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We search for an extension of the Standard Model that contains a viable dark matter candidate and that
can be embedded into a fundamental, asymptotically safe, quantum field theory with quantum gravity.
Demanding asymptotic safety leads to boundary conditions for the nongravitational couplings at the Planck
scale. For a given dark matter model, these translate into constraints on the mass of the dark matter
candidate. We derive constraints on the dark matter mass and couplings in two minimal dark matter models:
(i) scalar dark matter coupled via the Higgs portal in the B − Lmodel; (ii) fermionic dark matter in aUð1ÞX
extension of the Standard Model, coupled via the new gauge boson. For scalar dark matter, we find
56 GeV < MDM < 63 GeV, and for fermionic dark matter, MDM ≤ 50 TeV. Within our framework, we
identify three benchmark scenarios with distinct phenomenological consequences.
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I. INTRODUCTION

Our current understanding of nature demands the exist-
ence of additional matter degrees of freedom. Separately,
quantum effects from the gravity sector must affect our
quantum field theory (QFT) framework at energies close to
the Planck scale. In this paper, we simultaneously address
these two questions and explore what the high energy
effects of gravity imply for the new matter degrees of
freedom at the low energy scale. Our working hypothesis is
that the underlying QFT, which contains a dark matter
candidate, should become asymptotically safe with the
inclusion of quantum gravity. This sets constraints on the
model parameter space leading to predictions for dark
matter phenomenology.
Since our best current description of microscopic proc-

esses in nature is QFT, we will extend the current theory
that describes the physics of the visible sector, the Standard
Model (SM), by additional quantum fields. The new fields
have to be stable and account for the dark matter (DM)
component of our Universe. In our extensions, we are
guided by minimality, which naturally leads us to consider

the simplest known production mechanism for such dark
sector particles, the thermal freeze-out [1–9].
The question we address in this paper is which minimal

models with a DM candidate have an ultraviolet (UV) safe
embedding into a theory of quantum gravity and what that
implies for their available parameter space. While the
observations of galaxies and clusters can have substantial
uncertainties, when it comes to predicting the exact value of
the missing DM component [10], the observations of the
cosmic microwave background lead to a very solid meas-
urement of its abundance, which we use as our benchmark
ΩDMh2 ≈ 0.12 [11]. Previous work has found DM mass
bounds from the general consideration of unitarity [12,13];
our bounds lead to more stringent mass constraints.
We choose a minimal approach to quantum gravity,

assuming the framework of QFT and no additional degrees
of freedom besides the spin-2 field in the gravitational
sector. As pointed out in Ref. [14], the UV behavior of a
QFT describing quantum gravity might be governed by a
nontrivial fixed point. This UV fixed point would make the
theory UV finite and thus, nonperturbatively renormaliz-
able. Starting with the seminal work by Reuter [15], a lot of
evidence was collected in favor of this scenario [16–29].
The interplay of quantum gravity and matter was exten-
sively investigated as well [30–38].
In a fundamental theory of nature, not only must the

gravity couplings become asymptotically safe, but the
matter coupling must also be either asymptotically safe or
free. Due to this requirement, asymptotically safe quantum
gravity can, in some cases, predict the values of couplings in
the SM. These predictions appear as boundary conditions at
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the Planck scale. If these boundary conditions are not
fulfilled then couplings typically run into Landau poles.
The first prediction of asymptotically safe quantum

gravity was the Higgs boson mass [39]: asymptotic safety
predicts that the quartic scalar coupling is roughly vanish-
ing at the Plank scale. This yields a Higgs boson mass in the
range from roughly 126 to 136 GeV, depending, for
instance, on the value of the top mass. Also, a retrodiction
of the top mass [40] and the difference between the top and
the bottom mass [41] were attempted. See also [42–45] for
further works in this context.
This paper is structured as follows: In Sec. II, we give a

short executive summary of our main ideas and explain
why we consider certain dark models. In Sec. III, we detail
in detail the quantum gravity contribution to the beta
functions of the matter couplings and how they lead to
boundary conditions at the Planck scale. In Sec. IV, we
present the DM model that we consider in two different
mass hierarchies, in one mass hierarchy, the scalar, and in
the other, the fermion is the DM candidate. In both cases,
we show how the boundary condition from gravity is
applied and the consequences on the computed relic
density. In Sec. V, we critically discuss our findings, in
particular, the uncertainty in the computation of the
quantum gravity contributions.

II. EXECUTIVE SUMMARY
FOR THE BUSY READER

Wework under the hypothesis that QFT is a fundamental
description of nature at all scales. Thus, we have to take
into account the effects of quantum gravity when approach-
ing the Planck scale. Extensive research in this direction
has been conducted, and we discuss the technical aspects in
the following section. However, the main point is that
quantum gravity provides Planck scale boundary condi-
tions for the renormalization group (RG) flow equations.
We will demonstrate that those conditions constrain the
allowed masses of DM candidates for the simplest models
of DM.
Our approach is based on several key assumptions. The

first assumptions are that the RG flow of all matter fields
remains stable up to the Planck scale. Thus, no Landau
poles or vacuum instabilities occur below Planckian ener-
gies. As we will see, this assumption alone provides
constraints on the allowed DM models and is independent
of the assumed theory of quantum gravity. Furthermore, we
assume the following about the theory of quantum gravity:

(i) Spacetime is 3þ 1 dimensional.
(ii) The finiteness of the gravitational and matter cou-

plings is guaranteed by an asymptotically safe
fixed point.

(iii) The transition from the classical gravity regime to
the asymptotically safe regime happens close to the
Planck scale.

The description of quantum gravity is minimal in the sense
that it does not introduce new concepts nor new fields in the
gravitational sector. The entire system including gravity is
described in the framework of quantum field theory.
These assumptions lead us to boundary conditions for

the matter couplings at the Planck scale. Our results also
hold if similar boundary conditions are obtained from
different assumptions. For example, scale invariance above
the Planck scale in the scalar sector and the demand that all
gauge couplings remain perturbative until the Planck scale,
lead to similar boundary conditions.
For a theory to contain a DM candidate, a new field has

to be present, which
(i) is stable or long-lived on cosmic time scales.
(ii) has a portal interaction with the SM fields in order to

be produced in the early Universe.
Among the simplest portals to the dark sector is the Higgs
field. The renormalizable interaction λpH†HSS� is
unavoidable once a new scalar field is present in the theory,
and it can communicate between the SM and the dark
sector. The interaction strength is controlled by the portal
coupling λp. This portal coupling is forced to be roughly
zero at the Planck scale by the quantum gravity contribu-
tions [46,47].
In Ref. [46], it has been argued that this portal setup is

not viable if there are only scalars in the dark sector. The
reason is that the interaction parameter is multiplicatively
renormalized and thus not generated once set to zero. We
explore a dark sector where also other interactions are
present that can generate the portal coupling. What can
those interactions be?
One possibility is a Yukawa induced portal. Here, a new

