
 

Galactic positron excess from selectively enhanced dark matter annihilation
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Precision measurements of the positron flux in the cosmic ray have revealed an unexplained bump in
the spectrum around E ≃ 300 GeV, not clearly attributable to known astrophysical processes. We
propose annihilation of dark matter of mass mχ ¼ 780 GeV with a late-time cross section σv ¼
4.63 × 10−24 cm3 s−1 as a possible source. The nonmonotonic dependence of the annihilation rate on
dark matter velocity, owing to a selective p-wave Sommerfeld enhancement, allows such a large signal
from the Milky Way without violating corresponding constraints from cosmic microwave background and
dwarf galaxy observations. We briefly explore other signatures of this scenario, and outline avenues to test
it in future experiments.
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I. INTRODUCTION

Observations of the positron flux in cosmic rays have
seen tremendous progress and excitement in recent years.
PAMELA [1], Fermi-LAT [2], MASS [3], Wizard/
CAPRICE [4], AMS-01 [5], and HEAT [6] have reported
the positron flux in the cosmic ray, with PAMELA and
Fermi-LAT providing evidence for a rising positron flux
around 100 GeV. The AMS-02 collaboration, in its latest
published results with three times more statistics than
previous measurements, has presented the positron flux
up to energy 1 TeV, and the existence of a bump in the
flux spectrum at E ≃ 300 GeV followed by a cutoff at
E ≃ 810 GeV has been confirmed [7].
The positron flux spectrum shows several distinct

features. The flattening at E ≃ 8 GeV seen in Fig. 1 is
understood to be mainly caused by the diffusion of the
positrons produced from the decay of the scattering
products of the cosmic ray with the interstellar gas [8,9],
as described in Ref. [7]. However, the shape of the
spectrum in the region E > 100 GeV, a rise followed by
a sharp drop, is not yet fully understood.
Dark Matter (DM) annihilation/decay and particle accel-

eration by pulsars have been shown to be able to reproduce
the positron spectrum, but several concerns remain
[10–16]. DM of mass ð1.5–3Þ TeV and annihilation cross

section ð6–23Þ × 10−24 cm3 s−1 [11,12], such that it first
annihilates into light intermediate states that subsequently
decay to charged leptons, can produce a good fit to the
earlier AMS data [17]. However, this large annihilation
cross section into leptons is disallowed by the Fermi-LAT
observations of the dwarf galaxies [18], which show no
excess gamma-ray flux. Such a large DM annihilation cross

FIG. 1. AMS-02 positron flux measurements (black dots),
previous data (other symbols), and our theoretical prediction
(red solid curve) due to Sommerfeld-enhanced p-wave DM
annihilation rate ðσvÞp ¼ 4.63 × 10−24 cm3 s−1 and DM mass
mχ ¼ 780 GeV. The red curve includes positrons from both the
astrophysical background and DM annihilation. The theoretical
residuals over the AMS-02 data are shown in the lower panel. The
goodness of fit χ2=d:o:f: ¼ 2.07.
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section into visible sector particles during the recombination
era is also highly constrained by cosmic microwave back-
ground (CMB) observation [19–23]. Moreover, note that
this cross section is approximately 2 orders of magnitude
larger than the canonical value, ð2–3Þ × 10−26 cm3 s−1,
needed to produce the correct relic abundance of thermal
DM [24]. The possibility of a boost in the annihilation due to
the substructures in the DM halowas also explored [25], but
such large boosts are unlikely due to substructures alone.
Alternatively, the pulsars in the MilkyWay (MW) have also
been used to explain the positron spectrumwith a possibility
that the nearby young pulsars (e.g., Geminga and
B0656þ 14) are contributing the most [10–12,26].
Authors in Ref. [26] used the HAWC data to show that
these nearby pulsars are able to produce high-energy
electrons, and could source from the local positron flux.
However more recently, Ref. [27] used the HAWC and
Fermi-LAT data to show that the diffusion of the positrons
from the pulsarsGeminga andB0656þ 14 is less efficient in
the energy range ð50–500Þ GeV in a two-zone diffusion
model of the cosmic ray, but can contribute a substantial
fraction of the positron flux. Therefore, the pulsar origin of
the positron flux is also debated. All things considered, the
shape of the positron flux spectrum in the high-energy
region still remains poorly understood.
In this work, we show that it is possible to explain the

positron excess using selectively enhanced, velocity-
dependent p-wave annihilation of Majorana DM particles,
following our earlier work [28]. An angular momentum and
spin-dependent selection rule in the Sommerfeld effect
enhances the p-wave DM annihilation. The p-wave nature
implies that the rate is a nonmonotonic function of DM
velocity. With a suitable choice of parameters, it can be
maximum in the Milky Way-like galaxies, and less in
smaller dwarf galaxies. The DM annihilation rate in the
MW is shown in the contour plot in Fig. 2. In this parameter
space, there are a few islands, marked with yellow asterisks,
that yield such large galactic annihilation signal, and
satisfy the thermal relic constraint, i.e., hσvirelic ≃
ð2–3Þ × 10−26 cm3 s−1 [24], the dwarf galaxy bound from
Fermi-LAT [18], and DM annihilation constraint from the
CMB observation [19], all at the same time. A represen-
tative positron flux spectrum is shown in Fig. 1. In this
scenario, Majorana DM particles of mass mχ ¼ 780 GeV
annihilate into light dark sector scalars that promptly decay
into electrons and muons. The annihilation rate in the
Milky Way is σv ≃ 4.63 × 10−24 cm3 s−1. Our purpose,
in the remaining part of the paper, is to provide some
details of this result and the related technical background,
and to outline other phenomenological consequences of
this model.
The paper is structured as follows: In Sec. II, we describe

the dark sector of the model and its connection to the
Standard Model (SM), followed by Sec. III discussing the
cosmological thermal history. In Sec. IV, we compute and

explain the selective Sommerfeld enhancement in annihi-
lation, and in Sec. V outline the relevant phenomenology.
We summarize and conclude in Sec. VI.

II. THE MODEL

We extend the SM by a dark sector that has a complex
scalar Φ and a Dirac fermion χ, with charges −2 and þ1,
respectively, under an approximate global Uð1Þ symmetry.
The right-handed leptons in the Standard Model, lR, are
also charged þ2 under this symmetry. The SM Lagrangian
is therefore extended by LBSM ⊃ Ldark þ Lportal, where

Ldark ¼ ∂μΦ†∂μΦþ μ2jΦj2 − λjΦj4 þ iχ̄∂χ −Mχ̄χ

− ðfΦχTCχ=
ffiffiffi
2

p
þ H:c:Þ and

Lportal ¼
X
l¼e;μ

cl
Λ
ΦHl̄LlR þ H:c: ð1Þ

The dark complex scalar Φ and the dark fermion χ are
coupled to each other through a Majorana-type interaction
[29] and the five-dimensional nonrenormalizable operator,
involving the SM Higgs doubletH, acts as a portal between
the dark and the visible sectors. After the spontaneous
breaking of the Uð1Þ and the electroweak symmetries, it
would lead to decay of the dark scalars into electrons
and muons.

