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Microlensing of stars places significant constraints on subplanetary-mass compact objects, including
primordial black holes, as dark matter candidates. As the lens’ Einstein radius in the source plane becomes
comparable to the size of the light source, however, source amplification is strongly suppressed, making it
challenging to constrain lenses with a mass at or below 10−10 solar masses, i.e., asteroid-mass objects.
Current constraints, using Subaru Hyper Suprime Cam (HSC) observations of M31, assume a fixed source
size of one solar radius. However, the actual stars in M31 bright enough to be used for microlensing are
typically much larger. We correct the HSC constraints by constructing a source size distribution based on
the M31 PHAT survey and on a synthetic stellar catalog and by correspondingly weighting the finite-size
source effects. We find that the actual HSC constraints are weaker by up to almost 3 orders of magnitude
in some cases, broadening the range of masses for which primordial black holes can be the totality of the
cosmological dark matter by almost 1 order of magnitude.
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I. INTRODUCTION

The microscopic nature of the dark matter (DM) perme-
ating and shaping the observed Universe remains mysteri-
ous. The persistent lack of a direct signal from weak-scale
DM particle candidates [1] has spurred growing interest in
other possibilities. Primordial black holes (PBHs), formed in
the early Universe as a result of large primordial density
perturbations, are compelling DM candidates if massive
enough to survive Hawking evaporation over the age of
the Universe (mPBH ≫ 10−17 M⊙) [2,3]. A variety of con-
straints, including, but not limited to, the effects of partial
evaporation at low masses and microlensing at larger masses
rule out PBHs contributing 100% of the DM over most of
the possible parameter space, roughly 5 × 10−17 < mPBH=
M⊙ < 10. At present, the only remaining window is towards
the low-mass end and perhaps at the solar-mass end [4],
although the latter might be constrained by CMB distortion
caused by matter accretion onto the PBHs [5], x-ray data
which places limits on the photon flux from PBHs interact-
ing with the interstellar medium [6], and other microlensing
and dynamical heating constraints (see e.g., [7] and the
references therein).
Here, we intend to correct and update constraints in the

most plausible region where PBH could be the DM, i.e.,
the asteroid-mass range 5 × 10−15 < mPBH=M⊙ < 10−10.
Over this mass range, the role of finite-size source effects is

critical: as the Einstein radius of the lensing object in the
source plane becomes comparable to, or smaller than the
source size, the source amplification from lensing is strongly
suppressed [8]. Reference [9] showed that Gamma-Ray
Burst femto-lensing constraints, after correction for finite-
size effects, do not presently constrain PBH as DM
candidates; Ref. [10] (see also [11]) realized their original
constraints from optical observations of M31 had been vastly
overestimated because finite-source-size effects had origi-
nally not been accounted for. Reference [12] reassessed the
effects, pointing out that even in the corrected version the
assumed source size might have been underestimated,
leading to incorrect, very optimistic constraints.

II. METHODOLOGY

A. Microlensing formalism

Gravitational lensing of astrophysical objects is a power-
ful tool for observing dark, massive objects [13]. For low-
mass lenses, such as asteroid-mass PBHs, the images
formed by gravitational lensing cannot be fully resolved.
The result is that the source is magnified by a factor

A ¼ ϕ

ϕ0

; ð1Þ

where ϕ0 is the flux in the absence of lensing. The relevant
scale for lensing by a PBH is the Einstein radius, RE, which
is defined as*nwsmyth@ucsc.edu
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RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GMPBHdLð1 − dL=dSÞ

c2

r
; ð2Þ

where dS and dL are the distances between the observer and
the source, and the observer and the lens, respectively. The
angular size of the Einstein radius is given by θE ≡ RE

dL
and

represents the angle between the source and its image as
measured by an observer when the lens is directly between
the observer and source.
If we ignore the effects of wave optics (geometric optics

approximation), the magnification for a point source can be
shown to be [14]

Ageo ¼
u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ; ð3Þ

where θ is defined to be the angle of the source such that
u ¼ θ=θE is now the dimensionless impact parameter.
More generally, we can define the following dimensionless
quantities:

x ¼ θL=θE; y ¼ θ=θE; w ¼ dLdS
dLS

θ2Eω; ð4Þ

where θL is the angular size of the lens, dLS is the distance
between source and lens, ω is the frequency of the light
being lensed, and θE is chosen to be the characteristic
angular scale. The general amplification A for the case of a
spherically symmetric lens reads [14]

