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We discuss a new formalism for light propagation which can be used within the regime of validity of
geometric optics, but with no limitation on the scales of interest: from inside the Galaxy to the ultralarge
scales of cosmology. One of our main results is that within this framework it is possible to calculate all
relevant observables (image magnification, parallax, position drift or proper motion) by simply differ-
entiating the photon trajectory with respect to the initial data. We then focus on a new observable, which we
name the distance slip: it is defined as the relative difference between the angular diameter distance and the
parallax distance. Its peculiarity lies in the fact that its value is independent of the momentary motions of
both the source and the observer and that for short distances it shows a tomographic property, being
proportional to the amount of matter along the line of sight. After describing further its properties and
methods of measurement, we specialize our study of the distance slip to cosmology. We show that it does
not depend on the Hubble constant H0 and that its dependence on the other cosmological parameters is
different from other distance indicators. This suggests that the distance slip may contain new information.
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I. INTRODUCTION

In general relativity the spacetime geometry, related via
Einstein equations to the matter and energy content, leaves
an imprint on the light beams received by the observer,
affecting this way all the observable quantities, e.g., the
magnification of distant objects, their redshift, but also
on the parallax and proper motions. This is the physical
foundation of most—if not all—the methods we use to
extract information about our Universe by measuring
electromagnetic radiation and gravitational waves emitted
from distant sources.
Recently a new theoretical formulation of the problem of

light propagation in curved spacetimes within the geo-
metric optics approximation has been introduced in [1]. It
provides a new, covariant, frame-independent and unified
framework to calculate all the optical observables one can
construct from comparing the properties of neighboring
geodesic through the spacetime from the source to the
observer. It also extends the standard Sachs formalism (see
[2–4] and [5], the last one translated and reprinted in [6])
by considering the view of distant objects from various
observation points, displaced in both space and time,
instead of a single observer at a fixed spacetime event.
It is therefore particularly suited for calculating the parallax
effects as well as the time variations, also called the drifts,
of the values of optical observables registered by an
observer [7–10].

In the literature different methods are proposed for
various observables, and for some observable more than
one method has been used (see e.g., [11] for a comparison
of four different approaches for the calculation of the
luminosity distance in the cosmological context). On the
other hand the main result of the new formulation of
[1] emphasizes the advantage of having a unified frame-
work: all the observables—the parallax, the magnification,
the position drift, the angular diameter distance etc.,—
registered by a given observer are expressed in terms of one
key quantity only, the so-called bilocal geodesic operators
(BGOs), and the kinematical variables characterizing the
momentary positions and motions of the source and the
observer with respect to their local inertial frames. In
addition the BGOs can be written as (nonlocal and non-
linear) functionals of the curvature tensor along the line of
sight, given by solutions of certain matrix ODEs [1,8].
Therefore, in their turn, the observables can be expressed
in terms of the curvature along the line of sight and the
momentary 4-velocities and 4-accelerations of both the
observer and the source. Finally, we remark that the bilocal
formulation provides a simple and transparent way to
investigate the dependence of the observables on the choice
of the frame by just changing the 4-velocities we plug into
the appropriate expressions. This is especially important for
the drift effects, which depend on the momentary motions
of the sources and the observer via a number of effects,
including the relative transverse motion, the aberration
effect, the Shapiro delay of light signals etc.*villa@cft.edu.pl
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The results presented in [1] are completely general.
However the case of spacetimes such that the null geodesic
equation can be integrated exactly up to quadratures turns
out to be particularly interesting. As we show here, this
property provides a shortcut for calculating the bilocal
geodesic operators between any two points connected by
a null geodesic without solving any additional (nonlinear)
ODE, besides the geodesic equation. Indeed, we show that it
is possible to obtain the components of the BGOs directly by
simply differentiating the null geodesic curve with respect to
the initial data. Within the bilocal formulation for geometric
optics, this means also that the general solution of the null
geodesic equation is the only quantity we need to obtain
expressions for observables like the angular diameter dis-
tance, the parallax, the parallax distance and the position drift
for any pair of source and observer, located at any two points
connected by a null geodesic. In this paper we describe this
method, which we call “the variation method,” and we
specialize our result for the observables to cosmology and in
particular to the Friedmann-Lemaître-Robertson-Walker
(FLRW) spacetimes flat, open and closed. Note that a part
of the results derived for the FLRW metric here has already
been published in [12]: the authors derived there the
expressions for the transverse, spatial components of two
BGOs, called in their terminology the Jacobi and scale
matrices. In [12] they were derived as an intermediate result
when discussing the Hubble diagram for an inhomogeneous
swiss-cheese Universe model.
The main topic of our paper is a new observable

introduced in [1]: it is defined as the relative difference
between the parallax distance and the angular diameter
distance. We name it the distance slip and it can be
expressed as μ ¼ 1 −D2

ang=D2
par (in the absence of strong

lensing).1 It is an interesting observable in astrophysics for
three reasons. First, it can in principle be measured using
purely astrometric methods, by combining the parallax
distance—measured via parallax effects—with the angular
diameter distance—measured via the angular size of the
image. Second, it is a direct signature of the spacetime
curvature. This can be seen as follows: in a flat spacetime
the results of both distance measurements must coincide.
On the other hand, if curvature is present between the
source and the observer, it affects both methods of distance
determination and, as it turns out, it affects each of them
differently. Therefore the relative difference between the
two distances may serve as a direct measure of the
spacetime curvature along the line of sight. In this respect,
one can also prove that for short distances μ is directly
related to an integral of the stress-energy tensor along the
line of sight, giving this way a new, tomographylike

method to map the dark and ordinary matter content of
the spacetime. Third, the value of the distance slip is
completely independent of the momentary motions of both
the observer and the source, eliminating this way any
possible measurement systematics or noise due to the
peculiar motions.
The distance slip seems fairly challenging to measure,

because for sources located at short distances its value is
quite small, and therefore very precise astrometric mea-
surements are needed to determine its value. However, as
we show in this work, μ attains significant values (of the
order of 1) on cosmological distances. The difficult task
on these scales is to measure both the parallax and the
angular diameter distance of the same object. Distant
quasars seem very promising candidates for such a meas-
urement. Although parallax measurements on extragalactic
scales seem currently beyond the reach of available instru-
ments, in the near future, a realistic possibility of observing
the cosmic parallax of distant quasars is offered by the
Gaia mission, see [7,13] for recent discussions. In addition,
the measurements of the angular diameter distance or the
closely related luminosity distance, also required for
measuring the distance slip, have either been recently
proven possible, [14], or are already under way: in [15]
the authors present a new measurement of the expansion
rate of the Universe based on a Hubble diagram of quasars
up to redshift z ∼ 6. The use of this kind of sources offers
new possibilities to test the ΛCDM concordance model in a
redshift range which is yet poorly explored, between the
farthest observed Supernovæ Ia and the cosmic microwave
background radiation (CMB).
On the one hand, exploiting new probes at our disposal,

e.g., using other sources for the very same observation, as
in [15], is one crucial way to take advantage of the huge
progress in observational cosmology: it has been evolving
rapidly during the last century and now it is considered a
precision science, offering an unprecedented opportunity
to test gravity on ultralarge scales and/or high redshift.
However, the success of precision cosmology depends not
only on accurate observations, but also on the theoretical
modeling, which must be understood to at least to the same
level of accuracy. Therefore, on the other hand, the
contribution from the theory side is also important: theo-
retical studies have to be targeted to a better interpretation
of the cosmological observations and potentially to provide
new, clean probes. In this respect, a unified and compre-
hensive approach valid for all observables, as the one
proposed in [1], would be particularly useful because it
may help to better understand and to keep track of different
approximations/assumptions that are commonly used in the
literature but that we may eventually want to relax. In our
work we specialize the machinery of [1] to the FLRW
spacetime and we focus our study on the new observable μ
with the aim to investigate its potential use as a new
cosmological probe.

1More precisely, the definition of the distance slip is
μ ¼ 1 − σD2

ang=D2
par, where σ ¼ �1. We may have σ ¼ −1 in

some situations, but only for strongly lensed objects. For more
details see Sec. IV.
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The paper is organized as follows: in Sec. II we review the
formulation of geometric optics in terms of the BGOs and
we show how to calculate them using the variation of the null
geodesic curve with respect to initial data. In Sec. III we
derive the expressions of the Jacobi map, the magnification
matrix, the angular diameter distance, the parallax distance
and the position drift in terms of the BGOs. Section IV is
dedicated to the distance slip μ: we discuss its general
properties and some issues related to its measurement. In
Sec. V we focus on cosmology: after discussing the
possibility of its measurement on cosmological scales, we
begin by reporting the expression for μ in any FLRWmetric,
flat and curved, of which we give a detailed derivation with
our new variation method in the Appendix. We investigate
the dependence of this new observable on the cosmological
parameters in the redshift range accessible to the observa-
tions and we also give and comment its expansion at low
redshift. We collect our final remarks in Sec. VI.

A. Notation

Greek indices (α; β;…) run from 0 to 3, while Latin
indices (i; j;…) run from 1 to 3 and refer to spatial
coordinates only. Latin indices (A;B;…) run from 1 to 2.
Boldface indices denote tensors and bitensors expressed in a
semi-null frame(s) [as opposed to a coordinate frame(s)],
namely the Greek boldface (α; β;…) run again from 0 to 3,
Latin boldface indices (i; j;…) from 1 to 3 and capital
boldface Latin ðA;B;…Þ again from 1 to 2. Dot denotes
derivative with respect to conformal time. The subscript O
denotes quantities evaluated at the observer position, i.e.,
fðλOÞ≡ fO ≡ fðOÞ, λ being the affine parameter along
the null geodesic connecting observer and source. We will
use fO or fðOÞ depending on notational convenience.
Analogously, subscript E denotes the point of emission
by the source. We use the unit system in which c ¼ 1.
The conventions regarding the sign of the Riemann tensor
and the metric are consistent with the Wald’s textbook [16].

II. FORMULATION

We begin by a short review of the bitensorial formalism
applied to geometric optics, for a longer discussion see [1].
Let γ0 be a null geodesic segment connecting the obser-
vation point xO, corresponding to the value λO of the affine
parameter, with the emission point xE , corresponding to
an arbitrary value λ. We fix a coordinate system which
covers the neighbourhoods of both geodesic endpoints. The
geodesic curve xμðxνO;lν

O; λÞ is function of the initial point
xμO and the initial tangent vector lμ

O at the observer’s
position, and of the affine parameter value λ.
Consider a perturbation of the initial data for the

geodesic at λO, namely the variation position and the
tangent vector at the observer ðxμO;lμ

OÞ. Then the deviation
at the other endpoint for a fixed value λE of the affine
parameter at linear order takes the form

δxμ ¼ WXX
μ
νδxνO þWXL

μ
νΔlν

O; ð1Þ

where δxμO and δxμ are the displacements at λO and λ
respectively, and Δlμ

O is the covariantly defined deviation
of the initial tangent vector, given by

Δlμ
O ¼ δlμ

O þ Γμ
αβðOÞlα

Oδx
β
O: ð2Þ

WXX
μ
ν and WXL

μ
ν are bitensors, mapping tangent vectors

fromO to E, called the bilocal geodesic operators, or BGOs
(transport operators in differential geometry literature or
bundle transfer matrices in nonrelativistic geometric
optics [17]). They can be expressed as solutions of matrix
ODEs along the fiducial geodesic γ0 involving the Riemann
tensor [1,12]. Namely, it follows from the 1st order GDE
that in a parallel-propagated frame WXX

μ
ν and WXL

μ
ν

solve the equations

d2

dλ2
WXX

μ
ν − Rμ

αβσlαlβWXX
σ
ν ¼ 0 ð3Þ

d2

dλ2
WXL

μ
ν − Rμ

αβσlαlβWXL
σ
ν ¼ 0 ð4Þ

with the initial data

WXX
μ
νjλ¼λO

¼ δμν ð5Þ

d
dλ

WXX
μ
νjλ¼λO

¼ 0 ð6Þ

WXL
μ
νjλ¼λO

¼ 0 ð7Þ

d
dλ

WXL
μ
νjλ¼λO

¼ δμν: ð8Þ

A. Bilocal geodesic operators from the variations
of the general solution of the geodesic equation

Equations (3)–(8) relate the bitensors WXX and WXL
directly to the curvature along γ0, but they are not all that
useful in the cosmological setting. We present therefore
another way to evaluate them, based on direct differ-
entiation of the general solution of the geodesic equation.
Consider the general solution of the geodesic equation

xμðxνO;lν
O; λÞ, given in a particular coordinate system,

depending on the initial point xμO at the observer’s position,
the initial tangent vector lμ