fermion with interactions to the DM scalar ysψ̄ψS and the
Higgs boson yhψ̄ψH can generate the portal coupling at
one loop. However, this interaction breaks the Z2 sym-
metry, which is essential for the stability of the scalar field
S. Consequently, this scenario does not lead to a long-lived
field S.
The other possibility is the gauge induced portal. We

argued that the portal coupling has to be induced by an
interaction that preserves the stabilizing Z2 symmetry. This
can be the case if a new gauge force is present in nature.
The new gauge boson has to couple to the DM scalar field
and at the same time couple to the Higgs scalar. This can be
realized in two ways, either through a quantum number
assignment to the new gauge boson, which contains
hypercharge, or kinetic mixing to the Uð1ÞY gauge boson.
The new gauge symmetry can remain unbroken if the

gauge boson has a Stueckelberg type mass [48] or be
spontaneously broken at a higher scale. In either case, by an
appropriate choice of quantum numbers, a stable field
naturally arises in the theory. This field can either be

(i) a scalar fieldS,with an inducedHiggs portal coupling.
We perform the RGanalysis in the casewhere the new
Uð1Þ symmetry is the B − L symmetry. This gauge
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symmetry is the simplest way to make the additional
heavy fermions decay inorder not to beoverproduced.
Those fermions are a necessary ingredient to guar-
antee thevacuumstability of the scalar fieldS.We find
an upper bound on the scalar portal coupling λp of the
order of 10−1 at the DM scale. The relic density
constraint, in this case, can only be satisfied if the DM
mass is close to the Higgs boson resonance, which
implies that MDM ≈mh=2.

(ii) a new fermion field, which couples to the SM
through the gauge boson portal (Z0) of the new
gauge symmetry. Since the value of the gauge
coupling at the DM scale is bounded from above
due to the high-scale boundary condition, we can
derive an upper bound on the DM mass. We find the
upper bound on the DM mass to beMDM < 50 TeV
in the Uð1ÞX gauge extension of the SM. Note that
the relic density requirement in this maximal mass
scenario is only satisfied if the annihilation cross
section is resonantly enhanced.

If we additionally require that all scalar quartic couplings
remain positive and no vacuum instabilities arise, we are
also forced to introduce heavy fermions in the scalar DM
model. We thus argue that both DM scenarios are realiza-
tions of the same model with different hierarchies. In the
first case, the lightest dark sector particle is a light scalar,
without a vacuum expectation value (vev), and in the
second case, a light fermion, while the heavier scalar
can also get a vev.
In summary, we analyze the RG flow in asymptotically

safe quantum field theories with a symmetry structure that
permits long-lived relics. We find surprisingly low upper
bounds on the masses of those fields. The predicted masses
are well within the reach of current or near-future indirect
and direct DM searches, even though in the extremely
resonant scenarios a detection is more challenging [49,50].

III. QUANTUM GRAVITY CONTRIBUTIONS TO
THE BETA FUNCTIONS

Graviton fluctuations alter the running of all matter
couplings. Below the Planck mass, they are strongly
suppressed and thus negligible. Beyond the Planck scale,
the contributions become strong and lead to a significantly
different running of the couplings compared to the SM.
Depending on the sign of the contributions, they could
either prevent or trigger Landau poles, and prevent or assist
asymptotic freedom. For example, the Uð1Þ-gauge cou-
pling runs into a Landau pole without graviton fluctuations
beyond the Planck scale. Studies suggest that graviton
fluctuations are strong enough to prevent that Landau pole
[42,51,52].
Gravity couples universally to all matter fields. This

means that quantum gravity contributes to the running of all
gauge couplings with the same strength, independent of the
gauge group. The same holds for all Yukawa couplings and

quartic scalar couplings. This allows us discussing general
features that such couplings have in the regime beyond the
Planck scale. In the following subsections, we will detail
this for each coupling separately.
The suppression of the graviton fluctuations below the

Planck scale MPl is described by threshold functions. They
are roughly given by μ2=ðM2

Pl þ G̃�μ2Þ, where μ is the RG
scale and G̃� the dimensionless fixed-point value of the
Newton coupling. In this work, we model the suppression
with a Heaviside function for simplicity; i.e., we model the
threshold function as Θðμ2 −M2

PlÞ. The error introduced by
this approximation is negligible compared to the general
uncertainty of the graviton contributions. This approxima-
tion allows us to use the standard perturbative beta
functions without gravity below the Planck scale, while
the boundary conditions for the matter couplings at the
Planck scale are determined with gravity.
The quantum gravity contributions are obtained with a

nonperturbative computation via the functional renormal-
ization group [53], see also [54,55]. These contributions
depend on all gravitational couplings, including the
Newton coupling G, the cosmological constant Λ as well
as higher derivative couplings. Examples for the higher
derivative couplings are the couplings associated with R2

and R2
μν. In the present work, we treat these contributions as

just a number fi. In the regime beyond the Planck scale,
these indeed become constant. We do not need the depend-
ence on the gravity couplings, sincewe are only interested in
the boundary conditions at the Planck scale. We extract the
values of these numbers from previous computations as
detailed in the next sections. There is theoretical uncertainty
in the numerical values of the fi, and we vary them to
estimate the uncertainty of our predictions.
Nonperturbative quantum gravity computations are

scheme dependent and often performed in an Einstein-
Hilbert truncation. Nevertheless, the fi contain physical
information once a particular scheme is fixed, and we can
use them to determine the physical boundary conditions for
a given truncation. See Sec. V for further discussion of the
uncertainties.
The kind of boundary condition at the Planck scale

depends on whether a given coupling is
(i) UV attractive (relevant) at a fixed point,
(ii) UV repulsive (irrelevant) at a fixed point.

For a UV attractive direction, all trajectories in the vicinity
of the fixed point lead in the UV direction towards it. For a
UV repulsive direction, only one trajectory leads to the
fixed point. Consequently, an attractive direction has a
range of coupling values that lead to the fixed point, while a
repulsive direction has only one. Notably, UV repulsive
directions have a higher predictive power. The linearized
flow equations around the fixed point determine whether a
direction is attractive or repulsive. More precisely, positive
eigenvalues of the stability matrix (Bij ¼ −∂giβgj) belong

DARK MATTER MEETS QUANTUM GRAVITY PHYS. REV. D 101, 063015 (2020)

063015-3



to UV attractive directions, while negative eigenvalues
belong to UV repulsive directions.

