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In this work the neutral meson properties have been investigated in the presence of thermo-magnetic
background using a two-flavor Nambu–Jona-Lasinio model. Mass, spectral function, and dispersion
relations are obtained in the scalar (σ) and pseudoscalar (π0) channels as well as in the vector (ρ0) and axial
vector (a01) channels. The general Lorentz structures for the vector and axial-vector meson polarization
functions have been considered in detail. The ultraviolet divergences appearing in this work have been
regularized using a mixed regularization technique where the gamma functions arising in dimensional
regularization are replaced with incomplete gamma functions as is usually done in the proper time
regularization procedure. The meson spectral functions obtained in the presence of a magnetic field possess
nontrivial oscillatory structure. Similar to the scalar and pseudoscalar channel, the spectral functions for
each of the modes of ρ0 are observed to overlap with the corresponding modes of its chiral partner a01
mesons in the chiral symmetry restored phase. We observe discontinuities in the masses of all the mesonic
excitations for a nonzero external magnetic field.
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I. INTRODUCTION

Based on a considerable amount of research regarding
the generation of magnetic fields in noncentral heavy ion
collision (HIC), there exists a growing consensus that an
extremely strong transient magnetic field of the order of
∼1018 G or larger can be produced at the RHIC and the
LHC [1–8]. Being comparable to the energy scale of strong
interaction, though short lived, the produced field can
impart significant modifications in the properties of
strongly interacting matter [9–14] resulting in a plethora
of novel phenomena like chiral magnetic effect [2,15,16],
magnetic catalysis [17–20], inverse magnetic catalysis
[21–23] electromagnetically induced superconductivity,
superfluidity [24,25], and so on. The tools and techniques
developed for studying such magnetic modifications in
HIC experiments also bear significant importance for their

applicability in many different physical scenarios where a
strong magnetic field can be realized. For example, in the
early universe during the electroweak phase transition,
magnetic fields as high as ∼1023 G might have been
produced. Also, in the case of magnetars the surface
magnetic field is of the order of ∼1015 G. In the interior,
the field intensity is even higher reaching up to ∼1018 G.
Such low temperature and high density extreme states are
expected to be explored in compressed baryonic matter
(CBM) experiment at Facility for Antiproton and Ion
Research (FAIR). On theoretical grounds, at lower temper-
atures, the usual field theoretic approach of studying
quantum chromodynamics (QCD) is not feasible due to
the confining nature of strong interaction that severely
restricts the applicability of perturbative analysis. In this
scenario, an alternative to the nonperturbative lattice QCD
approach is provided by the QCD inspired effective
models. The modification of such effective descriptions
in the presence of an external magnetic field has gained
significant research interests in recent times [26]. One such
model is the Nambu–Jona-Lasinio model [27–32] which
has been widely used in the studies of chiral symmetry
breaking as well as meson properties in the presence of
thermo-magnetic background [33–36].
In the context of studying the mesonic properties in the

presence of a magnetic field in the NJL model, often the
lightest mesons σ and π are considered [37–42]. In some
studies diquarks are also included [43]. ρ meson properties
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have been discussed in Refs. [44–46]. In Ref. [44], it is
observed that at a vanishing magnetic field, there exists a
temperature when the ρ mass coincides with twice the
mass of the constituent quark and beyond that temper-
ature no solution for the ρ meson mass exists which is
described as the ρ melting. Even at finite magnetic field
the melting persists and two different melting temper-
atures are observed corresponding to the charged and the
neutral ρ. Comparison with a ρ0 meson suggests that
melting of ρ� occurs at a lower temperature in the
presence of a magnetic field. For example, in the case
of charged ρ, no solution exists beyond temperature
169 MeV for eB around 0.2 GeV2. However, similar
analysis on ρ� in Ritus formalism [46] does find non-
vanishing mass for charged ρ even at much higher values
of temperature for a similar strength of the background
magnetic field (see for example Fig. 4 of Ref. [46]). The
apparent ambiguity thus demands investigation of the
properties of a neutral ρ meson in thermo-magnetic
background which essentially will be an extension of
the study presented in Ref. [46].
On a different note, one of the significant features of

studying the meson properties is that at temperatures higher
than a critical value, the masses of the chiral partners
become degenerate. This degeneracy in the meson mass
spectrum serves as an important signature of the chiral
symmetry restoration. Therefore, the restoration of chiral
symmetry in the vector channel can be shown explicitly
only when one includes the a1 meson along with ρ which is
missing in the studies of ρmesons discussed earlier [44,46].
It should be mentioned here that in order to investigate the
vector and pseudovector channel, proper incorporation of
the general structure of meson self-energy is required. The
general Lorentz structure for the ρmeson in the presence of
a thermo-magnetic medium has been recently reported in
Ref. [47]. One may note that the Lorentz structure of a ρ
meson polarization function has not been considered
in Ref. [44].
In this work the neutral meson properties in scalar (σ)

and pseudoscalar (π0) channels as well as vector (ρ0) and
axial vector (a01) channels have been investigated in the
framework of a two-flavor NJL model in the presence of a
constant background magnetic field. The detailed general
structure for the vector and axial-vector meson polarization
tensor have been considered. The Schwinger scheme has
been implemented in the evaluation of the polarization
tensors. However, as only the neutral mesons are consid-
ered, the Schwinger phase vanishes and Schwinger and
Ritus formalisms are expected to provide identical results
[41]. It should be mentioned here that being an effective
description of QCD at low energy regime, the NJL model is
nonrenormalizable and requires a regularization prescrip-
tion. The most commonly used regularization technique
is to use a three momentum cutoff which acts as a
parameter of the theory and can be fixed to reproduce

some well-known phenomenological quantities, for exam-
ple the pion-decay constant and the condensate value.
However, to obtain the general structure of the self-