O at the observer’s position, and
on the affine parameter λ at the emission point. The idea is
to express the BGOs, decomposed in the coordinate frames,
by the derivatives of this general solution with respect to
the initial data and by other geometric objects, such as the
Christoffel symbols. This is an entirely new method and, to
our knowledge, it has not been comprehensively discussed
in the literature so far. It can be applied whenever we know
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the general solution of the general geodesic equation or just
the null geodesic equation. The solution can be perturbative
or exact, possibly even given by implicit relations and
quadratures. We will now sketch this method briefly.
Note first that if we allow additionally for a variation of

the affine parameter λ at the endpoint E of the geodesic
segment, instead of (1) we obtain

δxμ ¼ WXX
μ
νδxνO þWXL

μ
νΔlν

O þ lμ
Eδλ; ð9Þ

where lμ
E is the tangent vector to γ0 at E. This is because

for fixed initial data (i.e., δxμO ¼ 0 and ΔlμO ¼ 0) a small
variation of the final value of λ produces a shift of the
endpoint proportional to the tangent vector at the endpoint.
We can interpret relation (9) as follows: the total variation
of the geodesic endpoint with respect to the initial data and
the affine parameter, obtained by differentiating the general
solution xμðxνO;lν

O; λÞ and expressed in the basis given by
the variations δxμO, Δl

μ
O and δλ, yields the components of

the bilocal geodesic operators WXX, WXL, as well as the
tangent vector lE in the appropriate coordinate basis. We
can therefore regard the 4 functions xμðxνO;lν

O; λÞ, repre-
senting the general solution of the general geodesic
equation, as analogs of the thermodynamical potentials:
their total derivatives give physically interesting quantities
as expansion coefficients (components) when expressed in
the correct basis of differentials. Keep in mind that it is
important that we take the variations in all components of
the initial data as well as the affine parameter, and that the
basis of expansion is precisely the one described above, i.e.,
ðδxμO;Δlμ

O; δλÞ in the chosen coordinate system.
For the practical purpose of a convenient calculation

of the bilocal geodesic operators, assume we are given the
functions xμðxνO;lν

O; λÞ in a coordinate system. Then we
calculate their total variation with respect to all variables2

δxμ ¼
�∂xμ
∂xνO

�
lO;λ

δxνO þ
�∂xμ
∂lν

O

�
xO;λ

δlν
O þ

�∂xμ
∂λ
�

xO;lO

δλ:

ð10Þ

We can now make use of (2) to change the basis of
variations from ðδxμO; δlμ

O; δλÞ to ðδxμO;Δlμ
O; δλÞ and com-

pare the result with (9). We obtain the following relations:

WXX
μ
ν ¼ −

�∂xμ
∂lσ

O

�
xO;λ

Γσ
ανðOÞlα

O þ
�∂xμ
∂xνO

�
lO;λ

ð11Þ

WXL
μ
ν ¼

�∂xμ
∂lν

O

�
xO;λ

ð12Þ

lμ
E ¼

�∂xμ
∂λ
�

xO;lO

: ð13Þ

They express the two geodesic bitensors (and the tangent
vector at E) explicitly in terms of the partial derivatives
of the solution of the geodesic equation. In the next section
we will demonstrate how these bitensors can then be used
directly to calculate the magnification matrix, the parallax
and the position drifts for any observers and sources located
at O and E respectively. Therefore the method of endpoint
variations sketched here allows for calculating all those
three optical effects for any observer-source pair with one
calculation.
Now, in many physically interesting cases, including the

FLRW metric, we do not have a simple, closed form of
the general solution of the geodesic equation, but rather the
general solution for null geodesics. This restricts the type of
variations of the initial tangent vector we may consider, and
thus restricts the components ofWXL we may obtain by the
variational method. Note that it should nevertheless be
possible to recover the optical properties of the spacetime
just from that limited information. While the variational
method sketched above requires the knowledge of all
geodesics in the neighbourhood of a given one, we may
modify it a little bit to make it work even if only the general
solution for null geodesics is available.
The requirement for the perturbed geodesics to remain

null at linear order is equivalent to a constraint on the
admissible initial deviation vector:

Δlσ
OlOσ ¼ 0; ð14Þ

or

Δl0
O ¼ −

lOi

lO0

Δli
O ð15Þ

Assume we are just given the solution for past-directed
null geodesics, parametrized by the initial point and the
three spatial components of the initial tangent vector
xμðxμO;li

O; λÞ. The number of independent variables is thus
reduced by one and the total variation reads

δxμ ¼
�∂xμ
∂xνO

�
lO;λ

δxνO þ
�∂xμ
∂li

O

�
xO;λ

δli
O þ

�∂xμ
∂λ
�

xO;lO

δλ;

ð16Þ

where i runs from 1 to 3. This formula needs to be related
to (9) in order to obtain the relation between the partial
derivatives and the bilocal operators. Note that admissible
deviation vectors Δlμ

O, satisfying (14), can be parametrized
just by the spatial components Δli

O.
Let us introduce the notation VXL

μ
i for theWXX operator

acting on admissible vectors, and expressed in terms of
their spatial components, i.e., let

2We use here the notation borrowed from thermodynamics,
where ð∂F∂xÞy;z means the partial derivative of F with respect to x
with y and z kept fixed.
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VXL
μ
iΔli

O ¼ WXL
μ
νΔlν

O ð17Þ

for all vectorsΔlμ
O satisfying (14). From (15) we can get an

exact relation to the components of WXL:

VXL
μ
i ¼ WXL

μ
i −WXL

μ
0

lOi

lO0

: ð18Þ

Briefly speaking, VXL is the WXL operator restricted to
variations of directions respecting the null conditions, and
expressed in a convenient, purely spatial parametrization.
On the other hand, its components constitute precisely
those combinations of components of WXL which we can
be extracted from the variations of the initial data restricted
to null geodesics, i.e., those variations to which we have
access via the relation (16).
The reader may now check that for the restricted

variations we have

δxμ ¼ WXX
μ
νδxνO þ VXL

μ
iΔli

O þ lμ
Eδλ: ð19Þ

Applying the identity Δli
O ¼ δli

O þ Γi
αβðOÞlα

Oδx
β
O and

comparing with (16) we get the analog of relations
(11)–(13) for null geodesics

WXX
μ
ν ¼ −

�∂xμ
∂li

O

�
xO;λ

Γi
ανðOÞlα

O þ
�∂xμ
∂xνO

�
lO;λ

ð20Þ

VXL
μ
i ¼

�∂xμ
∂li

O

�
xO;λ

ð21Þ

lμ
E ¼

�∂xμ
∂λ
�

xO;lO

: ð22Þ

The equations above allow to calculate the optical part of
the two geodesic bitensors in terms of partial derivatives
of the general solution of the null geodesic equation. They
constitute the first important result of this article. We shall
use them throughout the rest of the paper to calculate WXX
and VXL for the unperturbed FLRW solution.

III. OPTICAL OBSERVABLES FROM THE
BILOCAL GEODESIC OPERATORS

The main advantage of the BGOs lies in the fact that we
can express a number of observables of interest in a unified
framework viaWXX and VXL (orWXL) and the kinematical
variables describing the momentary motions of the source
and the observer in the moments of light emission and
observation respectively [1,8]. The observables in question
are the angular diameter distance Dang, the luminosity
distance Dlum, the magnification matrix MA

B, the parallax
and the position drift (or proper motion) δOrA. We can
therefore consider not only observers and sources comov-
ing with the cosmic flow or defined in a particular gauge,

but also consider situations in which both are boosted
with respect to the large-scale flow, for example due to the
small-scale nonlinearities.
We first note that the Jacobi map can be expressed using

WXL or VXL. Let eA denote a parallel-propagated Sachs
basis of two vectors orthogonal to lμ along γ0. Recall that
the Jacobi map D relates the initial direction deviation
with the displacement along a null geodesic for vectors
orthogonal to lμ:

ξAðλÞ ¼ DA
BðλÞΔlBO: ð23Þ

Adding two more vectors, a parallel-propagated, nor-
malized timelike vector uμ and the null tangent lμ, we
obtain the parallel-propagated seminull frame (SNF)
ðuμ; eμA;lμÞ. In this frame the components of the Jacobi
map D simply coincide with the transverse components of
VXL and WXL:

DA
B ¼ VXL

A
B ¼ WXL

A
B: ð24Þ

This allows us to write all the observables derived from the
Jacobi map in terms of the transverse components of the
BGOs. Note that we may use either WXL or VXL for this
purpose since their transverse components always coincide.
Substituting VXL by WXL is also possible for the other
observables discussed below, since they only make use
of the transverse components of VXL. It is also noteworthy
that the values of DA

B do not depend on the choice of the
timelike vector, making this way the formalism observer
frame-invariant [1,8].
The Jacobi matrix is directly related to the magnification

matrix MA
B, which in turn relates the transverse displace-

ments along the null geodesics to the angles on the
observer’s sky:

δθA ¼ MA
BδxBE :

Namely, for an observer with 4-velocity uO we have

MA
B ¼ ðlOμu

μ
OÞ−1D−1 A

B

¼ ðlOμu
μ
OÞ−1ðVXL

A
BÞ−1; ð25Þ

where ðVXL
A
BÞ−1 denotes the inverse of the transverse

submatrix of VXL.
The angular diameter distance to an object is formally

defined as the square root of the ratio between the cross-
sectional area of a luminous object and the solid angle
taken by its image in the observer’s celestial sphere [4].
It can be expressed as the determinant of the magnification
map in a Sachs frame:

Dang ¼ j detMA
Bj−1=2 ¼ ðlOμu

μ
OÞj detDA

Bj1=2
¼ ðlOμu

μ
OÞj detVXL

A
Bj1=2: ð26Þ
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The prefactor ðlOμu
μ
OÞ in (25) and (26) represents the

relativistic light aberration effect: the same objects appear
larger or smaller for observers passing through the same
point O with different 4-velocities. The difference in the
apparent size is related to the difference of 4-velocities
and to the direction of observation, defined by the null
tangent vector lμ

O.
The emitter-observer asymmetry operator mA

α deter-
mines how the effect of displacements on one end of the
null geodesics differ from the displacements on the other
one [1]. It was introduced first in [8] and it appears in the
expressions for the parallax and position drifts, or proper
motions. It can be read out from WXX expressed in a
parallel-propagated seminull frame:

mA
α ¼ WXX

A
α − δAα ð27Þ

(recall that the boldface indices are used for geometric
objects decomposed in the seminull frame: capital Latin
indices A;B;… run from 1 to 2, while Greek indices
μ; ν;… run from 0 to 3). Consider now the parallax matrix
ΠA

B, relating the displacement of the position of observa-
tion in a transverse direction δxAO with the apparent shift
of the source’s position δθA on the observer’s sky, defined
with respect to parallel propagated directions on the
celestial sphere3:

δθA ¼ −ΠA
BδxBO: ð28Þ

It can also be expressed using the BGOs. Namely, in [1] the
following relation has been derived:

ΠA
B ¼ ðlOμu

μ
OÞ−1D−1 A

CðδCB þm⊥ C
BÞ: ð29Þ

It follows then that

ΠA
B ¼ ðlOμu

μ
OÞ−1ðVXL

A
CÞ−1WXX

C
B: ð30Þ

The parallax effect is used in astronomy to measure
distances to luminous sources in an astrometric technique
as the trigonometric parallax. The theoretical justification
of this method is based on the flat spacetime analysis of the
geometry of light rays and obviously requires a modifica-
tion if wewant to include the curvature effects. The parallax
distance in a general, curved spacetime can be defined in
many ways [1,18], the differences coming from different
methods of averaging over the baseline orientation. In this
paper we use the one based on the determinant of the
parallax matrix, fully analogous to (26):

Dpar ¼ j detΠA
Bj−1=2

¼ ðlOμu
μ
OÞj detDA

Bj1=2j det ðδAB þm⊥ A
BÞj−1=2:

ð31Þ
In terms of the BGOs Dpar is then given by

Dpar ¼ ðlOμu
μ
OÞj detVXL

A
Bj1=2 · j detWXX

A
Bj−1=2: ð32Þ

Finally we may consider the proper motions or position
drifts, i.e., the rate of change of the sources’ positions on
the observer’s celestial sphere in the observer’s proper time.
The position change is defined here with respect to the
fixed spatial directions given by a Fermi-Walker trans-
ported frame. For a source with momentary 4-velocity uμE
at E and an observer with momentary 4-velocity uμO and
4-acceleration wμ

O at O we have [8]:

δOrA ¼ ðlOμu
μ
OÞ−1D−1 A

B

��
1

1þ z
uE − ûO

�
B
−mA

μu
μ
O

�
þ wA

O; ð33Þ
where δOrA is the position drift rate in radians per a unit of
the observer’s proper time, z is the redshift measured by the
observer and ûO is the parallel transport of uO fromO to E.
Again this quantity can be expressed directly using BGOs
in parallel propagated SNF:

δOrA ¼ ðlOμu
μ
OÞ−1ðVXL

A
BÞ−1

�
1

1þ z
uBE −WXX

B
νuνO

�
þ wA

O: ð34Þ
We stress that in order to calculate any of these observables,
measured by any observer uO, comoving or not, and with
respect to any source uE , we only need to evaluate the
BGOs VXL or WXL as well as WXX between two points
connected by a null geodesic. As we have shown above,
this can be done by varying the functional form of the null
geodesic, obtained exactly or perturbatively.