FIG. 2. A contour plot showing the DM annihilation rate in the
Milky Way galaxy in the mρ=mχ − α plane. Overlaid is a white
band of the region of parameter space that yields correct thermal
relic abundance. The thick white line denotes the contour of
σvrelic ¼ 2.5 × 10−26 cm3 s−1, bordered by the dashed contours
of σvrelic ¼ 3 × 10−26 cm3 s−1 (above) and 2 × 10−26 cm3 s−1
(below). The points marked with asterisks can provide large
enough annihilation cross section to explain the positron flux
excess. In this work, we use the point marked with the orange
asterisk.
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Note that theUð1Þ is also explicitly broken at the tree level
by the electron and muon masses. It is also possible to
include explicit Uð1Þ-breaking terms in Ldark itself. Such
terms are crucial for determining the mass of the pseudo-
Goldstone mode ofΦ, but we do not model build that aspect
and treat the pseudo-Goldstone mass as a free parameter.
The scalar potential induces nonzero vacuum expect-

ation value (vev) vΦ and splits Φ into a radial mode ρ
and a pseudo-Goldstone mode η∶ Φ → ðvΦ þ ρþ iηÞ= ffiffiffi

2
p

,
spontaneously breaking the Uð1Þ symmetry. Because of
the Majorana-type coupling with the scalar, χ also splits
into two Majorana particles, χ1 ¼ ðχ − χcÞ= ffiffiffi

2
p

and χ2 ¼
ðχ þ χcÞ= ffiffiffi

2
p

, with masses mχ and mχ þ Δ where mχ ≡
M − fvΦ and Δ≡ 2fvΦ. After dark symmetry breaking,
the resultant interactions between the fermions and the
scalars are

−
f
2
ρðχ̄1χ1 − χ̄2χ2Þ −

f
2
ηðχ̄2χ1 þ χ̄1χ2Þ: ð2Þ

With these interactions, fχ1; χ2g constitute a two-level
inelastic self-interacting dark matter (SIDM). The stable
χ1 is the DM candidate. After χ1, χ2 fall out of chemical
equilibrium from the thermal bath, χ2 quickly decays
χ2 → χ1η, and χ1 forms the DM abundance. While the ρ
couples similar DM states, η provides an off-diagonal
interaction and couples different DM states. The sym-
metry-broken scalar potential reads

Vðρ; ηÞ ¼ 1

2
m2

ρρ
2 þ 1

2
m2

ηη
2

þ λvΦðρ3 þ ρη2Þ þ λ

4
ðρ4 þ η4 þ 2ρ2η2Þ; ð3Þ

where mρ ¼
ffiffiffiffiffi
2λ

p
vΦ and the mass of η arises from the

Uð1Þ-breaking terms and its interaction with other particles
in the thermal bath.
The higher-dimensional part of the Lagrangian yields

Lportal ¼
X
l¼e;μ

cl
2Λ

l̄LlRðvHρþ ivHη

þ ρhþ iηhþ vΦhþ vΦvHÞ: ð4Þ

These terms allow the dark scalars ρ and η to decay into a
pair of leptons. Further, the Higgs boson h develops new
decay channels h → ρlþl− and h → ηlþl− and a new
contribution to its decay into lepton pairs. The masses of
the e and μ get a contribution from the dark symmetry
breaking as well.
At low energy, the DM annihilation phenomenology is

controlled by the five free parameters fmχ ; mρ; mη; α;Δg
where α≡ f2=ð4πÞ. We are interested in mχ ≳ 300 GeV to
explain the AMS data, and fix Δ ¼ 10−3mχ . We vary other
parameters in the ranges 10−4 ≤ mρ=mχ ≤ 10−1 and

10−2 ≤ α ≤ 10−1. We discuss more about parameter values
later. The decay of the scalars is determined by ce, cμ, and
Λ. We take the value of the SM vev as vH ¼ 256 GeV.

III. COSMIC HISTORY

After the initial production of the dark sector particles
through somemechanism like reheating, they decouple from
the SMsector at a temperatureT�.We assume this to occur at
a scale much higher relative to other energy scales in the
theory. After decoupling, the SMand the dark sectors evolve
independently with separate temperatures T (SM) and Td
(dark sector) with a ratio ξd ≡ Td=T. After the dark sector
symmetry breaking at Td ≃ vΦ, the dark sector consists of
two Majorana fermions χ1, χ2 and two scalars ρ, η. The
comoving entropy of this sector changes only during the
decays of χ2 and ρ. In general ξd can be written as

ξdðTÞ ¼
�
gdðT�ÞgSMðTÞ
gdðTdÞgSMðT�Þ

�
1=3

: ð5Þ

Here gdðTÞ and gSMðTÞ are the relativistic degrees of
freedom in the dark and SM sectors, respectively, at temper-
atureT. FromFig. 3, it is clear that the ratio ξd is never too far
away from unity. After ρ and η go out of chemical
equilibrium, they decay. Note that ρ could decay into η if
mη < mρ=2. However, aswe show later, this is not the case in
the region of the parameter space we are interested in. If the
dark sector decouples from the visible sector early enough
then ρ, η do not affect the predictions forNeff and theHubble
parameter much during big bang nucleosynthesis, as was
shown in [30]. Dark sector temperatureTd rises after theDM
decouples from the thermal bath. Later during the QCD
phase transition at T ∼ 200 MeV, a large amount of entropy
is dumped into the SM thermal bath, heating it up. This
history depends on the relativevalues ofM andT� (see Fig. 3
inRef. [30]). In this paper,weonly consider the case inwhich
the DM mass is above the QCD condensation scale.
We always assume that M < vΦ, so that the symmetry

breaking occurs earlier than the chemical freeze-out of DM.
The ensuing phenomenologywas discussed inRefs. [29–31].
Before thermal freeze-out, both χ1 and χ2 are present in the
thermal bath. Afterwards, out-of-equilibrium χ2 particles
decay and χ1 forms the DM abundance. During relic
annihilation, the interactions in Eq. (2) provide both annihi-
lation and coannihilation,

χ1χ1; χ2χ2 → ρρ; ηη fannihilationg;
χ1χ2 → ρη fcoannihilationg: ð6Þ

Figure 4 shows the Feynman diagrams for the annihilation
and coannihilation. Even though in this case theDM is lighter
than the symmetry breaking scale vΦ, the scalar particle can
be much lighter than χ1;2 if the hierarchy vΦ > M > μΦ is
maintained.
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As χ1, χ2 are both Majorana particles, their annihilation
into two scalars does not have any s-wave (l ¼ 0) compo-
nent, and hence is p-wave (l ¼ 1) suppressed. But coanni-
hilation is not subject to such suppression. Even after theDM
is not in chemical equilibrium with the other particles in the
dark sector, it exchanges kinetic energy with them as kinetic
decoupling happens later than the chemical decoupling. In
this case, the elastic scattering between χ1 and η helps keep
the DM in kinetic equilibrium with η. It was shown in
Ref. [30] that a small mass split between the two DM states
enhances this scattering cross section through a resonance.
This delays the DM kinetic decoupling and may ameliorate
the missing satellite problem [32,33].

