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We study radial oscillations of non-rotating neutron stars (NSs) in four-dimensional general relativity.
The interior of the NS was modeled within a recently proposed multicomponent realistic equation of state
(EoS) with the induced surface tension (IST). In particular, we considered the IST EoS with two sets of
model parameters, that both reproduce all the known properties of normal nuclear matter, give a high
quality description of the proton flow constraint, hadron multiplicities created in nuclear-nuclear collisions,
consistent with astrophysical observations and the observational data from the NS-NS merger. We
computed the 12 lowest radial oscillation modes, their frequencies and corresponding eigenfunctions, as
well as the large frequency separation for six selected fiducial NSs (with different radii and masses of 1.2,
1.5 and 1.9 solar masses) of the two distinct model sets. The calculated frequencies show their continuous
growth with an increase of the NS central baryon density. Moreover, we found correlations between the
behavior of the first eigenfunction calculated for the fundamental mode, the adiabatic index and the speed
of sound profile, which could be used to probe the internal structure of NSs with the asteroseismology data.
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I. INTRODUCTION

Compact objects, such as white dwarfs, neutron stars
(NSs), hybrid, or strange quark stars [1–3], are the final fate
of stars, and they are characterized by ultrahigh matter
densities. NSs, in particular, are exciting objects as under-
standing their properties and their observed complex
phenomena requires bringing together several different
scientific disciplines and lines of research, such as nuclear
physics, astrophysics and gravitational physics. These
ultradense objects, thanks to their extreme conditions,
which cannot be reached on earth-based experiments,
constitute an excellent cosmic laboratory to study and
constrain strongly interacting matter properties at high
densities, phase transitions in it, nonconventional physics
and alternative theories of gravity.
It is well known that the properties of compact objects,

i.e., mass and radius, depend crucially on the equation of
state (EoS), which unfortunately is poorly known.
Presently, the main source of information about the proper-
ties of dense strongly interacting matter comes from the
nucleus-nucleus (Aþ A) collisional programs which pro-
vide us with sufficiently accurate and detailed experimental

data on the properties of nuclear and hadron matter at finite
temperature. Using these data, however, it is highly non-
trivial to formulate an EoS at vanishing temperature that
corresponds to conditions inside the NSs.
Another source of information comes from the merger of

binary NSs. Thus, the LIGO/Virgo interferometers detec-
tion of gravitational waves emitted during the GW170817
NSs merger put constraints on the EoS at the superhigh
baryonic densities [4]. The precise timing of radio pulsars
and x-ray observations of NSs in binaries led to progress in
determination of masses and radii of compact stars [5–7].
Combining all these pieces of information, an EoS with

induced surface tension (IST) was recently proposed and
tested [8]. The IST EoS simultaneously reproduces existing
heavy ion collision experimental data [9], i.e., AGS
(Alternating Gradient Synchrotron, Brookhaven National
Laboratory), SPS (Super Proton Synchrotron, CERN),
RHIC (Relativistic Heavy Ion Collider, Brookhaven
National Laboratory) and LHC (Large Hadron Collider,
CERN) experiments, the nuclear matter properties [10], the
astrophysical and gravitational-wave observations, provid-
ing its applicability in the widest range of thermodynamic
parameters [8]. Moreover, it was successfully applied to the
description of nuclear liquid-gas phase transition with the
critical endpoint [11]. As was shown in [8] the IST EoS
reproduces NS properties and is fully consistent with all
astrophysical data.
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On the other hand, asteroseismology is a widely used
technique to probe the internal structure of stars which can
be applied to NSs in order to study the thermodynamic
properties inside the star. Studying the oscillations of stars
and computing the frequency modes we can learn more
about their composition and the EoS of the strongly
interacting matter, since the precise values of the frequency
modes are very sensitive to the underlying physics and
internal structure of the star, see e.g., [12–21] and refer-
ences therein.
The oscillations in NSs can be excited by accretion, tidal

forces in close eccentric binary system, starquakes caused
by cracks in the crust, magnetic reconfiguration, during the
supernova explosion or any other dynamical instabilities
[22–25].
In the present work, we are interested in studying the

radial oscillations of nonrotating NSs. For this purpose we
selected six objects with different masses M and radii R
(i.e., six fiducial stars of different radii and masses equal to
1.2, 1.5 and 1.9 M⊙, which represent softer and stiffer
EoSs). Performing a thorough analysis of the frequency
of radial oscillation modes, that for a NS corresponds to
radial acoustic modes, we were able to find a connection
between the oscillation frequencies, and the thermody-
namic properties (i.e., the EoS) of matter inside the NS.
Thus, searches for correlations between the oscillation
modes and a strongly interacting matter EoS can help to
probe an internal structure of the NSs and, especially, phase
transitions in their interior, which is one of the primary
targets of compact star physics.
In addition, this work is also very interesting due to its

