parallax
effects due to the observer’s motion from the drifts due to
the peculiar motions of the sources is more difficult in this
case, because both terms in (51) are monotonic and cannot
be separated using periodicity in time. A way to overcome
the proper motion-parallax degeneracy has been put for-
ward in [9,32]: the authors propose to average the compo-
nent of the observed drift aligned with the direction of the
CMB dipole over many sources. The uncorrelated peculiar
motions of the sources should then average out, leaving this
way the signal due to the motion of the local group with
respect to the CMB frame. This signal has been estimated
in [9] to be around 0.3 pas/yr for objects at z = 0.1 and
0.06 pas/yr for z = 1.48, for short distances dominating
over the aberration drift (although smaller than the aberra-
tion of Galactic origin).7 In [18] a similar order-of-

"In [9] the authors use a different terminology, separating the
parallax effect as we define it in this paper into the aberration drift
and “pure” parallax drift. This splitting is done using the standard
coordinates of the background FLRW metric.
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magnitude estimate of 1072 pas/yr has been obtained for
sources on cosmological distances, although without the
contribution of the local environment or the peculiar
motions of the sources. These values are much smaller
than the precision of standard astrometric measurements of
an individual source, but given sufficiently many sources
the cosmic parallax can be measurable for the first time by
the Gaia satellite® launched in December 2013. In 5 years is
expected the parallax measurement of at least N ~ 5 x 103
quasars in the redshift range z € [0,5] with an average
precision for a single measurement of 100 pas which will
be reduced of a factor of 1/ /2N for the full duration of the
mission. Therefore it is expected that the cosmic parallax
signal is within the range of sensitivity of Gaia, see [33,34]
for a more detailed analysis of the uncertainties, and [7] and
references therein for further details.

The luminosity distance determination on the other hand
requires sources whose absolute luminosity can be deter-
mined from optical observations alone. The most important
standard candles on cosmological distances are the Type Ia
supernova, see e.g., [35-37]. Note that supernove are
luminous but also transient sources, lasting less than a year,
while the parallax determination requires position mea-
surements extending over many years or even decades.
Supernova la events may therefore only be suitable if the
host galaxy is identified as well. The same problem arises if
we try to use the gravitational wave signal provided by
binary black hole or neutron star mergers as standard sirens
[38,39]: the transient nature of the signal and problems
with precise pointing of the source precludes the secular
position variation measurement.

The most promising sources to measure the distant slip
are therefore quasars: their positions can be determined
with fairly high precision and they are suitable for long-
term position variation measurements. We will now briefly
review the recent developments in the field of the angular
diameter distance and the luminosity distance measure-
ments to quasars. In Ref. [15] the authors obtained an
Hubble diagram by measuring the luminosity distance from
a sample of ~1600 quasars using a relation between UV
and X ray emission that makes quasars standard candles.
The advantage with respect to the same measurement from
the luminosity distance of Type la supernove is that it is
possible to probe a larger redshift range: in Ref. [15] the
redshift range is 0.05 <z < 5.5 whereas the farthest
supernova are observed at z < 2. Another method to make
quasars standard candle is related to the so-called rever-
beration-mapping technique. It consists in the measure of
time-delay response between the continuum and the broad
emission line region (BELR) of a quasar: the time delay is
directly related with the physical size of the BELR which in
turn is related to the continuum luminosity of the source,
via the well-known radius-luminosity relation from which

8http://www.cosmos.esa.int/web/gaia.

the luminosity distance follows by its very definition. The
values of the ACDM parameters determined this way are in
agreement with other cosmological probes at 2¢ level. In
the near future the constraints will improve significantly:
the redshift range of quasars detectable by the Large
Synoptic Survey Telescope9 is 0 < z <7 and the quasar
counts will raise enormously, with an estimation of ~3000
reverberation-mapped AGNs, thus providing a much better
statistics for this type of signal for cosmological purposes.
Finally the authors of Ref. [40] suggested to use the
reverberation-mapping technique to make quasars standard
rulers: according to their proposal, having estimated
physical size of the BELR by accurately measuring the
time delay, in principle it is possible to resolve angular size
of the BELR region of the quasar by using interferometric
methods. The GRAVITY collaboration has recently suc-
ceeded in applying this method to a quasar [14]. For a
recent review on the reverberation-mapping technique
applied to quasar for cosmological purposes we remind
the reader to Ref. [41] and references therein.

In the rest of this section we simply assume that the
distance slip, i.e., Dp, together with D,,, (or with the
redshift z and Dy,,,), is measured for a sufficiently large
sample of sources on cosmological scales and we discuss
what kind of information can be obtained from the results.
We specialize the calculation of the distance slip u to the
FLRW spacetime, i.e., to a homogeneous and isotropic
matter distribution. We consider comoving observer and
emitter, although we note that the distance slip is in the end
independent from the motions of both.