energy in a consistent way, we take recourse to the
dimensional regularization (DR) technique. Now, the
ultraviolet divergences in dimensional regularization pre-
scription occurs as a pole of gamma function. In that
procedure, one extra parameter arises which is to be
simultaneously fitted to reproduce the phenomenological
quantities. A detailed description regarding the fitting
procedure can be found in Refs. [48–50]. However, in this
work, to obtain the finite contribution, the gamma functions
arising from DR are replaced with incomplete gamma
functions. We refer to this replacement procedure as
incomplete gamma regularization (IGR). As a reward,
though the number of parameter sets remains identical to
that of usual regularization procedures, in this scheme, the
general Lorentz structure for vector and axial-vector
polarization functions can be obtained systematically.
The regularization scheme has been used to obtain the
neutral meson properties like mass, spectral function, and
dispersion relations. A nontrivial mass jump is observed in
the spectrum for each of the modes in the vector and axial-
vector channel which bears similarity with earlier studies of
pions in the presence of a magnetic field [41,42].
The article is organized as follows. Section II describes

the constituent quark mass and the dressed quark propa-
gators in the real time formalism of thermal field theory
whereas the gap equations and general structure are
described in Sec. III. In both the sections, vacuum, thermal,
and thermo-magnetic cases are considered in separate
subsections. The main results for the real and imaginary
parts of the meson polarization functions are listed in
Sec. IV. Section V describes the regularization procedure
used in this work. All the numerical results are presented
in Sec. VI followed by a brief summary in Sec. VII. Some
of the relevant calculational details are provided in the
Appendixes.

II. THE CONSTITUENT QUARK MASS AND
THE DRESSED QUARK PROPAGATOR

The standard expression of the two-flavor NJL
Lagrangian is

LNJL ¼ ψðiγμ∂μ −mÞψ
þ gsfðψψÞðψψÞ− ðψγ5τ⃗ψÞ · ðψγ5τ⃗ψÞg
− gvfðψγμτ⃗ψÞ · ðψγμτ⃗ψÞ þ ðψγμγ5τ⃗ψÞ · ðψγμγ5τ⃗ψÞg

ð1Þ

where, ψ ¼ ðudÞ is the quark isospin flavor doublet with u
and d being the up and down quark fields respectively. Each
of the up and down quark fields are ½4 × 1� ⊗ ½3 × 1�
matrices corresponding to their orientation in Dirac and
color spaces. In Eq. (1), gs and gv are respectively the
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coupling constants in the spin-0 and spin-1 channels for the
four point contact interactions among the quark fields and
m is the current quark mass which is assumed to be equal
for the up and down quarks to ensure isospin symmetry. In
the NJL model the constituent quark mass is dynamically
generated as a consequence of the spontaneous breaking of
chiral symmetry. In the following subsections, we briefly
introduce the formalism required to obtain the constituent
quark mass and the dressed quark propagator for three
different cases separately: (i) T ¼ 0, B ¼ 0, (ii) T ≠ 0,
B ¼ 0, and (iii) T ≠ 0, B ≠ 0.

A. Case I: T = 0, B= 0

We first consider the pure vacuum case for which the
temperature is zero and the external magnetic field is
switched off. The dressed quark propagator S0ðqÞ is
calculated from the Dyson-Schwinger equation

S0 ¼ S − SΣS0 ð2Þ

where Sðq;mÞ ¼ −ðqþmÞ
q2−m2þiϵ ⊗ 1Flavor ⊗ 1Color is the free

quark propagator and Σ is the one-loop self-energy of
the quark. In the mean field approximation (MFA), the
quark self-energy becomes diagonal in Dirac, color and
flavor spaces as

Σ ¼ ΣMFA1Dirac ⊗ 1Flavor ⊗ 1Color: ð3Þ

This enables one to solve Eq. (2) trivially to get the
complete propagator as

S0ðq;mÞ¼Sðq;MÞ¼ −ð=qþMÞ
q2−M2þ iϵ

⊗1Flavor⊗1Color ð4Þ

where

M ¼ mþ ReΣPure−Vac
MFA ð5Þ

is the “constituent quark mass.” The above equation is the
well-known gap equation.
Our next task is to calculate the quantity ΣMFA. Applying

Feynman rules to Fig. 1, we get the one-loop self-energy of
quark in the MFA as

ΣPure−Vac
MFA ðMÞ ¼ −2igs

Z
d4k
ð2πÞ4 Trc;f;d½S

0ðk;mÞ�

¼ −2igs
Z

d4k
ð2πÞ4 Trc;f;d½Sðk;MÞ�: ð6Þ

It is to be noted that the loop particle in the self-energy is
dressed. In the above equation, the subscripts c, d, and f in
the Tr correspond to the traces taken over color, flavor,
and Dirac spaces, respectively. Also note that the quark
self-energy is a function of M itself (since the loop particle

is dressed) so that Eq. (5) has to be solved self-consistently
to calculate M.
Let us now explicitly evaluate the quantity ΣPure−Vac

MFA .
Substituting Eq. (4) into Eq. (6), we get

ΣPure−Vac
MFA ¼ 8gsNcNfMi

Z
d4k
ð2πÞ4

1

k2 −M2 þ iϵ
ð7Þ

where Nc ¼ 3 and Nf ¼ 2 are the number of colors and
flavors, respectively. The momentum integral in the above
equation is ultraviolet (UV) divergent. The NJL model,
being a nonrenormalizable theory, requires a proper regu-
larization scheme. There exists many such UV regulators in
the literature such as three-momentum cutoff, Euclidean
four-momentum cutoff, Pauli-Villars, proper time, and so
on. The mostly used regulator is the momentum cutoff
which breaks the Lorentz invariance and usually every
symmetry of the theory. It will be demonstrated later in
Sec. V that the momentum cutoff regulator (or any other
regulator which breaks Lorentz invariance) is not useful
to study the vector meson ρ in the NJL model. In this
work, we will use “dimensional regularization” as our UV
regulator which respects all the symmetries of the theory.
Going to d dimension, Eq. (7) becomes

ΣPure−Vac
MFA ¼ 8gsNcNfMλ2−d=2i

Z
ddk
ð2πÞd

1

k2 −M2 þ iϵ

����
d→4

;

ð8Þ

where λ is a scale of dimension GeV2 which has been
introduced to keep the overall dimension of the equation
consistent. Performing the momentum integral in the above
equation, we get

ReΣPure−Vac
MFA ¼ 2gs

NcNfM3

4π2

�
4πλ

M2

�
ε

Γðε − 1Þ
����
ε→0

ð9Þ

where ε ¼ 2 − d=2. It is to be noted that the UV divergence
has been isolated as the pole of the Gamma function since
ΓðzÞ has simple poles at z ¼ 0;−1;−2;…. The regulari-
zation procedure of the above divergent quantity will be

FIG. 1. Feynman diagram for one-loop quark self-energy. The
bold line corresponds to “complete/dressed” quark propagator
obtained from the Dyson-Schwinger sum.
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discussed in Sec. V. The above equation has the following
expansion about ε ¼ 0:

ReΣPure−Vac
MFA ¼ 2gs

NcNfM3

4π2

�
−
1

ε
þ γE − 1 − ln

�
4πλ

M2

��

ð10Þ

which will be used later.