relevance for gravitational physics studies. Thus, despite
the fact that radial oscillations of a spherical star do not emit
gravitational waves, they can couple to the nonradial
oscillations, amplifying them and producing gravitational
radiation to a significant level [16]. Moreover, it is well
known that radial and nonradial oscillations share identical
global properties. Therefore, by studying the global proper-
ties of the radial oscillations, we are also characterizing
similar properties of the nonradial oscillations. This is, for
instance, the case of a quantity known as the large
separation—frequency difference of oscillating modes with
the same degree and consecutive radial order [e.g., [26] ].
The next generation of the gravitational wave detectors

such as the Einstein Telescope or the Cosmic Explorer
could detect such emission and provide information on the
compact stars oscillations [27]. Moreover, the launch of the
eXTP [28] and other following x-ray missions will also
increase the expectations for the detection of the NSs
oscillations. When the detection of the radial oscillations of
NSs will become possible, such connection can be used to
constrain the EoS of compact stars with high precision.
Our work is organized as follows: in the next section we

present a brief review of the hydrostatic equilibrium and
structure equations, while the description of the EoS used

in this study, i.e., the IST EoS, is discussed in Sec. III. In
Sec. IV we present the equations of radial oscillations in
general relatively, and Sec. V is devoted to the discussion of
the numerical results obtained in this study. Section VI is
dedicated to the discussion of the excitation mechanisms of
the oscillation modes and their detectability with the future
gravitational wave detectors. Finally, in Sec. VII, we
present the main conclusions of our work. In this study,
for convenience we use geometrical units (ℏ ¼ c ¼ G ¼ 1)
and also adopt the mostly positive metric signature
ð−þþþÞ.

II. HYDROSTATIC EQUILIBRIUM

We briefly review the structure equations for relativistic
stars in general relativity [GR, [29] ]. The starting point is
Einstein’s field equations without a cosmological constant,
which reads

Gμν ¼ Rμν −
1

2
Rgμν ¼ 8πTμν; ð1Þ

where gμν is the metric tensor, Rμν is the Ricci tensor,Gμν is
the Einstein tensor, and R ¼ gμνRμν is the Ricci scalar. The
matter is assumed to be a perfect fluid with a stress-energy
tensor given by

Tμν ¼ Pgμν þ ðρþ PÞuμuν ≡ Pgμν þ ζuμuν; ð2Þ
ρ is the energy density, P is the pressure and uμ is the four-
velocity of the fluid. For convenience of notation, we have
also introduced the function ζðrÞ that is given by the
expression: ζ ¼ ρþ P.
As usual for nonrotating objects we seek static spheri-

cally symmetric solutions assuming for the metric the
ansatz

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð3Þ
where fðrÞ and gðrÞ are two unknown metric functions,
that can also be written as fðrÞ ¼ eλ1ðrÞ and gðrÞ ¼ eλ2ðrÞ ¼
ð1 − 2mðrÞ=rÞ−1. Accordingly, the solutions inside and
outside a compact star are obtained from the match of the
following equations:
(a) For the interior of the star (r < R), it is convenient to

work with the functions λ1ðrÞ and mðrÞ, instead of
the functions fðrÞ and gðrÞ. Thereby, the Tolman-
Oppenheimer-Volkoff equations [TOV, [30,31] ] for
the interior solution of a relativistic star read

m0ðrÞ ¼ 4πr2ρðrÞ; ð4Þ

P0ðrÞ ¼ −ζðrÞmðrÞ þ 4πPðrÞr3
rðr − 2rmðrÞÞ ; ð5Þ

λ01ðrÞ ¼ −2
P0ðrÞ
ζðrÞ ; ð6Þ
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where the prime denotes differentiation with respect to
r. Moreover, we assume a certain EoS relating P with
ρ, to obtain a closed system of differential equations.
In the present work we consider the IST EoS [8] as
will be described in the next section.

(b) For the exterior of the star (r > R), the matter energy
momentum tensor vanishes, and one obtains the well-
known Schwarzschild solution [32] that reads

fðrÞ ¼ gðrÞ−1 ¼ 1 −
2M
r

: ð7Þ

The first two equations (4) and (5) are to be integrated with
the initial conditions mðr ¼ 0Þ ¼ 0 and Pðr ¼ 0Þ ¼ Pc,
where Pc is the central pressure. The radius of the star is
determined requiring that the pressure vanishes at the
surface, PðRÞ ¼ 0, and the mass of the star is then given
by M ¼ mðRÞ. Moreover, it is required that the two
solutions match at the surface of the star. Finally, the
other metric function can be computed using the third
equation [i.e., Eq. (6)] together with the boundary con-
dition λ1ðRÞ ¼ lnð1 − 2M=RÞ.

