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The Schrödinger-Newton equation is a proposed model to explain the localization of macroscopic
particles by suppressing quantum dispersion with the particle’s own gravitational attraction. On cosmic
scales, however, dark energy also acts repulsively, as witnessed by the accelerating rate of universal
expansion. Here, we introduce the effects of dark energy in the form of a cosmological constant Λ, that
drives the late-time acceleration of the Universe, into the Schrödinger-Newton approach. We then ask in
which regime dark energy dominates both canonical quantum diffusion and gravitational self-attraction. It
turns out that this happens for sufficiently delocalized objects with an arbitrary mass and that there exists a
minimal delocalization width of about 67 m. While extremely macroscopic from a quantum perspective,
the value is in principle accessible to laboratories on Earth. Hence, we analyze, numerically, how the
dynamics of an initially spherical Gaussian wave packet is modified in the presence of Λ > 0. A notable
feature is the gravitational collapse of part of the wave packet, in the core region close to the center of mass,
accompanied by the accelerated expansion of the more distant shell surrounding it. The order of magnitude
of the distance separating collapse from expansion matches analytical estimates of the classical turnaround
radius for a spherically symmetric body in the presence of dark energy. However, the time required to
observe these modifications is astronomical. They can potentially be measured only in physical systems
simulating a high effective cosmological constant, or, possibly, via their effects on the inflationary universe.
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I. INTRODUCTION

Quantum theory places no restrictions on the extent to
which particles can be superposed in space, yet macro-
scopic objects are never observed delocalized. A number of
solutions to this puzzle have been suggested both within the
canonical quantum formalism, e.g., decoherence [1,2] and
the theory of coarse-grained measurements [3–8], as well as
outside it, e.g., the so-called collapse models [9]. The latter
class includes theories with no free parameters in which
gravitational self-interaction counters the spread of the
quantum wave function, effectively “collapsing” quantum
superpositions [9–14]. One such way of coupling gravity to
the quantum description is the semiclassical approach
proposed by Møller [13] and Rosenfeld [14] that results
in the Schrödinger-Newton (SN) equation in the static
weak-field limit [11]. In this model, even a single massive
quantum particle interacts with the mass distribution that it
generates. The modified Schrödinger equation involves the
Newtonian gravitational potential with a mass distribution
ρm ¼ mjψ j2, where m is the mass of the particle and jψ j2 is
the probability density of finding it in a particular spatial
location, according to the standard Born rule.

Here, we extend the SN approach to include the effects of
dark energy in the form of a positive cosmological constant,
Λ > 0. In 1998, redshift observations of type Ia supernovae
found that our Universe is expanding at an accelerating rate
[15,16] and a wealth of cosmological data, including
analyses of the large-scale structure [17], baryon acoustic
oscillations [18], and the cosmic microwave background
(CMB) radiation [19], now support this view. Dark energy,
an unknown form of energy permeating the whole of space,
is suspected to account for this expansion. Although many
models of dark energy exist in the literature [20], we focus
here on the simplest one, known as the Lambda cold dark
matter (ΛCDM) “concordance” model [21]. This includes
an additional cosmological constant term (∝ Λgμν) in the
gravitational field equations derived from the usual Einstein-
Hilbert action [22]. In the static weak-field limit, this
contributes an additional (repulsive) term to the (attractive)
Newtonian potential of a compact spherically symmetric
body. The new term is proportional to Λ and to the square of
the radial distance, i.e., ΦΛ ∝ Λr2 [23].
A particle described by the resulting Schrödinger-

Newton–de Sitter (SNdS) equation, which we introduce
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below, qualitatively experiences three tendencies in its
dynamics: its wave packet tends to spread as a result of both
canonical quantum dispersion and dark energy, whereas
Newtonian gravity tends to localize the object (The non-
relativistic limit of the evolution of amassive scalar field in dS
space was also considered in Ref. [24] but only small
oscillatory solutions were studied. These qualitatively resem-
ble the solutions obtained in the oscillatory regime of the
SNdS system, considered here (see Table II). A similar
analysis of small-amplitude ocsillations in the nonrelativistic
limit of the Einstein-massive-scalar system in AdS space, i.e.,
with Λ < 0, was performed in Ref. [25]. In the present
analysis, we go beyond the study of small oscillations to
consider the full evolution of the SNdS system under various
regimes). We conduct an analysis similar to Carlip’s [26],
which compares the effects of these localizing and delocal-
izing tendencies, and which allows us to estimate the
experimental parameters for which the dark energy contri-
bution dominates. This results in a clear requirement, namely
that the macroscopic spread of the wave function must be no
less than 67m, regardless of the particle’smass.We stress that
the analysis puts no limits on the mass of the particle; i.e., the
quantum dynamics of any particle wave function could (in
principle) manifest observable effects due to dark energy
repulsion. In particular, for an object of mass of the order of
10−20 kg, dark energy dominates already for the initial width
of 67 m.
Of course, quantum experiments at such macroscopic

