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The Klein-Gordon equation is solved in the curved background spacetime created by a dispersive
gravitational wave. Unlike solutions of perturbed Einstein equations in vacuum, dispersive gravitational
waves do not travel exactly at the speed of light. As a consequence, the gravitational wave can resonantly
exchange energy with scalar massive particles. Some details of the resonant interaction are displayed in a
calculation demonstrating how relativistic particles (modeled by the Klein-Gordon equation), feeding on
such gravitational waves, may be driven to extreme energies.
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Gravitational waves, propagating perturbations of space-
time, travel at the speed of light (c) in vacuum. In certain
media however [1,2], they become dispersive and their
phase and group velocities can differ from c, in analogywith
electromagnetic waves. Pushing forward the gravitational-
electromagnetic waves analogy, one may wonder if the
gravitational waves could, then, resonantly transfer energy
to the particles of the medium. The wave-particle resonant
energy exchange is a highly investigated phenomenon in
plasmas, for instance, the Landau damping or growth [3] of
electromagnetic waves on electrons moving with the phase
speed of the wave. Naturally, this process is possible only
when the electromagnetic waves disperse, and do not travel
quite at the speed of light. In an analogous fashion, and
depending on the gravitational wave polarization, cyclotron
resonances, Alfvén wave resonances, or plasma wave
resonances between gravitational waves and relativistic
magnetized plasmas may be triggered [1]; different non-
linear mechanisms can also convert energy of the gravita-
tional waves into electromagnetic energy [4–6].
In this paper, we explore effects, similar to Landau

processes, in the context of dispersive gravitational waves
interacting with spinless massive particles. We show that
under well-defined conditions, the energy of particles can
be resonantly boosted up to very high values, several orders
of magnitude higher than the rest–mass energy of the
particle. The studied mathematical model is based on the
Klein-Gordon equation in the curved spacetime back-
ground created by the gravitational wave; we will assume
that the particle does not self-gravitate. The process of
resonant energization of Klein-Gordon particle/waves

through arbitrary amplitude dispersive electromagnetic
waves has been recently reported and serves as the first
paper in the exploration of this class of phenomena [7].
This paper, dealing with the resonant energization of Klein-
Gordon particle/waves by the dispersive gravitational
waves, develops the subject further.
We start by noticing that gravitational waves propagating

in a dispersive medium does not travel at the speed of light
[1,2,8–17]. The same effect can occur if the graviton mass
[18–21] is assumed to be nonzero. In both these cases, the
gravitational wave is dispersive. Independent of the origin
of dispersion, propagation of (non-vacuum-like) gravita-
tional waves can be modeled in a very general fashion.
Without loss of generality, we assume a gravitational wave
propagating in a z direction. We consider a spacetime
interval ds2 ¼ gμνdxμdxμ, with the metric gμν ¼ ημν þ hμν,
where ημν ¼ ð−1; 1; 1; 1Þ is the flat spacetime metric, and
hμν (hμν ≪ ημν) is the perturbation caused by the gravita-
tional wave (from now c ¼ 1). The nonzero components of
the perturbation metric are h22 ¼ −h33 ¼ hþðχÞ, and
h23 ¼ h32 ¼ h×ðχÞ, where χ ¼ ωt − kz. Here, ω ¼ ωðkÞ
is the gravitational wave frequency depending on the wave
number k, that propagates in time t and spatial direction z.
For a dispersive wave, the phase velocity must depart from
the ω ¼ k condition. A model dispersion for a gravitational
wave (propagating in a general medium) will be of the type

ω2 − k2 ≡ ω2
G ≠ 0; ð1Þ

where ωG signifies a “response” frequency characteristic of
the medium. Depending on the nature of the medium, this
response frequency may or may not be constant. For
specific forms of ωG, one may consult Refs. [1,2,8–21].
For a constant response frequency, ω2 > ω2