IV. ENHANCED ANNIHILATION

When the annihilating DM particles interact with each
other through a long-range potential VðrÞ, their initial plane

waves are modified. The Sommerfeld effect is the change in
the annihilation rate resulting from this wave function
modification. It is a nonperturbative effect. It is quantified
by the Sommerfeld factor Sl and is written as

σl ¼ Slσ0l: ð7Þ

Here σl and σ0l are the total and the perturbative cross
sections, respectively, for the orbital angular momentum
l ¼ 0, 1, 2, and so on. The process is enhanced if Sl > 1,
suppressed if Sl < 1.
This effect is most pronounced when the DM particles

are nonrelativistic. In this limit, it is useful to use the
formalism of nonrelativistic effective theory (NREFT). In
NREFT, the wave function Ψl of the heavy particles obeys
the Schrödinger equation with the interaction potential
VðrÞ. Relative to the range of VðrÞ, the actual annihilation
process is short range and is usually taken to be happening
at the origin. Hence the Sommerfeld factor Sl is defined as
the change in the amplitude of the wave function ΨlðrÞ at
the origin due to the potential,

Sl ≡
���� Ψlð0Þ
Ψlð0Þfree

����
2

: ð8Þ

Here, ΨlðrÞfree is the wave function in the absence of any
potential, i.e., the free particle plane wave. Depending on
the nature of the mediator and the charges of the interacting
particles, VðrÞ can be either attractive or repulsive, causing
enhancement or suppression, respectively, to the annihila-
tion rate.
The possible two-particle states in the present case are

the following.

jχ1χ1i
jχ2χ2i

�
Annihilation

jχ1χ2i
jχ2χ1i

�
Coannihilation: ð9Þ

The η interaction leads to mixing between the two states in
the annihilation space. But the annihilation and coannihi-
lation subspaces remain decoupled as neither ρ nor η
interaction can couple one to the other. As mentioned
before, the annihilation subspace does not have any s-wave
process, but coannihilation has both s- and p-wave con-
tributions. Although the two states for coannihilation
consist of the same particles, we write them separately
because it is easier to understand the transition from one to
the other due to the η exchange. We first compute the
perturbative cross sections for these three processes using
NREFT, and then calculate the Sommerfeld factors by
solving the matrix Schrödinger equations numerically.

FIG. 3. Variation of the relativistic degrees of freedom in the
SM gSM (dot-dashed blue) and the dark sector gd (dashed red).
The lower panel shows the ratio of the dark sector temperature to
the SM temperature ξd (solid black).

FIG. 4. The Feynman graphs for DM annihilation and coanni-
hilation.
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A. Annihilation matrices

DM annihilation typically happens at a length scale
1=mχ . Therefore, typical momentum exchange in such a
process is ∼OðmχÞ. In NREFT, the annihilation process
cannot be described using tree-level graphs. However, like
in any EFT, all information regarding these high-energy
processes is contained the series of higher-dimensional
operators,

Leff ¼
X
i;j;k;l

cij;klðmχÞχ̄iχjχ̄kχl þ � � � : ð10Þ

Here cij;klðmχÞ are the Wilson coefficients computed at the
scale mχ , and χ̄iχjχ̄kχl are four-Fermi operators, χ̄1χ1χ̄1χ1,
χ̄1χ2χ̄1χ1, χ̄2χ2χ̄1χ1, and so on. The cij;kl coefficients can be
calculated by matching a four-point amplitudes in the full
theory with the corresponding four-Fermi operator in the
effective Lagrangian.
To classify the effective operators according to the spin

and angular momentum of the two-body states, wewrite the
Dirac spinors of χi using the Pauli two-component spinors
ξi, ηi as

uiðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þmi

2E

r � ξi
σ ·p

Eiþmi
ξi

�
;

við−pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þmi

2E

r � −σ ·p
Eiþmi

ηi

ηi

�
: ð11Þ

With these expressions for the spinors, we expand the
operators in Eq. (10) in powers of jpj=mχ to find the
effective operators for each spin and angular momentum,

Leff ¼
X
i;j;k;l

X
l;s

cij;klð2sþ1lJÞOij;klð2sþ1lJÞ; ð12Þ

where Oij;klð2sþ1lJÞ are the effective operators consisting
of the spinors ξi, ηi corresponding to spin s and angular
momentum l of the associated two-body states [34] (see
the Appendix A for details about these operators).
Once the Wilson coefficients are known, the annihilation

cross sections into the light scalars can be found by using
the Cutkosky theorem: the annihilation cross section of a
process χiχj → XAXB is proportional to the imaginary part
of the Wilson coefficient of the operator χiχj → XAXB →
χiχj [35]. If ðσvÞχiχj→XAXB

≡ Γðχiχj → XAXBÞ is the anni-
hilation rate, then

ðσvÞχiχj→XAXB
¼ 2Im½cij;ijð2sþ1lJÞ�: ð13Þ

In addition to jpj=mχ , we also expand the operators in
powers of other dimensionless parameters, such as
mρ=mχ ; mη=mχ , and Δ=mχ . We computed the Wilson

coefficients for both annihilation and coannihilation using
the FeynCalc package in Mathematica1 and classified them
according to their spin and angular momentum [36]. The
procedure is described in detail in Appendix A.
To the leading order in the dimensionless parameters

mentioned above, we get the following annihilation
matrices.

Γann
l¼1;s¼1 ¼

2πα2v2

m2
χ

�þ1 þ1

þ1 þ1

�
;

Γco-ann
l¼0;s¼1 ¼

πα2

16m2
χ

�þ1 −1
−1 þ1

�
;

Γco-ann
l¼1;s¼1 ¼

πα2m2
ρv2

16m4
χΔ2

�þ1 þ1

þ1 þ1

�
: ð14Þ

The l ¼ 0 coannihilation matrix has opposite signs for the
off-diagonal entries relative to the diagonal elements.
However, all elements of the l ¼ 1 matrices have similar
sign. This fact is related to the particle exchange symmetry,
and is discussed in more detail when we describe our
results.