A ¼ −iwe
iwy2

2

Z
∞

0

xJ0ðwxyÞeiwðx
2

2
−ψðxÞÞdx; ð5Þ

where J0 is the zeroth order Bessel function. The
Schwarzschild radius of a PBH is very small compared
to the distances between M31, the PBH, and the HSC.
Thus, the point mass lens approximation is valid and the
amplification becomes

A ≃
πw

1 − e−πw

����1F1

�
1

2
iw; 1;

1

2
iwy2

�����
2

; ð6Þ

where 1F1 is the confluent hypergeometric function [14,15].
In the short wavelength limit (w ≫ 1), the integrand of

Eq. (6) oscillates rapidly and the biggest contribution to the
integral comes from stationary points corresponding to
geometric images of Eq. (3). When w ≥ 1, the geometric
optics approximation breaks down and the wave diffraction
effect becomes significant.
Previous microlensing constraints were obtained using

observations from the Subaru telescope with the Hyper
Suprime Cam (HSC) in the r-band filter [10]. The wave-
length of light detectable in this band is comparable to the
Schwarzschild radius of a PBH with MPBH ≤ 10−11 M⊙.
As a result, the geometric lensing approximation is not

appropriate and diffraction effects must be taken into
account. This renders the very low-mass range untestable
by the HSC. The HSC is sensitive to a microlensing event
when the magnification is A ≥ 1.34. At small values of
the dimensionless frequency w (the long wavelength limit),
there can be no detectable lensing events because the
magnification will always be lower than this threshold as
shown in Fig. 1.
We note that the previous microlensing constraints

show no appreciable difference between wave and geo-
metric approaches when the finite-size effect is taken into
account [10,11]. This is because during a real observation,
the diffraction term in Eq. (4) averages out. In this case,
the diffraction effects provide only small corrections to the
threshold impact parameter found by only considering
finite-size effects. Therefore, in this paper, we limit our
discussion to the dominant effects of finite source size.

B. Finite-size effects

The microlensing magnification generically depends on
the size of the source [16]. The source size, along with the
magnitude of the impact parameter, determines whether
the peak magnification for an extended source is enhanced
or diminished [17]. When the impact parameter becomes
small (u ≪ rsource), the peak magnification for a point
source diverges, while the peak magnification for an

FIG. 1. The magnification for different values of the dimen-
sionless frequency w. In the geometric approximation, shown in
dotted gray, the wave effects of light are ignored and the
magnification is independent of the source size. In the long
wavelength limit, shown in solid gray, the light effectively
ignores the lens and no magnification occurs. For w ≥ 1, the
magnification increases as source size decreases, but reaches a
maximum at πw.
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extended source remains finite. This means that for
extended sources, the peak magnification is significantly
lower than in the point source case. We recalculate the
magnification, taking into account the finite-size effects
following [17,11].
To determine the magnification of a finite-size source,

we use the size of the source in the plane of the lensing
PBH. It is convenient to define the parameter,

U ≡ θS
θE

¼ RS=dS
RE=dL

; ð7Þ

where θS is the angular size of the source. The finite-size
effects are most prominent in the regime where U ≫ 1, but
are not negligible even when U < 1. The magnification is
given by integrating Eq. (3) over the source star in the plane
of the lensing PBH,

Afiniteðu;UÞ≡ 1

πU2

Z
jyj≤U

d2yAgeoðju − yjÞ: ð8Þ

Under the geometric approximation, Eq. (3), the threshold
magnification corresponds to a threshold impact parameter

value of u ¼ 1. When taking into account the finite-size
effects, the threshold impact parameter is different from
unity in general. Following the prescription of [11], we
calculate the value of the impact parameter that corre-
sponds to a detectable event by setting Afinite ¼ 1.34 for a
particular set of parameters dL, MPBH, rsource, and solving
for uthresh in Eq. (8). The dependence of uthresh on these
parameters is shown in Fig. 2.