A. Quartic scalar coupling

We discus the graviton contributions to a quartic scalar
self coupling with a Lagrangian of the type,

L ∼ jDμϕj2 þm2
ϕjϕj2 þ λjϕj4: ð1Þ

The following conclusions hold independent of whether ϕ
is a real or complex scalar field, whether it has gauge
interactions or not. Gravity contributions to this system
were computed, e.g., in [46,47,56–59].
We split the beta function in a part that stems from matter

fluctuations βλ;matter and in a part that stems from the
graviton fluctuations fλ,

βλ ¼ βλ;matter þ fλλ: ð2Þ

In [47], the contribution fλ was computed in an Einstein-
Hilbert like truncation,

fλ ¼
1

8π
G̃

�
20

ð1 − 2Λ̃Þ2 þ
1

ð1 − Λ̃=2Þ2
�

þ 1

8π

G̃m̃4
ϕ

λ

�
80

ð1 − 2Λ̃Þ3 þ
1

ð1 − Λ̃=2Þ3
�
; ð3Þ

where G̃ ¼ Gμ2, Λ̃ ¼ Λ=μ2, and m̃ϕ ¼ mϕ=μ are the
dimensionless versions of the Newton coupling, cosmo-
logical constant, and scalar mass, respectively, and μ is the
RG scale. Importantly, the gravitational contribution allows
for a Gaußian fixed point λ� ¼ m̃�

ϕ ¼ 0, which is also a
fixed point of βλ;matter, assuming that the gauge and Yukawa
couplings are vanishing. Indeed, the Gaußian fixed point
was found to be the only fixed point of the system [46,47].
The fixed point becomes almost Gaußian, if the gauge and
Yukawa couplings are not vanishing, typically with a small
negative value for the quartic coupling, λ� ≈ 0.
The predictive quality of the quartic scalar coupling [39]

stems from the fact that it is UV repulsive at this (almost)
Gaußian fixed point [46,47]. This entails that only one
trajectory leads to the fixed point, and the coupling value is
fully determined at the Planck scale. This leads to the
prediction,

λðMPlÞ ≈ 0: ð4Þ

The same boundary condition is, for example, also obtained
in the “flatland scenario” [60,61].

B. Gauge coupling

We now discuss the graviton contribution to the running
of the gauge coupling, which was computed, e.g., in

[42,51,52,62–64]. We again split the beta function in the
standard matter part βg;matter and into a gravity part fgg,

βg ¼ βg;matter − fgg: ð5Þ

The contribution fg does not depend on the type of gauge
symmetry. In Ref. [64], it was computed with the result,

fg ¼
G̃
16π

�
8

1 − 2Λ̃
−

4

ð1 − 2Λ̃Þ2
�
: ð6Þ

Again, G̃ ¼ Gμ2 and Λ̃ ¼ Λ=μ2 are the dimensionless
versions of the Newton coupling and cosmological con-
stant. Importantly, fg is positive for all relevant values of
the gravity couplings, see [64], which makes the contri-
bution to the beta function negative. Typical values of fg
are of the order Oð10−2Þ [41], and here we use fg ≤ 0.04.
Gravity supports asymptotic freedom for non-Abelian

gauge theories, and the gauge couplings flow into the
Gaußian fixed point g� ¼ 0 [63,64]. These directions of the
Gaußian fixed point are relevant, and thus, the gauge
couplings approach it slowly beyond the Planck scale.
No prediction can be made for their values at the
Planck scale.
For Abelian gauge theories and asymptotically nonfree

non-Abelian gauge theories, this negative contribution can
prevent the Landau pole of the gauge coupling [42,62]. To
be more precise, if the graviton contributions are strong
enough compared to the strength of the gauge coupling,
then the Landau pole is avoided and the gauge coupling
becomes either asymptotically free or safe. For a given
gravity contribution fg, this results in an upper bound for
the gauge coupling at the Planck scale. For example, if we
look at the beta function of the gauge coupling at one loop,

βg ¼ βg;1−loopg3 − fgg; ð7Þ

then the upper bound for the gauge coupling at the Planck
scale is given by

gðMPlÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fg
βg;1−loop

s
: ð8Þ

C. Yukawa coupling

The story for Yukawa couplings is similar to the Abelian
gauge coupling. The gravitational contribution needs to be
negative to be phenomenologically viable. This has been
extensively discussed in Refs. [57,58,65–67]. The negative
contribution leads to a UV attractive Gaußian fixed point
and a UV repulsive interacting fixed point. In combination,
this yields an upper bound for the Yukawa couplings at the
Planck scale.
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We split the beta function into its contributions and look
only at the one-loop contribution in the matter sector,

βy ¼ βy;1-loop-yukaway3 − βy;1-loop-gaugey − fyy; ð9Þ

where βy;1-loop-gauge is positive and depends on the gauge
couplings. Then the upper bound at the Planck scale is
given by

yðMPlÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fy þ βy;1-loop-gauge
βy;1-loop-yukawa

s
: ð10Þ

Note again, that βy;1-loop-gauge depends on the gauge cou-
plings, which might go to zero quickly. Hence, the true
bound on the Yukawa coupling might be even tighter.

D. Summary of predictivity

In summary, the asymptotic safety scenario for quantum
gravity leads to the boundary conditions at the Planck scale
displayed in (4), (8), and (10). There is no boundary
condition for non-Abelian gauge couplings, assuming that
they are asymptotically free by themselves. Below the
Planck scale, the contributions from graviton fluctuations
are strongly suppressed, and we compute the running of the
couplings with standard perturbative beta functions.
The existence of boundary conditions at the Planck scale

raises the question of the compatibility of the SM couplings
at the Planck scale with their known values at the
electroweak scale. The hypercharge and the Yukawa
couplings would not be compatible if the values for fg
and fy in (8) and (10) were too small. This results in lower
limits fg ≥ 9.8 × 10−3 and fy ≥ 10−4, assuming only SM
matter content [41]. These values are in agreement with
nonperturbative computations; see, e.g., (6).
The critical coupling is the quartic Higgs coupling λh.

Fixing the Higgs mass to its observed value and using the
SM RG running, one obtains a prediction for the quartic
Higgs coupling which is slightly negative at the Planck
scale λhðMPlÞ ¼ −0.0143 for a top pole mass of mt ¼
173 GeV [68]. On the other hand, if we fix λhðMPlÞ ≈ 0 and
use the SM RG running down to the electroweak scale, the
Higgs mass ismh ≈ 130 GeV using two-loop RG equations
andmh ≈ 136 GeV with one-loop RG equations, compared
to the experimental value of mh ¼ 125 GeV. It has to be
emphasized that this computation still has some uncertainty
due to the uncertainty of the top mass, and also extensions
of the SM do influence the value of the Higgs mass; see,
e.g., [69]. Indeed, in the latest measurements, the top pole
mass was determined with mt ¼ 171� 1 GeV [70,71],
which hints towards a smaller tension between the UV and
the IR value of the quartic Higgs coupling.
In order to investigate the constraints for SM extensions

with DM, we demand that the Higgs mass prediction
should not be significantly worse than in the SM alone.

That means that using one-loop RG equations, the resulting
Higgs mass should lie in the intervalmh ¼ð125�10ÞGeV.