G > 0, and the
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group velocity of the gravitational wave is always less than
the speed of light, ∂ω=∂k ¼ k=ðk2 þ ω2

GÞ < 1.
The purpose of this work is to show that the energy

of a relativistic massive quantum particle/wave can be
resonantly boosted in the presence of such a dispersive
gravitational wave through the dynamics of a Klein-Gordon
field evolving in the background of this perturbed metric.
For the above spacetime metric associated with the gravi-
tational wave, the Klein-Gordon equation□Φ ¼ m2Φmay
be written as

0 ¼ −
∂2Φ
∂t2 þ ∂2Φ

∂z2 − ωfðχÞ ∂Φ∂t − kfðχÞ ∂Φ∂z −m2Φ; ð2Þ

where the curved d’Alembert operator is defined as
□ ¼ ð1= ffiffiffiffiffiffi−gp Þ∂μð ffiffiffiffiffiffi−gp

gμν∂νÞ, and gμν is the inverse
metric (with determinant g). We have also assumed that
the Klein-Gordon field, just like the gravitational wave,
depends only on z and t, i.e., Φ ¼ Φðt; zÞ. In Eq. (7),
fðχÞ ¼ ðln ffiffiffiffiffiffi−gp Þ0, and 0 means the derivative with respect
to χ. At Oðh2þ;×Þ order (the first relevant order), we
have fðχÞ ≈ −hþh0þ − h×h0×.
Of all possible solutions of Eq. (2), we will focus only on

those that can become “resonant” with the gravitational
wave, i.e., those in which the Klein-Gordon field shares
with the gravitational wave the z and t dependence strictly
through χ. Thus, the field propagates with the gravitational
wave and a resonance effect can be produced. After
expressing the z and t variation in terms of χ, and using
the dispersion relation (1), Eq. (2) becomes

0 ¼ Φ00 þ fΦ0 þ m2

ω2
G
Φ: ð3Þ

By defining ΦðχÞ ¼ ð−gÞ−1=4φðχÞ, Eq. (3) transforms to

0 ¼ φ00 þ ζ2φ; ð4Þ

where

ζðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2

ω2
G
−
f0

2
−
f2

4

s

: ð5Þ

Equation (4) mimics the equation of motion for a harmonic
oscillator with time-dependent frequency [22,23]. It can
be readily shown to have the following Wentzel-Kramers-
Brillouin (WKB) type solution [22],

φðχÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðχÞp exp

�

−i
Z

WðχÞdχ
�

; ð6Þ

with the function W defined through the equation

W2 ¼ ζ2 −
W00

2W
þ 3ðW0Þ2

4W2
: ð7Þ

Let us now assume a slowly varying spacetime, such that
in Eq. (7) the derivatives ofW are small compared tom=ωG
[22]. Also, consider a regime in which ωG remains
essentially constant such that m ≫ ωG, and m=ωG is larger
than any possible spacetime variation of the gravitational
wave. We could, then, approximate at lowest order

W ≈
m
ωG

: ð8Þ

Solution (6) signifies that the Klein-Gordon field behaves,
to the leading order, as a harmonic oscillator in a dispersive
gravitational wave background (8). This simplification
pertains as long as ω; k ≫ ωG, for a dispersive gravitational
wave moving almost at the speed of light. It further
simplifies the solution for the Klein-Gordon field

ΦðχÞ ≈
ffiffiffiffiffiffiffi

ωG

2m

r

exp

�

−i
m
ωG

χ

�

ð9Þ

with its associated energy E and momentum P of the
particle

E ≈
mω

ωG
≫ m; P ≈

mk
ωG

: ð10Þ

Since ω ≫ ωG, the energy (10) is much larger than the rest-
mass energy of the massive Klein-Gordon particle; the
Klein-Gordon field is in resonance with the gravitational
wave. Notice that this effect cannot occur when the
gravitational wave is not dispersive (when ω ¼ k) [24].
Thus, resonance of a massive particle field cannot take
place with a gravitational wave propagating at the speed
of light.
In the light of (10), let us examine the scenario when the