III. SOURCE SIZE REVISITED

The HSC constraints assume a source size of R ¼ R⊙
for simplicity [10], but observations are much more
sensitive to significantly larger stars. To show this, we
assume a black-body radiation spectrum which implies

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lbol

4πT4σ

r
; ð9Þ

where σ is Wien’s constant. We find that the apparent
magnitude of the Sun would be ≈29mag in the r-band were
it located at the center of M31. Considering the detection
efficiency of the HSC (30%–20% for mr ¼ 25–26 mag,
and 70%–60% for mr ¼ 23–24 mag) [10], a main-
sequence star located in M31 would need to have a
luminosity much greater than that of the Sun in order
for a lensing event to be detectable. This implies that the
HSC is more sensitive to larger main-sequence stars in
general, according to Eq. (9). This can be seen in Fig. 3
where for larger sources and/or smaller PBHs, there is no
appreciable magnification, and therefore no valid uthresh,
unless the PBH is very far from the source.
If the source star were off-main sequence, the finite-size

effects would become even more significant. Therefore,
here we aim to derive the corrected constraints from HSC
observations using the population of stars in M31 that were
both in the field of view and had light curves that could be
successfully recovered by observations.
We use the catalog of stars from the Panchromatic

Hubble Andromeda Treasury (PHAT) survey to find the
population of stars in M31 which can have detectable
microlensing events [18,19]. The PHAT survey resolved
117 million individual stars and partially overlaps with the
HSC data in the disk region. However, the HSC is unable to
resolve the fainter stars from the PHAT catalog. In order
to ensure well-measured colors and coincidence between
PHAT and microlensing-detectable stars, we use those stars
that have a high signal-to-noise ratio and sufficient sharpness
in each filter, as indicated by the GST tag; see [18].
The PHATobservations are grouped into 23 bricks. Each

brick corresponds to a different region in M31, with higher
numbered bricks corresponding to regions further from
the galactic center. Since the HSC was unable to recover
microlensing events in the bulge due to saturation of the
detector, we remove this region from our analysis by
considering only GST stars from bricks seven and higher.

FIG. 2. The threshold impact parameter values for geometric
(orange), finite (blue), and finiteþ wave (red) models with a
source star of radius R⊙. In the geometric approximation, the
threshold impact parameter is always 1, regardless of lens
distance. When including finite-size effects, the threshold impact
parameter now depends on distance. If we move the lens further
away, that is, closer to the source star, at a certain distance there
will no longer be any detectable magnification as shown by the
dashed blue line. The wave effects are small corrections to the
finite-size effects and are thus not considered for the final results
of this paper.
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We also perform a magnitude cut of m ≤ 26 in the HST
Wide Field Channel (WFC) F814W filter since this
corresponds to the dimmest stars the HSC could observe
in the r-band. This preferentially eliminates small stars from
our analysis which have lower luminosities on average. It
should be noted that at many points in the HSC survey,
the dimmest stars that could be observed were closer to
m ¼ 24. Thus, the corrections made in this paper are on the
conservative side in that the constraints would likely be
weakened further by excluding those stars with magnitude
24 ≤ m ≤ 26 which the HSC could not observe.
To determine the size of stars in the PHAT catalog, we

use the MESA Isochrones and Stellar Tracks (MIST) stellar
evolution package [20,21]. We generate isochrones for
the nonrotating models in the HST Advanced Camera for
Surveys/WFC photometric system. We then compare each
PHAT star to all the synthetic MIST stars using a nearest
neighbors approach. This method works by finding those
MIST stars that share sufficiently similar photomoetry to
the PHAT star. A MIST star is considered sufficiently
similar, or a neighbor, if it lies within 0.025 in magnitude
of a PHAT star using the apparent magnitudes of a star in
each filter. This cutoff value was selected by calculating the
number of PHAT stars with at least one nearest neighbor for
various cutoff values. Above ≈0.025, the number of stars

with at least one neighbor does not increase significantly.
This indicates that most of the stars that have a similar
neighbor have already been found. Through this selection
process, we found radius probability distributions for
approximately 93% of stars in the PHAT catalog. Of these,
the standard deviation of the nearest neighbors was 0.4R⊙
or less for 90% of samples. This quality of fit is more than
sufficient considering the small effect this uncertainty has
on the final results (see Sec. IV for details).
We use the bolometric luminosity and temperature of