B. Case II: T ≠ 0, B= 0

We now turn on the temperature and consider the case
T ≠ 0, B ¼ 0. To include the effect of finite temperature,
we will use the real time formalism (RTF) of finite
temperature field theory [51,52]. In the RTF, all of the
two point correlation functions including self-energies and
propagators become 2 × 2 matrices (will be denoted by
boldface letters) in thermal space. As a result the Dyson-
Schwinger equation generalizes to a matrix equation in
thermal space

S0 ¼ S − SΣS0 ð11Þ

where each of the quantities is a 2 × 2 matrix. In the above
equation, S is the free thermal quark propagator given by

Sðq;mÞ ¼ V

�
Sðq;mÞ 0

0 −γ0S†ðq;mÞγ0
�
V: ð12Þ

In the above equation, the diagonalizing matrix V is
given by

V ¼
�
N2 −N1

N1 N2

�
ð13Þ

with

N2ðq · uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðq · uÞ

p
Θðq · uÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fð−q · uÞ

p
Θð−q · uÞ; ð14Þ

N1ðq · uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðq · uÞ

p
Θðq · uÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð−q · uÞ

p
Θð−q · uÞ

ð15Þ

where uμ is the four velocity of the thermal medium. In the
local rest frame (LRF), one has uμLRF ≡ ð1; 0⃗Þ. In the above
equations, ΘðxÞ is the unit step function and fðxÞ ¼
½ex=T þ 1�−1 is the Fermi-Dirac thermal distribution func-
tion for the quarks. It is well known that the complete
thermal propagator matrix S0 and the thermal self-energy
matrix Σ are diagonalized by V and V−1 respectively. Thus
Eq. (11) boils down to an algebraic equation in thermal
space as

S0 ¼ S − SΣ S0 ð16Þ

where S0 and Σ are respectively the 11-component of the
matrices VS0V and V−1ΣV−1. As before, in the MFA,
the Σ is diagonal in Dirac, color and flavor spaces Σ ¼
ΣMFA1Dirac ⊗ 1Flavor ⊗ 1Color so that Eq. (16) can be
trivially solved to obtain S0ðq;mÞ ¼ Sðq;MðTÞÞ where
the thermal constituent mass is given by

MðTÞ ¼ mþ ΣMFA: ð17Þ

It is easy to check that ReΣ ¼ ReΣ11, so that the knowledge
of S011 is sufficient to calculate the quantity ReΣ. The
explicit form of S011 is given by

S011ðq;mÞ ¼ Sðq;MÞ − ηðq · uÞ½Sðq;MÞ − γ0S†ðq;MÞγ0�
ð18Þ

¼ ð=qþMÞ
�

−1
q2 −M2 þ iϵ

− 2πiηðq · uÞδðq2 −M2Þ
�

⊗ 1Flavor ⊗ 1Colour ð19Þ
where ηðxÞ ¼ ΘðxÞfðxÞ þ Θð−xÞfð−xÞ.
Let us now evaluate the thermal self-energy function

ΣMFA whose real part is obtained by replacing the vacuum
complete propagator on the RHS of Eq. (6) by S0 → S011 as

ReΣMFAðM;TÞ ¼ −2gsRe
�
i
Z

d4k
ð2πÞ4 Trc;f;d½S

0
11ðk;mÞ�

�
:

ð20Þ
Substituting Eq. (19) into the above equation, we get after
some simplification

ReΣMFAðM;TÞ ¼ ReΣPure−Vac
MFA ðMÞ

− 2gs
2NcNfM

π2

Z
∞

0

djk⃗j k⃗
2

ωk
fðωkÞ ð21Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þM2

p
.

C. Case III: T ≠ 0, B ≠ 0

Finally, we consider the case of finite temperature and
nonzero external magnetic field. In this case, the complete
thermo-magnetic quark propagator S0B satisfies the gener-
alized Dyson-Schwinger equation

S0B ¼ SB − SBΣBS0B ð22Þ

where ΣB is the thermo-magnetic quark one-loop self-
energy matrix and SB is the free thermo-magnetic quark
propagator. Analogous to Eq. (12), SB can be written
explicitly as
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SBðq;mÞ ¼ V

�
SBðq;mÞ 0

0 −γ0S†Bðq;mÞγ0
�
V ð23Þ

where

SBðq;mÞ ¼
�
Su 0

0 Sd

�
ð24Þ

in which, Su and Sd are respectively the Schwinger proper-
time propagator for up and down quarks. They can be
expressed as a sum over discrete Landau levels as

Sfðq;mÞ ¼ −
X∞
l¼0

ð−1Þle−αfqDlfðqÞ
q2k −M2

lf þ iϵ
⊗ 1Color; f ∈ fu; dg

ð25Þ

where αfq ¼ −q2⊥=jefBj,

Mlf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 2ljefBj

q
ð26Þ

and

DlfðqÞ ¼ ð=qk þMÞ½f1Dirac þ signðefÞiγ1γ2gLlð2αfqÞ
− f1Dirac − signðefÞiγ1γ2gLl−1ð2αfqÞ�
− 4=q⊥L1

l−1ð2αfqÞ ð27Þ

with ef being the electric charge of flavor f i.e., eu ¼ 2
3
e

and eu ¼ − 1
3
e; e is the charge of a proton. In the above

equation, signðxÞ ¼ ΘðxÞ − Θð−xÞ; La
l ðzÞ is the general-

ized Laguerre polynomial with the convention La
−1 ¼ 0.