IV. DARK MATTER MODELS

For a successful DM model, we need to generate portal
interactions of the dark sector with the SM and preserve
DM stability. The basic realization is an interaction that
respects a Z2 symmetry. The simplest such interaction is
provided by an Abelian gauge field. Furthermore, the SM
extension has to show stable RG trajectories and not feature
low lying Landau poles or vacuum instabilities. Thus, we
are naturally led to an extension that mimics the SM
particle content in the sense that it is a gauge-Yukawa
theory.
The new symmetry, let us call it Uð1ÞX, radiatively

generates the scalar portal below the Planck scale. It is
important to include the kinetic mixing between the
hypercharge Uð1ÞY group and the dark Uð1ÞX group.
The kinetic mixing guarantees that the scalar portal is
generated even if the Higgs is not charged under the new
symmetry.
The Lagrangian of the dark sector reads

LD ∼ Lscalar þ Lfermion þ Lgauge

∼
1

2
DμSDμS� þ λpH†HSS� þ λSðSS�Þ2 þ

m2
S

2
SS�

þ iψ̄=Dψ þMψ ψ̄ψ þ yψSψ̄ψc þ H:c:

þ 1

4
FX
μνF

μν
X þ ϵ

2
FY
μνF

μν
X þM2

Z0

2
ðZ0

μ − ∂μζÞ2: ð11Þ

Note that given a transformation property of ζ → ζ þ δ for
a gauge transformation Z0

μ → Z0
μ þ ∂μδ, the mass term for

the new gauge boson is gauge invariant [72]. The gauge
quantum numbers of the fermion and scalar fields are nψ
and nS ¼ 2nψ , respectively. The fermions are vectorlike,
i.e., the left- and right-handed components of the fields
carry the same quantum numbers such that the model is
anomaly free. We rotate the Uð1Þ sector in order to
eliminate the mixing term ϵFY

μνF
μν
X ; see Appendix A for

details. The system is then described by the mixing gauge
coupling gϵ and the dark gauge coupling gD. The dark
gauge boson covariant derivative acting on the fermion
fields reads

Dμ ¼ ∂μ þ iðgDnψ þ gϵYfÞZ0
μ; ð12Þ

where nψ is the dark fermion gauge charge and Yf the
hypercharge of a SM fermion. It is convenient to define
αD ≡ ðnψgDÞ2=4π and αϵ ≡ ðYfgϵÞ2=4π.
This system has two relevant DM phases depending on

the mass hierarchy of the involved fields.
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A. Scalar dark matter

In the case that MS ≪ Mψ ≈MZ0 and hSi ¼ 0, the
lightest particle in the spectrum is the complex scalar field
S, as discussed in Ref. [73]. Since the scalar field does not
develop a vev at the low energy scale, we are left with the
SM extended by a singlet scalar field and an emergent Z4

symmetry (S → −S and ψ → iψ) that forbids its decay. On
the other hand, in this mass hierarchy, the heavy-fermion
field has to decay in order not to be overproduced. The
simplest way to do so is to identify the gauge symmetry of
the dark sector with the B − L symmetry, which is anomaly
free in the SM with three right-handed neutrinos. Now the
interaction with the Higgs and lepton fields yDHL̄ψR and
yDHL̄ψc

L is allowed, SM leptons are part of the Z4

symmetric subsector (L → iL) and given that nψ ¼ 1

and the ψ fermions can decay.
However, the fermion interactions induce a decay

for the DM scalar by a dimension six operator, the final
states of the decay are light neutrinos. The lifetime
constraints for DM imply that the fermion mass has to
be above Mψ > yD1014 GeV, where yD is the coupling of
the fermion decay operator. Decay channels involving the
Z0 are forbidden by B − L symmetry. Since the fact that the
B − L symmetry is unbroken is directly linked to DM
stability in this scenario, it implies that SM neutrinos
are pure Dirac particles. In reverse conclusion, this implies
that if lepton number violating neutrinoless double beta
decay is experimentally confirmed, this scenario would be
ruled out.
As discussed in the previous section, asymptotic safety

predicts vanishing quartic scalar couplings at the Planck
scale,

λpðMPlÞ ¼ λSðMPlÞ ≈ 0: ð13Þ

For the Uð1Þ gauge couplings, it predicts an upper bound,

gDðMPlÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fg
βgD;1-loop

s
;

gϵðMPlÞ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fg
βgϵ;1-loop

s
: ð14Þ

The one-loop beta functions βgD;1-loop and βgϵ;1-loop are
displayed in Appendix B. This leads to Fig. 1, where we
display the favored (green) and disfavored (red) coupling
values at the Planck scale for fg ¼ 0.04. In the green
region, the couplings gD and gϵ become asymptotically
free, while in the red region, they run into a Landau pole.
The system has three interacting fixed points at ðg�D; g�ϵÞ ¼
ð0.86;−0.67Þ and ðg�D; g�ϵÞ ¼ ð0;�0.69Þ, where the cou-
plings become asymptotically safe. However, these fixed
points depend on the hypercharge coupling g, and for
g → 0, they turn into a line of fixed points.

In the scalar DM phase, the system shows the following
features:

(i) The gauge interaction induces the scalar portal
coupling between the DM scalar and the Higgs field.

(ii) The fermionic contributions ensure the vacuum
stability of the scalar field S.

(iii) The RG evolution of the portal coupling allows
placing an upper bound on its value at the low scale.

As discussed in Sec. III D, we require the predicted Higgs
mass to lie within 10 GeV around the experimentally
measured value.
In Fig. 2, we display an example of an RG evolution

of the marginal couplings, where all boundary condi-
tions at the Planck scale are fulfilled and also the Higgs
mass is correct. The Higgs potential is metastable, but
the lifetime of the electroweak vacuum is longer than in
the SM due to the positive contributions of the new
gauge interactions to the running of the quartic Higgs
coupling.
By scanning the parameter space of gD and gϵ, we find

upper bounds for the portal coupling as a function of fg. We
fitted the values for the maximal portal coupling and the
corresponding minimal Higgs mass,

jλpðTeVÞj ≲ 2.1fg þ 88f2g; ð15Þ

mh;min ≈ ð136 − 119fg þ 2.6 × 104f2gÞ GeV: ð16Þ

These bounds are derived by combining the two predic-
tions from quantum gravity: (i) the quartic couplings at the