each synthetic MIST star to construct a probability dis-
tribution for the radius of each PHAT star. Because the
MIST isochrones artificially contain a large number of
high-mass stars, we weight the synthetic stars using the
Chabrier initial mass function, which disfavors very high-
mass stars [22]. We also weight the data by the implied
distance of the synthetic stars. By comparing the distance
modulus of the synthetic stars to the real PHAT stars, we
can compute how far away the synthetic star would be.
By comparing this to the actual distance to an M31 star
(following [10], the distance to each star is assumed to be
the measured distance to the galactic center of M31,
≈770 kpc), we can determine how good a fit the neighbor-
ing synthetic stars are and weight them accordingly. Both
these weighting schemes are used for the remainder of
this paper.
The result is the distribution of star sizes shown in the

kernel density distribution of Fig. 4. The mean value of
the neighboring stars is the distribution used to calculate
the benchmark constraints. To see how much the con-
straints vary with this estimate, we also make a distribution
using the largest and smallest radius stars within each set
of neighbors (orange and green curves).
The first peak around 4R⊙ comes from main sequence

stars, the most abundant branch. In order to enable HSC-
detectable lensing events, main sequence stars must be
significantly more luminous than the Sun. Hence, accord-
ing to Eq. (9), the stars we consider are typically larger
than the Sun, leading to the observed peak. The second
peak around 10R⊙ likely stems from the overdensity of
red giant branch and asymptotic giant branch stars in
the disk of M31 [19,23]. These stars are more luminous
in general and are therefore more likely to be observable
to the HSC. As a result, even though the abundance of
smaller stars is greater, it is in fact the larger stars that
contribute most to the constraints.

IV. CONSTRAINTS ON PBH AS DM

Following the derivation of the original HSC con-
straints [10], which assume an isotropic Maxwell velocity
distribution, monochromatic mass spectrum, and an
Navarro-Frenk-White (NFW) density profile for the
DM [24], the differential event rate for microlensing of
a single star by a PBH is given by
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FIG. 3. The dependence of the threshold impact parameter on
MPBH and rsource for 1 solar radius (blue) and 2.5 solar radii (red).
The solid lines correspond to MPBH ¼ 10−10 M⊙, while the
dashed lines correspond to MPBH ¼ 10−11 M⊙. For larger stars,
the finite-size effects become important at a smaller distance.
Similarly, for lighter PBHs, the finite-size effects are more
dominant. Considering the population of stars in M31, this
results in little to no detectable magnification for PBHs close
to M31 unless they are well above asteroid mass.
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dΓPBH

dt̂
¼ 2

ΩPBH

ΩDM

Z
ds

0

ddL

Z
UT

0

dumin

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2T − u2min

p ρDMðdLÞ
MPBHv2cðdLÞ

v4 exp

�
−

v2

v2cðdLÞ
�
;

ð10Þ
where v ¼ 2RE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2T − u2min

p
=t̂ is the transverse velocity of

the PBH, dL is the distance to the lensing PBH, and dS is
the distance to the source star. Formally, a Maxwell
velocity distribution is inconsistent with the assumption
of a NFW density profile (see e.g., [25]), but we assume
this will have a negligible effect on the final constraints.
The duration of observation was 7 hours, of which

the greatest sensitivity to detection of events was from
0.07–3 hours. We integrate over the observation time to
find the total expected rate of events. To derive con-
straints, we assume microlensing events follow a Poisson
distribution and compare the actual number of detections
to the expected number of detections. The probability to
observe Nobs events is

Pðk ¼ NobsjNexpÞ ¼
Nk

exp

k!
e−Nexp : ð11Þ

The HSC found one candidate event, so the 95% con-
fidence interval corresponds to Pðk ¼ 0Þ þ Pðk ¼ 1Þ ≥
0.05, which leads to the condition Nexp < 4.74.