The external magnetic field being in the positive z
direction, the metric tensor can be decomposed as
gμν ¼ gμνk þ gμν⊥ where gμνk ¼ diagð1; 0; 0;−1Þ and gμν⊥ ¼
diagð0;−1;−1; 0Þ so that the parallel and perpendicular
four vectors are defined as qμk ¼ gμνk qν and qμ⊥ ¼ gμν⊥ qν.
Similar to the thermal case, the Dyson-Schwinger

equation in thermo-magnetic medium can be also repre-
sented in diagonal form as

S0 ¼ SB − SBΣ S0 : ð28Þ

Following the MFA, the Σ is diagonal in Dirac, color,

and flavor spaces, Σ ¼ ΣMFA1Dirac ⊗ 1Flavor ⊗ 1Colour so

that Eq. (28) can be trivially solved to obtain S0ðq;mÞ ¼
SBðq;MðT; BÞÞ where the thermo-magnetic constituent
quark mass is given by

MðT; BÞ ¼ mþ ΣMFA: ð29Þ

As before, because of the fact ReΣ ¼ ReΣ11
B , the knowl-

edge of S0B11 is sufficient to calculate the quantity ReΣ.
The explicit form of S0B11 is given by

S0B11ðq;mÞ ¼ SBðq;MÞ
− ηðq · uÞ½SBðq;MÞ − γ0S†Bðq;MÞγ0�

¼
�
S11u 0

0 S11d

�
ð30Þ

where

S11f ðq;MÞ ¼ Sfðq;MÞ
− ηðq · uÞ½Sfðq;MÞ − γ0S†fðq;MÞγ0� ð31Þ

¼
X∞
l¼0

ð−1Þle−αfqDlfðqÞ
�

−1
q2k −M2

lf þ iϵ

− 2πiηðq · uÞδðq2k −M2
lfÞ

�
⊗ 1Color; f ∈ fu; dg:

ð32Þ
Let us now evaluate the thermo-magnetic self-energy

function ΣMFA whose real part is obtained by replacing the
11-component of the complete thermal propagator on the
RHS of Eq. (20) by S011 → S0B11 as

ReΣMFAðM;TÞ ¼ −2gsRe
�
i
Z

d4k
ð2πÞ4 Trc;f;d½S

0
B11ðk;mÞ�

�
:

ð33Þ
Substituting Eq. (30) into the above equation, we get after
some simplification (see Appendix A for details)

ReΣMFAðM;B; TÞ ¼ ReΣPure-Vac
MFA ðMÞ þ ReΣB-Vac

MFA ðM;BÞ
þ ReΣB-Med

MFA ðM;B; TÞ ð34Þ

where ReΣB-Vac
MFA ðM;BÞ is the real part of the magnetic field

dependent vacuum contribution to the quark self-energy
and can be read off from Eq. (A13) as

ΣB-Vac
MFA ðM;BÞ ¼ −2gs

MNc

4π2
X

f∈fu;dg

�
−M2

þ ðM2 − jefBjÞ ln
�

M2

2jefBj
�

− 2jefBj
�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	�
:

ð35Þ

The temperature as well as magnetic field dependent
contribution to the self-energy, ReΣB-Med

MFA ðM;B; TÞ, can
be obtained from Eq. (A7) as
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ReΣB-Med
MFA ðM;B; TÞ ¼ −2gs

NcM
π2

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l Þ

×
Z

∞

0

dkz
1

ωlf
k

fðωlf
k Þ: ð36Þ

It is interesting to note that in Eq. (34), the divergent pure
vacuum contribution ReΣMFAðMÞ has completely been
decoupled from the magnetic field and temperature depen-
dent parts. One can notice from Eq. (35) that the quantity
ΣB-Vac
MFA ðM;BÞ is finite and thus the external magnetic field

does not produce any additional divergences.
The formalism described in Appendix A to untangle

the divergent pure vacuum contribution of the one-loop
self-energy graph is closely related to the magnetic
field independent regularization (MFIR) scheme as
developed in Ref. [50]. However, the methodology
we have adopted is slightly different from that of
MFIR. In our case, we have performed a dimensional
regularization to the ddkk integral which leads to
Hurwitz zeta function as a function of the dimension
d. An expansion of the Hurwitz zeta about its pole leads
to the disentanglement of the pure vacuum part. On the
other hand, in MFIR scheme, one does not change the
space time dimension; rather one adds and subtracts the
pure vacuum part. Then, using an integral representation
of the Hurwitz zeta function, the vacuum subtracted
self-energy is written as an integral over Schwinger
proper-time parameter. Finally the proper-time integral
is performed to get the vacuum subtracted finite mag-
netic field dependent self-energy. Regardless of the
methodology used, the two procedures lead to similar
results. Specifically, the expressions in Eqs. (33)–(36)
are identical to the ones obtained in Refs. [37,50].

III. MESON PROPAGATORS IN RANDOM PHASE
APPROXIMATION IN THE NJL MODEL

Since mesons are the bound state of quarks and anti-
quarks, their propagation can be studied from the scattering
of quarks in different channels using the Bethe-Salpeter
approach [29]. On the other hand, as discussed in Refs.
[45,46], the meson propagators can also be recast into the
form of Dyson-Schwinger equations in the random phase
approximation (RPA). Let us first consider the situation at
vacuum (i.e., T ¼ 0 and B ¼ 0). In the scalar and pseu-
doscalar channel, the π and σ meson propagatorsD0

h satisfy
the following Dyson-Schwinger equation:

D0
h ¼ D −DΠhD0

h; h ∈ fπ; σg ð37Þ

where D ¼ ð−2gsÞ are the bare propagators and Πh are the
one-loop polarization functions. The corresponding expres-
sion of the meson propagators D0μν

h in the vector (ρ) and
pseudovector (a1) channels are given by

D0μν
H ¼ Dμν −DμαΠHαβD

0βν
H ; H ∈ fρ; a1g ð38Þ

where Dμν ¼ ð2gvgμνÞ are the bare propagators and Πμν
H

are the one-loop polarization functions for the ρ and a1
mesons.
As already discussed in Sec. II, at finite temperature, all

the real time two point correlation functions become 2 × 2
matrices in thermal space and will be denoted by boldface
letters. Thus, at finite temperature, Eqs. (37) and (38)
generalize to

D0
h ¼ D − DΠhD0

h; ð39Þ

D0μν
H ¼ Dμν − DμαΠHαβD

0βν
H : ð40Þ

However, each term of the above equations can be
diagonalized to express them in terms of analytic functions
[52] (will be denoted by bars) which in turn diagonalizes
the Dyson-Schwinger equation making it an algebric
equation in thermal space as