B. Sommerfeld factors

The nonrelativistic wave function of the DM particles
obeys the matrix Schrödinger equation,

½Dab þ VabðrÞ�ðulðrÞÞbc ¼ 0: ð15Þ

Here ulðrÞ is a 2 × 2 matrix proportional to the radial
parts RðrÞð¼uðrÞ=rÞ of the full wave function ΨlðrÞ, and
Dab ¼ ð− 1

2μ
d2

dr2 þ
lðlþ1Þ
2μr2 − EÞδab is the differential operator.

The elements of ulðrÞ are the transition amplitudes
ðulðrÞÞab ≡ hbjai of going from state jai to jbi, with
jai; jbi being one of the three possible two-body states in
Eq. (6). As the particles are in the scattering state before
annihilation, the total energy of the ath two-body state is

Ea ≡ 1

2
μav2rel ¼ 2μav2 ¼

k2a
2μa

; ð16Þ

where v is the velocity of individual particles in the center-
of-mass frame, and ka ¼ μavrel is the momentum of the ath
two-body state. The potential VðrÞ arises from the
exchange of the scalars. It is given by

VðrÞ ¼
�
V11 V12

V21 V22

�
; ð17Þ

with V11 ¼ −αe−mρr=r, V12¼V21¼−αe−mηr=r, and V22 ¼
−αe−mρr=rþ 2Δ for annihilation and V22 ¼ −αe−mρr=r for

1Mathematica notebooks are available at this https://github
.com/anirbandas89/NREFT_Matching.
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coannihilation. The extra term 2Δ in V22 for annihilation
comes from the mass gap between the two two-body
states jχ1χ1i and jχ2χ2i. No such mass gap exists for
coannihilation.
We follow Ref. [37] to compute the Sommerfeld factors

for the multilevel DM.We quote the final expression for the
Sommerfeld factor, Sað2sþ1lJÞ, that is given as

�ð2l − 1Þ!!
kla

�
2 ðT†ÞabObcð2sþ1lJÞTca

Oaað2sþ1lJÞ
: ð18Þ

No summation is implied over the repeated index a in the
denominator. The matrix T is defined as the complex
conjugate of the amplitude of the irregular solutions vlðrÞ
of Eq. (15) in the large r limit,

ðvlðr → ∞ÞÞab ¼ ðT†Þabe−ikar: ð19Þ

The detailed procedure to compute the T matrix is given in
Appendix B.
We solved the Schrödinger equation using two methods:

(i) directly using NDSolve in Mathematica, and (ii) using
the variable phase method [38,39]. The direct method
works well as long as the kinetic energy of the incoming
particles is above the threshold for the jχ2χ2i state, i.e.,

E ≥ 2Δ: ð20Þ

When the incoming particles are below threshold, the wave
functions for the jχ2χ2i final state are not a scattering state
anymore. In this case, the direct method fails as it
simultaneously tries to solve for scattering and bound state
solutions within a single system. Reference [39] proposed
that the variable phase method can be used in such cases.
Instead of solving for the full solution, this method solves
for the modification in the wave function from the free
particle solution because of the long-range potentials. We
have verified the results from the variable phase method
with direct method solutions for the above threshold
parameters. We found an excellent match between the
results from two methods.
To reduce the number of parameters, we fixmη ¼ 0.7mρ

for all the results shown in this paper. A different choice for
mη does not change our results qualitatively. In Figs. 5 and
6, we show the Sommerfeld factors and the annihilation
rates, respectively, as functions of DM velocity v. For
the figures in the next two subsections, we choose a
representative set of values for the parameters: α¼
0.0373;mρ=mχ ¼ 0.0023;Δ=mχ ¼ 0.001; v¼ 100 kms−1,
which approximately corresponds to the point marked with
an orange asterisk in Fig. 2.
Both p-wave annihilation and coannihilation show large

enhancement in the small velocity limit in Fig. 5. The
enhancement factor has a 1=v3 dependence in the inter-
mediate velocity regime. The difference between the

annihilation and coannihilation factors is due to the
mass gap between the two states. However, the s-wave
Sommerfeld factor is less than 1. The p-wave annihilation
and the s-wave coannihilation rates are shown in Fig. 6.
The ∼v2 scaling of the bare p-wave cross section yields the
∼v2 and ∼v−1 behavior of σvp in the small and inter-
mediate velocity regimes, respectively. We note that the

FIG. 5. Sommerfeld factors for annihilation (p wave) and
coannihilation (s and p wave) as a function of DM velocity v.

FIG. 6. Sommerfeld-enhanced p-wave annihilation rate
SpðσvÞp (solid red) as a function of DM velocity v. The
s- and p-wave coannihilation rates are shown for comparison
as the dashed green and dot-dashed blue curves. The thermal relic
annihilation rate σvrelic ¼ ð2–3Þ × 10−26 cm3 s−1 is shown as a
gray band.
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relic annihilation cross section is dominated by annihilation
because of a residual Sommerfeld enhancement factor
Sp ≃ 2 even for vrelic ≃ 0.2. Therefore, the p-wave annihi-
lation process contributes more by a factor of ∼2 than
coannihilation in the early Universe. This more carefully
computed result disagrees somewhat with the conclusions
made in previous papers [28,30,31]. However, we must
note that at this large velocity v ∼ 0.2, the partial wave
expansion of the cross section may not be very accurate as
higher partial wave contributions become important.
Figure 7 shows the mρ dependence of the factors. In
addition to a large overall enhancement for p wave, a
resonance feature is also present for certain values of mρ.
We explain the origin of these features in the rest of this
section.

C. Particle exchange symmetry

We use the particle exchange symmetry following
Ref. [28]. Suppose A and B are two fermions. They can
form two two-body states, namely jABi and jBAi of total
angular momentum l and spin s. However, these two states
consist of the same set of particles and are related to each
other through

jABi ¼ ð−1ÞlþsjBAi: ð21Þ

This factor has three components: ð−1Þl from relative
angular momentum, ð−1Þsþ1 from their spins, and (−1) due
to Wick exchange of two fermions.
We can directly apply this to the coannihilation channel

in the present model implying that two states jχ1χ2i and

jχ2χ1i in the matrix Schrödinger equation are related to
each other,

jχ1χ2i ¼ ð−1Þlþsjχ2χ1i: ð22Þ

It further implies that we can combine the two equations
into a single equation with an effective potential that is a
linear combination of the diagonal and off-diagonal poten-
tials (see Appendix C for details),

Veff ¼ V11 þ ð−1ÞlþsV12: ð23Þ

Therefore, Veff has the following forms for the two cases,

Vl¼0;s¼1
eff ¼ −

αe−mρr

r
þ αe−mηr

r
;

Vl¼1;s¼1
eff ¼ −

αe−mρr

r
−
αe−mηr

r
: ð24Þ

We note that in the l ¼ 0 case, the difference between the
two potentials is acting as the effective 1D potential. When
r ≪ 1=mρ and 1=mη, Veff saturates at the value (mρ −mη).
For larger r, it gradually decreases to 0, never becoming
negative. The nature of the net potential thus becomes
repulsive (See Fig. 8). However, for l ¼ 1, the diagonal
and off-diagonal potentials are added with the same sign,
and hence yield an even stronger attractive potential. This
explains the behavior of the different Sommerfeld factors in
Figs. 5 and 7. The effective repulsive nature of Veff leads to
the suppression in Sco–anns .