III. INDUCED SURFACE TENSION EQUATION
OF STATE (IST EoS)

The computation of the TOVequations in a closed form,
as well as the calculation of the NS radial oscillation modes
require a relation between pressure and energy density,
which is given by the EoS. For this purpose we use the IST
EoS first formulated for symmetric nuclear matter by [10].
Furthermore, this EoS was formulated for β-equilibrated
electrically neutral nucleon-electron mixture and applied to
the NS modeling [8,33]. Here, we use the most recent and
advanced version of the IST EoS, which also accounts for
the nuclear asymmetry energy [8].
In the grand canonical ensemble the IST EoS has the

form of the system of two coupled equations for the
pressure p and the IST coefficient σ:

p ¼
X

A¼n;p;e

pidðmA; ν1AÞ − pintðnidB Þ þ psymðnidB ; IidÞ; ð8Þ

σ ¼
X
A¼n;p

pidðmA; ν2AÞRnucl: ð9Þ

Neutrons, protons and electrons (subscript indexes “n”,
“p”, and “e”, respectively) with corresponding masses mA
and chemical potentials μA (A ¼ n, p, e) are physical
degrees of freedom explicitly included in the IST EoS. As
was shown by the fit of Aþ A collision experimental data
with the multicomponent IST EoS [34], neutrons and
protons are supposed to have the same hard core radii
Rn ¼ Rp ¼ Rnucl, which lies in the range from 0.3 to
0.5 fm. For simplicity, interactions of electrons are

neglected, and they are treated as free particles with a zero
hard core radius Re ¼ 0.
The system of Eqs. (8)–(9) is written in terms of the zero

temperature pressure pid of noninteracting Fermi particles
with spin 1

2
and quantum degeneracy 2, as

pidðm; μÞ ¼ μkð2μ2 − 5m2Þ þ 3m4 ln μþk
m

24π2
θðμ −mÞ; ð10Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
is the Fermi momentum of a particle

with mass m and chemical potential μ, and θ is the
Heaviside function.
Interaction between nucleons accounts via a short range

repulsion of the hard core type controlled by their hard core
radius Rnucl and the mean-field type attraction. Such an
attraction leads to a negative shift of the one particle energy
levels or, equivalently, to a positive contribution U to the
effective chemical potential of each nucleon ν1A and ν2A
(A ¼ p, n). These effective chemical potentials include
the effects of the hard core repulsion through the nucleon
eigenvolume V ¼ 4

3
πR3

nucl and surface S ¼ 4πR2
nucl,

whereas the mean field attraction and symmetry energy
are accounted for through the density and nucleon asym-
metry dependent potentials U and Usym, respectively [35].
Thus,

ν1A ¼ μA − pV − σSþUðnidB Þ ∓ UsymðnidB ; IidÞ; ð11Þ

ν2A ¼ μA − pV − ασSþ U0: ð12Þ

Requirement of thermodynamic consistency leads to
appearance of the mean-field contribution pint to the total
pressure. Note, that pint enters the expression for the
pressure with sign “-”, since it is caused by the nucleon
attraction. These two quantities U and pint (which are
controlled by constant parameters C2

d and κ) are written
explicitly in the following form

UðnidB Þ ¼ C2
dðnidB Þκ; pintðnidB Þ ¼

Z
nidB

0

l
∂UðlÞ
∂l dl; ð13Þ

where nidB is the density of the baryonic charge. More
precise account for the nucleon attraction leads to an
additional positive shift of the particle chemical potential
for U0 ¼ const, which, however, does not contribute to the
pressure due to its constant value. The nuclear symmetry
energy contribution in the IST EoS is also taken into
account within the mean-field theory framework. However,
it corresponds to the nucleon repulsion, the contribution to
the total pressure psym enters it with sign “þ”. Note, that the
shifts of the nucleon and proton chemical potentials by
modulus are equal toUsym, but have the opposite signs, “−”
and “þ” for neutrons and protons, respectively. In com-
parison to the parametrization of psym in Ref. [8], that gives
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nuclear asymmetry energy slope at nuclear saturation
density L ∼ 113–115 MeV being on the limit of its value
constrained by experiments [36], here we considered
another parametrization, which, on the one hand, gives
lower value of L, and, on the other hand, does not violate
the thermodynamic consistency [35,37]. In terms of the
nuclear asymmetry parameter I ¼ ðnidn − nidp Þ=nidB (nidn and
nidp are the densities of the ideal gas of neutrons and
protons, respectively) it is parametrized as