D0
h ¼ D −DΠhD0

h; ð41Þ

D0μν
H ¼ Dμν −DμαΠHαβD0βν

H : ð42Þ

In presence of both the finite temperature and external
magnetic field, the generalization of Eqs. (39) and (40) is

D0B
h ¼ D − DΠB

hD
0B
h ; ð43Þ

D0Bμν
H ¼ Dμν − DμαΠB

HαβD
0Bβν
H ; ð44Þ

so that the corresponding thermo-magnetic analytic func-
tions denoted by a double-bar satisfy

D0
h ¼ D −DΠhD0

h; ð45Þ

D0μν
H ¼ Dμν −DμαΠHαβD0βν

H : ð46Þ

Our next task is to solve the Dyson-Schwinger equations
in order to express the complete meson propagators in
terms of the polarization functions. It is trivial to solve
Eqs. (37), (41) and (45) for the π and σ mesons as

D0
hðqÞ ¼

�
−2gs

1 − 2gsΠh

�
; D0

hðqÞ ¼
�

−2gs
1 − 2gsΠh

�
and

D0
hðqÞ ¼

�
−2gs

1 − 2gsΠh

�
: ð47Þ

However, for the ρ and a1 channels, additional complica-
tions arise because of the Lorentz indices in Eqs. (38), (42)
and (46). It is useful to decompose the polarization function
and the complete propagator in terms of orthogonal tensor
basis (constructed using the available vectors and tensors).
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This will enable one to solve the corresponding Dyson-
Schwinger equation in a covariant way. Wewill discuss this
in the following subsections.

A. General Lorentz structure of the spin-1
polarization function

In order to decompose the polarization function into a
suitable Lorentz basis, we use the fact that the polarization
function is symmetric in its two Lorentz indices. We start
with the simplest case of vacuum (i.e., T ¼ 0, B ¼ 0).
The available quantities to construct a tensor basis are
the momentum of the meson qμ and the metric tensor gμν.
Only two basis tensors can be constructed which are
the following:

Pμν
1 ¼

�
gμν −

qμqν

q2

�
; ð48Þ

Pμν
2 ¼ qμqν

q2
: ð49Þ

It can easily be checked that Pμν
i with i ¼ 1, 2 satisfies all

the properties of projection tensors i.e.,

gαβ

�
Pμα
1

Pμα
2

�
ðPβν

1 Pβν
2
Þ ¼

�
Pμν
1 0

0 Pμν
2

�
; ð50Þ

gμνgαβ

�
Pμα
1

Pμα
2

�
ðPβν

1 Pβν
2
Þ ¼

�
3 0

0 1

�
: ð51Þ

The vacuum polarization function Πμν
H in this basis can

be written as

Πμν
H ¼

X2
i¼1

ΠHiP
μν
i ð52Þ

where the form factors ΠHi are obtained using Eq. (51) as

ΠH1 ¼
1

3
Pμν
1 ΠHμν and ΠH2 ¼ Pμν

2 ΠHμν: ð53Þ

Note that the form factors can be expressed in terms of the
Lorentz invariants that can be formed by contracting Πμν

H
with the available tensors and vectors. In this case, we have
gμν and qμ so that the form factors can be expressed in terms
of gμνΠ

μν
H and qμqνΠ

μν
H . See Appendix C for details.

Let us now consider the case of finite temperature only
(i.e., T ≠ 0 and B ¼ 0). Apart from qμ and gμν, in this case
we have an additional four-vector uμ. Thus one can choose
the following four tensors as the basis:

P̄μν
1 ¼

�
gμν −

qμqν

q2
−
ũμũν

ũ2

�
; ð54Þ

P̄μν
2 ¼ qμqν

q2
; ð55Þ

P̄μν
3 ¼ ũμũν

ũ2
; ð56Þ

P̄μν
4 ¼ 1ffiffiffiffiffiffiffiffiffiffi

q2ũ2
p ðqμũν þ qνũμÞ ð57Þ

where

ũμ ¼ uμ −
ðq · uÞ
q2

qμ ð58Þ

is a vector orthogonal to qμ. Similar to the vacuum case,
one can verify that the above tensors qualify to be the
orthogonal projection tensors as they satisfy

gαβ

0
BBBBB@

Pμα
1

Pμα
2

Pμα
3

Pμα
4

1
CCCCCA
ðPβν

1 Pβν
2 Pβν

3 Pβν
4
Þ

¼

0
BBBBB@

Pμν
1 0 0 0

0 Pμν
2 0 hqμũνi

0 0 Pμν
3 hqνũμi

0 hqνũμi hqμũμi Pμν
2 þ Pμν

3

1
CCCCCA
; ð59Þ

gμνgαβ

0
BBBBB@

Pμα
1

Pμα
2

Pμα
3

Pμα
4

1
CCCCCA
ðPβν

1 Pβν
2 Pβν

3 Pβν
4
Þ

¼

0
BBB@

2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2

1
CCCA ð60Þ

where the angular bracket is the shorthand notation
for hAμBνi ¼ AμBν=

ffiffiffiffiffiffiffiffiffiffiffi
A2B2

p
.

Now, the analytic thermal polarization function Πμν
H can

be expanded in the above basis as

Πμν
H ¼

X4
i¼1

ΠHiP
μν
i ð61Þ

where the form factors ΠHi are obtained using Eq. (60) as
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ΠH1 ¼
1

2
Pμν
1 ΠHμν; ΠH2 ¼ Pμν

2 ΠHμν;

ΠH3 ¼ Pμν
3 ΠHμν and ΠH4 ¼

1

2
Pμν
4 ΠHμν: ð62Þ

Note that the form factors can be expressed in terms of the
Lorentz invariants that can be formed by contracting Πμν

H
with the available tensors and vectors. In this case, we have
gμν, qμ and uμ so that the form factors can be expressed
in terms of gμνΠ

μν
H , qμqνΠ

μν
H , uμuνΠ

μν
H and qμuνΠ

μν
H . See

Appendix C for details.
Significant care has to be taken while considering the

special case of q⃗ ¼ 0⃗ [47,52]. To see this, let us write
q⃗ ¼ jq⃗jn̂ where n̂ is the unit vector in the direction of q⃗.
In the limit of jq⃗j → 0, we have