FIG. 7. Sommerfeld factors for annihilation (p wave) and
coannihilation (s and p wave) as a function of the diagonal
mediator mass mρ.

FIG. 8. The one-dimensional (1D) effective potentials for
coannihilation in Eq. (24).
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D. Velocity dependence and resonances

The 1=v3 dependence of Sp in Fig. 5 can be understood
by taking the limit mρ=mχ ≪ 1 and α=v ≫ 1. In this
Coulomb limit, an analytic expression for Sl for general
angular momentum l is given by [40]

Sl ¼ S0
Yl
j¼1

�
1þ α2

j2v2

�
; ð25Þ

where S0 is the s-wave factor in the Coulomb approximation

S0 ¼
πα=v

1 − e−πα=v
: ð26Þ

Therefore, for small velocity, Sl ∼ 1=v2lþ1. However, for
finite mρ, the Sommerfeld factor does not grow indefinitely
for smaller velocity. Instead, it saturates to a constant value
when the de Broglie wavelength of the DM particles gets
much longer than the range of the potential, i. e., approx-
imately when the condition μ1v=mρ ≪ 1 is met. All of
these features are evident in Fig. 5.
Resonances from virtual bound states arise and cause

large Sommerfeld enhancement as can be seen in Fig. 7.
This occurs whenever the range of the potential matches a
multiple n of the Bohr radius 1=ðαmχÞ of the DM particles,
i.e., [40]

αmχ

κmρ
¼ n2; n ¼ 1; 2; 3;…: ð27Þ

Here κ ≃ π2=6. Note that this resonance condition is only
approximately true in the present model as we have two
mediators with slightly different masses. Also the reso-
nance positions are shifted by the mass gap Δ [37].
A consequence of the nonmonotonic velocity depend-

ence of the p-wave Sommerfeld factor is that it predicts
different annihilation rates of DM in astrophysical objects
of different size. In the net p-wave annihilation rate, the
perturbative cross section provides a velocity scaling ∼v2.
Therefore, SpðσvÞp increases as ∼v2 for small velocity,
reaches a maximum, and then falls as ∼1=v as shown in
Fig. 6. The position of the maximum annihilation depends
on the ratio mρ=mχ . Hence this model naturally predicts
large DM annihilation signal in the galaxies, but very small
signal from the dwarf galaxies.

V. PHENOMENOLOGICAL CONSEQUENCES

A. Galactic positron excess

The AMS-02 and several other experiments have
observed an excess in the positron spectrum from the
Galaxy, as mentioned in the introduction. DM annihilation
in our model can be used to explain such observation. To
this end, we show the variation of the p-wave annihilation

rate ðσvÞp in the Milky Way with mρ=mχ and α in Fig. 2.
The cross section is enhanced for large α and small mρ=mχ

ratio, with a resonance feature as discussed above. The
points within the overlaid white band yield a relic anni-
hilation cross section within ð2 − 3Þ × 10−26 cm3 s−1 to
satisfy the relic abundance constraint [24].
The points marked with asterisks yield DM annihilation

cross section σv > 10−24 cm3 s−1, sufficient to explain the
AMS-02 positron flux excess, without running into any
problems with thermal relic or dwarf galaxy constraints.
The typical annihilation cross section in dwarf galaxies is
≲6 × 10−28 cm3 s−1, which is well below the Fermi-LAT
bound in the eþe− and μþμ− channels [18]. Because of the
suppression in the s-wave channel as shown in Fig. 6, the
DM annihilation rate during recombination era (when DM
velocity v ∼ 10−8) is also predicted to be suppressed at
∼10−29 cm3 s−1, which is much smaller than the current
experimental bound [21]. Note that the p-wave rate
decreases as ∼v2 towards small velocity and is insignificant
during recombination. We show the positron flux from such
a representative point in Fig. 1. We used the publicly
available code PPPC4DMID to compute the positron flux
spectrum in the χ1χ1 → VV → 4e; 4μ channel, where
the scalar V represents ρ and η, from the Galaxy after
diffusion [41].
An astrophysical background of positron flux was

assumed, following Ref. [7],

FeþðEÞ ¼ C2
d

�
E2

Ê2

��
Ê
E1

�γd
; ð28Þ

where Ê ¼ Eþ ϕeþ is the positron energy in the interstellar
space. The dark sector and background parameters used in
Fig. 1 are listed in Table I. Formχ ¼ 780 GeV, the required
mediator mass is about mρ ≃ 1.5 GeV (see Fig. 2).
Therefore, ρ and η can decay to the electron and muon.
Note that we are not using the background parameters
quoted in Ref. [7] as this is an independent model. The fit
shown in Fig. 1 corresponding to the parameter values
quoted in Table I was found by a crude scan over the

TABLE I. The dark sector and background parameters [see
Eq. (28)] used in Fig. 1.

Parameter Value

mχ 780 GeV
σv 4.63 × 10−24 cm3 s−1
B:R:ðeþe−Þ 38%
B:R:ðμþμ−Þ 62%
Halo profile Einasto
Cd 6.42 × 10−2 ðGeVm2 s srÞ−1
ϕeþ 0.869 GeV
γd −3.6
E1 7 GeV
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parameter space. Although the fit of the theoretical curve to
the data appears acceptable, the goodness of the fit is rather
modest with χ2=d:o:f ¼ 2.07.
Three dark sector parameters mχ ; σv, and BRðeþe−Þ

determine the shape and position of the bump in the
positron flux. DM mass mχ fixes its position as the DM
particles are highly nonrelativistic today; σv and BRðeþe−Þ
together determine the amplitude and the spread of the
peak. It might seem from Fig. 1 that increasing mχ could
give a better fit to the last three data points in the high-
energy end. However, as the peak shifts towards higher
energy, the fit in the intermediate energy becomes poor.
Increasing σv has the effect of increasing the overall
amplitude of the flux. The height of the peak is also
partially controlled by BRðeþe−Þ; decreasing this param-
eter lowers the height increasing its width. We used the
Einasto profile for the MW halo,