UsymðnidB ; IidÞ ¼
Z

nidB ;I
id

0

∂psymðlÞ
∂l

dl
l
; ð14Þ

psymðnidB ; IidÞ ¼
AsymðnidB IidÞ2

ð1þ ðBsymnidB I
idÞ2Þ2 ; ð15Þ

where Asym and Bsym are constants.
The IST contribution is a crucial term of this new EoS

that accounts for the hard core repulsion effects with a very
high accuracy. This is done by finding the correct value of
parameter α in order to reproduce values of the second,
third and fourth virial coefficients of hard spheres. Since the
two higher virial coefficients are reproduced with only one
parameter, while the second virial coefficient has the
correct value for any α value, then we conclude that such
parametrization of the hard core repulsion in the IST EoS
is, indeed, physically well motivated. From the analysis of
the virial coefficients of hard spheres it was found that α is
approximately equal to 1.245 [38]. In Ref. [8] was con-
firmed that such α is consistent with the currently known
NS properties.
The parameters of the IST EoS are determined from the

fit of the different experimental observables. Parameters C2
d

and U0 are used in order to reproduce properties of normal
nuclear matter, i.e., zero pressure and binding energy per
nucleon equal to 16 MeV at n ¼ 0.16 fm−3. The constants
Asym and Bsym are determined in order to be in agreement
with an experimental values of the nuclear asymmetry
energy J and its slope L at nuclear saturation density. The
hard core radius of nucleons Rnucl can lie between 0.3 and
0.5 fm, which makes the present EoS consistent with
experimental data on yields of particles produced in heavy-
ion collisions (for details see [9]). Finally, the IST EoS has a
realistic value of the nuclear incompressibility factor K0,

and simultaneously is consistent with the proton flow
constraint [39] only if κ ¼ 0.15–0.3 [11]. The Rnucl and
κ values were fixed by fitting this EoS to the astrophysical
data. The corresponding sets of parameters are shown in
Table I. Both sets of parameters provide equally realistic
descriptions of the NS properties. The set B represents
more softer model parametrization in comparison to the set
A, that reflects in the lower values of NSs radii (see Fig. 1),
compressibilities and Love numbers. Thus, for a referent
1.4 M⊙ NS the considered sets A and B give the Love
numbers equal to 797 and 765, respectively. This result is in
full agreement with the LIGO/Virgo 90% confidence
interval computed for GW170817 merger event [4].
Having all parameters of the IST EoS fixed by requiring

equal densities of electrons and protons, due to electric
neutrality, as well as to the equality of the neutron chemical
potential to the sum of the ones of protons and electrons (in
order to ensure β-equilibrium), one can obtain a unique
relation between the pressure and energy density for the NS
matter.
For simplicity, the crust was described via the polytropic

EoS with γ ¼ 4
3
. As we are not focus on the physics inside

the crust of the NSs, we omitted part of the start with
r=R≳ 0.9, where the transition to the crust occurs.

TABLE I. Two sets of parameters of the IST EoS which reproduce the nuclear matter properties, the flow
constraint and satisfy all astrophysical constraints. Moreover, the two IST EoS sets have the following common
parameters: α ¼ 1.245 and J ¼ 30.0 MeV.

Rnucl κ Bsym Asym C2
d U0 K0 L

Set (fm) � � � ðfm3Þ ðMeV · fm3Þ ðMeV · fm3κÞ (MeV) (MeV) (MeV)

A 0.477 0.254 14.0 111.87 145.90 157.35 202.36 96.05
B 0.463 0.25 16.0 138.30 146.30 162.87 201.02 93.19

FIG. 1. The relation between gravitational mass M of NS and its
radius R. The points correspond to the three fixed masses of the
NS, i.e., 1.9 M⊙, 1.5 M⊙ and 1.2 M⊙.
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IV. RADIAL OSCILLATIONS OF
NEUTRON STARS

In the study of radial oscillations of a NS, the set of
equations that describe the radial perturbations of the star
matter is defined as fractional variations of the local radius
ξ ¼ Δr=r (with Δr being the radial displacement) and
pressure η ¼ ΔP=P (with ΔP being the perturbation of the
pressure) [21,40]. Hence, the radial oscillations of a
compact star are computed from the following system of
two first-order differential equations:

ξ0ðrÞ ¼ −
�
3

r
þ P0

ζ

�
ξ −

1

rγ
η; ð16Þ

η0ðrÞ ¼ ω2

�
r

�
1þ ρ

P

�
eλ2−λ1

�
ξ −

�
4P0

P
þ 8πζreλ2 −

rP02

Pζ

�
ξ

−
�
ρP0

Pζ
þ 4πζreλ2

�
η; ð17Þ

where eλ1 and eλ2 ¼ ð1 − 2m=rÞ−1 are the two metric
functions, ω is the frequency of the oscillation mode, γ
is the relativistic adiabatic index, that is defined by

γ ¼ c2s

�
1þ ρ

P

�
; ð18Þ

where c2s ≡ dP=dρ is the adiabatic sound speed.
The previous system of two coupled first order differ-

ential equations is supplemented with two boundary con-
ditions, one at the center of the star as r → 0, and another at
the surface r ¼ R. The boundary conditions are obtained as
follows: in the first equation, ξ0ðrÞ must be finite as r → 0,
and therefore we require that η ¼ −3γξ, must be satisfied at
the center. Similarly, in the second equation, η0ðrÞ must be
finite at the surface as ρ; P → 0, and therefore we require
that