A. Distance slip in an unperturbed FLRW Universe

We start by considering the FLRW line element written
in the form

ds? = —de* + a(1)*(dy? + Si(x)*dQ?) (52)
if cosmic time ¢ is used as time variable and
ds? = a(n)*[—dn* + (dy* + S (r)?dQ?)]  (53)

if we use conformal time 7. The two time variables are
linked by d¢ = a dn. In the above expressions for the metric
dQ? is the infinitesimal solid angle and the specific form of
the function S;(y) depends on the curvature of the spatial
hypersurface. We have

ﬁsin(\/%)() if k>0
Selr) = { ¥ iTE=0 " (54)
—_sinh(\/[kly) if k <0,

VI

9https://www.lsst.org.
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where y plays the role of the radial coordinate. We also
define the derivative of S;(y) which will be useful in the
following

i cos(vky) if k>0
Ck(;()zd—;— 1 ifk=0 (55)
cosh(+/|kly) if k <O.

Consider now an observer placed at the origin y = 0 at the
present moment, corresponding to z = 0. By convention
we assume that the scale factor a at present is set to 1. The
x coordinate of a light source observed with redshift z
defines the comoving distance to the source and is given by
the integral

z dz = dz
/0= | wrame |, ey

We normalize the FLRW photon geodesics such that the
time component of the tangent vector is equal to unity at the
observer position and the affine parameter increases toward
the source, i.e., f% = —1. The two Hubble parameters in
(56), H = (da/dt)/a and H = (da/dn)/a, are related by
H(1 4+ z) = H. For any spatial curvature we consider a
universe containing ordinary and dark matter and a cos-
mological constant A. The Hubble parameter in terms of
the redshift then reads

(56)

H(z)* = H}(Qu, (1 + 23 + @, (1 + 2% +Q,,) (57

where Hy denotes the today value and €2, , €, and Q, are
respectively the matter, curvature and cosmological con-
stant parameters at present. It is also useful to consider the
dimensionless comoving distance defined as

E(z) = Hox(z)

z
:/ d2(Qu, (14 2)3 + @ (1 +2)2 + Q)72
0

(58)

which is independent of H,,.

In the following we report explicitly the results for the
distance slip u and the angular diameter and parallax
distance in an FLRW background with arbitrary curvature,
namely flat, open or closed. For a detailed derivation with
the help of the machinery we have introduced in Sec. II we
refer the reader to Appendix.

From its definition in Eq. (36) and the result in FLRW in
Eq. (A45), expressed in terms of the redshift z of the source,
the distance slip y is then

2

p=1- o (Gl HS )| (59

In flat FLRW this reads

1+ E (z)] 2
7)=1—-|——"— 60
ey =1 [ (60)
with € =0 in (58), whereas for the curved cases, by
expressing the constant curvature of the spatial hyper-
surfaces k in terms of the curvature parameter at present Q|

as k = —Q Hj, we get

uz)=1- {1 Jlrz [cos( —QkOE(Z)>

+ \/kaOsin<\/$k0E(z)>]}2 (61)

for a closed universe with €, < 0 and we get

ua)=1- {1 qle
sinh( QkOE(z))] }2 (62)

[cosh( QkOE(z))

n 1
V4,
for an open universe with Q; > 0, according to (54) and (55).

Finally, we report the expressions for the angular
diameter distance

(63)

and the parallax distance

_ Si(x)
P Crly) + HoSk(x) '

both calculated using our approach (see Eqs. (26) and (31)
and Appendix). We checked that our results coincide with
previous ones in the literature, see e.g., [42] for the angular
diameter distance and [18] for the parallax distance.

We plot in Fig. 1 the distance slip u, D, and Dy, in the
FLRW spacetime as function of the redshift, with the
cosmological parameters fixed to the values as measured
from Planck. Note that while the angular diameter distance
decreases with redshift, the distance slip and the parallax
distance increase, meaning that the parallax does not
become arbitrarily small but approaches a constant value.
However the difficulty to measure the parallax also
increases with redshift, due to the decreasing of the
apparent luminosity of the source.

D

(64)

1. Remark

The reader may check that for the de Sitter space
(Q,, =0, Q4 >0) and the anti-de Sitter space
Q,, =0, Q) <0) we have y=0 everywhere. This
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z

FIG. 1. The angular diameter distance Dy, the parallax
distance D, and the distance slip u for flat FLRW. Here D,,,
and D,,, are plotted dimensionless in terms of the Hubble radius
Ry = 1/H,. We set the value for the cosmological parameters
from [43].

can be seen easily from the expression for y in (46) and
from Eq. (43) if we note that the components of the optical
tidal tensor appearing in (43) vanish for spacetimes with
only the cosmological constant present in the curvature
tensor. In particular D,,, = D, in both spacetimes along
any null geodesic, just like in the flat space.