Πij
H;LRFðq0; jq⃗j → 0Þ ¼ gijΠH1 þ ninjðΠH1 − ΠH3Þ; ð63Þ

Πi0
H;LRFðq0; jq⃗j → 0Þ ¼

ffiffiffiffiffiffi
−1

p
niΠH4 ð64Þ

implying that the above components of the polarization
tensors depend of the direction of q⃗ even if jq⃗j ¼ 0. This
ambiguity is rectified by imposing additional constraints on
the form factors Πi as

ΠH1ðq0; q⃗ ¼ 0⃗Þ ¼ ΠH3ðq0; q⃗ ¼ 0⃗Þ and

ΠH4ðq0; q⃗ ¼ 0⃗Þ ¼ 0: ð65Þ

Finally, we consider the general case of both finite
temperature as well as finite external magnetic field. In
this case, another four vector bμ ¼ 1

BG
μνuν appears which

specifies the direction of the external magnetic field in the
LRF where Gμν ¼ 1

2
ϵμναβFαβ is the dual of the field tensor

Fαβ (we have used ϵ0123 ¼ 1). In the LRF, we have

bμLRF ≡ ð0; 0; 0; 1Þ. Thus using qμ, uμ, bμ and gμν, we
can construct the following seven orthogonal tensors:

Pμν
1 ¼

�
gμν −

qμqν

q2
−
ũμũν

ũ2
−
b̃μb̃ν

b̃2

�
; ð66Þ

Pμν
2 ¼ qμqν

q2
; ð67Þ

Pμν
3 ¼ ũμũν

ũ2
; ð68Þ

Pμν
4 ¼ b̃μb̃ν

ũ2
; ð69Þ

Pμν
5 ¼ 1ffiffiffiffiffiffiffiffiffiffi

q2ũ2
p ðqμũν þ qνũμÞ; ð70Þ

Pμν
6 ¼ 1ffiffiffiffiffiffiffiffiffiffi

q2b̃2
p ðqμb̃ν þ qνb̃μÞ; ð71Þ

Pμν
7 ¼ 1ffiffiffiffiffiffiffiffiffiffi

ũ2b̃2
p ðũμb̃ν þ ũνb̃μÞ ð72Þ

where

b̃μ ¼ bμ −
ðq · bÞ
q2

qμ −
ðũ · bÞ
ũ2

ũμ: ð73Þ

It can be shown that the tensors Pμν
i with i ¼ 1; 2;…; 7

satisfy all the properties of projection tensors as

gαβ

0
BBBBBBBBBBBBBBB@

Pμα
1

Pμα
2

Pμα
3

Pμα
4

Pμα
5

Pμα
6

Pμα
7

1
CCCCCCCCCCCCCCCA

ðPβν
1 Pβν

2 Pβν
3 Pβν

4 Pβν
5 Pβν

6 Pβν
7
Þ ¼

0
BBBBBBBBBBBBBBB@

Pμν
1 0 0 0 0 0 0

0 Pμν
2 0 0 hqμũνi hqμb̃νi 0

0 0 Pμν
3 0 hqνũμi 0 hũμb̃νi

0 0 0 Pμν
4 0 hqνb̃μi hũνb̃μi

0 hqνũμi hqμũνi 0 Pμν
2 þPμν

3 hũμb̃νi hqμb̃νi
0 hqνb̃μi 0 hqμb̃νi hũνb̃μi Pμν

2 þPμν
4 hqμũνi

0 0 hũνb̃μi hũμb̃νi hqνb̃μi hqνũμi Pμν
3 þPμν

4

1
CCCCCCCCCCCCCCCA

;

ð74Þ
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gμνgαβ

0
BBBBBBBBBBBBBBB@

Pμα
1

Pμα
2

Pμα
3

Pμα
4

Pμα
5

Pμα
6

Pμα
7

1
CCCCCCCCCCCCCCCA

ðPβν
1 Pβν

2 Pβν
3 Pβν

4 Pβν
5 Pβν

6 Pβν
7
Þ ¼

0
BBBBBBBBBBBB@

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2

1
CCCCCCCCCCCCA

: ð75Þ

Now, the analytic thermo-magnetic polarization function

Πμν
H can be expanded in the above basis as

Πμν
H ¼

X7
i¼1

ΠHiP
μν
i ð76Þ

where the form factors ΠHi are obtained using Eq. (75) as

ΠH1 ¼ Pμν
1 ΠHμν; ΠH2 ¼ Pμν

2 ΠHμν;

ΠH3 ¼ Pμν
3 ΠHμν; ΠH4 ¼ Pμν

4 ΠHμν; ð77Þ

ΠH5 ¼
1

2
Pμν
5 ΠHμν; ΠH6 ¼

1

2
Pμν
6 ΠHμν and

ΠH7 ¼
1

2
Pμν
7 ΠHμν: ð78Þ

As before, the form factors can be expressed in terms of the

Lorentz invariants that can be formed by contracting Πμν
H

with the available tensors and vectors. In this case, we have
gμν, qμ, uμ and bμ so that the form factors can be expressed

in terms of seven invariant quantities gμνΠ
μν
H , qμqνΠ

μν
H ,

uμuνΠ
μν
H , bμbνΠ

μν
H , qμbνΠ

μν
H , qμuνΠ

μν
H and uμbνΠ

μν
H . See

Appendix C for details.
Similar to the thermal case, significant care has to be

taken while considering the special case of q⃗⊥ ¼ 0⃗. To see
this, let us write q⃗⊥ ¼ jq⃗⊥jn̂ where n̂ is the unit vector in
the direction of q⃗⊥. In the limit of jq⃗⊥j → 0, we have

Πij
H;LRFðqk; jq⃗⊥j → 0Þ ¼ gijΠH1 þ ninjðΠH1 − ΠH4Þ;