η ¼ ξ

�
−4þ ð1 − 2M=RÞ−1

�
−
M
R

−
ω2R3

M

��
ð19Þ

must be satisfied at the surface, where we recall thatM and
R are the mass and the radius of the star, respectively.
As the remainder, in this article we will use the dimen-

sionless frequency σ ¼ ω=ω0 or ν ¼ σω0=ð2πÞ, where ω0

is defined by ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
. Actually, this expression for

ω0 gives a good estimation of frequency of the fundamental
mode. It is worth noticing that contrary to the previous
hydrostatic equilibrium problem (i.e., TOV equations),
which is an initial value problem, the problem related to
the radial perturbations of a compact star, is known as a
Sturm-Liouville boundary value problem. In this class of
problems, the frequency ν is only allowed to take particular
values, the so-called eigenfrequencies νn. Therefore, to
each specific radial oscillation mode of the star corresponds
a unique νn (or σn). Accordingly, each radial mode of
oscillation is identified by its νn and by an associated pair of
eigenfunctions ξnðrÞ and ηnðrÞ, where ξnðrÞ is the dis-
placement perturbation ξnðrÞ and ηnðrÞ is the pressure
perturbation.

V. NUMERICAL RESULTS

We have considered six fiducial NSs with masses equal
to 1.2 M⊙, 1.5 M⊙ and 1.9 M⊙, and radii R ≃ ð10.6 −
11.7Þ km from the sets A and B (see Table II). The Fig. 2
shows typical pressure, energy density and metric functions
profiles as a function of the normalized radius for the B2

star. As presented on the top panel of Fig. 3 the square of
the speed of sound c2sðrÞ decreases toward the surface of the
star. For the more massive stars (sets A1 and B1), c2s varies
from ∼0.8 at the center of the star to a vanishing value near
the surface. To highlight the local variations of the c2s with
the star’s radius for the different parameter sets of the IST
EoS, the lower panel of Fig. 3 shows c2s;Bi

ðrÞ − c2s;Ai
ðrÞ (for

i ¼ 1, 2, 3), i.e., the difference between the square of the
speed of sound for two stars with the same mass but
different radius (see lower panel on Fig. 3). It is worth

TABLE II. Six fiducial stars are considered in this work from
the two sets (A and B) of the IST EoS. The fundamental
frequency ω0 is given by the expression ω0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
.

The last column represents central baryon densities for the
selected stars.

PROPERTIES OF SIX FIDUCIAL STARS

Stars MðM⊙Þ R (km) β ¼ M=R ω0 (kHz) ncB (fm−3)
A1 1.9 11.08 0.255 13.669 0.820
A2 1.5 11.60 0.192 11.330 0.598
A3 1.2 11.73 0.152 9.965 0.480
B1 1.9 10.67 0.265 14.453 0.866
B2 1.5 11.31 0.197 11.778 0.613
B3 1.2 11.45 0.156 10.333 0.491

FIG. 2. Left panel: Energy density ρ (red curve) and pressure P
(black curve) as a function of the normalized radius r=R. Right
panel: Metric functions eλ1 (red curve) and eλ2 (black curve) as a
function of r=R. Both panels correspond to B2 star.
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noticing that all curves have a similar variation with the
star’s radius. The differences between the square of the
speed of sound for two stars are almost flat in the core of
the star, undergo a rapid increase in the layer that separates
the two regions, i.e., the inner and the outer core of the
NS. The separation between these two stellar regions occur
in a relatively thin transition layer located around 0.35, 0.55
or 0.75 of the star radius that can be identified as the
protuberance in the lower panel on Fig. 3. To identify the
physical processes responsible for such behavior inside
the star, we computed the adiabatic index γ as a function of
the corresponding radius, that shows how the pressure
varies with the baryon density. As first mentioned in
Ref. [41], the analysis of γ allows us to identify the
transition layer that separates the inner and the outer core,

which, as mentioned previously, in our models occurs at
0.75, 0.55 and 0.35 of the star radius for the B1, B2 and B3

stars, respectively (see top panel of Fig. 4). As shown in the
lower panel of Fig. 4, a stiffer EoS, that in our case
corresponds to a IST EoS with the parameter set A, leads to
a small shift of the transition layer to an higher radius.
Table III shows the frequencies of the first 12 radial

modes for the fiducial stars of Table II. One of the quantities
widely used in asteroseismology to learn about star pro-
perties is a difference between consecutive modes, i.e.,
Δνn ¼ νnþ1 − νn, the so-called large separation [42,43]. In
Fig. 5 we show the comparison of the Δνn functions for
every pair of stars with the same mass. In general, we found
that the decrease of the central baryon density, and, there-
fore, of the star’s mass leads to a decrease of the large

FIG. 3. Top panel: Square of the speed of sound c2S (for all six
fiducial stars) as a function of r=R (see Table II). Lower panel:
Difference between the c2S for the stars with equal masses and
distinctive radii that correspond to the different parameter sets
(A or B) of the IST EoS as a function of r=R: 1.9 M⊙ (dashed
curve), 1.5 M⊙ (solid curve) and 1.2 M⊙ (dotted curve).