Klein-Gordon system is treated as a quantum field [22,25].
We write the scalar field as ΦðχÞ ¼ P

k ½akukðχÞþ
a†ku

�
kðχÞ�, in terms of annihilation ak and creation a†k

operators (with their respective commutation relations).
Thus, fields uk and u�k will satisfy Eq. (2) with solution (6).
The energy-momentum tensor for the quantized field
Φ is given by Tμν ¼ ∂μΦ∂νΦ − ð1=2Þgμνgαβ∂αΦ∂βΦþ
ð1=2Þgμνm2Φ2, from which we deduce that T00 ¼ ðω2þ
k2ÞΦ02=2 −m2Φ2=2, and T0i ¼ −ωkΦ02. At the leading
order approximation (8), the normal order Hamiltonian and
momentum are derived to be [22]

∶H∶ ¼
X

k

mω

ωG
a†kak; P ¼

X

k

mk
ωG

a†kak: ð11Þ

From examining both the classical and the quantized
expressions [Eqs. (10) and (11), respectively], we conclude
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the energy-momentum of a scalar field can be strongly
boosted when it is in resonance with a dispersive gravita-
tional wave. The condition for this enormous gain is that, to
leading order, the phase velocity v of the scalar field is
equal to the phase velocity of the gravitational wave (see
Ref. [7])

v ∼
E
P
∼
ω

k
: ð12Þ

This condition ensures that the energy of the scalar massive
field can increase under the bound imposed by the energy-
momentum conservation E2 − P2 ¼ m2, which is ensured
by the dispersion relation (1), and the energy-momentum
solution (10). This is closely related with the adiabatic
invariant E=ζ ≈ ω [23] of Eqs. (3) and (4).
Although much more sophisticated calculations are

needed to calculate the relevant time scale τ for energiza-
tion, wewould present here a simple estimate exploiting the
fact that it is a resonant process controlled by how close the
gravitational wave speed ω=k is to the particle velocity v.
One could expect, using the Landau damping analogy, that
the time taken for the particle to achieve an energy that
corresponds to the velocity v is

τ ∼
1

Hðω − kvÞ ; ð13Þ

where ω is given by dispersion relation (1), and H is a
normalized function that depends on the gravitational wave
amplitude. If the gravitational wave amplitude were very
large compared to the one of the Klein-Gordon field (much
larger than the maximum energy transfer), H will be
essentially a constant. But for all finite energy waves, H
will become a function of time, and its value will decrease
as the gravitational wave loses its energy to the particles.
The timescale τ, thus, is determined by linear as well as
nonlinear processes: the former affects it through the
gravitational wave energy, allowing that τ increases with
decreasing amplitude. In the following, we will simply
focus in the linear resonant phenomena and assume a
constant H (i.e., gravitational wave energy is large). The
dispersion relation (1) gives ω ∼ kþ ω2

G=2ω, when
ωG ≪ ω. In addition, for a high-energy relativistic particle
with v ∼ 1, its Lorentz factor γ−2 ¼ 1 − v2 ∼ 2ð1 − vÞ.
Combining the two simplifications converts Eq. (13) into

τ ∼
2ωγ2

Hðω2 þ γ2ω2
GÞ

: ð14Þ

One immediately notices that when γ → ∞, the limiting
time for achieving the highest energy permissible given
in (10) takes the simple form

τðγ → ∞Þ ∼ 2ω

Hω2
G
; ð15Þ

which is very large for diluted media with ωG ≪ ω. For a
finite time interval, if the particle is boosted up from γ0 to
γ1 > γ0, the time interval for energization is

Δτ ¼ τðγ1Þ − τðγ0Þ ∼
2ω3ðγ21 − γ20Þ

Hðω2 þ γ21ω
2
GÞðω2 þ γ20ω

2
GÞ

: ð16Þ

For the most relevant region where ω=ωG ≫ γ0; γ1 ≫ 1,
Δτ takes the revealing simple form