B. Dependence on the cosmological parameters

In this section we explore the dependence of the distance
slip ¢ on the cosmological parameters H, ., , Qy , Q, in
comparison with the angular diameter and the parallax
distance. First of all, by simply looking at their expressions
in (60)—(62), (63) and (64), we notice that Dy,, and D,
individually depend on H,'® whereas their ratio, i.e., u,
does not. A measurement of the distance slip would
therefore have the advantage to determine the cosmological
parameters fully independently from H(. This holds of
course for any curvature of the FLRW spacetime. An
accurate estimation of the constraints on the cosmological
parameters that can be obtained from a measurement of the
distance slip from e.g., the simultaneous measurements of
Dy and D, of quasars is beyond the scope of this paper
and would require precise estimations of the uncertainties
in the measured values of the two distances from this kind
of sources at different redshifts. Here we just investigate the
dependence on the cosmological parameters of the distance
slip compared with that of the parallax and angular
diameter distance alone, in order to understand if it contains
additional and potentially useful information as a new
probe in cosmology. In Figs. 2-5 we plot the derivative of
the three observables (the dimensionless expressions of

'"The dimensionless expressions of D, and D, in terms of
the Hubble radius, which are simply obtained multiplying (63)
and (64) by Ry' = Hy/c, of course do not depend on H,. But in
this case it is implicitly assumed that H, is known from other
measurements.

Dependence on Qo - Flat FLRW

Dependence on Q,, - Flat FLRW

02

0.1,

---------- Dang
0.0
\ Dypar
—0af ] u

~0.2fF

FIG. 2. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
cosmological parameters for the flat FLRW model. The plots
show the derivatives with respect to €., and Q, . We set Q,, =
0.266018 as fiducial value, [43], and we obtain Q, = 0.733982
from the closure condition.

D, and Dy, and p) with respect to one parameter at a
time, the other being fixed to their fiducial values from [43],
in function of the redshift. Figure 2, Fig. 3, and Fig. 4 show
the dependence on Q,, and €, for the flat, open and
closed FLRW universe, respectively. Figure 5 is dedicated
to the dependence on the curvature parameter €, for the
open (left panel) and closed case (right panel). These
derivatives represent the dependence coming from theory
only, i.e., from the functional form of the observable at
hand. They are those appearing in the Fisher matrix which,
together with the specifications about each measurement, is
used to forecast e.g., the constraints on the model param-
eters achievable with a specific instrument. We note that in
all cases the dependence of the distance slip is quite
different from that of the parallax and the angular diameter
distance. In particular, from Fig. 2, Fig. 3, and Fig. 4 we
note that the dependence of y on € and €, is very
different from that of D,,, and Dy, which are very similar
to each other. This may suggest that potentially new
information is contained in g and that the parameter
degeneracies may be different from that in the measure-
ments of D,,, and D, separately. We finally note from
Fig. 5 that each of the three observables depends on the
curvature in a peculiar way.
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Dependence on Qnp - Open FLRW
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FIG. 3. Dependence of the dimensionless angular diameter

distance and parallax distance and the distance slip on the
cosmological parameters for an open FLRW model. The plots
show the derivatives with respect to €2, and €, . We set Q,, =
0.266018 and Qko = 0.0010 as fiducial values, [43], and we
obtain Q, = 0.732982 from the closure condition.

C. Low-redshift expansions

By expanding Eq. (59) for small redshift we find for the
ACDM model up to third order

3 1 3 9
’M(Z) = Egmozz + <_2Qmo _Egmogko - 4Qm02> ZSa

(65)

where we used the closure condition Q5 =1 —€Q,, — €,
to get rid of Q,  and the above expansion is valid for the
open, the closed and the flat FLRW model, with €, =0
for the latter.'' We see that only Q. appears in the leading,
quadratic, term. This is in perfect agreement with the
general result of Egs. (48) and (49), showing that for short
distances the distance slip depends only on the dark and
baryonic matter content: here this is just specialized to any

"If we use the closure condition to get rid of €, we obtain
instead

3 3 3
”(Z) = Egmozz + <_29m0 + Egmog/\o - ZQmoz) Z3-

Dependence on Q,, - Closed FLRW
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FIG. 4. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
cosmological parameters for a closed FLRW model. The plots
show the derivatives with respect to Q, and Q, .We set Q,, =
0.266018 and Q; = —0.0010 as fiducial values, [43], and we
obtain Q, = 0.734982 from the closure condition.

FLRW spacetime with matter and a cosmological constant.
The dependence of u on the curvature € appears only at
the third order in the redshift. Let us also recall that there is
no dependence on H at all orders, as we have noticed in
Sec. V B. A straightforward consequence is that measure-
ments of u for very small redshifts offer a simple way to
determine the value of €, locally, bypassing the uncer-
tainties of the determination of Hy or €.

In Fig. 6 we plot the low-redshift expansion of the
distance slip in Eq. (65) versus its exact expression for flat
FLRW, Eq. (60). They start to differ at z = 0.05. Atz = 0.1
the difference is ~10% and it increases monotonically with
the redshift. Let us remark that, although the distance slip is
very small at low redshift (being quadratic in z) and thus its
measurement would be difficult, it would be also lead to a
measure of €, independent of any other cosmological
parameters, i.e., Ho, Q, , and € .