FIG. 4. Top panel: Adiabatic index γðrÞ as a function of r=R for
the stars (see Table II): B1 with M ¼ 1.9 M⊙, B2 with M ¼
1.5 M⊙ and B3 with M ¼ 1.2 M⊙. Lower panel: Comparison
between the γ indexes for A2 and B2 stars (both with a mass
M ¼ 1.5 M⊙).
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separation Δνn. Interestingly, it was also found that Δνn
varies with νn which is a first evidence that the micro-
physics (or the EoS) of the interior of the NS is imprinted in
the large separation, a characteristic well known and also
found in main sequence stars, for instance the Sun. For both
types of stars, Δνn starts to be a constant proportional toffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
that is independent of νn, on top of which a

discontinuity or glitch on the star’s structure will imprint a
small νn− oscillation on Δνn, like the one observed in
Fig. 5. In the case of the NS, this νn− oscillation has an
amplitude proportional to the magnitude of the disconti-
nuity, which results from the rapid variation of the sound
speed cs or the relativistic adiabatic index γ [see Eq. (18)]
on the transition layer that separates the inner and the outer
core of the NS, as clearly shown in Fig. 4. The period of the
νn− oscillation relates to the location of the discontinuity
beneath the star’s surface [26]. A detailed account for the
impact of discontinuities or glitches on radial and nonradial
acoustic oscillations is described on [e.g.,[44,45] ].
On Fig. 6 it is shown the ξn and ηn eigenfunctions

calculated for the B2 star (with M ¼ 1.5 M⊙ and
R ¼ 11.31 km). These eigenfunctions are computed for
the low order radial modes, n ¼ 1, 2, 3, shown in black,
blue and red, respectively, intermediate modes, n ¼ 6, 7,
shown in dark red and cyan, and finally highly excited
modes, n ¼ 11, 12, shown in magenta and green.
According to a Sturm-Liouville boundary value problem
the number of zeros of the eigenfunctions corresponds to
the overtone number n, namely the first excited mode,
corresponding to n ¼ 2, has only one zero, the second
excited mode, corresponding to n ¼ 3, has two zeros, while
the fundamental mode, corresponding to n ¼ 1, does not
have any zeros at all. The fundamental mode is also known
as the f-mode, while the rest of the modes with n ¼ 2; 3;…
are the so-called p-modes (pressure modes or acoustic
modes) [43].

FIG. 5. Large frequency difference vs frequency (both in kHz)
for two stars of the same mass from sets A (in magenta) and B (in
blue). Top panel: Comparison between stars A1, B1 with mass
M ¼ 1.9 M⊙. Middle panel: Comparison between stars A2, B2

with massM ¼ 1.5 M⊙. Lower panel: Comparison between stars
A3, B3 with mass M ¼ 1.2 M⊙.

TABLE III. Frequencies νn in kHz for the radial modes of six
fiducial stars considered here (see Table II). n is the order of the
radial mode.

RADIAL OSCILLATION MODES FOR DIFFERENT STARS

n A1 A2 A3 B1 B2 B3

1 3.2384 3.2121 3.1758 3.2603 3.2415 3.2098
2 7.2259 7.0942 6.9197 7.3242 7.1782 7.0102
3 10.7881 10.6444 10.4529 10.9183 10.7763 10.5818
4 14.2948 14.2158 14.0005 14.4571 14.3684 14.1552
5 17.8389 17.8093 17.5834 18.0182 17.9826 17.7572
6 21.3834 21.4334 21.2028 21.5757 21.6127 21.3868
7 24.9591 25.0885 24.8530 25.1605 25.2729 25.0395
8 28.5482 28.7557 28.5190 28.7505 28.9472 28.7121
9 32.1512 32.4481 32.1977 32.3584 32.6368 32.4023
10 35.7746 36.1437 35.8918 35.9787 36.3430 36.1043
11 39.3999 39.8581 39.5969 39.6058 40.0546 39.8154
12 43.0433 43.5736 43.3066 43.2503 43.7822 43.5349
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The amplitude of ξnðrÞ for each mode n is larger closer to
the center (but not at the center) and much smaller near
the surface. Alternatively, the amplitude of ηnðrÞ is larger
closer to the center and near the surface of the star. Hence, it
results that ξnþ1ðrÞ − ξnðrÞ and ηnþ1ðrÞ − ηnðrÞ are more
sensitive to the core of the star. Notice, that although ηnðrÞ
of consecutive n have large amplitudes near the surface
with opposite signal (opposition of phase) its contribution
for ηnþ1ðrÞ − ηnðrÞ cancels out.
As one can see on Fig. 7, the comparison of the

fundamental modes for all six considered stars reveals
an imprint of the stars structure on the behavior of the first
eigenfunction with star radius. Humps on the eigenfunction
profiles are shifted to higher radius with an increase of the