Einasto∶ ρðrÞ ¼ ρs exp

�
−
2

α

��
r
rs

�
α

− 1

��
: ð29Þ

We used the default values for the parameters implemented
in PPPC4DMID: ρs ¼ 0.033 GeVcm−3, rs ¼ 28.44 kpc,
fand α ¼ 0.17 [42]. With these parameters, the local DM
density is 0.32 GeVcm−3. In this context, we mention the
effect of the morphological dependence of the J factor on
the positron flux [43]. Averaging the annihilation rate over
velocity decreases the effective rate, given that our param-
eters correspond to a resonance at some v. However, several
factors mitigate this effect. The Einasto density profile that
we use is expected to give a smaller morphological
dependence than a cuspy profile used in Ref. [43].
Further, the AMS-02 data for the positron flux is not
directional; rather it is the total flux integrated over all
directions as observed by the spectrometer, thus diluting
this effect. To arrive at a more quantitative conclusion,
however, the calculation of Ref. [43] must be repeated for
the nonmonotonic velocity dependence of the Sommerfeld
factor.
The χ2=d:o:f reported here can be easily improved. For

example, fitting the low and intermediate energy data
points more precisely, at the cost of fitting the higher
energy data less well, improves the χ2 because of the
relatively large error bars for the high-energy data points. If
more data shrink these error bars (without changing the
central values), they would easily rule out such parameters.
Thus we have chosen to show a benchmark point that will
survive such a scenario to a greater extent. We also note the
glitches in the AMS-02 data around E ∼ 100 GeV, which
worsen the fit. We believe more data in future will settle
these issues.
The annihilation products ρ, η couple to the visible sector

through the charged leptons e and μ with branching ratios
38% and 62%, respectively, to get an acceptable fit. One
may ask if it is possible to get these branching ratios within

our model. The ΦHl̄LlR term, shown in Eq. (1), leads to
decay of ρ and η generated in the DM annihilations. We
compare their decay times with τcð≃47 yrsÞ, which is the
typical time required by them to escape the MW without
any scattering. The decay widths are parametrized by ce, cμ,
andΛ. For ce; cμ ≳ 10−5 andΛ ¼ 1013 GeV, their lifetimes
τρ;η are less than τc, as shown in Fig. 9 and 10. For our
purpose, their decay can be assumed to be prompt.
In passing, we emphasize that the aim of this work is to

demonstrate the possibility of explaining the positron flux
excess using p-wave Sommerfeld-enhanced DM annihila-
tion in the MW. Given the moderate goodness of fit, we do
not claim that this particular DM model is an excellent
candidate to explain the excess. Rather, we point out the
uniqueness of this solution as it can accommodate the
required large annihilation cross section without conflicting
the dwarf galaxy or CMB data. We hope that this work
will spawn a new direction in model-building and asso-
ciated cosmic ray data analysis. Note that the selective
Sommerfeld enhancement described in this paper is a
general feature of any multilevel self-interacting DM
models with light mediator.

B. Other BSM effects

The ΦHl̄LlR operator also modifies e and μ masses, as
well as their coupling with the SM Higgs boson h. The
electron and muon masses are predicted to change by an
amount ∼clvΦvH=Λ. The present experimental precisions

FIG. 9. The model parameter space in the ce − cμ plane for
Λ ¼ 1013 GeV. The gray line is the contour of BRðeþe−Þ ¼ 38%
and BRðμþμ−Þ ¼ 62%. In the blue-shaded region, ρ and η decay
times are larger than τc. See the text for definition. The orange-
shaded region is excluded by lepton mass measurement.
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of their mass measurement are very high, at the level of
∼10−8 [44]. Specifically, electron mass measurement con-
strains our parameter space significantly. The exclusion
regions due to this are shown as orange-shaded regions in
Figs. 9 and 10. The branching ratio of Higgs decay into
muons is also affected. However, the resulting change in the
Higgs signal strength in the μþμ− channel is very small
relative to the current measurement; hence we do not
consider it any further [45,46].
In Figs. 9 and 10, we show the contour of BRðeþe−Þ ¼

38% and BRðμþμ−Þ ¼ 62% with a gray solid line.
Everywhere on the gray lines, the model produces a good
fit to data, though the blue shaded region in the lower left is
disfavored because the scalars decay too slowly (τ > τc)
and the orange shaded region in the top right is disfavored
because the fractional shift to lepton masses is larger
than 10−8.

C. Self-scattering

The long-range attractive potential would enhance the
DM self-scattering cross section as well. The large self-
scattering cross section, say, σ=mχ ≃ 1 – 10 cm2 g−1, may
affect DM halo formation and produce a core at the center
[47,48]. At the same time, the bullet cluster observation
puts an upper limit σ=mχ ≲ 0.1 cm2 g−1 on this cross
section [49].
In Fig. 11 we show the elastic transfer cross section σT as

a function of DM velocity v for three different mediator
masses. The red curve corresponds to a resonant point
in Fig. 2, and has σT ≃ 4 × 10−5 cm2 g−1 at dwarf-scale
velocity v ≃ 10−4, which is not large enough to produce

cores in the DM halos. This is not surprising because
indirect detection and CMB experiments put strong con-
straints on SIDM models with light mediators, and it is
difficult to satisfy these constraints along with large self-
scattering cross sections to produce the core in the DM
halo [50].
However, multilevel SIDM models can generically have

interesting scattering phenomenology originating from the
inelasticity in the system. DM particles in the ground state
can upscatter to the excited state and quickly deexcite to the
ground state by emitting a light mediator particle that
escapes the halo. As a result, the halo dissipates energy at a
certain rate and cools [51,52]. This cooling mechanism can
significantly affect the halo dynamics and profile in other
parts of the parameter space where self-scattering is
large [53,54].

D. Kinetic decoupling of dark matter

The scattering between DM χ1 and η keeps the DM in
kinetic equilibrium with the relativistic η particles longer
than the usual. The kinetic decoupling happens roughly
when the momentum transfer rate Γηχ ¼ ðTd=mχÞnχσηχ
becomes smaller than the Hubble expansion rate,
Γηχ ≲HðTÞ. A t-channel resonance due to the mass gap
Δ between χ1 and χ2 enhances the cross section, and delays
the kinetic decoupling of DM further. Such late kinetic
decoupling of DM suppresses structure formation at low
halo mass scale, and can explain the apparent under-
abundance of satellite galaxies around the MW [33]. It
was already pointed out in Ref. [30] that for mχ ≃ 1 GeV,
Δ=mχ ≃ 10−4.5, and massless η (acting as dark radiation),

FIG. 10. Same as Fig. 9 but with Λ ¼ 1014 GeV. The position
of the gray line does not change as the branching ratio does not
have any Λ dependence.