A. Remark

Although Eqs. (24)–(26) and (29)–(34), relating the
observables to the BGO’s, have been derived using
a pair of parallel-propagated SNF’s at O and E, they can
also be applied given two arbitrary, unrelated SNF’s at
the two endpoints of γ0. The only exception is Eq. (27),
which works only if the two frames are related by parallel
transport—if they are not, the Kronecker delta on the right-
hand side needs to be replaced by the parallel transport
operator expressed in the pair of BGO’s. As a consequence,
it worth noting that Eqs. (26) and (31)–(32) for Dang and
Dpar can be used with any pair of Sachs bases eA at
the endpoints O and E: the change of the SNF at any
endpoint corresponds at most to a rotation of the corre-
sponding Sachs basis [1,8] and both distance measures are
defined using determinants of the transverse submatrices of

3One can also prove that ΠA
B is always a symmetric matrix,

but this is irrelevant for our purposes.
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appropriate BGO’s, expressed in the chosen Sachs bases.
The determinants on the other hand are obviously insensi-
tive to rigid rotations.

IV. A NEW OBSERVABLE: THE DISTANCE SLIP

A. Definition and properties

In [1] the following dimensionless quantity has been
defined

μ ¼ 1 −
detΠA

B

detMA
B
: ð35Þ

We can rewrite with the help of Eqs. (25) and (29) in terms
of the emitter-observer asymmetry operator, and thus in
terms of the spacetime curvature:

μ ¼ 1 − det ðδAB þm⊥ A
BÞ; ð36Þ

m⊥ A
B denoting here the transverse components of the full

operator mA
μ. On the other hand, using Eqs. (31) and (26),

it can be expressed in terms of the parallax distance and the
angular diameter distance from the observation point to a
single object far way:

μ ¼ 1 − σ
D2

ang

D2
par

; ð37Þ

where σ ¼ �1 defines the sign and depends on the parity of
the magnification matrix and the parallax matrix, i.e.,
σ ¼ sgnðdetMA

BÞsgnðdetΠA
BÞ. Note that for most objects

observed in the Universe we detect simple images, i.e.,
detMA

B > 0 (inverted images may appear only for strongly
lensed objects, which are relatively rare) and the dependence
of the parallax on the displacement is not inverted either
(except, again, strongly lensed images), i.e., detΠA

B > 0.
This means that for most objects we have simply

μ ¼ 1 −
D2

ang

D2
par

: ð38Þ

In other words, for a given observer and a given distant
source μ measures the relative difference between the results
of two methods of distance determination: by the source’s
parallax and by its angular size. We will therefore call μ the
distance slip.
Since the angular diameter distance in related to

the luminosity distance Dlum and the redshift by the
Etherington’s reciprocity relation Dlum ¼ Dangð1þ zÞ2
[4,19,20], we can also express μ using Dlum and z:

μ ¼ 1 − ð1þ zÞ−4D
2
lum

D2
par

ð39Þ

The distance slip as an observable has a number of peculiar
properties, not shared by the standard observables like the

redshift or the luminosity distance, which we will now
briefly summarize. These properties hold for any spacetime
as long as we may use the first order geodesic deviation
equation approximation and the distant observer approxi-
mation. For proofs and longer discussion see [1].

1. Independence from momentary motions
of the observer and the emitter

Consider a spacetime with fixed emission and observa-
tion points E and O, connected by a null geodesic. The
parallax distance and the angular diameter distance depend
on both the spacetime geometry as well as the momentary
4-velocity of the observer uμO at the moment of observation:

Dang ≡Dang½gμν; uμO� ð40Þ

Dpar ≡Dpar½gμν; uμO�; ð41Þ

where gμν denotes here the spacetime geometry. Note that
they do not depend on the momentary 4-velocity of the
emitter in the moment of light emission uμE , or any other
quantities describing the motions of both the emitter and
observer, such as the momentary 4-accelerations. The
independence of Dang from the emitter’s rest frame is a
standard result (see [4]), which can be seen as a conse-
quence of the Sachs shadow theorem [2]. The independ-
ence of Dpar of the emitter’s motion on the other hand is a
fairly straightforward consequence of the relativistic paral-
lax definition as given by a momentary measurement,
using light emitted in a single moment along the source’s
worldline, see [1]. The remaining dependence of both
distances on uμO is due to the standard light aberration
effect, described by special relativity: small regions of the
sky appear larger or smaller depending on the observer’s
4-velocity. This dependence appears in (26) and (31) as the
common prefactor lOμu

μ
O. The reader may check, however,

that μ does not depend on any kinematical variables
describing the momentary motions of the source and the
observer, because in the ratio D2

ang=D2
par, appearing in its

definition (37), the uμO-dependent prefactors cancel out.
The remaining expression is a functional of the spacetime
geometry only:

μ≡ μ½gμν�: ð42Þ

In other words, for a given spacetime and two events E
and O, connected by a null geodesic, we can be sure that
any emitter-observer pair will measure the same value of μ
when passing through E and O respectively.

2. Distance slip as a functional of the curvature
along the line of sight

Let γ0 denote the null geodesic connecting E andO, λ be
its affine parameter and lμ its tangent vector. One can show
that the distance slip μ can be expressed as a nonlinear
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functional of the curvature tensor along γ0. Namely, let eμA
denote the Sachs basis, i.e., two parallel propagated,
normalized and orthogonal spatial vectors, perpendicular
to lμ. Then we can define the matrix m⊥ A

B of the
transverse emitter-observer symmetry operator as the sol-
ution of the following ODE in that basis:

d2

dλ2
m⊥ A

B − RA
αβClαlβm⊥ C

B ¼ RA
αβBlαlβ ð43Þ

with the initial data at O:

d
dλ

m⊥ A
BjλO ¼ 0 ð44Þ

m⊥ A
BjλO ¼ 0: ð45Þ

m⊥ A
B will now denote the solution at E. Then we can

apply (36):

μ ¼ 1 − det ðδAB þm⊥ A
BÞ: ð46Þ

We see therefore that μ depends on the spacetime geometry
via the Riemann tensor along γ0 or, more precisely, via
the transverse components of the optical tidal tensor
Rμ

νρσlνlρ:

μ≡ μ½RA
αβBlαlβjγ0 �: ð47Þ

The reader may check that μ given by (46) is independent of
the choice of the parallel-transported Sachs frame.

3. Distance slip as a curvature detector

In a flat space we have μ ¼ 0 along any null geodesic.
This can be seen directly from Eqs. (43)–(46) if we
substitute Rμ

νρσ ¼ 0. Alternatively, we note that in a flat
spacetime both methods of distance determination must give
the same result for the same object, i.e., Dang ¼ Dpar ¼ D,
where D is the spatial distance between O and E, calculated
on the 3D hypersurface of the observer’s rest frame. Since
all images are simple in a flat spacetime and the parallax
map is not inverted we have μ ¼ 0 from (38). Conversely,
any deviation of μ from 0 means that the spacetime must
be curved somewhere along γ0 between points O and E.
Note that this property makes μ somewhat similar to the
angle deficit of a geodesic triangle in 2-dimensional non-
Euclidean geometry. Namely, the measurement of the angle
deficit probes curvature within a finite region of the
manifold, defined by the interior of a geodesic triangle,
and the sameway the measurement of μ probes the curvature
along the fiducial null geodesic γ0 in the segment between
the emission and the observation points.

4. Tomographic property for short distances

One can prove that for short distances or weak curvature
μ can be expanded as a series in the powers of the curvature
tensor:

μ ¼
Z

λE

λO

RμνlμlνðλE − λÞdλþOðR2Þ ð48Þ

¼ 8πG
Z

λE

λO

TμνlμlνðλE − λÞdλþOðR2Þ; ð49Þ

whereOðR2Þ denotes terms involving quadratic and higher
powers of the Riemann tensor and for the second equality
we make use of Einstein equations. The leading order linear
term should be sufficient whenever the impact of curvature
on light propagation is small. This is always true if the
distance between O and E is short in comparison to the
characteristic scale of the curvature of the spacetime. In
the cosmological setting this condition means that the
distance is small with respect to the Hubble radius and
that the null geodesics γ0 does not stay for too long in
strongly overdense regions.
We note from (49) that in the leading, linear order the

Weyl tensor drops out of the integral, leaving only the
stress-energy tensor contracted twice with the null tangent.
The cosmological constant drops out as well, since the term
Λgμν, contracted twice with null vector lμ, vanishes too. In
the end we are left in (48) with just the integral of the stress-
energy tensor of the matter (dark and baryonic). Therefore
μ depends in the leading order only on the gravitating
matter content, both dark and ordinary, along the line of
sight. The linear kernel λE − λ in the integral makes the
result more sensitive to the matter distribution closer to the
observer than far away.
Note also that mass concentrations located off the optical

axis may easily influence the exact position of the emitter’s
image on the observer’s sky due to gravitational light
bending and at the same time cause a sizable image
distortion due to tidal forces. However, as we can see from
(48), they cannot directly influence μ in the leading order,
unless they happen to be positioned exactly between the
observer and the emitter along γ0. Thus μ yields a weighted
integral of the matter density located precisely between the
source and the emitter, reminiscent of tomography.

B. Methods of measurement

One of the main advantages of μ as an observable is that
it can be measured using purely astrometric methods, by
comparing the parallax distance with the angular diameter
distance to the same object. As we already noted, the latter
can be alsomeasured indirectly, bymeasuring the luminosity
distance and the redshift, see Eq. (39). Therefore the objects
we use for measurementsmust be standard rulers or standard
candles for which we can additionally measure the parallax
effect. The standard method of parallax determination uses
the periodic, annual motion of the Earth, but it is applicable
only to fairly close sources. For sources at extragalactic
distances it has been suggested to use the motion of the
Solar System with respect to the CMB frame [18,21]. Both
methods need to deal with the problem of separating the
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parallax signal from the effects of peculiar motions. In this
subsection we will discuss the first method of measurement
as well as some of the issues connected with calibration,
postponing the discussion of the second one to Sec. V.