scales are extremely difficult, but there is no fundamental
reason against their execution in a very isolated laboratory.
This hints at an in principle possibility to observe dark
energy effects within a terrestrial setup. Hence, we numeri-
cally compute the evolution of an initially spherical
Gaussian wave function (with an initial width of 75 m),
according to the SNdS equation, and systematically study
deviations of the particle dynamics from both SN and
canonical quantum evolution. The results are sensitive to
the mass of the particle and demonstrate both a faster-than-
quantum expansion of the wave packet as well as a
gravitational collapse of the wave packet core, together
with an accelerated expansion of the outer shell, for particles
beyond a thresholdmass of order 2 × 10−21 kg. Estimates of
the separation distance between the collapsing and expand-
ing parts are given in terms of the classical turnaround
radius, which are in harmony with our numerical results.
Unfortunately, all these effects become clearly distin-

guishable from the canonical andSNdynamics only after the
particle has evolved for astronomically long durations. We
therefore hope that our analysiswill stimulate discussions on
shortening the required time and note that these effects may
(again, in principle) be simulated in analogue gravitational
systems; see e.g., [27–32] for the analogues of the expanding
universe. Since a bigger effective cosmological constant
gives rise to more noticeable differences at earlier epochs,
our analysis may also be relevant to studies of quantum
perturbations generated by cosmological inflation [33].

II. THE SCHRÖDINGER-NEWTON-DE
SITTER EQUATION

We begin by extending the SN equation to include the
cosmological constant. The treatment assumes a single
particle of mass m in the presence of dark energy, in the
formof a constant energydensity sourced byΛ>0. Following
Møller [13] and Rosenfeld [14], our starting point is the
semiclassical formulation of the Einstein field equations,

Gμν þ Λgμν ¼
8πG
c4

hψ jT̂μνjψi: ð1Þ

Here, Gμν ¼ Rμν þ ð1=2ÞRgμν is the Einstein tensor, Rμν

is the Ricci tensor, R ¼ Rμ
μ is the scalar curvature, and gμν

is the metric tensor. We denote Newton’s constant by G,
and T̂μν is the energy-momentum tensor operator, whose
expectation value in the state jψi, describing the particle,
enters on the right-hand side of Eq. (1). This is interpreted as
treating the gravitational field classically while matter is
described quantum mechanically. Taking the static weak-
field limit, we execute steps analogous to those leading to the
Newtonian limit (which is recovered by settingΛ ¼ 0) found
in textbooks on general relativity [34]. This reduces Eq. (1) to
the following equation for the effective potential Φðr⃗; tÞ:

∇2Φðr⃗; tÞ ¼ 4πGmjψðr⃗; tÞj2 − Λc2: ð2Þ
That is, mjψðr⃗; tÞj2 plays the role of the mass distribution in
the usual Poisson’s equation for the Newtonian potential and
the second term arises due to dark energy. The latter is
independent of the sourcingmass, in agreementwith its origin
as a property of space [23]. Equation (2) admits the following
solution:

Φðr⃗; tÞ ¼ −Gm
Z jψðr⃗0; tÞj2

jr⃗ − r⃗0j d3r⃗0 þ Λc2

4π

Z
1

jr⃗ − r⃗0j d
3r⃗0:

ð3Þ
Finally, we define the SNdS equation as the Schrödinger
equation for ourquantumparticle ofmassm,with the effective
potential introduced above, i.e.,

iℏ
∂
∂tψðr⃗; tÞ ¼

�
−
ℏ2

2m
∇2 þmΦðr⃗; tÞ

�
ψðr⃗; tÞ; ð4Þ

where Φðr⃗; tÞ is given by Eq. (3). Clearly, by setting Λ ¼ 0,
we recover the standard SN equation. The particle is said
to self-interact as, in this model, it propagates within a
potential generated by itself. This leads to nonlinear evolution
of the quantum state, which is explicitly visible after plugging
(3) into (4). Hence, we must deal with a complicated integro-
differential equation of motion, with little hope for analytical
exploration, though seeRef. [35] for attempts in this direction.
Therefore, in order to compute the dynamics of an object
evolving under the SNdS equation, we closely follow the
numerical method presented in the thesis by Salzman [36].
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For simplicity, the initial state is chosen to be a three-
dimensional spherically symmetric Gaussian wave function,

ψðr; 0Þ ¼
�
α

π

�
3=4

e−αr
2=2; ð5Þ

where the initial width σ is given by σ ¼ α−1=2 and r is the
radial distance. Under spherical symmetry, the effective
potential (3) also depends only on r and Eq. (4), which must
be solved numerically, contains only one variable. However,
the effects induced by the cosmological constant are typically
hard to observe due to its extremely small value.We recall that
the numerical value of the cosmological constant, inferred
from observations of type Ia supernovae [15,16], large-scale
structure [17], and theCMB[19], isΛ ¼ 1.089 × 10−52 m−2.
It would therefore be useful to have an estimate of the size of
the initial width and the mass of the particle for which Λ can
produce noticeable changes in ψðr; tÞ. We now provide such
an estimate by following an argument analogous to that
introduced by Carlip [26], but with Λ > 0.

III. ESTIMATION OF THE MINIMAL WIDTH

In canonical quantum theory, the initial spherical
Gaussian wave function spreads outwards under free
evolution according to the Schrödinger equation. Let us
denote by rp the position of the spherical shell at which the
radial probability density has its maximum, i.e., the radius
at which the particle is most likely to be found. The
canonical spread is characterized by the “accelerating”
peak of the radial probability density, ̈rp,

aSE ∼
ℏ2

m2r3p
: ð6Þ

In the SN approach, there is a competing tendency due to
gravitational self-interaction which can be estimated as
gravitational acceleration towards the center (r ¼ 0) at the
point rp,

aSN ∼ −
Gm
r2p

: ð7Þ

Here, we assume that essentially all the mass is within a
radius of order rp and note that slightly better accuracy is
obtained from Gauss’s law by taking into account the actual
fraction of the mass within the range 0 < r ≤ rp (see
Appendix A).
Finally, from the dark energy part of the effective

potential, one obtains the outward acceleration given by

aΛ ∼
1

3
Λc2rp: ð8Þ

Combining these three estimates, and keeping in mind that,
at t ¼ 0, the peak of the radial probability density, rp, is
equal to the width σ of the spherical Gaussian, we can now

estimate the regime in which the acceleration due to dark
energy dominates the accelerations due to both Newtonian
gravity and canonical quantum diffusion. Figure 1 shows
the mass-width relations for pairwise accelerations to be of
the same order of magnitude. The main finding is that there
exists a critical initial Gaussian width such that the
acceleration induced by the cosmological constant domi-
nates for a certain mass range. This critical width is
approximately 67 m.
Therefore, one expects a Gaussian wave function with

an initial width greater than the critical value to evolve
identically to that of a free particle for small masses, since
the acceleration due to quantum dispersion dominates in
this region. As the mass is increased, the acceleration due to
dark energy starts to dominate canonical quantum diffusion
and, finally, for even larger masses, gravitational acceler-
ation dominates and the evolution reduces to the SN case.
With this in mind, we now study the SNdS evolution of a
wave function with an initial width of 75 m, corresponding
to α ¼ 1.78 × 10−4 m−2.

IV. DARK ENERGY EFFECTS

We have validated our numerical approach by perform-
ing simulations of the SN equation in the regimes pre-
viously studied in the literature. All the results are in good
agreement with Ref. [37]. For completeness, these are
summarized in Appendix B, where we also discuss the
oscillating solutions in more detail and give an intuitive
physical explanation for their appearance in the SN and
SNdS models.
In short, the wave function of a particle obeying the SN

equation undergoes one of three possible, qualitatively
different, evolutions. It either spreads more slowly than the
wave function of a canonical quantum particle of the same
mass, or its peak radial probability oscillates about an
equilibrium distance, or, finally, it collapses gravitationally
towards the center of mass. We note that, even in the SN
model (with Λ ¼ 0) the time scale of gravitational collapse,
for particles with masses of order 10−20 kg and an initial
width of 75 m, is of the order of 1017 seconds, i.e.,
comparable to the de Sitter time scale, tdS ¼ c−1

ffiffiffiffiffiffiffiffiffi
3=Λ

p
∼

1017 s, which in turn is comparable to the present age of the
Universe [23].
In the presence of a positive cosmological constant, the