FIG. 11. The elastic transfer cross section σT for χ1χ1 → χ1χ1
as a function of DM velocity. The mass gap is taken to be small,
Δ ¼ 0.1 MeV, to ensure numerical stability. Larger Δ changes
the cross section at most by a factor of a few.
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the kinetic decoupling temperature is ∼0.5 keV, which is
essential to solve the missing satellite problem. This
temperature decreases further by a factor of a few when
a more exact analytic expression for the cross section is
used and the thermal distributions of χ1 and η are taken into
account, as shown in Fig. 12.
However, note that explaining the positron excess

requires the DM mass to be mχ ≈ 800 GeV, which would
increase the decoupling temperature by several orders
of magnitude from the keV scale. Also in the present
scenario, the mediator mass mη ∼ 1 GeV, which ceases to
be relativistic much earlier. Thus in the model we present,
there is no delayed kinetic decoupling. Of course, one
could consider DM with M ≈ 800 GeV and a nearly
massless η, but with much smaller Δ=mχ to keep the
decoupling temperature at keV scale. The Sommerfeld
effect phenomenology would change significantly in such a
scenario and requires a separate study.

VI. SUMMARY AND OUTLOOK

In this work, we have explored the possibility of explain-
ing the bumps in the galactic positron flux, seen by AMS-02
and several other experiments, using Sommerfeld-enhanced
DM annihilation without overpredicting the DM annihila-
tion signal from dwarf galaxies.
We computed the Sommerfeld-enhanced annihilation rate

in a two-level SIDMmodel, following our previous work in
Ref. [28]. We show that even though the tree-level annihi-
lation process is p-wave suppressed due to the Majorana
nature of the DM, the nonperturbative Sommerfeld effect
enhances the rate by ∼6 orders of magnitude. At the same

time, the s-wave coannihilation is suppressed. This selective
Sommerfeld enhancement/suppression was explained to be
arising due to a particle exchange symmetry, and occurs only
in multilevel DM models.
The dominating p-wave annihilation rate has a unique

dependence onDMvelocity that leads to a lower annihilation
rate in smaller objects, like dwarf galaxies, but a large rate
σv ∼ 10−24 cm3 s−1 in MW-sized galaxies. This can natu-
rally explain that perhaps the positron flux excess in the
cosmic ray observed by AMS-02 and several other experi-
ments is due to the decay of the DM annihilation products
into the charged leptons through a higher-dimensional
operator. We investigated this possibility and found a
reasonably goodmatch between the theoretical and observed
spectra.
This is the first work, to the best of our knowledge,

interpreting the positron excess as a result of DM annihi-
lation without violating the bounds from dwarf galaxy and
CMB observations. One way to test this model is to search
for gamma-ray lines in, e.g., H.E.S.S. and Fermi-LAT data,
originating as final state radiation from the electron and
muon. Bremsstrahlung radiation typically shows up as a
peak in the gamma-ray spectrum around DM mass.
However, in the present scenario DM annihilation products
ρ=η cannot emit a photon. Only the e�=μ�, to which the
scalars decay into, can emit bremsstrahlung photon. Hence
the resulting gamma-ray spectral shape is expected to be
different from the usual case. A search for such gamma-ray
spectrum can be done from the H.E.S.S. and Fermi-LAT
data [55,56]. Nonobservation of such gamma-ray emission
from dwarf galaxies could serve as an evidence for this
model. We intend to do such analysis in a future work.
Moreover, the high-energy charged leptons in the decay
cascade can also inverse Compton scatter with photons to
produce additional signature [57]. The self-scattering cross
section in such a DM model turns out to be inadequate to
explain the existence of the cored density profiles of the
DM halos.
Even though the positron excess has been seen by both

Fermi-LAT and AMS-02, there exists tension between their
data in the region ð20–200Þ GeV. The reason behind this is
not known. Future independent cosmic ray experiments
with improved statistics and systematics, and more precise
directional flux measurements, will pin down the source of
the excess.
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APPENDIX A: NONRELATIVISTIC
FOUR-FERMI OPERATORS

In this section, we briefly review the two-spinor oper-
ators that may arise from the Yukawa interaction between a
Dirac fermion ψ of mass m and a scalar ϕ or a vector Aμ,

L ⊃ yϕψ̄ψ or L ⊃ gAμψ̄γμψ : ðA1Þ

As mentioned before, we use the two-component spinor
notation for the fermions,

uðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r �
ξ

σ ·p
Eþm ξ

�
;

vð−pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm
2E

r � −σ ·p
Eþm η

η

�
; ðA2Þ

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
≃mþmv2=2 in the nonrelativistic

limit. With these definitions, all possible bispinor contrac-
tions v̄ð−pÞΓuðpÞ reduce to

v̄ð−pÞuðpÞ ¼ −
1

m
η†p · σξ;

v̄ð−pÞγ0uðpÞ ¼ 0;

v̄ð−pÞγ0γ5uðpÞ ¼
�
1 −

p2

2m2

�
η†ξ;

v̄ð−pÞγiuðpÞ ¼ η†σξ −
pi

2m2
η†p · σξ;

v̄ð−pÞγ0γiuðpÞ ¼ −
�
1 −

p2

m2

�
η†σiξ −

pi

2m2
η†p · σξ;

v̄ð−pÞγiγ5uðpÞ ¼ i
m
η†ðp × σÞiξ;

v̄ð−pÞγ5uðpÞ ¼ −η†ξ: ðA3Þ

The two bispinors fðpÞη†ξ and gðpÞη†σξ are the
scalar (spin s ¼ 0) and vector (spin s ¼ 1) combinations,
respectively. All expressions are approximated to the order
Oððjpj=mÞ3Þ. In the four-Fermi operators, two bispinors are
combined together. The orbital angular momentum of such
combinations is dictated by the rotational symmetry
property of individual operator. A few relevant examples
are listed in Table II. Here we used the notations
v¼p=m, ðξ0†η0Þðη†ξÞ¼1⊗1, ðξ0†σiη0Þ · ðη†σiξÞ¼σi⊗σi,
ðξ0†v0 · ση0Þðη†v · σξÞ ¼ v0 · σ ⊗ v · σ, and ðξ0†v · ση0Þ×
ðη†v0 · σξÞ¼ v · σ⊗v0 · σ.