1. Parallax distance determination using the annual
parallax in a curved spacetime

The definition of the parallax distance (31), introduced in
[1], requires the determination of the exact position of the
object simultaneously from at least 3 points of view, by three
comoving observers (the classic parallax in the terminology
of [1,18]). The measurements must be performed at the
moment the observers cross the future light cone centered at a
single point on the source’s worldline. This way all observers
register the light emitted by the source at the same moment.
In the distant observer approximation this can be achieved
by appropriate timing of observation using an appropriate
null time coordinate, see [1]. This kind of simultaneous
measurement from many points of view is not feasible in
astronomy, and the standard trigonometric parallax measure-
ments actually use the time variations of the apparent
positions due to the annual Earth’s motion, see [22]. In a
flat spacetime this is easy to justify, because for sufficiently
short timescales the apparent position on the sky (i.e., the
single-worldline parallax defined in [1]) for Earth-based
observers varies with time according to the formula4

δθAðtbÞ ¼ vA · tb −D−1
parδxAOðtbÞ; ð50Þ

tb being the appropriate null time coordinate related to the
barycentric time, δxAOðtbÞ themomentaryposition of theEarth
with respect to the Solar System barycenter. The first term in
corresponds to the peculiarmotion of the sourcewith constant
angular velocity vA and the second one is the “pure” parallax
effect we want to measure.
Note that both terms are easy to separate since the first

one is linear, while the second one is periodic with the
period of one year corresponding to the Earth’s orbit. This
decomposition is the cornerstone of all practical parallax
measurements, including those performed from the space
observatory Gaia, [22]. It is currently feasible only for
objects at galactic distances, with the record distance of
around 20 kpc obtained to a water maser source by the Very
Long Baseline Array (VLBA) observatory [23].
Fortunately, it turns out that it is possible to determine

the parallax matrix and the parallax distance in a curved
spacetime, with all relativistic corrections, in a very similar
way assuming that the gravitational field does not vary very
much on short scales. More precisely, as was also shown
in [1], for a source which is in free fall and for the observer
in a gravitationally bound system, undergoing a periodic
motion around a free falling barycenter, the variation of the

apparent position is given by the peculiar motion, i.e., drift
of the source across the sky with constant angular velocity
vA, and a periodic signal proportional to the observer’s
transverse displacement with respect to the barycenter. The
result is that the apparent position variation for short times
is given by a relation with the same structure of the one in
flat spacetime, Eq. (50), namely5

δθAðtbÞ ¼ vA · tb − ΠA
BδxBOðtbÞ; ð51Þ

where the apparent velocity of the source’s proper motion
vA and the parallax matrix ΠA

B are again constant, tb is a
null time coordinate related to the barycenter time and δxO
is the momentary displacement of the observer with respect
to the barycenter. vA corresponds to the proper motion of
the source as observed from the Solar System’s barycenter,
given by Eq. (33): it depends on the 4-velocity of the
barycenter uO, the 4-velocity of the source uE , but in the
curved spacetime it also involves the gravitational light
bending effects. Just like in the flat case the first term grows
linear in time, while the second one has the annual
periodicity of the Earth’s orbital motion. Moreover, we
see that the periodic component of the signal is given by
the product of the constant parallax matrix ΠA

B and the
transverse components of the observer’s position. Both
terms should therefore be easily separable in the observa-
tional data if the measurement is made over many orbital
periods and the components of ΠA

B should be possible to
determine after removing the linear drift from the data.
The result above holds for any curved spacetime as long

as the curvature scale is much larger than the size of the
object we observe and of the Solar System. Therefore,
under the assumptions above, the standard method of
parallax determination by decomposing the apparent
motion of the source into the constant proper motion
and periodic parallax should work well even if we take
into account all relativistic corrections (gravitational light
bending, Shapiro delays) to the light propagation due to the
curved spacetime.6 The only small modification we need to
introduce in nonflat geometry is that we cannot a priori
assume that the parallax angle’s direction is exactly
opposite to the transverse displacement of the observer,
as in (50). This proportionality of vectors holds if and only
if the parallax matrix itself is proportional to the unit
matrix, i.e., ΠA

B¼Dpar
−1δAB. This may happen for exam-

ple if the geometry is rotationally symmetric with respect to
the optical axis. However, if the light between the source

4We neglect here the contribution from the aberration, since it
is commonly subtracted from the parallax measurements.

5Here we neglect again the aberration effects and also the light
bending effects from the Solar System bodies, which are under
control and subtracted from the parallax measurements.

6Note, however, that the corrections due to the nonflat
geometry within the Solar System, i.e., light bending and Shapiro
delays due to the Sun and large planets, need to be taken into
account separately [22].
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and the observer undergoes shear due to tidal forces the
parallax matrix can in principle be any symmetric matrix.
The data analysis should therefore assume a more general
form of the periodic term, i.e., a linear relation between the
momentary position of the Earth and the apparent position
on the barycentric celestial sphere, given by a symmetric
matrix, as assumed in (51).
The need to consider ΠA

B as a linear mapping in two
dimensions rather than a rescaling should pose no problem
for sources located sufficiently far from the ecliptic. For
these sources the projection of the Earth’s orbit on the
transverse plane is an ellipse with semiaxes of comparable
size, δxAO probes both transverse dimensions and therefore
we can obtain all components ofΠA

B from themeasurement.
However, for sources close to the ecliptic the projected
Earth’s orbit degenerates to a line or an extremely elongated
ellipse. In that case only one baseline direction is probed by
the Earth’s motion and we may obtain only 2 out of 3
independent components ofΠA

B. This is sufficient if we for
some reason may also assume that the shear effects are
negligible.
Another issue we would like bring up is connected with

the problem of the fixed reference frame. Recall that the
parallax is currently measured using the position variation
with respect to the nonrotating frame given by a set of
distant “fixed quasars” [18,24]. On the other hand, strictly
speaking, the definition of parallax in (28) calls for the
comparison of the apparent positions using the parallel
transport between the observation events. Physically this
means that we should use the local inertial frame, deter-
mined by the inertial effects within the Solar System, to
define the notion nonrotating directions with respect to the
barycenter. The results of these two measurements are in
general different, the difference being due to a possible
slow, secular rotation of one frame with respect to the other,
caused for example by the peculiar motions of the quasars.
For precise measurements this difference, as well as the
variability and individual motions of the “fixed quasars,”
need to be taken into account, [18].
Finally we note here also one important subtlety regard-

ing the simultaneous measurements ofDlum andDpar: recall
that the standard methods of measurement for the lumi-
nosity distance, either using the period-luminosity relation
in variable stars (RR Lyrae, Cepheids) or the Type Ia
supernovæ, require calibration on short distances. This is
achieved with the help other methods available in the
distance ladder for sufficiently close objects. The methods
of calibration for variable stars make use of various
astrometric techniques of distance determination [25,26],
including the trigonometric parallax distance measure-
ments for stars contained within the Milky Way [27–31].
Therefore, in order to avoid a vicious circle in the distance
ladder calibration and the data analysis we need to separate
clearly the local measurements of parallax and luminosity
distance, for which we neglect the distance slip and which

we then may use for calibration purposes only, and the
measurements made at larger distances, which we use for
the determination of μ using the calibration obtained from
the short-distance data.

V. COSMOLOGICAL APPLICATIONS

In this sectionwewill show that the properties of μmake it
a particularly interesting observable in the cosmological
context. Before that, however, we must note that its meas-
urement is muchmore difficult that on shorter distances. The
measurement of the distance slip, as we mentioned, requires
the determination of both the angular diameter distance, or
equivalently the luminosity distance and the redshift, as well
as the parallax distance. As for the former two, we need to
note that different types of standard rulers or candles are
available on extragalactic distances than on the galactic
scales. Obviously the need for a simultaneous measurement
of the parallax together with the luminosity or angular
diameter distance strongly restricts the type of sources that
may be used for measurements on cosmological scales. We
will now briefly discuss the problems of determination of
each of the quantities involved and go through the possible
sources, as they appear in the recent literature.
Let us discuss first the measurement of the parallax.

On extragalactic or cosmological scales the 1 AU baseline
provided by the Earth’s motion may be too small for an
effective measurement of the parallax. It was therefore
suggested to use the motion of the whole Solar System with
respect to the CMB frame for the measurement, [21], which
provides the baseline of around 78 AU yearly, with the
signal growing secularly over the years. We refer the reader
to Ref. [18] and references therein for the first studies on
the cosmic parallax and to Ref. [9] for a more detailed
discussion of the methods and feasibility of the measure-
ments. Here we just note that separating out of the parallax
effects due to the observer’s motion from the drifts due to
the peculiar motions of the sources is more difficult in this
case, because both terms in (51) are monotonic and cannot
be separated using periodicity in time. A way to overcome
the proper motion-parallax degeneracy has been put for-
ward in [9,32]: the authors propose to average the compo-
nent of the observed drift aligned with the direction of the
CMB dipole over many sources. The uncorrelated peculiar
motions of the sources should then average out, leaving this
way the signal due to the motion of the local group with
respect to the CMB frame. This signal has been estimated
in [9] to be around 0.3 μas=yr for objects at z ¼ 0.1 and
0.06 μas=yr for z ¼ 1.48, for short distances dominating
over the aberration drift (although smaller than the aberra-
tion of Galactic origin).7 In [18] a similar order-of-

7In [9] the authors use a different terminology, separating the
parallax effect as we define it in this paper into the aberration drift
and “pure” parallax drift. This splitting is done using the standard
coordinates of the background FLRW metric.
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magnitude estimate of 10−2 μas=yr has been obtained for
sources on cosmological distances, although without the
contribution of the local environment or the peculiar
motions of the sources. These values are much smaller
than the precision of standard astrometric measurements of
an individual source, but given sufficiently many sources
the cosmic parallax can be measurable for the first time by
the Gaia satellite8 launched in December 2013. In 5 years is
expected the parallax measurement of at least N ∼ 5 × 105

quasars in the redshift range z ∈ ½0; 5� with an average
precision for a single measurement of 100 μas which will
be reduced of a factor of 1=

ffiffiffiffiffiffiffi
2N

p
for the full duration of the

mission. Therefore it is expected that the cosmic parallax
signal is within the range of sensitivity of Gaia, see [33,34]
for a more detailed analysis of the uncertainties, and [7] and
references therein for further details.
The luminosity distance determination on the other hand

requires sources whose absolute luminosity can be deter-
mined from optical observations alone. The most important
standard candles on cosmological distances are the Type Ia
supernovæ, see e.g., [35–37]. Note that supernovæ are
luminous but also transient sources, lasting less than a year,
while the parallax determination requires position mea-
surements extending over many years or even decades.
Supernovæ Ia events may therefore only be suitable if the
host galaxy is identified as well. The same problem arises if
we try to use the gravitational wave signal provided by
binary black hole or neutron star mergers as standard sirens
[38,39]: the transient nature of the signal and problems
with precise pointing of the source precludes the secular
position variation measurement.
The most promising sources to measure the distant slip

are therefore quasars: their positions can be determined
with fairly high precision and they are suitable for long-
term position variation measurements. We will now briefly
review the recent developments in the field of the angular
diameter distance and the luminosity distance measure-
ments to quasars. In Ref. [15] the authors obtained an
Hubble diagram by measuring the luminosity distance from
a sample of ∼1600 quasars using a relation between UV
and X ray emission that makes quasars standard candles.
The advantage with respect to the same measurement from
the luminosity distance of Type Ia supernovæ is that it is
possible to probe a larger redshift range: in Ref. [15] the
redshift range is 0.05 < z < 5.5 whereas the farthest
supernovæ are observed at z≲ 2. Another method to make
quasars standard candle is related to the so-called rever-
beration-mapping technique. It consists in the measure of
time-delay response between the continuum and the broad
emission line region (BELR) of a quasar: the time delay is
directly related with the physical size of the BELR which in
turn is related to the continuum luminosity of the source,
via the well-known radius-luminosity relation from which

the luminosity distance follows by its very definition. The
values of the ΛCDM parameters determined this way are in
agreement with other cosmological probes at 2σ level. In
the near future the constraints will improve significantly:
the redshift range of quasars detectable by the Large
Synoptic Survey Telescope9 is 0 < z < 7 and the quasar
counts will raise enormously, with an estimation of ∼3000
reverberation-mapped AGNs, thus providing a much better
statistics for this type of signal for cosmological purposes.
Finally the authors of Ref. [40] suggested to use the
reverberation-mapping technique to make quasars standard
rulers: according to their proposal, having estimated
physical size of the BELR by accurately measuring the
time delay, in principle it is possible to resolve angular size
of the BELR region of the quasar by using interferometric
methods. The GRAVITY collaboration has recently suc-
ceeded in applying this method to a quasar [14]. For a
recent review on the reverberation-mapping technique
applied to quasar for cosmological purposes we remind
the reader to Ref. [41] and references therein.
In the rest of this section we simply assume that the

distance slip, i.e., Dpar together with Dang (or with the
redshift z and Dlum), is measured for a sufficiently large
sample of sources on cosmological scales and we discuss
what kind of information can be obtained from the results.
We specialize the calculation of the distance slip μ to the
FLRW spacetime, i.e., to a homogeneous and isotropic
matter distribution. We consider comoving observer and
emitter, although we note that the distance slip is in the end
independent from the motions of both.