FIG. 1. Favored (green) and disfavored (red) and coupling
values of gD and gϵ at the Planck scale in the B − L model. The
arrows indicate the RG flow towards the UV beyond the Planck
scale; i.e., the favored coupling values flow toward the asymp-
totically free fixed point, while the disfavored couplings run
towards a Landau pole. The asymptotically safe fixed points are
marked with blue dots.
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Planck scale are approximately vanishing λpðMPlÞ ¼
λsðMPlÞ ≈ 0; (ii) the Uð1Þ=kinetic mixing couplings gD
and gϵ, which generate the portal coupling, are limited
by an upper bound at the Planck scale. A third, important
constraint is the vacuum stability of the dark scalar S.
Given such boundary conditions, the RG evolution within
this model does not permit larger values of the portal
coupling.
As expected from (14), the portal coupling depends

roughly quadratically on the graviton contribution fg. The
Higgs mass for fg ¼ 0 is precisely the result for SM
running at one loop. This shifts with two-loop running to
130 GeV at a top pole mass of mt ¼ 173 GeV, and
consequently, we expect (16) to be globally shifted by
about 6 GeV at two-loop order.
The fitted expressions (16) illustrate an interesting

mechanism in this system: large values of the portal
coupling λp can only be reached in exchange for a small
Higgs mass. This can be understood from the following
consideration. A larger portal coupling can be achieved
with a larger value of either gD or gϵ. The running of λh, and
thus, the resulting Higgs mass, does not directly depend on
gD, but a large value of gD triggers a vacuum instability in
the dark scalar S. This constraint is tighter than the quantum
gravity constraint for fg ¼ 0.04 and forbids too large
values of gD. Hence, one needs to increase gϵ to enhance
the portal coupling without triggering a vacuum instability.
However, gϵ affects the resulting Higgs mass at leading
order, and this, in summary, links a large portal coupling
with a small Higgs mass.
As explained before, we restrict the Higgs mass to the

interval mh ¼ ð125� 10Þ GeV. In that case, we find

jλpðTeVÞj ≤ 0.15: ð17Þ

If we restrict the Higgs mass to an even tighter interval
mh ¼ ð125� 1Þ GeV, we find a correspondingly tighter
bound on the portal coupling, jλpj ≤ 0.1.
In Fig. 3, we show that experiments exclude DM masses

away from the Higgs resonance up to ∼2 TeV. In order to
reach masses above 2 TeV, a portal coupling jλpj ≥ 0.45 is
needed, which in turn requires fg ≥ 0.06 and comes at the

FIG. 2. An example of the running couplings in the B − L model with scalar DM. In this example, we set gDðMPlÞ ¼ 0.1 and obtain
λpðTeVÞ ¼ −0.0025 for the portal coupling. Left: gauge and top-Yukawa couplings. Right: quartic scalar couplings.

FIG. 3. The values of portal coupling as a function of DM mass
at which the correct relic abundance is reproduced (blue line),
below that line there is too much DM. Superposed are constraints
from the XENON1T experiment (green line) and the FermiLAT
dwarf galaxy observations (red). The grey shaded region of the
parameter space is disfavored by the quantum gravity boundary
conditions. The inset on the top right shows a zoom out from the
resonant region to the full portal coupling parameter space.
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cost of a Higgs mass of mh ¼ 50 GeV. Such a small Higgs
value is too far from its measured value, and hence, we
either need to add new particles to change the RG flow or
violate the boundary conditions at the Planck scale. In
consequence, masses above 2 TeV are indeed not compat-
ible with our assumptions, independent of the value of fg
We emphasize that in the scalar phase of our DMmodel, we
obtain a very stringent prediction for the DM parameters, as
we will discuss in more detail in the coming section.

1. Relic density

The only important DM interaction in the IR is the Higgs
portal interaction. Thus, the upper bound on the portal
coupling leads to a prediction for the DMmass. Computing
the s-channel diagrams mediated by the Higgs boson
provides the required interaction cross section [74],

ðσvrel:Þ ¼
8λ2pv2h
gS

ffiffiffi
s

p Γhð
ffiffiffi
s

p Þ
ðm2

h − sÞ2 þ ΓhðmhÞ2m2
h

; ð18Þ

where gS is the number of scalar degrees of freedom,mh, vh
the Higgs boson mass and vev, and Γhð

ffiffiffi
s

p Þ the momentum
dependent Higgs decay width.
We apply the boundary layer method [75] to obtain an

asymptotic solution for the Boltzmann equation and deter-
mine the relic density. Note that since we are interested in
values close to the Higgs resonance, the full thermal
average of the cross sections has to be performed [76]

hσvrel:i ¼
Z

∞

4M2
S

ðσvrel:Þs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4M2

S

p
K1ð

ffiffiffi
s

p
=TÞ

16TM4
SK

2
2ðMS=TÞ

ds: ð19Þ

Here, K1 and K2 are modified Bessel functions of the first
and second kind and M2

S ¼ m2
S þ λpv2h is the DM mass.

In Fig. 3, we show the values of the portal coupling as a
function of the DM mass for which the cosmological relic
density constraint is satisfied. The upper bound from
quantum gravity is indicated by the horizontal line. As
displayed, the relic density constraint is only satisfied if the
DM mass is in the vicinity of the Higgs resonance
45 GeV < MDM < 500 GeV. In that case, the annihilation
is resonantly enhanced, and despite the small coupling,
enough DM annihilates away to reproduce its cosmological
abundance. Current experimental constraints from
XENON1T [77] and the FermiLAT [78] experiment restrict
the allowed parameter space even further around the Higgs
resonance, leaving the viable DM mass in a narrow range
56 GeV < MDM < 63 GeV. We find that in the scalar DM
phase the model is highly predictive.
The FermiLAT bounds are derived from the limits on

the annihilation cross section to b quarks, since this is the
dominant channel in the considered mass range. For the
XENON1T limits, we used the DM-nucleon cross section
given by

σSI ¼
λ2pf2Nm

2
Nμ

2

πm4
hM

2
S

; ð20Þ

where μ is the reduced mass of the DM-nucleon system and
fN the effective Higgs-nucleon coupling, with the best
current value of fN ≈ 0.308� 0.018 [79].

B. Fermionic dark matter

In the case that Mψ ≪ MS and MZ0 ≪ MS, the lightest
stable particle in the dark sector is the new fermion. For
nonzero values of the quantum number nψ , the coupling to
the lepton doublet through the Higgs field (LHψ) is
forbidden, and the new fermion does not decay to SM
particles. The stability is thus accidental and related to the
quantum number choice of the fermion. The mass of the
gauge boson of the dark sector force has a contribution
from the Stueckelberg term in (11). Furthermore, the scalar
S can get a vev, in which case the gauge boson has two
mass contributions. Both the scalar and vector fields are
unstable due to the presence of Yukawa and gauge
interaction in the sector. As we discuss shortly, the heavy
scalar does not play a role for DM phenomenology in this
mass hierarchy.
The requirement of an asymptotically safe theory includ-

ing quantum gravity limits the values of the new gauge
coupling and the kinetic mixing. As shown in (14), this
upper bound depends on the one-loop coefficient of the
gauge beta function, which in turn depends on the quantum
number of the fermion. This is a crucial ingredient for the
predictivity of the model in this mass hierarchy: If the
fermion has a small quantum number, then the gauge
coupling can have a large value at the Planck scale. On the
other hand, a large quantum number restricts the gauge
coupling to be small at the Planck scale. For the relic
density, only the combination of the quantum number with
the gauge coupling enters, and this mechanism keeps this
roughly constant.
In Fig. 4, we show the range for the couplings gD and gϵ