Δτ ∼
2

Hω
ðγ21 − γ20Þ: ð17Þ

These estimations for the timescale for energization do not
consider the effective dependence upon the gravitational
wave amplitude. The proper treatment will be left for future
investigations.
The maximum energy accessible to the particle (in terms

of restored units) is

E
mc2

¼ ω

ωG
∼

c
λωG

; ð18Þ

where λ is the wavelength of the gravitational wave. As an
example, let us consider a gravitational wave with a
characteristic wavelength λ ∼ 106 ½m� (the kind detected
in LIGO [26]) corresponding to frequencies of the order
ω ∼ 300 ½Hz�. In order to estimate ωG, let us assume the
gravitational wave is propagating in a very dilute medium.
The response frequency, then, can be estimated to be [13]

ωG ≈
ffiffiffiffiffiffiffiffiffiffiffiffi

4πGE
c2

r

∼ 10−3
ffiffiffi

ρ
p

; ð19Þ

where G is the gravitational constant, and E and ρ are the
energy and mass density of the medium. For media with
103 to 108 nucleons per cubic meter (interstellar gas), then
we have mass densities ρ ranging from 10−27 ½gr=cm3� to
10−22 ½gr=cm3�. This produces response frequencies ωG

from ∼3 × 10−17 ½Hz� to 10−14 ½Hz�. For this medium, the
increment in energy (18) of the Klein-Gordon particle
under the above gravitational wave can range up from
E=mc2 ∼ 1019 to ∼3 × 1016. If the mass density increases
to ρ ∼ 10−12 ½gr=cm3� (1018 nucleons per cubic meter), then
ωG ∼ 10−9 ½Hz� and E=mc2 ∼ 3 × 1011. For a proton
(treated as a scalar massive particle), with mc2∼
900 ½MeV�, the previous estimation implies that its energy
can reach values from E ∼ 1020 ½eV� to E ∼ 1028 ½eV�,
when it enters in resonance with this dispersive gravita-
tional wave in the corresponding background media. Those
energies are in the range peculiar to the most energetic
cosmic rays.
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We, thus, see that the resonance described in (6) and (8)
can produce very energetic massive particles when the
appropriate conditions are met, i.e., when the particle
moves in a very dilute media (ω ≫ ωG) in consonance
with the dispersive gravitational wave, allowing it to extract
energy from the wave, as long as the self–gravitation of the
scalar field is ignored. It must be stressed that the basic
conclusions of resonant energy transfer hold even for the
more general conformally invariant Klein-Gordon equation
□Φ ¼ m2Φþ ξRΦ, where R is the Ricci scalar and ξ a
constant. The extra term, modifying the right-hand side of
Eq. (7), does not change the main result (8).
The proposed process of the energization of spinless

massive particles is bound to be relevant in several
astrophysical scenarios where gravitational waves are
expected to be present. This process has to be considered
in the context of creating high-energy particles in astro-
physics. Besides, similar effects can be expected in the
interaction of electromagnetic waves with dispersive gravi-
tational waves. These kinds of interactions have been
studied using a background of gravitational waves in
vaccum [16,27] and vice versa [28]. A similar effect in

the energization of photons by gravitational waves has been
also reported [16].
We must point out that the gravitational waves consid-

ered in this paper (hμν ≪ ημν) are basically linear. In order
for them to have sufficient energy to efficiently catapult
particles to high energies, they must be high intensity (see
[7] for the electromagnetic case), and therefore essentially
nonlinear. The current calculation, therefore, must be seen
only as an important first step demonstrating a new possible
process. To do a proper energy inventory, a more advanced
model of the intense gravitational waves must be invoked.
A detailed study of relativistic fields interacting, resonantly,
with dispersive gravitational waves can bear highly prom-
ising results, and the authors are investigating several
aspects of this problem.
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