A. Distance slip in an unperturbed FLRW Universe

We start by considering the FLRW line element written
in the form

ds2 ¼ −dt2 þ aðtÞ2ðdχ2 þ SkðχÞ2dΩ2Þ ð52Þ

if cosmic time t is used as time variable and

ds2 ¼ aðηÞ2½−dη2 þ ðdχ2 þ SkðχÞ2dΩ2Þ� ð53Þ

if we use conformal time η. The two time variables are
linked by dt ¼ a dη. In the above expressions for the metric
dΩ2 is the infinitesimal solid angle and the specific form of
the function SkðχÞ depends on the curvature of the spatial
hypersurface. We have

SkðχÞ ¼

8>>><
>>>:

1ffiffi
k

p sinð ffiffiffi
k

p
χÞ if k > 0

χ if k ¼ 0

1ffiffiffiffi
jkj

p sinhð ffiffiffiffiffijkjp
χÞ if k < 0;

ð54Þ

8http://www.cosmos.esa.int/web/gaia. 9https://www.lsst.org.
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where χ plays the role of the radial coordinate. We also
define the derivative of SkðχÞ which will be useful in the
following

CkðχÞ≡ dSk
dχ

¼

8>><
>>:

cosð ffiffiffi
k

p
χÞ if k > 0

1 if k ¼ 0

coshð ffiffiffiffiffijkjp
χÞ if k < 0:

ð55Þ

Consider now an observer placed at the origin χ ¼ 0 at the
present moment, corresponding to z ¼ 0. By convention
we assume that the scale factor aO at present is set to 1. The
χ coordinate of a light source observed with redshift z
defines the comoving distance to the source and is given by
the integral

χðzÞ ¼
Z

z

0

dẑ
ð1þ ẑÞHðẑÞ ¼

Z
z

0

dẑ
HðẑÞ : ð56Þ

We normalize the FLRW photon geodesics such that the
time component of the tangent vector is equal to unity at the
observer position and the affine parameter increases toward
the source, i.e., l0

O ¼ −1. The two Hubble parameters in
(56), H ≡ ðda=dtÞ=a and H≡ ðda=dηÞ=a, are related by
Hð1þ zÞ ¼ H. For any spatial curvature we consider a
universe containing ordinary and dark matter and a cos-
mological constant Λ. The Hubble parameter in terms of
the redshift then reads

HðzÞ2 ¼ H2
0ðΩm0

ð1þ zÞ3 þ Ωk0ð1þ zÞ2 þΩΛ0
Þ ð57Þ

whereH0 denotes the today value andΩm0
;Ωk0 andΩΛ0

are
respectively the matter, curvature and cosmological con-
stant parameters at present. It is also useful to consider the
dimensionless comoving distance defined as

EðzÞ ¼ H0χðzÞ

¼
Z

z

0

dẑðΩm0
ð1þ ẑÞ3 þ Ωk0ð1þ ẑÞ2 þΩΛ0

Þ−1=2;

ð58Þ

which is independent of H0.
In the following we report explicitly the results for the

distance slip μ and the angular diameter and parallax
distance in an FLRW background with arbitrary curvature,
namely flat, open or closed. For a detailed derivation with
the help of the machinery we have introduced in Sec. II we
refer the reader to Appendix.
From its definition in Eq. (36) and the result in FLRW in

Eq. (A45), expressed in terms of the redshift z of the source,
the distance slip μ is then

μ ¼ 1 −
�

1

1þ z
ðCkðχÞ þH0SkðχÞÞ

�
2

: ð59Þ

In flat FLRW this reads

μðzÞ ¼ 1 −
�
1þ EðzÞ
1þ z

�
2

ð60Þ

with Ωk0 ¼ 0 in (58), whereas for the curved cases, by
expressing the constant curvature of the spatial hyper-
surfaces k in terms of the curvature parameter at presentΩk0
as k ¼ −Ωk0H

2
0, we get

μðzÞ ¼ 1 −
�

1

1þ z

h
cos
� ffiffiffiffiffiffiffiffiffiffiffi

−Ωk0

q
EðzÞ

	

þ 1ffiffiffiffiffiffiffiffiffiffiffi
−Ωk0

p sin
� ffiffiffiffiffiffiffiffiffiffiffi

−Ωk0

q
EðzÞ

	i
2

ð61Þ

for a closed universe with Ωk0 < 0 and we get

μðzÞ ¼ 1 −
�

1

1þ z

�
cosh

� ffiffiffiffiffiffiffi
Ωk0

q
EðzÞ

	

þ 1ffiffiffiffiffiffiffi
Ωk0

p sinh
� ffiffiffiffiffiffiffi

Ωk0

q
EðzÞ

	�
2

ð62Þ

for an open universewithΩk0 > 0, according to (54) and (55).
Finally, we report the expressions for the angular

diameter distance

Dang ¼
SkðχÞ
1þ z

ð63Þ

and the parallax distance

Dpar ¼
SkðχÞ

CkðχÞ þH0SkðχÞ
; ð64Þ

both calculated using our approach (see Eqs. (26) and (31)
and Appendix). We checked that our results coincide with
previous ones in the literature, see e.g., [42] for the angular
diameter distance and [18] for the parallax distance.
We plot in Fig. 1 the distance slip μ, Dang and Dpar in the

FLRW spacetime as function of the redshift, with the
cosmological parameters fixed to the values as measured
from Planck. Note that while the angular diameter distance
decreases with redshift, the distance slip and the parallax
distance increase, meaning that the parallax does not
become arbitrarily small but approaches a constant value.
However the difficulty to measure the parallax also
increases with redshift, due to the decreasing of the
apparent luminosity of the source.

1. Remark

The reader may check that for the de Sitter space
(Ωm0

¼ 0, ΩΛ0
> 0) and the anti-de Sitter space

(Ωm0
¼ 0, ΩΛ0

< 0) we have μ≡ 0 everywhere. This
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can be seen easily from the expression for μ in (46) and
from Eq. (43) if we note that the components of the optical
tidal tensor appearing in (43) vanish for spacetimes with
only the cosmological constant present in the curvature
tensor. In particular Dang ¼ Dpar in both spacetimes along
any null geodesic, just like in the flat space.

B. Dependence on the cosmological parameters

In this section we explore the dependence of the distance
slip μ on the cosmological parametersH0, Ωm0

, Ωk0 , ΩΛ0
in

comparison with the angular diameter and the parallax
distance. First of all, by simply looking at their expressions
in (60)–(62), (63) and (64), we notice that Dang and Dpar

individually depend on H0
10 whereas their ratio, i.e., μ,

does not. A measurement of the distance slip would
therefore have the advantage to determine the cosmological
parameters fully independently from H0. This holds of
course for any curvature of the FLRW spacetime. An
accurate estimation of the constraints on the cosmological
parameters that can be obtained from a measurement of the
distance slip from e.g., the simultaneous measurements of
Dang and Dpar of quasars is beyond the scope of this paper
and would require precise estimations of the uncertainties
in the measured values of the two distances from this kind
of sources at different redshifts. Here we just investigate the
dependence on the cosmological parameters of the distance
slip compared with that of the parallax and angular
diameter distance alone, in order to understand if it contains
additional and potentially useful information as a new
probe in cosmology. In Figs. 2–5 we plot the derivative of
the three observables (the dimensionless expressions of

Dang and Dpar, and μ) with respect to one parameter at a
time, the other being fixed to their fiducial values from [43],
in function of the redshift. Figure 2, Fig. 3, and Fig. 4 show
the dependence on Ωm0

and ΩΛ0
for the flat, open and

closed FLRW universe, respectively. Figure 5 is dedicated
to the dependence on the curvature parameter Ωk0 for the
open (left panel) and closed case (right panel). These
derivatives represent the dependence coming from theory
only, i.e., from the functional form of the observable at
hand. They are those appearing in the Fisher matrix which,
together with the specifications about each measurement, is
used to forecast e.g., the constraints on the model param-
eters achievable with a specific instrument. We note that in
all cases the dependence of the distance slip is quite
different from that of the parallax and the angular diameter
distance. In particular, from Fig. 2, Fig. 3, and Fig. 4 we
note that the dependence of μ on Ωm0

and ΩΛ0
is very

different from that of Dang and Dpar, which are very similar
to each other. This may suggest that potentially new
information is contained in μ and that the parameter
degeneracies may be different from that in the measure-
ments of Dang and Dpar separately. We finally note from
Fig. 5 that each of the three observables depends on the
curvature in a peculiar way.

0 1 2 3 4 5 6

0.2

0.1

0.0

0.1

0.2

z

z

Dependence on Flat FLRW

Dang

Dpar

FIG. 2. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
cosmological parameters for the flat FLRW model. The plots
show the derivatives with respect to Ωm0

and ΩΛ0
. We set Ωm0

¼
0.266018 as fiducial value, [43], and we obtain ΩΛ0

¼ 0.733982
from the closure condition.
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z

Dang
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FIG. 1. The angular diameter distance Dang, the parallax
distance Dpar and the distance slip μ for flat FLRW. Here Dang
and Dpar are plotted dimensionless in terms of the Hubble radius
RH ¼ 1=H0. We set the value for the cosmological parameters
from [43].

10The dimensionless expressions of Dang and Dpar in terms of
the Hubble radius, which are simply obtained multiplying (63)
and (64) by R−1

H ¼ H0=c, of course do not depend on H0. But in
this case it is implicitly assumed that H0 is known from other
measurements.
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C. Low-redshift expansions

By expanding Eq. (59) for small redshift we find for the
ΛCDM model up to third order

μðzÞ ¼ 3

2
Ωm0

z2 þ
�
−
1

2
Ωm0

−
3

2
Ωm0

Ωk0 −
9

4
Ωm0

2

�
z3;

ð65Þ

where we used the closure condition ΩΛ0
¼ 1 −Ωm0

− Ωk0
to get rid of ΩΛ0

and the above expansion is valid for the
open, the closed and the flat FLRW model, with Ωk0 ¼ 0

for the latter.11 We see that only Ωm0
appears in the leading,

quadratic, term. This is in perfect agreement with the
general result of Eqs. (48) and (49), showing that for short
distances the distance slip depends only on the dark and
baryonic matter content: here this is just specialized to any

FLRW spacetime with matter and a cosmological constant.
The dependence of μ on the curvature Ωk0 appears only at
the third order in the redshift. Let us also recall that there is
no dependence on H0 at all orders, as we have noticed in
Sec. V B. A straightforward consequence is that measure-
ments of μ for very small redshifts offer a simple way to
determine the value of Ωm0

locally, bypassing the uncer-
tainties of the determination of H0 or Ωk0.
In Fig. 6 we plot the low-redshift expansion of the

distance slip in Eq. (65) versus its exact expression for flat
FLRW, Eq. (60). They start to differ at z≳ 0.05. At z ¼ 0.1
the difference is ∼10% and it increases monotonically with
the redshift. Let us remark that, although the distance slip is
very small at low redshift (being quadratic in z) and thus its
measurement would be difficult, it would be also lead to a
measure of Ωm0

independent of any other cosmological
parameters, i.e., H0, ΩΛ0

, and Ωk0 .

1. Distance slip—angular diameter distance relation

Beside the dependence of the distances Dang and Dpar

and the distance slip μ on the redshift we can also consider
directly the relations between these quantities, bypassing

0 1 2 3 4 5 6

0.1

0.0

0.1

0.2

z

z

Dependence on 0 Open FLRW

Dang

Dpar

FIG. 3. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
cosmological parameters for an open FLRW model. The plots
show the derivatives with respect to Ωm0

and ΩΛ0
. We set Ωm0

¼
0.266018 and Ωk0 ¼ 0.0010 as fiducial values, [43], and we
obtain ΩΛ0

¼ 0.732982 from the closure condition.
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z

Dependence on 0 Closed FLRW
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Dpar

FIG. 4. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
cosmological parameters for a closed FLRW model. The plots
show the derivatives with respect to Ωm0

and ΩΛ0
.We set Ωm0

¼
0.266018 and Ωk0 ¼ −0.0010 as fiducial values, [43], and we
obtain ΩΛ0

¼ 0.734982 from the closure condition.

11If we use the closure condition to get rid of Ωk0 we obtain
instead

μðzÞ ¼ 3

2
Ωm0

z2 þ
�
−2Ωm0

þ 3

2
Ωm0

ΩΛ0
−
3

4
Ωm0

2

�
z3:
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this way the redshift as observable. As an example we
discuss here the relation between μ and Dang for short
distances. Note that since both quantities in question do not
depend on the states of motion of the sources all results of
measurements derived from this relation are free from any
systematics or noise due to the peculiar motions of the
sources, unlike the redshift-based measurements.12 This
may be important for short-distance measurements where
peculiar motions may constitute a significant part of the
error budget.
Up to third order the relation between μ and Dang reads

μðDangÞ ¼
3

2
Ωm0

H2
0D

2
ang þ

5

2
Ωm0

H3
0D

3
ang: ð66Þ

It follows that fitting the results of the measurements of μ
and Dang for a sample of relatively close sources (meaning
Dang much smaller than the Hubble distance) to (66) yields
the local value of the combination Ωm0

H2
0 as the coefficient

in the quadratic term and, if the data allow, also the value of

Ωm0
H3

0 as the next order coefficient. Let us note that the
leading order term Ωm0

H2
0 ∝ ρm0

is another evidence of the
tomographic property of μ for short distances, mentioned in
Sec. IVA.