favored by asymptotically safe quantum gravity for
fg ¼ 0.04. In the green region, the couplings gD and gϵ
become asymptotically free, while in the red region, they run
into a Landau pole. This system has three interacting fixed
points at ðg�D; g�ϵÞ ¼ ð1.26; 0Þ and ðg�D; g�ϵÞ ¼ ð0;�0.69Þ.
Again, these fixed points depend on the hypercharge
coupling g, and for g → 0, they turn into a line of fixed
points. If we consider each coupling separately, we obtain
the bounds,

nψgDðMPlÞ ≤ 1.26;

jgϵðMPlÞj ≤ 0.69: ð21Þ

The lowest relic density, and consequently, the largest mass
is, however, obtained with the largest product of the two
couplings as detailed in the next section. Consequently, this
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translates into the following upper bounds on the interaction
parameters:

nψgDðMPlÞgϵðMPlÞ ≤ 0.43: ð22Þ

Since the gauge boson provides the link between the DM
and the SM sector, those couplings are the most important
ones for our considerations. At low energy scales, the
relatively mild RG running of those couplings leads to
the following maximally attainable values nψgDðTeVÞ ≤
0.51 and gϵðTeVÞ ≤ 0.16 or equivalently,

αDðTeVÞ≡ ðnψgDðTeVÞÞ2
4π

≤ 0.021;

αϵðTeVÞ≡ ðYfgϵðTeVÞÞ2
4π

≤ 2 × 10−3: ð23Þ

In this scenario, the Higgs mass is only affected at the
percent level and does not provide additional constraints on
the model parameters.

1. Relic density

IfMZ0 > Mψ , then the relic density is set by an s-channel
process where the new gauge boson is exchanged. The
coupling to the SM particles is controlled by the kinetic
mixing between the dark sector gauge boson and the
hypercharge gauge boson. The cross section for the
annihilation into a pair of SM fermions is given by

ðσvrel:Þ ¼
4παDαϵ

3s

ffiffiffiffiffiffiffiffiffiffi
s−4m2

f

M2
ψ

r
ð2m2

f þ sÞð2M2
ψ þ sÞ

ðM2
Z0 − sÞ2 þ Γ2

XM
2
Z0

: ð24Þ

For the total cross section, we sum over all kinematically
accessible final states. As in the scalar DM case, the thermal
average is performed following [76], since we are dealing
with processes close to the resonance.
An additional annihilation channel is possible, if the dark

sector scalar gets a vev and a mixing with the Higgs boson
is induced,

ðσvrel:Þ ¼
y2ψ sin2ðθÞðs − 4M2

χÞΓhð
ffiffiffi
s

p Þffiffiffi
s

p ððM2
S − sÞ2 þ Γ2

SM
2
SÞ

: ð25Þ

However, this cross section is velocity suppressed, as it is a
p-wave process. Additionally, in the mass hierarchy
regime MS ≫ mh, given the quantum gravity bound on
the portal coupling, the mixing angle sinðθÞ¼λpvhvS=M2

S≈
λpvh=MS is bound to be below Oð10−4Þ. The Yukawa
coupling, as discussed in Sec. III C, is also bounded by the
quantum gravity boundary condition to be yψ ≲Oð1Þ. We
therefore assume, that even if the dark scalar is of similar
mass as the dark gauge boson, the cross section of the
Yukawa channel is subdominant.
If Mψ > MZ0 , then the dominant process is a t-channel

interaction leading to ψ þ ψ → Z0
μ þ Z0

μ, and the gauge
bosons Z0

μ decay into SM particles due to kinetic mixing.
The dominant s-wave contribution to the cross section is
given by

hσvrel:i ≈
πα2D
M2

ψ

�
1 −

M2
Z0

M2
ψ

�
3=2�

1 −
M2

Z0

2M2
ψ

�−2
: ð26Þ

Since αϵ can be very small in this scenario, we used the
global maximum, as a limit for the dark gauge coupling
αD < 0.03. Note that since αD is restricted to relatively
small coupling values, the Sommerfeld enhancement,
which is possible in this regime, if MZ0 ≪ Mψ , is only
marginal during the freeze-out, but might become relevant
at low velocities today.
In Fig. 5, the relic abundance is shown as a function of

the mass of the fermionic DM candidate ψ . In the heavy
mediator regime, i.e., MZ0 > Mψ , the measured DM relic
density can only be obtained close to the resonant regime.
Analogously to Refs. [48,80–82], an upper bound can be
obtained on the DM mass, in this case, by assuming
maximal on resonance annihilation. Our upper bound is
more robust than previously assumed as the DM gauge
charge enters the effective coupling αD and is, thus,
constrained by the requirement of asymptotic safety as
well. In contrast to [48], where the upper bound was a
function of the free DM gauge charge, in our case, the DM
mass is generically bounded to be Mψ ≲ 50 TeV.

FIG. 4. Favored (green) and disfavored (red) and coupling
values of nψgD and gϵ at the Planck scale in theUð1ÞX model. The
arrows indicate the RG flow towards the UV beyond the Planck
scale; i.e., the favored coupling values flow toward the asymp-
totically free fixed point, while the disfavored couplings run
towards a Landau pole. The asymptotically safe fixed points are
marked with blue dots.
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One may ask the question of whether reducing the
coupling value of αϵ, which leads to smaller gauge boson
decay width, if one may reach a more extreme resonance
and, thus, a larger DM mass in this finely tuned regime.
However, due to thermal effects on the velocity averaged
cross section, a further reduction in the decay width does
not compensate for the scaling of the cross section with αϵ.
Thus, in this manner, no larger DM masses can be reached.
The derived upper bound on the mass holds also in a

mixed scenario, where scalar and fermion fields are stable.
Assuming that part of the DM is made up of stable scalar
particles S, as discussed in the previous section, less DM
can be made of heavy fermions ψ . Since its relic density
scales as Ωψ ∝ M2

ψ , the upper mass bound only gets tighter
in such a multicomponent DM scenario.
In the case thatMZ0 < Mψ , the upper mass bound is even

more severe, and the maximal attainable DM mass is
Mψ < 2 TeV. For this scenario to be phenomenologically
viable, however, the coupling related to the kinetic mixing
parameter αϵ has to be very small leading to relatively long
lifetimes for the Z0

μ; see, for example, Ref. [83]. Since the
annihilation process through the vector mediator is an s-
wave process, severe bounds from the CMB rule out DM
masses below Oð10Þ GeV [84] and a combined analysis of
indirect detection experiments leads to Oð20Þ GeV [85].
Finally, there is one configuration, which can also lead to

a very light (sub-GeV) DM scenario. This is possible if the
scalar S decays through mixing with the Higgs boson and
serves as the mediator to the SM. This scenario is uncon-
strained by CMB observations since the annihilation

proceeds through a p-wave process and is strongly sup-
pressed at late times. The mass hierarchy MS > Mψ is
excluded in the light DM scenario [86]. However, in the
opposite regime, MS < Mψ DM as light as Oð10Þ MeV
can be thermally produced.