star mass. As a result, for B1, B2, B3 stars it happens at
about 0.75, 0.55 and 0.35 of star radius, respectively. The
onset of anomaly is become shifted to higher r=R values for
a stiffer IST EoS (set A, see details on Fig. 7). Smooth
behavior of the first eigenfunction for all higher oscillation
modes can be explained by its negligible effect for modes
with a bigger n.
It is possible to conclude that changes of the thermo-

dynamic properties of the matter inside the NSs, i.e.,
variations in the IST EoS leaves an imprint on the ξnðrÞ
eigenfunction for the f-mode. Such changes of star proper-
ties correspond to the different layers of the star. Thus, we
conclude that the found irregularities are associated with
the transition between the inner and the outer core of star.
Moreover, we found that for a more massive star (e.g., B1

on Fig. 7 and top panel of Fig. 4), the transition layer occurs
closer to the star’s surface, where for a low mass NS it
occurs more closer to the center, i.e., around 0.35 of the
radius of the star. This result fundaments our point that if
radial oscillations of the NSs are discovered, it will be
possible to use frequencies of radial modes to learn about
the thermodynamic properties of the matter inside NS.
As you can see in the Table III, the oscillation frequen-

cies grow with an increase of the central baryon density
(see Table II). As was discussed in Refs. [12,46] the
oscillation frequency of the first mode start to decrease
while approaching the maximal mass (or central density)
for a given EoS and cross a zero value exactly at the highest
point of a M-R curve.

VI. DETECTABILITY AND EXCITATION
MECHANISMS OF THE NS OSCILLATIONS

Study of the physical mechanisms leading to excitation
of the NS oscillations is a very challenging problem due to

FIG. 6. Top panel: First eigenfunction ξn vs dimensionless
radius coordinate r=R for low (n ¼ 1, 2, 3), intermediate
(n ¼ 6, 7) and highly-excited modes (n ¼ 11, 12). Lower panel:
Same as before, but for the second eigenfunction ηn. Both plots
correspond to B2 star.

FIG. 7. Comparison between the first eigenfunctions ξn for the
fundamental mode (n ¼ 1) for all six considered stars.
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the interplay between thermodynamical properties of the
NSmatter, mass of the star, magnetic field, spin, etc. Recent
studies suggest that the oscillations of a hypermassive NS
(HMNS), formed as a result of a NSs merger, will create a
modulation of a short gamma ray burst (SGRB) signal,
which is possible to detect [47].
The fundamental f-modes can also be excited by tidal

effects in close eccentric systems [22], as well as due to a
resonant excitation in binaries [24]. Between the other
probable mechanisms to excite such oscillations there are
accretion in Low-Mass X-ray Binaries (LMXBs) [48],
magnetic reconfiguration, during the supernova explosion,
etc. [23,25].
Unfortunately, low sensitivity of the ongoing gravita-

tional wave detectors at kHz frequency range does not
allow the detection of the NS oscillations. However, the
third-generation of ground-based gravitational wave detec-
tors, e.g., the Einstein Telescope and the Cosmic Explorer
[22,49], are expected to have a sensitivity much higher than
an order of magnitude in comparison to the Advanced
LIGO. Such detections could provide with simultaneous
measurements of NS masses, tidal Love numbers, fre-
quency, damping time, amplitude of the modes, and,
therefore, moments of inertia, which will give an obser-
vational opportunity to test the I-Love-Q relation [22,50].

VII. CONCLUSIONS

We have studied radial oscillations of NSs within an
elaborate IST EoS, which is in a good agreement with the
normal nuclear matter properties, provides a high quality
description of the proton flow constraint, hadron multi-
plicities created during the nuclear-nuclear collision experi-
ments and equally is consistent with astrophysical data
coming from NS observations and the GW170817 NS-NS
merger. We have considered six fiducial stars with masses
M ¼ 1.9 M⊙, M ¼ 1.5 M⊙ and M ¼ 1.2 M⊙, and radii
R ≃ ð10.6 − 11.7Þ km, from two different sets (A and B) of
model parameters. For all six considered stars we have
computed 12 lowest radial oscillation modes, the large
frequency separations and the corresponding eigenfunc-
tions. It was shown that softer IST EoS (with parameter set
B) in comparison to the stiffer IST EoS (with parameter set
A) gives larger frequencies of oscillations for all considered
stars. Accordingly, the large frequency separation Δνn for
both sets has the same behavior. Similarly, for the same
model set the calculated frequencies also grow with an
increase of the central baryon density.
Moreover, we found an evidence of how the changes in

thermodynamic properties of the NS matter leave an
imprint on the ξnðrÞ eigenfunctions calculated for a
fundamental mode (n ¼ 1). Analysis of the adiabatic index