D. Dynamical dark energy

We consider here a simple modification of the ΛCDM in
which the equation of state w ¼ p=ρ for dark energy is not
constant in time as it is for the cosmological constant Λ. We
follow the usual parametrization for the equation of state
varying with time which was introduced in [44,45]

wðzÞ ¼ w0 þ
z

1þ z
wa; ð67Þ

where w0 is the value of w today and wa governs the time
dependence. For the ΛCDM model w0 ¼ −1 and wa ¼ 0.
The expression for the angular diameter distance, the
parallax distance and the distance slip for dynamical
dark energy are formally the same as for ΛCDM, i.e.,
(63), (64) and (59), where however the Hubble parameter
is modified as

HðzÞ2 ¼ H2
0ðΩm0

ð1þ zÞ3 þ Ωk0ð1þ zÞ2
þ ΩDEe

−3wa
z

1þzð1þ zÞ3ð1þw0þwaÞÞ: ð68Þ

We explore the dependence of Dang, Dpar and the distance
slip on the two parameters of the modification of the
ΛCDM in (67). Our results for the flat geometry are shown
in Fig. 7: we note again that μ shows a different behavior
from those of Dang and Dpar, which are in turn very similar,
as for the parameters of the standard ΛCDM, see Sec. V B
For small redshift μ takes the form

μðzÞ ¼ 3

2
½1þw0ð1−Ωm0

Þ−Ωk0ðw0þ 1Þ�z2þOðz3Þ ð69Þ

FIG. 5. Dependence of the dimensionless angular diameter
distance and parallax distance and the distance slip on the
curvature parameter for a closed and open FLRW models. The
plots show the derivatives with respect to Ωk0 . All the other
cosmological parameters are fixed to fiducial values from [43].

Low redshift expansion
Exact expression
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FIG. 6. Comparison between the low-redshift expansion of the
distance slip as in Eq. (65) and its exact expression for flat FLRW,
Eq. (60). The low-redsfhit expansion truncated at the first term
∝ z2 is very accurate for redshift z ≲ 0.2. We set the value for the
cosmological parameters from [43].

12The residual dependence of the value of the angular diameter
distance on the motion of the observer can be fixed for example
by boosting the measurement results to the CMB frame defined
by the CMB dipole.
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for the three geometries, andΩk0 ¼ 0 in the above equation
gives the result for the flat case. As expected, there is a
dependence on the equation of state of dynamical dark
energy: at the leading order we find that μ depends on w0

but not on wa, because the effect of time variation appears
at higher order in redshift.

VI. CONCLUSIONS

In this paper we have discussed the new approach for the
study of light propagation in the geometric optics regime
presented in [1], which is based on the bilocal geodesic
operators, BGOs, a new fundamental tool to fully charac-
terize light propagation in a given spacetime and on all the
scales of interest. In Sec. III we provide the relations
between the BGOs and all the important quantities and
observables already present in the literature like the Jacobi
map, the magnification matrix, the angular diameter dis-
tance, the parallax distance and the position drift. The
novelty of our results lies in the fact that all of them can be
obtained within a unified framework and from one key
quantity only, the BGOs. In addition, we show in Sec. II A
that in spacetimes where an analytic expression for the null
geodesic curve—physically representing the photon tra-
jectory—is known one can avoid to solve the ODEs for the
BGOs and simply calculate all the observables of interests

by differentiating the expression of the photon geodesic
with respect to initial data. This newmethod is applicable to
the cases where an exact solution of the Einstein equations
allows for a solution of the geodesic equation and also in
presence of perturbations around it.
The main topic of our work is the study a new

observable, the distance slip μ, introduced for the first
time in [1]. It is a (dimensionless) combination of known
observables, the parallax distance and the angular diameter
distance or, alternatively, the parallax distance, the redshift
and the luminosity distance, and is defined by relations
(37)–(39). Its usefulness stems from its peculiar properties,
not shared by the known distance measures themselves: in
any spacetime it is invariant with respect to the boosts of the
observer and the source which would make its measure-
ment highly resistant to (ideally independent of) the noise
and systematics due to peculiar motions. Moreover, the
distance slip can always be expressed as a nonlocal func-
tional of the spacetime curvature along the line of sight,
see Eqs. (46) and (43)–(45). In particular, we also show that
for short distances its value is simply proportional to a
weighted integral of the matter density [Eq. (49)], remi-
niscent of tomography. This makes distance slip is a
convenient tool for determining the geometry of the
spacetime and its matter content.
We specialize our study of the peculiar properties of the

distance slip, focusing on cosmology and on the differences
between this new observable and those it is constructed
from. First of all, as it is immediately evident from the
expression [Eqs. (60)–(62), (63) and (64)], the distance slip
is independent of the Hubble parameter today H0, unlike
the angular diameter distance, the parallax distance and the
luminosity distance. We then go further and investigate the
dependence of μ as opposed to Dang and Dpar on the other
cosmological parameters, considering the curved and flat
FLRW models for a universe containing cold dark matter
and a cosmological constant (Sec. V B) as well as cold dark
matter and dynamical dark energy (Sec. V D). It is well
known that the angular diameter distance Dang and the
luminosity distance Dlum are related by a simple algebraic
relation, namely the Etherington’s duality formula Dlum ¼
Dangð1þ zÞ2, [19,20]. Therefore the relations DlumðzÞ and
DangðzÞ, measured for a sample of sources, contain exactly
the same information about the spacetime geometry [4].
On the other hand, this does not hold for the parallax
distance: DparðzÞ is known to contain independent infor-
mation about the spacetime geometry, which were inves-
tigated in the FLRW metric case [18,46–49]. This very fact
is particularly evident for the curvature parameter Ωk0, as
we show here in Fig. 5. However, regarding the other
cosmological parameters, in our case Ωm0

, ΩΛ0
and w0

and wa the dependences as a function of the redshift z of
the two distances display similar behavior whereas that
of μ is completely different. Although performing a detailed
estimation of the constraining power of the distance

FIG. 7. Derivatives of the dimensionless angular diameter
distance and parallax distance and the distance slip with respect
to the parameters of the dynamical dark energy model in (67) in
the flat FLRW case. The plots show the derivatives with respect to
w0 and wa. We set the fiducial values of the other cosmological
parameters from [43].
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slip is beyond the aim of our work, these results indicate
that it may contain useful new information. We have also
proposed to consider directly the relation μðDangÞ, without
taking into account z as an observable, since it is strictly
invariant with respect to the boosts of the sources, and
therefore highly resistant to the noise due to peculiar
motions. The leading order coefficient of the expansion
in Dang yields the local matter density ρm0

.
The measurements of the distance slip are difficult for

a fundamental reason: for sources located at short distances
μ is very small, and thus its determination requires very
precise astrometric measurements. The distance slip
becomes significant only at cosmological distances (for
instance μ ¼ 0.22 at z ¼ 1), but at those distances any
parallax measurements are challenging. Nevertheless
recent publications suggest that with the advances in
astrometric techniques the parallax effects can be measured
even at cosmological distances [7], at least for z < 1, where
the signal due to the Solar System’s motion with respect to
the CMB frame is expected to be larger than the effects of
perturbations [18] or the aberration drift due to the motions
within the local group [9]. In a subsequent paper [50]
we will discuss this problem in detail and investigate the
effects of local inhomogeneities on the distance slip
measurements.
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APPENDIX: BILOCAL GEODESIC OPERATORS
IN ANY UNPERTURBED FLRW METRIC

We present the derivation of the Jacobi mapDA
B and the

emitter-observer asymmetry operator mA
μ using the meth-

ods introduced in Sec. II. The transverse part of the WXX
and WXL matrices has already been derived in [12], but
here we extend the result to the nontransverse part of mA

μ,
important for the position drift effects.
We derive the optical operators by the means the

standard conformal trick. We first define the conformal
time variable η given by

dη ¼ a−1dt: ðA1Þ

The unperturbed physical, expanding metric takes now the
form of

g ¼ aðηÞ2ð−dη2 þ dχ2 þ SkðχÞ2dΩ2Þ ¼ aðηÞ2g̃; ðA2Þ

where SkðχÞ is defined by (54) and dΩ2 ¼ dθ2 þ sin2 θ dφ2

is the infinitesimal solid angle. We have introduced the
conformal metric g̃:

g̃ ¼ −dη2 þ dχ2 þ SkðχÞ2dΩ2: ðA3Þ

Note that in this derivation we do not assume a priori that
the scale factor at the observation moment is equal to 1,
unlike in Sec. V, i.e., we have aðηOÞ≡ aO ≠ 1 in general.
This is because in the derivation we need to vary the
observation moment, and therefore also the value of the
scale factor aO.
The null geodesics of g are the same as for g̃, except

for the affine parametrization. Namely, let x̃μðxνO;lν
O; λ̃Þ

denote a null geodesic in g̃, with initial data x̃μðλOÞ ¼ xμO,
lμðλOÞ ¼ lμ

O. It is a standard result that the null geodesic of
g, xμðxνO;lν

O; λÞ, with the same initial data can be obtained
by simple reparametrization of the conformal one, i.e.,

xμðxνO;lν
O; λÞ ¼ x̃μðxνO;lν

O; λ̃ðxνO;lν
O; λÞÞ; ðA4Þ

where the function λ̃ðxνO;lν
O; λÞ gives the initial data-

dependent reparametrization. We show right below that
this reparametrization function can be obtained by solving
the ODE

dλ̃
dλ

¼ a2O
a2

; ðA5Þ

with the initial data of the form λ̃ðxνO;lν
O; λOÞ ¼ λO.

We can prove (A5) by comparing directly the tangent
vectors l̃μ and lμ at each point of γ0. First note that the
component 0 of l̃μ (associated with the conformal time η)
scales according to

l̃0 ¼ l̃0
O

�
aO
a

�
2

: ðA6Þ

This can be seen in the following way: the t component of
lμ in the ðt; χ; θ;φÞ coordinate systemmust scale according
to the redshift law, i.e., lt ¼ ð1þ zÞ−1lt

O ¼ aO
a lt

O. On the
other hand we have lt ¼ al0 from the definition of the
conformal time η (A1), so (A6) follows immediately. We
also know that l̃0 ¼ −g̃μνð∂ηÞμl̃ν must remain constant
because ∂η is a Killing vector of g̃. Thus the 0 components
of both tangent vectors are related by l0 ¼ l̃0ðaOa Þ2 and
consequently the whole tangent vectors must be related by
the scaling lμ ¼ l̃μðaOa Þ2. The relation (A5) between the
two parametrizations follows immediately.
The derivation of the optical operatorsD andm proceeds

now in three steps. We first obtain the bilocal geodesic
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operators (BGOs) W̃XX and W̃XL in the conformal space-
time, by solving the geodesic deviation equation (GDE)
around the geodesics of the conformal metric g̃, from
Eqs. (3)–(4). Then we relate them to the operators WXX
and VXL between the same two points on the same
geodesic, but with respect to the metric g. This second
part of the calculation is derived using the variational
formulas (20)–(21). Finally we obtain the general expres-
sions in the expanding spacetime forD andm by expressing
WXX and VXL in the seminull frame (SNF) of g.

1. BGOs in the conformal spacetime

Consider the radial null geodesics γ0 of the metric g̃,
passing through the observation point of coordinates
η ¼ ηO, χ ¼ χO, θ ¼ π

2
, φ ¼ 0, with the initial tangent

vector lμ
O ¼ ðl0

O;l
0
O; 0; 0Þ, l0

O < 0. Note that in the
derivation we do not assume the observation point to be
at the center of the spatial coordinate system, i.e., χO ≠ 0 or
that at the observation time aO ¼ aðηOÞ ¼ 1, as it is
assumed in Sec. V.
The reader may check that the general solution reads

x̃μðλÞ ¼
�
ηO þ l0

Oλ̃; χO − l0
Oλ̃;

π

2
; 0

�
; ðA7Þ

where we have assumed for simplicity that λ̃ ¼ λO ¼ 0 at
the observation point. The tangent vector in the coordinate
frame, which reads from (A7)

l̃μ ¼ ðl0
O;−l

0
O; 0; 0Þ; ðA8Þ

remains constant along the null geodesic.
We now report all the quantities necessary for the

GDE (3)–(4) and thus to obtain the BGOs. We begin with
the SNF along γ0, namely the frame which is parallel-
propagated along the null geodesic with respect to the
connection of the conformal metric g̃. It is given by

ẽ0 ¼ ∂η ðA9Þ

ẽ1 ¼ SkðχÞ−1∂θ ðA10Þ

ẽ2 ¼ ðSkðχÞ sin θÞ−1∂φ ðA11Þ

ẽ3 ¼ l0
Oð∂η − ∂χÞ; ðA12Þ

where we note from (A8) that the last vector ẽ3 is simply
equal to the tangent vector l̃μ.
Then we need to calculate the Riemann tensor R̃μ

ναβ of
the conformal metric (A3), contract it twice with l̃μ from
(A8) to obtain the optical tidal tensor and express it in the
SNF (A9)–(A12). The result is

R̃μ
νρσl̃

νl̃ρ ¼ ðl0
OÞ2

0
BBB@

0 0 0 0

0 k 0 0

0 0 k 0

0 0 0 0

1
CCCA; ðA13Þ

which shows that in the SNF frame the optical tidal tensor
turns out to have constant coefficients.
The operators W̃XX and W̃XL in the SNF can be now

obtained easily from the matrix equations (3)–(4). We have

W̃XX
μ
ν ¼

0
BBB@

1 0 0 0

0 CkðΔχÞ 0 0

0 0 CkðΔχÞ 0

0 0 0 1

1
CCCA ðA14Þ

and

W̃XL
μ
ν ¼

0
BBBBB@

λ̃ 0 0 0

0 − SkðΔχÞ
l0O

0 0

0 0 − SkðΔχÞ
l0O

0

0 0 0 λ̃

1
CCCCCA ðA15Þ

in the SNF ẽμ of (A9)–(A12). The functions Sk and Ck are
given by (54)–(55) and here as well as in the rest of this
section their argument is the coordinate distance Δχ
between the emission and observation point in the χ
coordinate. Namely, from (A7) we have

Δχ ≡ χE − χO ¼ −l0
Oλ̃; Δχ > 0: ðA16Þ

From now on the argument is intended to be Δχ, unless
stated otherwise, and we drop it for notational conven-
ience,13 i.e., Ck ≡ CkðΔχÞ and Sk ≡ SkðΔχÞ. Let us finally
remark that, although we have chosen a special, radial null
geodesic for the derivation, the results above hold for any
null geodesic in the conformal space, because all null
geodesics in the conformal metric are equivalent due to the
large isometry group of g̃.