To find the annihilationmatrices in Eq. (14) for a particular
process jai → XAXB where jai ¼ fjχ1χ1i; jχ2χ2ig for anni-
hilation, and fjχ1χ2i; jχ2χ1ig for coannihilation, we per-
formed the following steps:-
(1) Write down the amplitude for Γab¼jai→XAXB→jbi

using two-component spinors.
(2) Expand it in powers of jpj=mχ and other small

numbers, like mρ=mχ , Δ=mχ .
(3) Collect the terms that correspond to an operator

fð2sþ1lJÞ.

APPENDIX B: SOMMERFELD FACTOR

The effect of the potential is contained in the phase shifts
of the wave functions of the incoming particles, which can
be found by solving the Schrödinger equation [37]. The full
wave function can be expanded in the partial wave basis as

ΨðrÞij ¼
X
l

ulðrÞia
r

AajPlðcos θÞ: ðB1Þ

Here the expansion coefficients Aaj are understood to have
an implicit partial wave l index. The radial part of the wave
function obeys the equation

��
d2

dr2
þk2−

lðlþ1Þ
r2

�
δij−2μVðrÞij

�
ulðrÞjk¼0: ðB2Þ

The asymptotic form of the regular solutions of the above
equation is

ulðrÞij ¼r→∞Nij sin

�
kir −

lπ
2

þ sij

�
; ðB3Þ

which we compare with the large radius asymptotic form of
the total wave function ΨðrÞ in Eq. (B1) to yield

Aij ¼ ilð2lþ 1Þ ½M
−1�ij
ki

; ðB4Þ

where we used Mij ¼ Nije−isij . Here sij denote the phase
shifts due to the scattering in the respective channel. In the
last two equations, no summation is implied over any

TABLE II. Symmetries of the four-Fermi operators.

Operator 2sþ1lJ

1 ⊗ 1 fð1S0Þ
σi ⊗ σi fð3S1Þ
v21 ⊗ 1 hð1S0Þ
v0 · v1 ⊗ 1 gð1P1Þ
v0 · vσi ⊗ σi 1

2
ðgð3P2Þ þ gð3P1ÞÞ

v0 · σ ⊗ v · σ 1
3
ðgð3P0Þ − gð3P2ÞÞ

v · σ ⊗ v0 · σ 1
2
ðgð3P2Þ − gð3P1ÞÞ
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repeated index. To compute the Sommerfeld factor, we
need the value and the radial derivative of the wave function
at the origin. For this purpose, we series expand the reduced
wave function ulðrÞ as

ulðrÞ ¼
1

ðlþ 1Þ!
dlþ1ulðrÞ
drlþ1

����
r¼0

rlþ1 þ � � � ðB5Þ

for all four elements. To use this form of the wave function
near the origin, one needs to know the phase shift matrixM.
Instead we use the r-independence of the Wronskian of the
linearly independent solutions of the Schrödinger equation.
We compute the Wronskian both at r → 0 and r → ∞
limits and compare them to obtain theM matrix in terms of
the amplitude of the wave functions at infinity. The
irregular set of solutions to Eq. (B2), defined as vðrÞij,
has the asymptotic behavior

vðrÞij ¼r→0
δijr−l; vðrÞij ¼r→∞

T†
ije

−ikir: ðB6Þ
The Wronskian is defined as

WlðrÞij ≡ v†lðrÞiku0lðrÞkj − v† 0l ðrÞikulðrÞkj: ðB7Þ
Using the asymptotic forms of the solutions, we find

WlðrÞij ¼r→0 2lþ 1

ðlþ 1Þ!
dlþ1ulðrÞ
drlþ1

����
r¼0

; ðB8Þ

WlðrÞij ¼r→∞
il
X
a

kaTiaMaj: ðB9Þ

Now equating these two quantities yields the phase shift
matrixM in terms of the large-r amplitude T, which used in
the full solution of Eq. (15) gives the value of the wave
function at origin in terms of T,

Ψlð0Þij ¼ ð2l − 1Þ!!i−l T
†
ij

kli
: ðB10Þ

Using this expression for the wave function at the origin in
the definition of Sommerfeld factor yields Eq. (18). The T
matrix is computed by solving the Schrödinger equation
numerically. A brief algorithm is provided below, follow-
ing Ref. [37].
(1) Equation (B2) is solved in between r ¼ r0 and rf.

The point r0 is chosen such that the centrifugal term
dominates over the potential and Eq. (B5) is valid.
The initial conditions are as follows:

ulðr0Þij ¼
rlþ1
0

2lþ 1
δij;

u0lðr0Þij ¼
ðlþ 1Þrl0
2lþ 1

δij: ðB11Þ

With this choice of the boundary conditions,
the Wronskian turns out to be exactly unity
from Eq. (B7).

(2) At r ¼ rf, the Wronskian is written as below, using
Eqs. (B6) and (B7).

ðWlÞij ¼ Tia½u0lðrfÞaj − ikiulðrfÞaj�eikirf
¼ δij: ðB12Þ

(3) The T matrix obtained by inverting the B matrix is
defined below,

T ¼ B−1;

Bij ≡ ½u0lðrfÞij − ikiulðrfÞij�eikirf : ðB13Þ

This procedure works well when the heavier annihilation
channel jχ2χ2i is kinematically open. When that is not the
case, the wave functions hχ2χ2jχ1χ1i or hχ2χ2jχ2χ2i are
exponentially growing/decaying. The matrix inversion in
Eq. (B13) with those solutions becomes difficult and gives
rise to numerical instabilities. To mitigate this problem, we
have followed the modified variable phase method as
prescribed in Ref. [39].

APPENDIX C: EQUIVALENT
ONE-LEVEL SYSTEM

The two-level Schrödinger equations in Eq. (15) are
restated below for readers’ convenience.

½Dab þ VabðrÞ�ðulðrÞÞbc ¼ 0: ðC1Þ
Note that the indices a, b, c run over the two-body states
jχ1χ1i; jχ2χ2i for annihilation, and jχ1χ2i; jχ2χ1i for coan-
nihilation. Let us explicitly write down the first equation
(11-component) from Eq. (C1),

ðD11 þ V11Þu11 þ V12u21 ¼ 0; ðC2Þ
where we have suppressed all other indices except that of
two-body states to avoid clutter. Now using the particle
exchange symmetry in the annihilation subspace,

u21 ¼ hχ2χ2jχ1χ1i ≈ ð−1Þlþshχ1χ1jχ1χ1i
¼ ð−1Þlþsu11: ðC3Þ

This equation relates the transition amplitude u21 to u11
through the factor ð−1Þlþs. Using it to substitute u21 in
Eq. (C2) gives

½D11 þ Veff �u11 ¼ 0; ðC4Þ
which is the equivalent one-level Schrödinger equation
with the effective potential given by

Veff ¼ V11 þ ð−1ÞlþsV12: ðC5Þ

A similar derivation is applicable for coannihilation as well.
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