The stellar population in Fig. 4 is sorted into linearly
spaced bins up to 20R⊙, at which point we use logarithmi-
cally spaced bins for the remaining few large, sparsely
distributed stars. Constraints are generated by performing
the integral in Eq. (10) for each bin. Examples of how the
constraints change with source size are shown in Fig. 5.
The benchmark constraints are then generated by appro-
priately weighting through a harmonic mean each of the
constraints from a given stellar size according to the
abundance of stars within the corresponding bin.
Figure 6 shows our key results on the plane of the

fraction of PBH to the total DM abundance versus the PBH
mass. The inset shows the fractional change in the con-
straints compared to the original ones in Ref. [10]. After
taking into proper consideration the distribution of stellar
sizes, the HSC constraints are up to 3 orders of magnitude
weaker than in the original estimate with stellar sizes all set
to one solar radius. As a result, the range of PBH masses
where PBHs can be the DM increases by almost 1 order or
magnitude.
The correction to the constraints due to larger actual

stellar sizes is significant, especially in the low-mass
range. To appreciate this, we point out the scaling of the
constraints with source radius (see also Ref. [12]): if the
source radius doubles, in order to keep the same parameter
U, the lens would need to be brought closer to Earth
according to

FIG. 5. The constraints for example individual radii of a source
star. The jagged feature arises from the point at which the DM
density contribution from PBH in M31 in Eq. (10) in the main
text becomes negligible. Lower mass PBHs must be located close
to the Milky Way in order to facilitate a detectable lensing event.
The sharpness of this feature is averaged out in the benchmark
constraints.

FIG. 4. The population of stars in M31 which could have
microlensing light curves resolvable by the HSC survey. Larger
stars tend to have greater total luminosity in general and are
therefore the easiest to detect. The blue line shows the values used
for our benchmark constraints. The uncertainty estimation, repre-
sented by the green and orange curves, comes from using the largest
or smallest radius estimate for each star. See Sec. III for details.
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U ¼ θS
θE

¼ RSdL
REdS

¼ RS

�
x

1 − x

�
1=2

; ð12Þ

where x ¼ dL=dS. If x is small, which is a good approxi-
mation for low-mass PBHs since uT is 0 unless dL ≪ dS,
this corresponds to the lens being brought a factor of
4 closer to the Earth. This, in turn, means that the Einstein
radius of the PBH will halve. Since v ∝ RE, our rate of
observed lensing events will go down by a factor of
1=26 ¼ 1=64 for low-mass PBHs [12]. This explains
why in the low-mass regime, the finite-size effects can
change by such a large margin for a relatively small
change in RS.
The finite-size effects also weaken the constraints for

intermediate mass black holes. The finite-size effects are
greatest when the lensing PBH is close to the source star.
That is, as dL approaches dS, the finite-size effect washes
out magnification for all masses of PBH. This is also the
region where the DM density contribution from M31 in
Eq. (10) is the greatest, leading to a noticeable weakening
of the constraints for all but the high-mass region of the
relevant parameter space.
The uncertainty in the constraints given the uncertainty

in stellar sizes we find is shown in the gray shading in
Fig. 6, obtained using the smallest and largest nearest
neighbors given by the MIST comparison. In the high-
mass region, the uncertainty in the constraint is minuscule,
since finite-size effects are less important in this region.
At lower masses, the uncertainty is noticeable, but still

small. When using the minimum estimate for the size of a
source star, any given bin will lose some number of stars
to a smaller bin, but will also gain a number of stars from a
larger bin. The net effect is slight, but reassuring as it
suggests that the number and size of bins matter much less
than the overall distribution of stars.

V. CONCLUSIONS

Our study illustrates how careful consideration of finite-
size source effects leads to the swath of parameter space
where PBH can be the totality of the DM being signifi-
cantly larger than previously thought. This, in turn, begs
for further studies as to how to best explore the region
of subplanetary-mass PBHs. We incidentally note that
our results apply to any sufficiently compact DM candidate
in this mass range, including e.g., dark quark nuggets,
strangelets, axion miniclusters, or axion stars.
In general, optimal observing strategies would include

long observations of the greatest possible number of stars,
with a high enough cadence to enable detection of the
shortest duration lensing events. Using a shorter wave-
length filter to mitigate wave effects would also expand
the testable PBH mass region, as suggested by [11].
This work emphasizes how the observed stars need to be

luminous enough in the band of observation to obtain a
sufficient expected number of events. Additionally, isolat-
ing sources with smaller radii and observing very far away
sources would limit the finite-size effects and improve
constraints. But this proves challenging when trying to
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isolate individual stars and achieve the best possible image
resolution. Indeed, finding the ideal candidates for obser-
vation is a critical step to improving microlensing con-
straints and is a subject of our future work.
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