C. Experimental searches

In this section, we briefly summarize the viable DM
scenarios in the gauge-Yukawa dark sector embedded in
asymptotically safe quantum gravity and discuss their
experimental accessibility.

(i) Scalar DM coupled via the Higgs portal in the
resonant configuration, withMDM ≈mh=2. The por-
tal coupling in this regime can be as small as
λp ≈ 10−4; however, even with such small couplings,
the spin-independent nucleon cross section is of the
order of σSI ≈ 5 × 10−49 cm2. Despite being small,
this cross section is above the neutrino floor and thus,
testable by large volume liquid noble gas detectors,
such as DARWIN [87]. On the other hand, searches
for the annihilation signal in space will be able to
probe this parameter region as well once an improve-
ment of about 2 orders of magnitude in sensitivity
takes place. Intriguingly, there are astrophysical
observations, which might be explained by DM
annihilation in that mass range [50,88,89]. Given
the branching ratios of the Higgs boson, this scenario
predicts a gamma line with Eγ ≈ 60 GeV, corre-
sponding to an annihilation cross section of
hσvrel:iγγ ≈ 10−29 cm3=s.
Also, searches for antiparticles in cosmic rays can

provide a confirmation of this scenario. A crucial
observable is the ratio of antihelium to antideuterons
R3 ¼ 3He=d̄ and R4 ¼ 4He=d̄. In this DM scenario,
with the dominant annihilation mode being
DMDM → bb̄, those ratios are expected to be R3 ≈
3 × 10−2 and R4 ≈ 10−5, exceeding those expected
from astrophysical sourcesR3 ≈ 10−2 andR4 ≈ 10−8;
see Ref. [89] for a detailed discussion. Overall, the
flux of heavier antiparticles from DM annihilation
in this scenario is expected to be at least an order
of magnitude larger than the flux from astrophy-
sical sources and within reach of the AMS-02
experiment [90].

(ii) Fermion DM coupled via the Z0 portal. Here, two
mass hierarchy regimes can lead to distinctly different
phenomenologies. The first is the light mediator
regime with MDM > MZ0 with allowed DM masses
betweenOð10Þ GeV < MDM < 2 TeV. Here, due to
a potentially large lifetime of the mediator, the
annihilation signal from Dwarf galaxies and the
Galactic center can be significantly softened and
challenging to detect. However, searches thatmeasure
the total energy injections, such as CMB observations

FIG. 5. The relic density for different fermionic DM masses
given three mediator mass choices assuming maximal couplings
that are still compatible with asymptotically safe quantum gravity.
The maximal DM mass at which DM is not overproduced is
50 TeV, in maximal resonance with a 100 TeV force mediator.
The gauge couplings are such that their product maximizes the
quantum-gravity bound; see (23).
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[91] or radio wave observations of the early Universe
[92], can explore this scenario efficiently. Since, in
this case, we do not have a prediction for the coupling
strength αϵ from the freeze-out condition, the direct
detection signal can potentially be very small.
The second is the heavy mediator mass regime,

where the correct relic abundance can only be re-
produced close to the s-channel resonance, i.e.,
MDM ≈ 2MZ0 . The spin independent cross section is
given by σSI≈1.8×10−38αDαϵ ðTeV=MDMÞ2cm2≈
1.5×10−42 ðTeV=MDMÞ2cm2. Thus, in the resonant
scenario, XENON1T excludes DM masses below
2.5 TeV, and the cross section remains above the
neutrino floor up to a DMmass of 9 TeV. However, in
the heavymediatormass regimeDMmasses can be as
large as MDM ∼ 50 TeV and the most promising
search strategy seems the search for the annihilation
signals with future experiments, such as the Cher-
enkov Telescope Array, CTA [93].
A further bound is provided by hiddenUð1Þ gauge

boson searches at the LHC [94]. Here, the kinetic-
mixing coupling ϵ ¼ −gϵ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2Y þ g2ϵ

p
is constrained

as a function of the mediator mass. For MZ0 ≤
2.5 TeV (1 TeV), the bound is jgϵj ≤ 0.22ð0.015Þ,
while there is no bound for larger MZ0. However, for
these mediator masses, we can choose gϵ small
enough and still reach the correct DM relic abun-
dance. The same holds in the light-mediator regime
where gϵ can be chosen very small. Hence, colliders
become insensitive to this scenario.On the other hand,
observations of the sun can investigate parts of the
parameter space with long-lived Z0 [95].

(iii) FermionDM coupled though the scalar-Higgs portal.
In this scenario, masses of the order of a few GeV
are already excluded by direct detection searches,
but the mass window between Oð10Þ MeV <
MDM < Oð5Þ GeV remains open. The relic density
can be set in this mass regime if the scalar mediator
mass is lower than the DM fermion mass [84].
Annihilation signals are strongly suppressed in this
scenario, and the best way to explore its parameter
space is direct searches with lower detection thresh-
olds; see Refs. [96,97].

V. DISCUSSION OF UNCERTAINTIES

Given our results, it is important to discuss the uncer-
tainties and caveats of the approach.
Our most basic hypothesis is that we consider only

models that are asymptotically safe after the inclusion of
quantum gravity. Quantum gravity is treated here as a
fundamental nonperturbative QFT. In the case of a different
embedding of the SM such as string theory, our results only
hold if the asymptotically safe fixed point serves as an
attractor of the RG flows [98].

While there are many hints for the existence of the
asymptotically safe fixed point, quantitative control over
the fixed point is not yet achieved. This is related to the
enormous amount of tensor structures in gravity and the
scheme dependence of graviton contributions. Hence, using
a certain value for, e.g., the coefficient fg has to be taken
with caution. Thus, we have used a rather large range for fg,
trying to account for the large uncertainty. We emphasize,
however, that in the case of the scalar DM scenario, coupled
to the SM through the Higgs portal, our conclusions are
essentially independent of the exact value of fg.
In our approach, quantum gravity provides Planck-scale

boundary conditions, and thus, it would be interesting to
study more general guiding principles, which can provide
boundary conditions at high energies. For example, scale
invariance or conformal symmetry could be such concepts
and questions such as the value of the Higgs mass [99] and
the viability of SM extensions has been investigated under
this assumption; see, for example, [100–103].
Additionally, to the discussion of the generality of our

approach to estimating the effects of quantum gravity, we
can also raise the question of how general our DM
framework is. As argued in [104], a simplified DM model
can be only a part of a UV complete sector, but efficiently
capture the relevant information for the DM production
detection. However, in our approach, we go further and
raise the question of what a dark sector can look like with
fields at a much lower scale than the Planck scale. In
particular, this implies that there should be no Landau poles
between the low energy scale and the Planck scale, given
that we consider an Abelian SM extension. We find that RG
stability favors a gauge-Yukawa theory. In that sense, our
dark sector construction is indeed rather general.
A logical extension of this scenario would be the

introduction of a DM candidate charged under a non-
Abelian interaction. This interaction could be either of a
SM force; see, for example, Refs. [13,105] or a new non-
Abelian interaction; see Refs. [106–108]. Relevant
constraints can also be obtained in these scenarios, in
particular, if the non-Abelian gauge coupling is not asymp-
totically free by itself. However, we defer the investigation
of non-Abelian dark sectors embedded in asymptotically
safe quantum gravity to future work.