ð79Þ

Πi0
H;LRFðqk; jq⃗⊥j→ 0Þ ¼ ni

0
B@ qzffiffiffiffiffi

q2k
q ΠH7 −

q0ffiffiffiffiffiffiffiffi
−q2k

q jqzj
qz

ΠH6

1
CA;

ð80Þ

Πi3
H;LRFðqk; jq⃗⊥j → 0Þ ¼ ni

0
B@ q0ffiffiffiffiffi

q2k
q ΠH7 −

jqzjffiffiffiffiffiffiffiffi
−q2k

q ΠH6

1
CA

ð81Þ

which implies that the above components of the thermo-
magnetic polarization tensors depends of the direction
of q⃗⊥ even if jq⃗⊥j ¼ 0. This ambiguity is rectified by

imposing additional constraints on the form factors Πi as

ΠH1ðq0; q⃗⊥ ¼ 0⃗Þ ¼ ΠH4ðq0; q⃗⊥ ¼ 0⃗Þ and

ΠH6ðq0; q⃗⊥ ¼ 0⃗Þ ¼ ΠH7ðq0; q⃗⊥ ¼ 0⃗Þ ¼ 0: ð82Þ

B. Solution of the Dyson-Schwinger equation
and complete spin-1 propagators

Having obtained the general Lorentz structure of the
polarization functions in the previous subsection, we can
now solve the Dyson-Schwinger Eqs. (38), (42) and (46) in
order to calculate the complete propagators for ρ and a1
mesons.
Let us start with solving Eq. (38). We first write

D0μν
H ¼

X2
i¼1

DHiP
μν
i ð83Þ

where the form factorsDHi are to be determined. Rewriting
Eq. (38) as

ðD0μν
H Þ−1 ¼ ðDμνÞ−1 þ Πμν

H ¼ ð2gvÞ−1gμν þ
X2
i¼1

ΠHiP
μν
i

¼
X2
i¼1

½ð2gvÞ−1 þ ΠHi�Pμν
i ð84Þ

and making use of gαβðD0μα
H Þ−1D0βν

H ¼ gμν ¼ P
2
i¼1 P

μν
i

along with Eq. (50), one obtains the form factors of the
complete propagator as
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DHi ¼
�

2gv
1þ 2gvΠHi

�
: ð85Þ

Let us now proceed to obtain the complete thermal
propagator by solving Eq. (42). Expressing the complete
propagator in the orthogonal tensor basis as

D0μν
H ¼

X4
i¼1

DHiP
μν
i ð86Þ

where the form factorsDHi are to be determined. Rewriting
Eq. (42) as

ðD0μν
H Þ−1 ¼ ðDμνÞ−1 þ Πμν

H

¼ ð2gvÞ−1gμν þ
X4
i¼1

ΠHiP
μν
i

¼
X3
i¼1

ð2gvÞ−1Pμν
i þ

X4
i¼1

ΠHiP
μν
i ð87Þ

and making use of gαβðD0μα
H Þ−1D0βν

H ¼ gμν ¼ P
3
i¼1 P

μν
i

along with Eq. (59), one obtains the form factors of the
complete thermal propagator as

DH1 ¼
�

2gv
1þ 2gvΠH1

�
; DH2 ¼

1

AT
2gvð1þ 2gvΠH3Þ;

ð88Þ

DH3 ¼
1

AT
2gvð1þ 2gvΠH2Þ and

DH4 ¼
1

AT
2gvð−2gvΠH4Þ ð89Þ

where AT ¼ ð1þ 2gvΠH2Þð1þ 2gvΠH3Þ − ð2gvΠH4Þ2.
Finally we calculate the complete thermo-magnetic

propagator by solving Eq. (46). Expanding the complete
propagator in the orthogonal tensor basis as

D0μν
H ¼

X7
i¼1

DHiP
μν
i ð90Þ

where the form factorsDHi are to be determined. Rewriting
Eq. (46) as

ðD0μν
H Þ−1 ¼ ðDμνÞ−1 þ Πμν

H ¼ ð2gvÞ−1gμν þ
X7
i¼1

ΠHiP
μν
i

¼
X4
i¼1

ð2gvÞ−1Pμν
i þ

X7
i¼1

ΠHiP
μν
i ; ð91Þ

and making use of gαβðD0μα
H Þ−1D0βν

H ¼ gμν ¼ P
4
i¼1 P

μν
i

along with Eq. (74), one obtains the form factors of the
complete thermo-magnetic propagator as

DH1 ¼
�

2gv

1þ 2gvΠH1

�
; ð92Þ

DH2 ¼
1

ATB
2gv½ð1þ 2gvΠH3Þð1þ 2gvΠH4Þ − ð2gvΠH7Þ2�;

ð93Þ

DH3 ¼
1

ATB
2gv½ð1þ 2gvΠH2Þð1þ 2gvΠH4Þ − ð2gvΠH6Þ2�;

ð94Þ

DH4 ¼
1

ATB
2gv½ð1þ 2gvΠH2Þð1þ 2gvΠH3Þ − ð2gvΠH5Þ2�;

ð95Þ

DH5 ¼
1

ATB
2gv½ð2gvΠH6Þð2gvΠH7Þ

− ð1þ 2gvΠH4Þð2gvΠH5Þ�; ð96Þ

DH6 ¼
1

ATB
2gv½ð2gvΠH5Þð2gvΠH7Þ

− ð1þ 2gvΠH3Þð2gvΠH6Þ�; ð97Þ

DH7 ¼
1

ATB
2gv½ð2gvΠH5Þð2gvΠH6Þ

− ð1þ 2gvΠH2Þð2gvΠH7Þ� ð98Þ

where

ATB ¼ ð1þ 2gvΠH2Þð1þ 2gvΠH3Þð1þ 2gvΠH4Þ
− ð1þ 2gvΠH2Þð2gvΠH7Þ2

− ð1þ 2gvΠH3Þð2gvΠH6Þ2

− ð1þ 2gvΠH4Þð2gvΠH5Þ2

þ ð2gvΠH5Þð2gvΠH6Þð2gvΠH7Þ: ð99Þ

IV. POLARIZATION FUNCTIONS
OF THE MESONS

In this section, we will explicitly calculate the polariza-
tion functions in various channels. In the current work, we
only include the charge-neutral mesons i.e., π0, σ, ρ0 and
a01. Thus by π, ρ and a1 wewill mean π0, ρ0 and a01. We start
with the well-known expression for the vacuum polariza-
tion functions (at T ¼ 0 and B ¼ 0) of the charge-neutral
mesons
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ΠπðqÞ ¼ −i
Z

d4k
ð2πÞ4 Trd;f;c½γ

5τ3S0ðqþ k;mÞγ5τ3S0ðk;mÞ�;