1. Distance slip—angular diameter distance relation

Beside the dependence of the distances D,,, and Dy,
and the distance slip y on the redshift we can also consider
directly the relations between these quantities, bypassing
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~0.3 ———

z

FIG. 5. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
curvature parameter for a closed and open FLRW models. The
plots show the derivatives with respect to € . All the other
cosmological parameters are fixed to fiducial values from [43].

this way the redshift as observable. As an example we
discuss here the relation between u and D,,, for short
distances. Note that since both quantities in question do not
depend on the states of motion of the sources all results of
measurements derived from this relation are free from any
systematics or noise due to the peculiar motions of the
sources, unlike the redshift-based measurements.'> This
may be important for short-distance measurements where
peculiar motions may constitute a significant part of the
error budget.

Up to third order the relation between y and D,,, reads

H(Dang) = 2 Q0 H3DRy + Q0 DYy, (66)
It follows that fitting the results of the measurements of y
and D,,, for a sample of relatively close sources (meaning
D, much smaller than the Hubble distance) to (66) yields
the local value of the combination Q,,, H3 as the coefficient
in the quadratic term and, if the data allow, also the value of

"’The residual dependence of the value of the angular diameter
distance on the motion of the observer can be fixed for example
by boosting the measurement results to the CMB frame defined
by the CMB dipole.

04 ... Low-redshift expansion

Exact expression
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FIG. 6. Comparison between the low-redshift expansion of the
distance slip as in Eq. (65) and its exact expression for flat FLRW,
Eq. (60). The low-redsthit expansion truncated at the first term
72 is very accurate for redshift z < 0.2. We set the value for the
cosmological parameters from [43].

Q. H} as the next order coefficient. Let us note that the
leading order term Q,, H, 2 x Pm, 18 another evidence of the

tomographic property of u for short distances, mentioned in
Sec. IVA.

D. Dynamical dark energy

We consider here a simple modification of the ACDM in
which the equation of state w = p/p for dark energy is not
constant in time as it is for the cosmological constant A. We
follow the usual parametrization for the equation of state
varying with time which was introduced in [44,45]

Z
Wz) = Wo + T War (67
where wy is the value of w today and w, governs the time
dependence. For the ACDM model wy = —1 and w, = 0.
The expression for the angular diameter distance, the
parallax distance and the distance slip for dynamical
dark energy are formally the same as for ACDM, i.e.,
(63), (64) and (59), where however the Hubble parameter
is modified as

H(z)* = Hj(Qu, (1 +2)* + &, (1 +2)°
+ QDE€_3W“‘+;Z(1 4 Z)3(1+WO+W“))- (68)

We explore the dependence of Dy, Dy, and the distance

slip on the two parameters of the modification of the

ACDM in (67). Our results for the flat geometry are shown

in Fig. 7: we note again that ¢ shows a different behavior

from those of D,,, and D, which are in turn very similar,

as for the parameters of the standard ACDM, see Sec. VB
For small redshift u takes the form

H(E) =3 1 wo1 =) =y, (w0 + ]2 +0() (69)
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Dependence on w0 - Flat FLRW
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FIG. 7. Derivatives of the dimensionless angular diameter
distance and parallax distance and the distance slip with respect
to the parameters of the dynamical dark energy model in (67) in
the flat FLRW case. The plots show the derivatives with respect to
wy and w,. We set the fiducial values of the other cosmological
parameters from [43].

for the three geometries, and €2, = 0 in the above equation
gives the result for the flat case. As expected, there is a
dependence on the equation of state of dynamical dark
energy: at the leading order we find that y depends on wy
but not on w,, because the effect of time variation appears
at higher order in redshift.

VI. CONCLUSIONS

In this paper we have discussed the new approach for the
study of light propagation in the geometric optics regime
presented in [1], which is based on the bilocal geodesic
operators, BGOs, a new fundamental tool to fully charac-
terize light propagation in a given spacetime and on all the
scales of interest. In Sec. IIl we provide the relations
between the BGOs and all the important quantities and
observables already present in the literature like the Jacobi
map, the magnification matrix, the angular diameter dis-
tance, the parallax distance and the position drift. The
novelty of our results lies in the fact that all of them can be
obtained within a unified framework and from one key
quantity only, the BGOs. In addition, we show in Sec. I A
that in spacetimes where an analytic expression for the null
geodesic curve—physically representing the photon tra-
jectory—is known one can avoid to solve the ODEs for the
BGOs and simply calculate all the observables of interests

by differentiating the expression of the photon geodesic
with respect to initial data. This new method is applicable to
the cases where an exact solution of the Einstein equations
allows for a solution of the geodesic equation and also in
presence of perturbations around it.