2. BGOs in the expanding spacetime

In the second step we will obtain the operatorsWXX and
VXL, related to the expanding metric, from the conformal
ones we have just obtained above. To do so, we will find the
direct relation between them [see Eqs. (A29)–(A30) below]
by using our variation method for the calculation of the
BGOs, given by the relations (20)–(21), written here in the
common coordinate system ðη; χ; θ;φÞ and by exploiting
the fact that the null geodesics of both metric coincide up to

13Note that to switch from Δχ to l0
Oλ̃ we have a sign flip:

Skðl0
Oλ̃Þ ¼ −SkðΔχÞ and Ckðl0

Oλ̃Þ ¼ CkðΔχÞ.
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a reparametrization. The BGOs are the coefficients of the
total variation of the null geodesic curve with respect to
initial data. This relation reads in the conformal spacetime

δx̃μ ¼ W̃XX
μ
νδxνO þ ṼXL

μ
iΔ̃li

O þ l̃μ
Eδλ̃: ðA17Þ

with the operators W̃XX
μ
ν, ṼXL

μ
i and the vector l̃μ

E already
known and Δ̃li

O denoting the covariant direction deviation
with the conformal Christoffel symbols Γ̃ðOÞμνσ . The
equation above holds for admissible variations ðδxμO; δlμOÞ
of the initial data, i.e., those satisfying Δ̃lμ

Ol
ν
Og̃μν ¼ 0. The

reader may check that such variations are automatically
admissible in the expanding metric, i.e., Δlμ

Ol
ν
Ogμν ¼ 0

holds for them as well, and vice versa. The underlying reason
is that a null tangent vector with respect to g̃ is also null with
respect to g. We can therefore write down the same relation
for the admissible null geodesic in the expanding metric:

δxμ ¼ WXX
μ
νδxνO þ VXL

μ
iΔli

O þ lμ
Eδλ: ðA18Þ

Note that because of (A4) the variations on the left-hand
sides of both equations must be equal for the same
admissible variations of the initial data (δxμO, δl

μ
O) provided

that the variations of the affine parameters λ and λ̃ are
related appropriately, by the means of the variation of
the relation (A23). Therefore, the procedure to pass from
one set of operators to the other one is fairly straightforward:
we simply need to reexpress the basis of differentials
ðδxμO; Δ̃li

O; δλ̃Þ in terms of the basis given by ðδxμO;
Δli

O; δλÞ and equate the right-hand sides of (A17) and
(A18). We will do so by deriving step by step the conformal
transformations from the conformal basis to the basis in the
expanding spacetime.
Let us begin with the covariant differentials of the spatial

components of the tangent vector, i.e., the second term of
the basis. We have to recall that the covariant derivatives of
two conformally related metrics are in turn related by

∇̃μξ
ν ¼ ∇μξ

ν þ Cμ
ναξ

α; ðA19Þ

where in our case Cμ
να is a tensor given by the derivative of

the scale factor a:

Cμ
να ¼

a;κ
a
g̃κμg̃να −

a;α
a

δμν −
a;ν
a
δμα: ðA20Þ

The differentials Δ̃li
O and Δli

O are therefore related by

Δ̃li
O ¼ Δli

O þ Ci
μνl

μ
Oδx

ν
O: ðA21Þ

The relation between the variations of the affine parameters
λ̃ and λ is a bit more complicated, because we first need the
relation between the two affine parameters. It is obtained by
solving for λ the ODE in (A5):

dλ

dλ̃
¼ a2

a2O
: ðA22Þ

Integrating (A22) with the initial condition λ ¼ λ̃ ¼ 0 at O
leads to:

λðηO;l0
O; λ̃Þ ¼

Z
λ̃

0

aðηO þ l0
Oλ̃

0Þ2
aðηOÞ2

dλ̃0: ðA23Þ

Once this reparametrization and the conformal null geo-
desic are known [see (A7) above], the null geodesic of the
expanding metric simply follows from (A4). The conformal
transformation of the differentials of the affine parameters
is obtained by taking the total variation of (A23):

δλ ¼ a2

a2O
δλ̃þ

�
1

l0
O

�
a2

a2O
− 1

�
−
2_aO
aO

λ

�
δηO

þ
�
a2

a2O
λ̃ − λ

�
δl0

O

l0
O

; ðA24Þ

where _a≡ da
dη. This is equivalent to

δλ̃ ¼ a2O
a2

δλþ
�

1

l0
O

�
a2O
a2

− 1

�
þ 2_aO

aO

a2O
a2

λ

�
δηO

þ
�
a2O
a2

λ − λ̃

�
δl0

O

l0
O

: ðA25Þ

We now substitute (A25) and (A21) to (A17) and relate
the result to (A18). We obtain this way

0 ¼ ðWXX
μ
ν − W̃XX

μ
ν − ṼXL

μ
iCi

ανlα
O − l̃μ

EAνÞδxνO
þ ðVXL

μ
i − ṼXL

μ
i − l̃μ

EBiÞΔli
O

þ
�
lμ
E −

a2O
a2

l̃μ
E

�
δλ ðA26Þ

with the 1-forms Aμ and Bi given by complicated expres-
sions. Both 1-forms turn out later to be irrelevant. Since
(A26) must hold for any admissible variations, we obtain
this way general relations between the operators in the
conformal and expanding spacetime:

WXX
μ
ν ¼ W̃XX

μ
ν þ ṼXL

μ
iCi

ανlα
O þ l̃μ

EAν ðA27Þ

VXL
μ
i ¼ ṼXL

μ
i þ l̃μ

EBi

lμ
E ¼ a2O

a2
l̃μ
E : ðA28Þ

The last equation is just a restatement of the relation
between the conformal and physical tangent vector. The
other two are the relations we have been looking for,
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i.e., the transformation laws for the BGOs under the
conformal rescaling of the metric by aðηÞ2.
The relations (A27)–(A28) have been derived in the

coordinate frame of the ðη; χ; θ;φÞ coordinates. We now
need to rewrite them in the conformal SNF ẽμ. We begin
with (A27). From (A20) we see that Cμ

ανlν
O from is

automatically orthogonal to lOμ, and therefore from (17)
we have ṼXL

μ
iCi

ανlα
O ¼ W̃XL

μ
σCσ

ανlα
O. Equation (A27)

takes therefore the form

WXX
μ
ν ¼ W̃XX

μ
ν þ W̃XL

μ
σCσ

ανlα
O þ l̃μ

EAν: ðA29Þ

We now turn to (A28). We note that admissible variations
ΔlO must have vanishing component Δl0

O in the SNF.
Therefore we get a relation only for the i ¼ 1; 2; 3 compo-
nents of VXL and ṼXL, i.e., VXL

μ
i and ṼXL

μ
i. But in the SNF

these components are in turn equal to the corresponding
components of WXL

μ
i and W̃XL

μ
i respectively, exactly

because they correspond to contraction with admissible
direction variation vectors, see (17). Summarizing, we can
rewrite (A28) as

VXL
μ
i ¼ WXL

μ
i ¼ W̃XL

μ
i þ l̃μ

EBi: ðA30Þ

Recall that for the Jacobi operator DA
B and the emitter-

observer asymmetry operator mA
j we only need the trans-

verse components 1 and 2 in the upper index μ. Thus the l̃μ
E

terms drop out and the transformation laws simplify to

WXX
A
ν ¼ W̃XX

A
ν þ W̃XL

A
σCσ

ανlα
O: ðA31Þ

VXL
A
i ¼ W̃XL

A
i: ðA32Þ

From (A8) and (A20) we get

Cμ
ανlα

O¼

0
BBBBBB@

0 0 0 0

0 −l0
O

_aO
aO

0 0

0 0 −l0
O

_aO
aO

0

− _aO
aO

0 0 −2l0
O

_aO
aO

1
CCCCCCA
; ðA33Þ

where again _a≡ da
dη. Substituting this formula and (A14)–

(A15) in (A31)–(A32) we obtain

WXX
A
ν ¼

 
0 Ck þ _aO

aO
Sk 0 0

0 0 Ck þ _aO
aO
Sk 0

!
ðA34Þ

VXL
A
i ¼
 
−ðl0

OÞ−1Sk 0 0

0 −ðl0
OÞ−1Sk 0

!
ðA35Þ

3. Optical operators in the expanding spacetime

In the final step we need to pass from the conformal
frame ẽμ to the physical parallel-transported SNF eμ of the
expanding metric, given by

e0 ¼
1

2a

�
a
aO

þ aO
a

�
∂η þ

1

2a

�
a
aO

−
aO
a

�
∂χ

¼ 1

aO
ẽ0 −

1

2aOl0
O

�
1 −

a2O
a2

�
ẽ3 ðA36Þ

e1 ¼ ðaSkðχÞÞ−1∂θ ¼ a−1ẽ1 ðA37Þ

e2 ¼ ðaSkðχÞ sin θÞ−1∂φ ¼ a−1ẽ2 ðA38Þ

e3 ¼
a2O
a2

l0
Oð∂η − ∂χÞ ¼

a2O
a2

ẽ3: ðA39Þ

The reader may check that this frame is indeed parallel-
transported along γ0 with respect to the expanding metric g
and that e3 coincides with the physical tangent vector to γ0,
i.e., lμ. Moreover we see that the transverse vectors e1; e2
and e3 coincide with ẽ1; ẽ2 and ẽ3 up to rescalings.
Applying the transformation and remembering that the
index A is used for a vector at the emission point E, while ν
denotes components in O, we get

WXX
A
ν ¼

0
B@ 0 a

aO
Ck þ a _aO

a2O
Sk 0 0

0 0 a
aO
Ck þ a _aO

a2O
Sk 0

1
CA
ðA40Þ

VXL
A
i ¼
 
−ðl0

OÞ−1 aSk
aO

0 0

0 −ðl0
OÞ−1 aSk

aO
0

!
: ðA41Þ

From this we obtain using (24) and (27):

DA
B ¼ −

aSk
aOl0

O

δAB ðA42Þ

m⊥ A
B ¼

�
a
aO

Ck þ
a _aO
a2O

Sk − 1

�
· δAB ðA43Þ

mA
0 ¼ mA

3 ¼ 0: ðA44Þ

Note that in our convention l0
O < 0, so the overall sign for

the prefactor in (A42) is actually positive. We may also
simplify (A43) by noting that _aO

a2O
¼ H0, so

m⊥ A
B ¼

�
a
aO

Ck þ aH0Sk − 1

�
· δAB: ðA45Þ
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Equations (A42) and (A45) agree with the results from [12]
[Eqs. (4.8) and (4.9)] if we take into account the difference
in notation and the parametrizations assumed there.
As the last step of our derivation we express the

coordinate distance Δχ, appearing as the argument of Ck
and Sk, by an integral over the geodesic γ0 between O
and E. We begin by calculating

da

dλ̃
¼ da

dt
·
dt
dη

·
dη

dλ̃
: ðA46Þ

Here da
dt ¼ HðaÞa from the definition of the Hubble

parameter, dt
dη ¼ a from the definition of the conformal

time (A1) and dη
dλ̃
¼ l0

O from (A7). Thus da
dλ̃
¼ l0

OHðaÞa2 or

dλ̃
da

¼ 1

l0
OHðaÞa2 ðA47Þ

valid along the null geodesic γ0. Integrating this relation
from O, where λ̃ ¼ 0, up to the emission point E we obtain

−l0
Oλ̃ ¼ Δχ ¼ −

Z
a

aO

dâ
HðâÞâ2

¼
Z

aO

a

dâ
HðâÞâ2 : ðA48Þ

We may also change the integration variable to the redshift
ẑ ¼ aO

â − 1:

Δχ ¼ 1

aO

Z
z

0

dẑ
HðẑÞ : ðA49Þ

Using the first Friedmann equation in the form of

HðzÞ2 ¼ H2
0ðΩm0

ð1þ zÞ3 þ Ωk0ð1þ zÞ2 þΩΛ0
Þ ðA50Þ

(see [51–53]) the integral in (A49) can be recast in the
following form:

Δχ ¼ 1

aOH0

Z
z

0

dẑðΩm0
ð1þ ẑÞ3 þΩk0ð1þ ẑÞ2 þΩΛ0

Þ−1=2:

ðA51Þ

The integral above is related to the total line-of-sight
comoving distance DC between E and O evaluated at
the observation moment [53], namely we haveΔχ ¼ 1

aO
DC.