SNdS equation gives rise to two effects that are distinct
from both canonical quantum theory and evolution under
the SN equation. Table I systematically summarizes the
obtained numerical results. The first effect is present for
masses in the range ∼2 × 10−21 kg to ∼3 × 10−20 kg and
shows that they spread faster than the corresponding free
quantum particle, i.e., the peak of the radial probability
density moves away from the origin faster than the
canonical prediction. Since the spread in SN dynamics
is never as fast as in the canonical theory, this effect is due

DARK ENERGY EFFECTS IN THE SCHRÖDINGER-NEWTON … PHYS. REV. D 101, 063028 (2020)

063028-3



to dark energy. In Fig. 2, we present results of numerics
that clearly show the excessive expansion of the wave
packet in the presence of the cosmological constant.
Note that the time scale for the onset of this characteristic
effect is also comparable to the de Sitter time and
hence, for Λ ∼ 10−52 m−2, to the present age of the
Universe ∼1017 s.
For masses above 4 × 10−20 kg, the gravitational inter-

action starts to play a significant role in the evolution of the

wave function. Since the Newtonian potential is inversely
proportional to the radial distance, whereas the dark energy
potential is proportional to square of the radial distance,
canonical gravitational attraction dominates for small radii

TABLE I. Features of dynamical evolution under the SNdS
equation with an initially spherically symmetric Gaussian wave
function of width σ ¼ 75 m (α ¼ 1.78 × 10−4 m−2). The com-
parison is made to a free particle in canonical quantum mechanics.

Mass Behavior

Below 1 × 10−21 kg Identical to the free particle
2 × 10−21 kg
to 3 × 10−20 kg

Spreads faster than the free particle

4 × 10−20 kg
to 5 × 10−20 kg

Inner core of the wave function spreads
slower than the free particle while the
other shell spreads faster

6 × 10−20 kg
to 1 × 10−19 kg

Inner core of the wave function collapses
under self-gravity while the outer shell
spreads faster than in canonical
quantum mechanics

∼2 × 10−19 kg Chaotic
Above 3 × 10−19 kg Stationary

FIG. 2. Excessive expansion of the wave function in the
presence of dark energy. We numerically simulated the SNdS
evolution of a spherically symmetric Gaussian wave packet with
an initial width σ¼75m, for a particle of mass m¼1×10−20 kg.
The black dots give the position of the peak radial probability
density for a particle evolving under the SNdS equation. The blue
dots follow the analytical solution for the peak probability density
of a free particle, with the same parameters, evolving under the
Schrödinger equation. Note the astronomical time scale.

FIG. 1. The minimal width of the initial wave function required for dark energy to dominate quantum diffusion and gravitational self-
attraction. The blue dashed line gives the relation between the mass of the particle and the initial width for which the (repulsive)
accelerations due to the canonical quantum spread and due to dark energy are of the same order of magnitude, i.e., aΛ ¼ aSE. Dark
energy dominates above this curve. Similarly, the acceleration due to dark energy dominates gravitational acceleration below the red
solid line, which is obtained by setting aΛ ¼ jaSNj. The shaded region shows where aΛ is higher than the absolute values of the other
accelerations. This only happens for an initial width above ∼67 m.
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while the repulsive effects of dark energy become signifi-
cant at large radii. Therefore, given a Gaussian wave packet
with a sufficiently large initial width, one expects a core
region of the wave packet, within some critical radius close
to the center of mass, to collapse, while the surrounding
outer shell, which lies outside the critical radius, continues
to expand away from the center. This is exactly what we
observe in the numerics up to masses of order 1 × 10−19 kg.
Furthermore, the inner core exhibits the same (qualita-