The main topic of our work is the study a new
observable, the distance slip p, introduced for the first
time in [1]. It is a (dimensionless) combination of known
observables, the parallax distance and the angular diameter
distance or, alternatively, the parallax distance, the redshift
and the luminosity distance, and is defined by relations
(37)—(39). Its usefulness stems from its peculiar properties,
not shared by the known distance measures themselves: in
any spacetime it is invariant with respect to the boosts of the
observer and the source which would make its measure-
ment highly resistant to (ideally independent of) the noise
and systematics due to peculiar motions. Moreover, the
distance slip can always be expressed as a nonlocal func-
tional of the spacetime curvature along the line of sight,
see Egs. (46) and (43)—(45). In particular, we also show that
for short distances its value is simply proportional to a
weighted integral of the matter density [Eq. (49)], remi-
niscent of tomography. This makes distance slip is a
convenient tool for determining the geometry of the
spacetime and its matter content.

We specialize our study of the peculiar properties of the
distance slip, focusing on cosmology and on the differences
between this new observable and those it is constructed
from. First of all, as it is immediately evident from the
expression [Egs. (60)—(62), (63) and (64)], the distance slip
is independent of the Hubble parameter today H, unlike
the angular diameter distance, the parallax distance and the
luminosity distance. We then go further and investigate the
dependence of p as opposed to Dy,, and Dy, on the other
cosmological parameters, considering the curved and flat
FLRW models for a universe containing cold dark matter
and a cosmological constant (Sec. V B) as well as cold dark
matter and dynamical dark energy (Sec. VD). It is well
known that the angular diameter distance D,,, and the
luminosity distance Dy, are related by a simple algebraic
relation, namely the Etherington’s duality formula Dy, =
D g (1 + 2)%, [19,20]. Therefore the relations Dy, (z) and
D e (z), measured for a sample of sources, contain exactly
the same information about the spacetime geometry [4].
On the other hand, this does not hold for the parallax
distance: D,,.(z) is known to contain independent infor-
mation about the spacetime geometry, which were inves-
tigated in the FLRW metric case [18,46—49]. This very fact
is particularly evident for the curvature parameter €2 , as
we show here in Fig. 5. However, regarding the other
cosmological parameters, in our case €, , Q5 and wy
and w, the dependences as a function of the redshift z of
the two distances display similar behavior whereas that
of u is completely different. Although performing a detailed
estimation of the constraining power of the distance
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slip is beyond the aim of our work, these results indicate
that it may contain useful new information. We have also
proposed to consider directly the relation y(D,,, ), without
taking into account z as an observable, since it is strictly
invariant with respect to the boosts of the sources, and
therefore highly resistant to the noise due to peculiar
motions. The leading order coefficient of the expansion
in Dy, yields the local matter density pp, .

The measurements of the distance slip are difficult for
a fundamental reason: for sources located at short distances
u is very small, and thus its determination requires very
precise astrometric measurements. The distance slip
becomes significant only at cosmological distances (for
instance p = 0.22 at z = 1), but at those distances any
parallax measurements are challenging. Nevertheless
recent publications suggest that with the advances in
astrometric techniques the parallax effects can be measured
even at cosmological distances [7], at least for z < 1, where
the signal due to the Solar System’s motion with respect to
the CMB frame is expected to be larger than the effects of
perturbations [18] or the aberration drift due to the motions
within the local group [9]. In a subsequent paper [50]
we will discuss this problem in detail and investigate the
effects of local inhomogeneities on the distance slip
measurements.
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APPENDIX: BILOCAL GEODESIC OPERATORS
IN ANY UNPERTURBED FLRW METRIC

We present the derivation of the Jacobi map D4y and the
emitter-observer asymmetry operator m4 u using the meth-
ods introduced in Sec. II. The transverse part of the Wy
and Wy, matrices has already been derived in [12], but
here we extend the result to the nontransverse part of m*,,
important for the position drift effects.

We derive the optical operators by the means the
standard conformal trick. We first define the conformal
time variable 5 given by

dn = a'dz. (A1)
The unperturbed physical, expanding metric takes now the
form of

g =a(n)*(=d + dy* + Si(x)*dQ?) = a(n)*5, (A2)
where Sy (y) is defined by (54) and dQ? = d#? + sin® 6 dg?
is the infinitesimal solid angle. We have introduced the
conformal metric §:

G = —dp? +dy* + Si(r)*dQ°. (A3)
Note that in this derivation we do not assume a priori that
the scale factor at the observation moment is equal to 1,
unlike in Sec. V, i.e., we have a(np) = ap # 1 in general.
This is because in the derivation we need to vary the
observation moment, and therefore also the value of the
scale factor ap.