We may now impose the standard convention, in which at
the observation moment we have aO ¼ 1, the observation
point is located at the origin, i.e., χO ¼ 0, and the null
vector lO is normalized so that l0

O ¼ −1, as it is assumed
in Sec. V. In this case we have simply DC ¼ Δχ for the
standard comoving distance and χ ¼ Δχ ¼ R z0 dẑ

HðẑÞ.
Applying these relations to (A42) and (A45) we obtain:

DA
B ¼ aSkðχÞδAB ðA52Þ

m⊥ A
B ¼ ðaCkðχÞ þ aH0SkðχÞ − 1ÞδAB: ðA53Þ

With these results we may evaluate the distance slip
using the relation (36):

μ ¼ 1 − a2ðCkðχÞ þH0SkðχÞÞ2: ðA54Þ

Noting that a ¼ ð1þ zÞ−1 for comoving sources we
recover Eq. (59) in the main text.

[1] M. Grasso, M. Korzyński, and J. Serbenta, Phys. Rev. D 99,
064038 (2019).

[2] R. Sachs, Proc. R. Soc. A 264, 309 (1961).
[3] S. Seitz, P. Schneider, and J. Ehlers, Classical Quantum

Gravity 11, 2345 (1994).
[4] V. Perlick, Living Rev. Relativity 7, 9 (2004).
[5] J. Ehlers, P. Jordan, and R. K. Sachs, Beiträge zur

Theorie der Reinen Gravitationsstrahlung, Abhandlungen
der Mathematisch-Naturwissenschaftlichen Klasse Vol. 1
(Verlag der Akademie der Wissenschaften und der Literatur
in Mainz, Wiesbaden, Germany, 1961).

[6] P. Jordan, J. Ehlers, and R. K. Sachs, Gen. Relativ. Gravit.
45, 2691 (2013).

[7] C. Quercellini, L. Amendola, A. Balbi, P. Cabella, and M.
Quartin, Phys. Rep. 521, 95 (2012).

[8] M. Korzyński and J. Kopiński, J. Cosmol. Astropart. Phys.
03 (2018) 012.

[9] O. H. Marcori, C. Pitrou, J.-P. Uzan, and T. S. Pereira, Phys.
Rev. D 98, 023517 (2018).

[10] C. Hellaby and A. Walters, J. Cosmol. Astropart. Phys. 02
(2018) 015.

[11] J. Yoo and F. Scaccabarozzi, J. Cosmol. Astropart. Phys. 09
(2016) 046.

[12] P. Fleury, H. Dupuy, and J.-P. Uzan, Phys. Rev. D 87,
123526 (2013).

[13] S. Räsänen, K. Bolejko, and A. Finoguenov, Phys. Rev.
Lett. 115, 101301 (2015).

[14] E. Sturm et al. (Gravity Collaboration), Nature (London)
563, 657 (2018).

[15] G. Risaliti and E. Lusso, Nat. Astron. 3, 272 (2019).

GEOMETRIC OPTICS IN RELATIVISTIC COSMOLOGY: NEW … PHYS. REV. D 101, 063506 (2020)

063506-21

https://doi.org/10.1103/PhysRevD.99.064038
https://doi.org/10.1103/PhysRevD.99.064038
https://doi.org/10.1098/rspa.1961.0202
https://doi.org/10.1088/0264-9381/11/9/016
https://doi.org/10.1088/0264-9381/11/9/016
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1007/s10714-013-1590-1
https://doi.org/10.1007/s10714-013-1590-1
https://doi.org/10.1016/j.physrep.2012.09.002
https://doi.org/10.1088/1475-7516/2018/03/012
https://doi.org/10.1088/1475-7516/2018/03/012
https://doi.org/10.1103/PhysRevD.98.023517
https://doi.org/10.1103/PhysRevD.98.023517
https://doi.org/10.1088/1475-7516/2018/02/015
https://doi.org/10.1088/1475-7516/2018/02/015
https://doi.org/10.1088/1475-7516/2016/09/046
https://doi.org/10.1088/1475-7516/2016/09/046
https://doi.org/10.1103/PhysRevD.87.123526
https://doi.org/10.1103/PhysRevD.87.123526
https://doi.org/10.1103/PhysRevLett.115.101301
https://doi.org/10.1103/PhysRevLett.115.101301
https://doi.org/10.1038/s41586-018-0731-9
https://doi.org/10.1038/s41586-018-0731-9
https://doi.org/10.1038/s41550-018-0657-z


[16] R. Wald, General Relativity (University of Chicago Press,
Chicago, London, 1984).

[17] N. Uzun, Classical Quantum Gravity 37, 045002 (2020).
[18] S. Räsänen, J. Cosmol. Astropart. Phys. 03 (2014) 035.
[19] I. Etherington, Dublin Philos. Mag. J. Sci. 15, 761 (1933).
[20] I. M. H. Etherington, Gen. Relativ. Gravit. 39, 1055 (2007).
[21] N. S. Kardashev, Sov. Astron. 30, 501 (1986).
[22] S. A. Klioner, Astron. J. 125, 1580 (2003).
[23] A. Sanna, M. J. Reid, T. M. Dame, K. M. Menten, and A.

Brunthaler, Science 358, 227 (2017).
[24] F. Mignard et al. (Gaia Collaboration), Astron. Astrophys.

616, A14 (2018).
[25] E. M. L. Humphreys, M. J. Reid, J. M. Moran, L. J. Greenhill,

and A. L. Argon, Astrophys. J. 775, 13 (2013).
[26] G. Pietrzyński et al., Nature (London) 495, 76 (2013).
[27] G. F. Benedict, B. E. McArthur, M.W. Feast, T. G. Barnes,

T. E. Harrison, R. J. Patterson, J. W. Menzies, J. L. Bean,
and W. L. Freedman, Astrophys. J. 133, 1810 (2007).

[28] F. Van Leeuwen, M.W. Feast, P. A. Whitelock, and C. D.
Laney, Mon. Not. R. Astron. Soc. 379, 723 (2007).

[29] S. Casertano, A. G. Riess, J. Anderson, R. I. Anderson, J. B.
Bowers, K. I. Clubb, A. R. Cukierman, A. V. Filippenko,
M. L. Graham, J. W. MacKenty, C. Melis, B. E. Tucker, and
G. Upadhya, Astrophys. J. 825, 11 (2016).

[30] L. Lindegren et al., Astron. Astrophys. 595, A4 (2016).
[31] A. G. Riess, S. Casertano, W. Yuan, L. Macri, J. Anderson,

J. W. MacKenty, J. B. Bowers, K. I. Clubb, A. V.
Filippenko, D. O. Jones, and B. E. Tucker, Astrophys. J.
855, 136 (2018).

[32] J. Bel and C. Marinoni, Phys. Rev. Lett. 121, 021101
(2018).

[33] F. Ding and R. A. C. Croft, Mon. Not. R. Astron. Soc. 397,
1739 (2009).

[34] M. Quartin and L. Amendola, Phys. Rev. D 81, 043522
(2010).

[35] A. G. Riess, W. H. Press, and R. P. Kirshner, Astrophys. J.
473, 88 (1996).

[36] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A.
Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S.
Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss,
B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio,
C. Stubbs, N. B. Suntzeff, and J. Tonry, Astron. J. 116, 1009
(1998).

[37] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[38] B. F. Schutz, Nature (London) 323, 310 (1986).
[39] D. E. Holz and S. A. Hughes, Astrophys. J. 629, 15 (2005).
[40] M. Elvis and M. Karovska, Astrophys. J. 581, L67 (2002).
[41] S. Panda, M. L. Martínez-Aldama, M. Zajaček, and B.

Czerny (LSST AGN Science Collaboration), Front. Astron.
Space Sci. 6, 75 (2019).

[42] E. Di Dio, F. Montanari, A. Raccanelli, R. Durrer, M.
Kamionkowski, and J. Lesgourgues, J. Cosmol. Astropart.
Phys. 06 (2016) 013.

[43] N. Aghanim et al. (Planck Collaboration), arXiv:1807.06209.
[44] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213

(2001).
[45] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).
[46] W. O. Kermack, W. H. McCrea, and E. T. Whittaker, Proc.

R. Soc. Edinburgh 53, 31 (1934).
[47] S. Weinberg, Astrophys. J. 161, L233 (1970).
[48] M. Kasai, Prog. Theor. Phys. 79, 777 (1988).
[49] K. Rosquist, Astrophys. J. 331, 648 (1988).
[50] M. Korzyński and E. Villa, Parallax, drift effects and

distance slip and in a perturbed FLRW spacetime, (to be
published).

[51] P. J. E. Peebles, Principles of Physical Cosmology
(Princeton University Press, Princeton, 1993).

[52] J. A. Peacock, Cosmological Physics (Cambridge University
Press, Cambridge, England, 1998).

[53] D.W. Hogg, arXiv:astro-ph/9905116.

MIKOŁAJ KORZYŃSKI and ELEONORA VILLA PHYS. REV. D 101, 063506 (2020)

063506-22

https://doi.org/10.1088/1361-6382/ab60b5
https://doi.org/10.1088/1475-7516/2014/03/035
https://doi.org/10.1080/14786443309462220
https://doi.org/10.1007/s10714-007-0447-x
https://doi.org/10.1086/367593
https://doi.org/10.1126/science.aan5452
https://doi.org/10.1051/0004-6361/201832916
https://doi.org/10.1051/0004-6361/201832916
https://doi.org/10.1088/0004-637X/775/1/13
https://doi.org/10.1038/nature11878
https://doi.org/10.1086/511980
https://doi.org/10.1111/j.1365-2966.2007.11972.x
https://doi.org/10.3847/0004-637X/825/1/11
https://doi.org/10.1051/0004-6361/201628714
https://doi.org/10.3847/1538-4357/aaadb7
https://doi.org/10.3847/1538-4357/aaadb7
https://doi.org/10.1103/PhysRevLett.121.021101
https://doi.org/10.1103/PhysRevLett.121.021101
https://doi.org/10.1111/j.1365-2966.2009.15111.x
https://doi.org/10.1111/j.1365-2966.2009.15111.x
https://doi.org/10.1103/PhysRevD.81.043522
https://doi.org/10.1103/PhysRevD.81.043522
https://doi.org/10.1086/178129
https://doi.org/10.1086/178129
https://doi.org/10.1086/300499
https://doi.org/10.1086/300499
https://doi.org/10.1086/307221
https://doi.org/10.1038/323310a0
https://doi.org/10.1086/431341
https://doi.org/10.1086/346015
https://doi.org/10.3389/fspas.2019.00075
https://doi.org/10.3389/fspas.2019.00075
https://doi.org/10.1088/1475-7516/2016/06/013
https://doi.org/10.1088/1475-7516/2016/06/013
https://arXiv.org/abs/1807.06209
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1142/S0218271801000822
https://doi.org/10.1103/PhysRevLett.90.091301
https://doi.org/10.1017/S0370164600015479
https://doi.org/10.1017/S0370164600015479
https://doi.org/10.1086/180608
https://doi.org/10.1143/PTP.79.777
https://doi.org/10.1086/166588
https://arXiv.org/abs/astro-ph/9905116