γðrÞ and speed of sound csðrÞ shows that clear and well
defined changes occur inside the NS that we found to be
associated with a transition layer between the inner and
outer core of the star. For example, for B1, B2, B3 stars,
such transition occurs at the locations of 0.75, 0.55 and
0.35 of the star radius, respectively. The ξnðrÞ eigen-
function calculated for the fundamental mode presents
changes of behavior exactly at the same values of star’s
radius where the adiabatic index γðrÞ and the difference
between the speed of sound squared c2S for the stars with
equal masses and distinctive radii show such peculiar
behavior.
The results found in this work exhibit an imprint of the

thermodynamic properties of matter and internal structure
of NS on the radial oscillation modes, and, possibly, even
nonradial modes, as a similar global behavior is expected.
Furthermore, coupling between the radial and nonradial
oscillations that leads to the enhanced gravitational emis-
sion makes it possible to detect such oscillations during the
NS-NS merger. We predict a similar analysis for a model
with a more realistic description of the NS crust and
inclusion of the quark-gluon core, could reveal other more
prominent irregularities in the oscillation frequencies and
the eigenfunctions calculated for the different oscilla-
tion modes.
Finally, we discuss the main known mechanisms to

excite oscillation modes and the probability of their
detection with a third-generation of ground-based gravita-
tional wave detectors, such as the Einstein Telescope and
the Cosmic Explorer.
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Lisboa, within the Project No. UIDB/00099/2020. This
research was supported by the Munich Institute for Astro-
and Particle Physics (MIAPP) which is funded by the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence
Strategy—EXC-2094—390783311.

ASTEROSEISMOLOGY: RADIAL OSCILLATIONS OF NEUTRON … PHYS. REV. D 101, 063025 (2020)

063025-9



[1] D. Leahy and R. Ouyed, Mon. Not. R. Astron. Soc. 387,
1193 (2008).

[2] R. Ouyed, D. Leahy, and P. Jaikumar, arXiv:0911.5424.
[3] S. L. Shapiro and S. A. Teukolsky, Black Holes, White

Dwarfs and Neutron Stars: The Physics of Compact Objects
(Wiley, New York, 1983), p. 645.

[4] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 121, 161101 (2018).

[5] F. Özel and P. Freire, Astron. Astrophys. 54, 401 (2016).
[6] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.

765, L5 (2013).
[7] A.W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.

722, 33 (2010).
[8] V. V. Sagun, I. Lopes, and A. I. Ivanytskyi, Astrophys. J.

871, 157 (2019).
[9] V. V. Sagun, K. A. Bugaev, A. I. Ivanytskyi, I. P.

Yakimenko, E. G. Nikonov, A. V. Taranenko, C. Greiner,
D. B. Blaschke, and G. M. Zinovjev, Eur. Phys. J. A 54, 100
(2018).

[10] V. V. Sagun, A. I. Ivanytskyi, K. A. Bugaev, and I. N.
Mishustin, Nucl. Phys. A924, 24 (2014).

[11] A. I. Ivanytskyi, K. A. Bugaev, V. V. Sagun, L. V. Bravina,
and E. E. Zabrodin, Phys. Rev. C 97, 064905 (2018).

[12] A. Brillante and I. N. Mishustin, Europhys. Lett. 105, 39001
(2014).

[13] K. D. Kokkotas and J. Ruoff, Astron. Astrophys. 366, 565
(2001).

[14] G. Miniutti, J. A. Pons, E. Berti, L. Gualtieri, and V. Ferrari,
Mon. Not. R. Astron. Soc. 338, 389 (2003).

[15] G. Panotopoulos and I. Lopes, Phys. Rev. D 96, 083013
(2017).

[16] A. Passamonti, M. Bruni, L. Gualtieri, A. Nagar, and C. F.
Sopuerta, Phys. Rev. D 73, 084010 (2006).

[17] A. Passamonti, M. Bruni, L. Gualtieri, and C. F. Sopuerta,
Phys. Rev. D 71, 024022 (2005).

[18] G. J. Savonije, Astron. Astrophys. 469, 1057 (2007).
[19] C. V. Flores, Z. B. Hall II, and P. Jaikumar, Phys. Rev. C 96,

065803 (2017).
[20] C. V. Flores and G. Lugones, Phys. Rev. D 82, 063006

(2010).
[21] H. M. Väth and G. Chanmugan, Astron. Astrophys. 260,

250 (1992).
[22] C. Chirenti, R. Gold, and M. C. Miller, Astrophys. J. 837, 67

(2017).
[23] L. M. Franco, B. Link, and R. I. Epstein, Astrophys. J. 543,

987 (2000).
[24] T. Hinderer, A. Taracchini, F. Foucart, and A. Buonanno,

Phys. Rev. Lett. 116, 181101 (2016).

[25] D. Tsang, J. S. Read, T. Hinderer, A. L. Piro, and R.
Bondarescu, Phys. Rev. Lett. 108, 011102 (2012).

[26] I. P. Lopes and S. Turck-Chiéze, Astron. Astrophys. 290,
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