The null geodesics of g are the same as for g, except
for the affine parametrization. Namely, let X*(x%,, f‘é,i)
denote a null geodesic in g, with initial data ¥ (1) = xJ,
"(Ao) = ¢, Itis a standard result that the null geodesic of
g, x*(xf,, €%, A), with the same initial data can be obtained
by simple reparametrization of the conformal one, i.e.,

X (X, 00, A) = X (xl), €6, A(x0), €4, 4)),  (A4)
where the function ;I(XZQ,f’b,/l) gives the initial data-
dependent reparametrization. We show right below that

this reparametrization function can be obtained by solving
the ODE

il
— ==, A5
dl a2 (A5)

with the initial data of the form A(x%, 2%, 10) = Ao.
We can prove (A5) by comparing directly the tangent
vectors 7 and #* at each point of y,. First note that the
component 0 of Z* (associated with the conformal time 7)

scales according to
2
7 =7(%2)
o\ a

This can be seen in the following way: the ¢ component of
£*inthe (1, y, 0, @) coordinate system must scale according
to the redshift law, i.e., ¢ = (1 +z)7'¢}, = %2 ¢,. On the
other hand we have ¢’ = a#° from the definition of the
conformal time n (Al), so (A6) follows immediately. We
also know that 7° = —g”}”b(an)”?” must remain constant
because 9, is a Killing vector of §. Thus the 0 components

(A6)

of both tangent vectors are related by #° = 7°(“2)? and
consequently the whole tangent vectors must be related by
the scaling £# = ##(“2)2. The relation (AS) between the
two parametrizations follows immediately.

The derivation of the optical operators D and m proceeds
now in three steps. We first obtain the bilocal geodesic
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operators (BGOs) Wy and Wy, in the conformal space-
time, by solving the geodesic deviation equation (GDE)
around the geodesics of the conformal metric §, from
Egs. (3)-(4). Then we relate them to the operators Wyy
and Vy; between the same two points on the same
geodesic, but with respect to the metric g. This second
part of the calculation is derived using the variational
formulas (20)—(21). Finally we obtain the general expres-
sions in the expanding spacetime for D and m by expressing
Wyx and Vx; in the seminull frame (SNF) of g.

1. BGOs in the conformal spacetime

Consider the radial null geodesics y, of the metric g,
passing through the observation point of coordinates
n=nop, x =xo,» 0 =135 ¢ =0, with the initial tangent
vector ¢4 = (£9,¢9,,0,0), ¢% <0. Note that in the
derivation we do not assume the observation point to be
at the center of the spatial coordinate system, i.e., y» # 0 or
that at the observation time ap = a(np) =1, as it is
assumed in Sec. V.

The reader may check that the general solution reads

(1) = (no + %50 — 9, g , o), (A7)

where we have assumed for simplicity that 1 = 1 = 0 at
the observation point. The tangent vector in the coordinate
frame, which reads from (A7)
7= (£%,—£9,.0,0), (A8)
remains constant along the null geodesic.
We now report all the quantities necessary for the
GDE (3)—(4) and thus to obtain the BGOs. We begin with
the SNF along y,, namely the frame which is parallel-

propagated along the null geodesic with respect to the
connection of the conformal metric §. It is given by

2y =0, (A9)
e1 = Si(x)710, (A10)

2y = (Si(y) sin0)~10, (A11)
&3 =90, - 0,), (A12)

where we note from (AS8) that the last vector &5 is simply
equal to the tangent vector Z¥.

Then we need to calculate the Riemann tensor Rﬂmﬂ of
the conformal metric (A3), contract it twice with Z# from

(A8) to obtain the optical tidal tensor and express it in the
SNF (A9)-(A12). The result is

Rr 000 = (£9)? . (A13)

o O O O
oS O = O
S = © O
oS O O O

which shows that in the SNF frame the optical tidal tensor
turns out to have constant coefficients.

The operators Wyy and Wy, in the SNF can be now
obtained easily from the matrix equations (3)-(4). We have

1 0 0 0
. 0 Ci(Ay) 0 0
Wyxt, = (A14)
0 0 Ci(Ay) 0
0 0 0 1
and
0 0
_ Su(Ay)
Wyt = % ’ (A15)
XL v — 0 _Sk%)() 0
]
0 0 0 bl

in the SNF &, of (A9)-(A12). The functions S, and C; are
given by (54)—(55) and here as well as in the rest of this
section their argument is the coordinate distance Ay
between the emission and observation point in the y
coordinate. Namely, from (A7) we have

Ay =xe— o = =%, Ay>0. (Al6)
From now on the argument is intended to be Ay, unless
stated otherwise, and we drop it for notational conven-
ience,"” i.e., C; = Cy(Ay) and S, = S;(Ay). Let us finally
remark that, although we have chosen a special, radial null
geodesic for the derivation, the results above hold for any
null geodesic in the conformal space, because all null
geodesics in the conformal metric are equivalent due to the
large isometry group of g.