tive) dynamics as observed in the SN model, whereas the
parts of the wave packet lying at relatively large radial
distances tend to spread faster than in the canonical free
particle case. An example of such an evolution is given in
Fig. 3. We note that, for masses above 6 × 10−20 kg, the
peak of the collapsing radial probability density oscillates
about an equilibrium position, in full analogy to the SN
case. An in depth analysis of this result is presented in
Appendix B. In general, we find that the larger the mass, the
larger the fraction of the wave function that collapses. One
would therefore expect that, for a sufficiently large mass,
the fraction of the wave packet that spreads away would
vanish, so that the whole system undergoes gravitational
collapse, i.e., that evolution under the SNdS equation
reduces to SN evolution for sufficiently large m.
However, unfortunately, this regime cannot be reached
with our present numerical procedures.
We also would like to comment that the features listed in

the last two rows of Table I are most likely artifacts of the
numerics. By “chaotic’,’ we mean that it is not possible to

describe the dynamical evolution in simple terms whereas
in the “stationary” regime, we observe no changes of the
wave function within the simulation time. Similar effects
(also considered to be numerical artifacts) were observed
by Salzman [36].
Finally, we explain the origin of the critical distance in

Fig. 3 which demarcates the boundary between collapse
and expansion. In the presence of dark energy, there exists a
maximum radius around a spherical mass distribution,
outside of which a probe mass is always repelled. This
is the region in which the repulsive effects of dark energy
dominate the Newtonian gravitational attraction. For
classical systems, this maximum stable radius is known
as the turnaround radius [38]. In the case of the
Schwarzschild-de Sitter spacetime, which represents the
gravitational field around a quantum “particle” in our
model, it is given by

r↔ ¼
�
3GM
Λc2

�
1=3

: ð9Þ

This expression can also be obtained, in the weak-field limit,
by simply equating jaSNj and aΛ, given by Eqs. (7) and (8),
respectively. Similarly, one can introduce a quantum
mechanical turnaround radius from the requirement that
the outward acceleration, being the sum aSE þ aΛ, balances
the inward acceleration jaSNj. However, since aSE decays
with the radial distance faster than the other accelerations,
the classical turnaround radius is expected to be a good
estimate (or small overestimate) of the distance above which
the dark energy dominates, also for quantum wave functions.
Indeed, for a mass of m ¼ 5 × 10−20 kg, the classical
turnaround radius is 100 m, in good agreement with Fig. 3.

V. CONCLUSIONS

We have incorporated dark energy in the form of a
cosmological constant in the Schrödinger-Newton approach.
In our model, the dynamics of a quantum particle is
determined by a nonlinear Schrödinger-like equation, with
an effective potential including both Newtonian self-
gravity and dark energy contributions. We dubbed this the
Schrödinger-Newton–de Sitter (SNdS) equation. We then
estimated the particle mass, as well as the initial width
of a spherically symmetric Gaussian wave function, for
which the dark energy contribution dominates both canoni-
cal quantum diffusion and Newtonian self-interaction.
Surprisingly, we found that, while there are no fundamental
restrictions on the mass, the initial width must be larger than
a critical value of approximately 67 m. If this condition is
satisfied, two distinctive phenomena witnessing dark energy
emerge in the resulting dynamics. The first is the faster-than-
quantum spread of the wave function, and the second
combines gravitational collapse of the inner core of the
wave packet, close to the center of mass, with the accelerated
spread of the outer shell, lying outside a given critical radius.

FIG. 3. Combined effect of gravity and dark energy. The plot
presents radial wave functions at four time instances for a particle
with an initial spread σ ¼ 75 m and massm ¼ 5 × 10−20 kg. Part
of the wave function near the origin gravitationally collapses
whereas the part further away expands due to dark energy. The
boundary is at a distance of about 100 m and matches the classical
turnaround radius, as explained in the text. Note the astronomical
time scale.
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In addition, we showed that the boundary between the
collapsing and expanding parts is well estimated by the
classical turnaround radius.
Unfortunately, both of these effects take an astronom-

ically long time to accumulate observable differences
between SNdS and canonical quantum or SN-like evolu-
tion. According to our numerics, the required time is of the
order of the age of the Universe, which is comparable to the
de Sitter time scale, tdS ¼ c−1