VI. CONCLUSIONS

In this work, we have investigated the interplay of dark
matter and asymptotically safe quantum gravity. The
assumption that quantum gravity and all matter couplings
are asymptotically safe or free leads to boundary conditions
at the Planck scale. These boundary conditions, in turn,
lead to the mass constraints of the dark matter candidate.
We applied this formalism to two minimal dark matter

scenarios. The requirement that the dark matter candidate is
stable or long-lived and has a portal coupling to the SM as
well as stable RG trajectories up to the Planck scale
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naturally led us to a gauge-Yukawa theory. We introduced a
new Uð1ÞX gauge group, a scalar via the Higgs portal and
dark vectorlike fermions. Depending on the mass hierarchy,
either the scalar or the fermion is the dark matter candidate.
For the scalar dark matter, we identified the new gauge

group with B − L. The model is predictive because
quantum gravity demands a vanishing portal coupling at
the Planck scale and sets an upper bound on the new gauge
interactions. As a consequence, only small portal couplings
are reachable in the IR. We find that the model is highly
predictive in this scenario. Due to the experimental con-
straints of XENON1T and FermiLAT, the allowed mass
range for the dark matter candidate is 56 GeV < MDM <
63 GeV.
For fermionic dark matter, the predictive power of the

model relies on an interesting mechanism. The boundary
conditions from quantum gravity on the new gauge cou-
plings depend on the quantum number of the dark fermion.
However, also the production rate depends on this number,
and, remarkably, these dependencies cancel each other. This
makes this model highly predictive. If the mediator gauge
boson is heavier than the dark fermion, the mass bound is
given by Mψ ≤ 50 TeV. If the mediator gauge boson is
lighter, then the bound is even tighter, Mψ ≤ 2 TeV.
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APPENDIX A: KINETIC MIXING

An important ingredient for the scalar DM model is the
kinetic mixing between the two Uð1Þ gauge sectors. This
allows us to generate the portal coupling λp without the
Higgs boson being charged under the new gauge group
Uð1ÞX. We present here the computational details and
follow closely the discussions in Refs. [109,110].
The Lagrangian including kinetic mixing is given by

L ∼
1

4
FY
μνF

μν
Y þ 1

4
FX
μνF

μν
X þ ϵ

2
FY
μνF

μν
X : ðA1Þ

The term FYFX can be eliminated by a rotation and a
rescaling of the gauge fields. The transformation,

 
A1
μ

A2
μ

!
¼ 1ffiffiffi

2
p
 1ffiffiffiffiffiffi

1−ϵ
p − 1ffiffiffiffiffiffi

1þϵ
p

1ffiffiffiffiffiffi
1−ϵ

p 1ffiffiffiffiffiffi
1þϵ

p

! 
B1
μ

B2
μ

!
; ðA2Þ

brings (A1) in diagonal shape. The price to pay is that the
covariant derivative is now nondiagonal,

Dμ ¼ ∂μþ iðqYg11þqXg21ÞBμ
1þ iðqYg12þqXg22ÞBμ

2;

ðA3Þ

where qY and qX are the charges under the respective gauge
group and the couplings gij are given by

1ffiffiffi
2

p
�
g1 0

0 g2

�0@ 1ffiffiffiffiffiffi
1−ϵ

p − 1ffiffiffiffiffiffi
1þϵ

p

1ffiffiffiffiffiffi
1−ϵ

p 1ffiffiffiffiffiffi
1þϵ

p

1
A ¼

�
g11 g12
g21 g22

�
: ðA4Þ

The computation of the beta functions is most convenient
in this basis. We obtain the beta functions for g11, g12, g22,
and g22 from PyR@TE2 [111,112]. However, these couplings
are not independent, which is visible in (A4). They fulfil the
relation,

g11g22 ¼ −g12g21: ðA5Þ

For the physics, it is more convenient to parameterize the
couplings in terms of the three independent couplings gY ,
gϵ, and gD. This is achieved by the rotation,

�
gY 0

gϵ gD

�
¼
�
g11 g12
g21 g22

�
OT

R; ðA6Þ

where

OR ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g222 þ g221

p �
g22 −g21
g21 g22

�
: ðA7Þ

With this, we arrive at the covariant derivative given in (12).
This rotation also transforms the gauge field into their
standard form,

�
Bμ

Z0
μ

�
¼ OR

�
B1
μ

B2
μ

�
: ðA8Þ

In order to obtain the beta functions for gY, gϵ, and gD, we
take a scale derivative of (A6). We plug in the computed
beta functions of g11, g12, g22, and g22. Finally, (A6)
together with (A5) allows us to express g11, g12, g22,
and g22 in terms of gY , gϵ, and gD. This yields the beta
functions for gY, gϵ, and gD displayed in the next appendix.

APPENDIX B: BETA FUNCTIONS

We used the package PyR@TE2 [111,112] for the deri-
vation of the beta functions. In all considered models, the
beta functions for the SM gauge couplings remain
unchanged at a one-loop order (up to the gravity contri-
butions). They are given by
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ð4πÞ2βg ¼ −f̃ggþ
41

6
g3; ð4πÞ2βg2 ¼ −f̃gg2 −

19

6
g32;

ð4πÞ2βg3 ¼ −f̃gg3 − 7g33; ðB1Þ

where we introduced f̃i ¼ ð4πÞ2fi.

1. B−L model

The beta functions in the B − L model are given by
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ð4πÞ2βyψ ¼ −f̃yyψ þ 6y3ψ − 6g2Dyψ : ðB8Þ

Here, Nf refers to the degrees of freedom counted in Weyl
fermions of the vectorlike fermion ψ .

2. Uð1ÞX model

The beta functions in the Uð1ÞX model are given by
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The model can be extended with an additional Higgs portal
scalar. The beta functions of λp and λS as well as their
contributions to βλh are then the same as in the B − L
model. The contributions to the gauge couplings are
displayed via the quantum number nS.
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