2. BGOs in the expanding spacetime

In the second step we will obtain the operators Wy and
V., related to the expanding metric, from the conformal
ones we have just obtained above. To do so, we will find the
direct relation between them [see Egs. (A29)—-(A30) below]
by using our variation method for the calculation of the
BGOs, given by the relations (20)—(21), written here in the
common coordinate system (7, y,6, @) and by exploiting
the fact that the null geodesics of both metric coincide up to

13N9te that to switch from Ay to f%;l we have a sign flip:
Si(£%2) = =S (Ay) and C(£%2) = Ci(Ay).
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a reparametrization. The BGOs are the coefficients of the
total variation of the null geodesic curve with respect to
initial data. This relation reads in the conformal spacetime

S = Wyt ,oxty + Vy M AL + 245, (A17)

with the operators VNVXX",J, f}XL"i and the vector Z’é already
known and &fég denoting the covariant direction deviation
with the conformal Christoffel symbols ['(O)*, . The
equation above holds for admissible variations (8xi,, 61)
of the initial data, i.e., those satisfying Aﬂéf@gﬂy = 0. The
reader may check that such variations are automatically
admissible in the expanding metric, i.e., Af’éf’bgﬂ,, =0
holds for them as well, and vice versa. The underlying reason
is that a null tangent vector with respect to g is also null with
respect to g. We can therefore write down the same relation
for the admissible null geodesic in the expanding metric:

Sxt = WyxH,6x4) + Vy M AC + £54. (ALR)
Note that because of (A4) the variations on the left-hand
sides of both equations must be equal for the same
admissible variations of the initial data (6x{,, ;) provided
that the variations of the affine parameters A and 1 are
related appropriately, by the means of the variation of
the relation (A23). Therefore, the procedure to pass from
one set of operators to the other one is fairly straightforward:
we simply need to reexpress the basis of differentials
(x5, &,”6, 51) in terms of the basis given by (éx%,
Afég,éﬂ) and equate the right-hand sides of (A17) and
(A18). We will do so by deriving step by step the conformal
transformations from the conformal basis to the basis in the
expanding spacetime.

Let us begin with the covariant differentials of the spatial
components of the tangent vector, i.e., the second term of
the basis. We have to recall that the covariant derivatives of
two conformally related metrics are in turn related by

V& =V, + 8 (A19)
where in our case C¥,, is a tensor given by the derivative of
the scale factor a:

(A20)

The differentials AZ%, and AZ%, are therefore related by

AZL = AL + C1 00x%,. (A21)
The relation between the variations of the affine parameters
7 and 1 is a bit more complicated, because we first need the

relation between the two affine parameters. It is obtained by
solving for A the ODE in (A5):

o
<
(3o}

a
a_a (A22)
i a}

Integrating (A22) with the initial condition 1 = 1 = 0 at O
leads to:

5 i bpozl 2 B
/1(;1@,5?9,/1):/ o T0oh) 4y (p23)

0 0(710)2

Once this reparametrization and the conformal null geo-
desic are known [see (A7) above], the null geodesic of the
expanding metric simply follows from (A4). The conformal
transformation of the differentials of the affine parameters
is obtained by taking the total variation of (A23):

2 (a2 2%
oL =51+ <— (“—2—1> —ﬂx>5%
ag, L”% ap ap

2 5{0
n <“—2/1 - ,1> o (A24)
ao Zo
where a = ‘:1—“. This is equivalent to
I
- a 1 (a2 a0 a’
=98+ (9-1)+=292)s
a’ + <zf% <a2 > + ap a* 1o
2 0
ag <\ 07¢
+ <2/I—/1> v (A25)
o

We now substitute (A25) and (A21) to (A17) and relate
the result to (A18). We obtain this way

0= (WXX v )/NVXX”D - T)XL”iCia/ao - g’éAu)&%
+ (Wxrhi = Vxiti — ?’éBi)Még
a% -
+ (f’g - ‘gﬂg) 5 (A26)
a
with the 1-forms A, and B; given by complicated expres-
sions. Both 1-forms turn out later to be irrelevant. Since
(A26) must hold for any admissible variations, we obtain

this way general relations between the operators in the
conformal and expanding spacetime:

Wyx, = Wxx*, + ]}XLMiCim/f?) + Z?ZAIJ (A27)
Vrki = Vit + 5”5‘31-
az, -
o =20 (A28)

a

The last equation is just a restatement of the relation
between the conformal and physical tangent vector. The
other two are the relations we have been looking for,
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1.e., the transformation laws for the BGOs under the
conformal rescaling of the metric by a(i7)>.