ffiffiffiffiffiffiffiffiffi
3=Λ

p
∼ 1017 s. This can

also be understood analytically since, in the asymptotic de
Sitter phase corresponding to the present rate of universal
expansion, the Friedmann equation determining the evo-
lution of the scale factor of the Universe reduces to äðtÞ ≃
c2ðΛ=3ÞaðtÞ [39]. This is easily solved to obtain
aðtÞ ∝ exp ðt=tdSÞ. Similarly, Eq. (8) may be rewritten as
̈rpðtÞ ≃ c2ðΛ=3ÞrpðtÞ, yielding rpðtÞ ∝ exp ðt=tdSÞ for the
late-time evolution of rpðtÞ, in good agreement with the
results presented in Fig 2.
Nevertheless, it is possible that these effects could be

simulated in analogue gravity systems with larger effective
cosmological constants; see e.g., [27–32]. There may also
exist precision experiments which considerably reduce the
time required, though it seems challenging to design a
scheme capable of revealing the presence of Λ in a
terrestrial laboratory within the time frame of, say, one
human generation.

ACKNOWLEDGMENTS

We thank Sri Devi Wijaya for discussions. This work
was supported by Singapore Ministry of Education
Academic Research Fund Tier 1 Project No. RG106/17
and Polish National Agency for Academic Exchange
NAWA Project No. PPN/PPO/2018/1/00007/U/00001.
Both Kelvins acknowledge support from Nanyang
Technological University under the Undergraduate
Research Experience on Campus (URECA) program.
M. L. thanks Nanyang Technological University for hos-
pitality during the preparation of the manuscript.

APPENDIX A: CORRECTION TO THE
GRAVITATIONAL ACCELERATION

IN THE SN APPROACH

The expression for the Newtonian gravitational accel-
eration, Eq. (7) in the main text, assumes that all the mass
sources the gravitational force. But, according to Gauss’s
law, only the mass within the radius rp is relevant for the
spherically symmetric mass distributions considered here.
This effective mass is therefore given by ζm, where

ζ ¼ 4π

Z
rp

0

jψðr; 0Þj2r2dr: ðA1Þ

In Appendix B, we use this effective mass to improve our
estimate of the equilibrium distance in the SN dynamics.

APPENDIX B: VALIDATION OF OUR
NUMERICS: REPRODUCING SN

EVOLUTION WITH Λ= 0

In order to validate our numerics, we have simulated the
SN equation for the initial spherically symmetric Gaussian
wave packet with width σ ¼ 0.5 μm (α ¼ 4 × 1012 m−2).
The results are in good agreement with those obtained in
Ref. [37] (see also [40]). A summary of the observed
features for different masses is given in Table II.
Let us briefly discuss the “oscillating” behavior of

the wave function, observed for m ∼ 2 × 10−17 kg; see
Fig. 4. Qualitatively, one expects this as a result of the
unstable equilibrium between the accelerations aSE (6) and
aSN (7). Indeed, the outward acceleration aSE dominates for
small distances whereas the inward acceleration aSN
dominates at large distances. The order of magnitude of

TABLE II. Observed dynamics of a particle initially in a
spherically symmetric Gaussian state of a width σ ¼ 0.5 μm,
for different masses, according to the SN equation. The com-
parison is made to the case of a free particle in canonical quantum
theory. The oscillatory behavior refers to oscillations of the peak
of the radial probability density; see Fig. 4.

Mass Behavior

Below 3 × 10−18 kg Identical to the free particle
3 × 10−18 kg to 1 × 10−17 kg Spreads slower than

the free particle
∼2 × 10−17 kg Oscillates
3 × 10−17 kg to 9 × 10−17 kg Collapses towards

the center of mass
1 × 10−16 kg to 4 × 10−16 kg Chaotic
Above 5 × 10−16 kg Stationary

FIG. 4. The evolution of the peak of the radial probability
density for a particle of mass 2 × 10−17 kg evolving under the
SN equation.
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the equilibrium distance is given by req ∼ ℏ2=Gm3. This
implies that, for large masses, req is extremely close to the
origin and gravitational acceleration dominates nearly every-
where in space. On the other hand, for small masses, req is
extremely far away from the origin and the outward accel-
eration dominates nearly everywhere in space causing the
wave packet to spread indefinitely. For a mass of

m ¼ 2 × 10−17 kg, this estimate gives req ¼ 2 × 10−8 m,
which is 1 order of magnitude away from the numerical
finding. However, not all of the mass contributes to the
acceleration at rp and, following Appendix A, we obtain an
effective mass of 8.6 × 10−18 kg, together with the corre-
sponding radius of equilibrium, req ¼ 2.62 × 10−7 m.
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