The relations (A27)-(A28) have been derived in the
coordinate frame of the (1, y,0,¢) coordinates. We now
need to rewrite them in the conformal SNF ¢,. We begin
with (A27). From (A20) we see that C¥, 7, from is
automatically orthogonal to £, and therefore from (17)
we have Vy, #,C,, 6% = Wy, ,C%,,¢%. Equation (A27)
takes therefore the form

WXX”;/ = WXX”;/ + WXL”GCGan?') + ﬂgAV- (A29)
We now turn to (A28). We note that admissible variations
A? must have vanishing component A¢Y in the SNF.
Therefore we get a relation only for the i = 1, 2,3 compo-
nents of Vy; and Vy, , i.e., Vy,#; and Vy, #;. But in the SNF
these components are in turn equal to the corresponding
components of Wy, #; and Wik respectively, exactly
because they correspond to contraction with admissible
direction variation vectors, see (17). Summarizing, we can
rewrite (A28) as
Vit = Wik = Wyt + C4B,;. (A30)

Recall that for the Jacobi operator D4 and the emitter-

observer asymmetry operator mAj we only need the trans-

verse components 1 and 2 in the upper index u. Thus the Z’g
terms drop out and the transformation laws simplify to

Wyx, = Wy, + Wy 6Com 0. (A31)
Ve = Wyt (A32)
From (A8) and (A20) we get
0 0 0 0
0 f%zg 0 0
M %= A
Cutt=| o o _mi o | (4D
ao
—i 0 0 —21,”%%

where again a = d“ . Substituting this formula and (A14)-
(A15) in (A31)- (A32) we obtain

0 Cp+%s, 0 0
A 4o
WXX v — a (A34)
0 0 Ce+528, 0

3. Optical operators in the expanding spacetime

In the final step we need to pass from the conformal
frame &, to the physical parallel-transported SNF e, of the
expanding metric, given by

1 fa ap 1 [fa ap
(A o)y (L g0,
“ 2a(ao+a> '7+2a(a@ a)Z

1 1 as)\ .
—%60—m<1—?>€3 (A36)
= (aSi(x) "0 = a7"2, (A37)
€y = (aSk()() sin 9)_18¢ = Cl_léz (A38)
Ny @,

Cl Cl

The reader may check that this frame is indeed parallel-
transported along y, with respect to the expanding metric g
and that ez coincides with the physical tangent vector to y,),
i.e., £¥. Moreover we see that the transverse vectors ey, €,
and e3 coincide with &{,é, and &3 up to rescalings.
Applying the transformation and remembering that the
index A is used for a vector at the emission point £, while v
denotes components in O, we get

0 £C+%42s, 0 0
WXXAV = ¢ .
0 0 LC+%2S, 0
aop g
(A40)
—(£%)7" &% 0 0
VXLAi - ( ¢ _1 a$, . (A41)
0 —(¢p) e 0
From this we obtain using (24) and (27):
S
A, = — Bl A42
B aOlfﬂ(()Q ( )
m Ap = ( Ck+cm_@Sk_1> g (A43)
ao ao

Note that in our convention f% < 0, so the overall sign for
the prefactor in (A42) is actually positive. We may also
simplify (A43) by noting that °¢ = H,, so

[}

mlAB = <%Ck+aH0Sk— 1) ‘(5AB. (A45)

063506-20



GEOMETRIC OPTICS IN RELATIVISTIC COSMOLOGY: NEW ...

PHYS. REV. D 101, 063506 (2020)

Equations (A42) and (A45) agree with the results from [12]
[Egs. (4.8) and (4.9)] if we take into account the difference
in notation and the parametrizations assumed there.

As the last step of our derivation we express the
coordinate distance Ay, appearing as the argument of C;
and Sy, by an integral over the geodesic y, between O
and £. We begin by calculating

da da dr dpn

= e— A46
di dr dy dj (A46)

Here % = H(a)a from the definition of the Hubble

dr
parameter, g—; = a from the definition of the conformal

time (A1) and §} = #?, from (A7). Thus % = £, H(a)a® or

di 1
da £%H(a)a? (A47)

valid along the null geodesic y,. Integrating this relation
from O, where 1 = 0, up to the emission point £ we obtain

5 a da
—f%,le;(:—/ TSy
ap H(a)2?

_/ao da
- J. H@)a*

We may also change the integration variable to the redshift
A __ap
=7~

(A43)

1 dz
Ay = &

CaoJo HE) (A49)

Using the first Friedmann equation in the form of

H(z)* = Hi(Qu,(1+2)° + @, (1+2)° +Qu)  (A50)

(see [51-53]) the integral in (A49) can be recast in the
following form:

1 z
Ay = / d2(Q (14 2) + (1 +2)% + Q)2

apHy Jo
(A51)

The integral above is related to the total line-of-sight
comoving distance D, between £ and O evaluated at
the observation moment [53], namely we have Ay = % De¢.
We may now impose the standard convention, in which at
the observation moment we have a, = 1, the observation
point is located at the origin, i.e., y» = 0, and the null
vector £ is normalized so that #% = —1, as it is assumed
in Sec. V. In this case we have simply D = Ay for the
standard comoving distance and y = Ay = [§ %
Applying these relations to (A42) and (A45) we obtain:

Dp = aSi(x)5's (A52)

mi g = (aCr(x) + aHoSi(x) — 1)8p. (AS3)

With these results we may evaluate the distance slip
using the relation (36):

p=1-a*(Cely) + HoSi(x))*- (A54)

Noting that a@ = (1 +z)~' for comoving sources we
recover Eq. (59) in the main text.
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