ð100Þ

ΠσðqÞ ¼ i
Z

d4k
ð2πÞ4 Trd;f;c½S

0ðqþ k;mÞS0ðk;mÞ�; ð101Þ

Πμν
ρ ðqÞ ¼ −i

Z
d4k
ð2πÞ4 Trd;f;c½γ

μτ3S0ðqþ k;mÞγντ3S0ðk;mÞ�;

ð102Þ

Πμν
a1ðqÞ

¼ −i
Z

d4k
ð2πÞ4 Trd;f;c½γ

μγ5τ3S0ðqþ k;mÞγνγ5τ3S0ðk;mÞ�

ð103Þ

where τ3 ¼ ð1
0

0
−1Þ is the third Pauli isospin matrix and

S0ðq;mÞ is defined in Eq. (4). Similar to the case of quark
self-energy calculation, we will use dimensional regulari-
zation for the evaluation of the above pure-vacuum polari-
zation functions. The calculation has been briefly sketched
in Appendix. D and the final result can be read off from
Eqs. (D8)–(D11) as

ΠπðqÞ ¼
NcNf

4π2

�
1

2
q2ΓðεÞ

Z
1

0

dx

�
4πλ

Δ

�
ε

þM2Γðε − 1Þ
�
4πλ

M2

�
ε
�
; ð104Þ

ΠσðqÞ ¼
NcNf

4π2

�
1

2
ðq2 − 4M2ÞΓðεÞ

Z
1

0

dx

�
4πλ

Δ

�
ε

þM2Γðε − 1Þ
�
4πλ

M2

�
ε
�
; ð105Þ

Πμν
ρ ðqÞ ¼ −

NcNf

2π2
ΓðεÞ

�
gμν −

qμqν

q2

�
q2

×
Z

1

0

dxxð1 − xÞ
�
4πλ

Δ

�
ε

; ð106Þ

Πμν
a1ðqÞ ¼

NcNf

2π2
ΓðεÞ

Z
1

0

dx

��
gμν −

qμqν

q2

�
Δþ qμqν

q2
M2

�

×

�
4πλ

Δ

�
ε

: ð107Þ

As finite temperature, the analytic thermal polarization
functionsΠhðqÞ andΠHðqÞ are related to the 11-components
of respective thermal polarization matrices Π11

h ðqÞ and
Π11

H ðqÞ via relations [51,52]

ReΠhðqÞ¼ReΠ11
h ðqÞ; ReΠμν

H ðqÞ¼ReΠμν11
H ðqÞ; ð108Þ

ImΠhðqÞ ¼ signðq0Þ tanh
�
q0

2T

�
ImΠ11

h ðqÞ and

ImΠμν
H ðqÞ ¼ signðq0Þ tanh

�
q0

2T

�
ImΠμν11

H ðqÞ: ð109Þ

Now, the 11-components of the thermal polarization func-
tions are obtained by replacing thevacuumpropagators on the
RHS of Eqs. (100)–(103) byS0 → S011 whereS

0
11 is defined in

Eq. (19). Therefore,

Π11
π ðqÞ¼−i

Z
d4k
ð2πÞ4Trd;f;c½γ

5τ3S011ðqþk;mÞγ5τ3S011ðk;mÞ�;

ð110Þ

Π11
σ ðqÞ¼ i

Z
d4k
ð2πÞ4Trd;f;c½S

0
11ðqþk;mÞS011ðk;mÞ�; ð111Þ

Πμν11
ρ ðqÞ

¼ −i
Z

d4k
ð2πÞ4 Trd;f;c½γ

μτ3S011ðqþ k;mÞγντ3S011ðk;mÞ�;

ð112Þ
Πμν11

a1 ðqÞ

¼−i
Z

d4k
ð2πÞ4Trd;f;c½γ

μγ5τ3S011ðqþk;mÞγνγ5τ3S011ðk;mÞ�:

ð113Þ
Substituting S011 from Eq. (19) into the above equation
and making use of Eqs. (108) and (109), we get after some
simplifications the real parts of the polarization functions as

ReΠhðqÞ ¼ ReΠhðqÞ −
Z

d3k
ð2πÞ3 P

�
Nhðk0 ¼ −ωkÞfðωkÞ
2ωkfðq0 − ωkÞ2 − ω2

pg

þ Nhðk0 ¼ ωkÞfðωkÞ
2ωkfðq0 þ ωkÞ2 − ω2

pg

þ Nhðk0 ¼ −q0 − ωpÞfðωpÞ
2ωpfðq0 þ ωpÞ2 − ω2

kg

þ Nhðk0 ¼ −q0 þ ωpÞfðωpÞ
2ωpfðq0 − ωpÞ2 − ω2

kg
�
; ð114Þ

ReΠμν
H ðqÞ¼ReΠμν

H ðqÞ−
Z

d3k
ð2πÞ3P

�
Nμν

H ðk0¼−ωkÞfðωkÞ
2ωkfðq0−ωkÞ2−ω2

pg

þ Nμν
H ðk0¼ωkÞfðωkÞ

2ωkfðq0þωkÞ2−ω2
pg

þNμν
H ðk0¼−q0−ωpÞfðωpÞ
2ωpfðq0þωpÞ2−ω2

kg

þNμν
H ðk0¼−q0þωpÞfðωpÞ
2ωpfðq0−ωpÞ2−ω2

kg
�

ð115Þ
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and imaginary parts as

ImΠhðqÞ ¼ −signðq0Þ tanh
�
q0

2T

�
π

Z
d3k
ð2πÞ3

1

4ωkωp

× ½f1 − fðωkÞ − fðωpÞ þ 2fðωkÞfðωpÞgfNhðk0 ¼ −ωkÞδðq0 − ωk − ωpÞ þ Nhðk0 ¼ ωkÞδðq0 þ ωk þ ωpÞg
þ f−fðωkÞ − fðωpÞ þ 2fðωkÞfðωpÞgfNhðk0 ¼ −ωkÞδðq0 − ωk − ωpÞ þ Nhðk0 ¼ ωkÞδðq0 þ ωk þ ωpÞg�;

ð116Þ

ImΠμν
H ðqÞ ¼ −signðq0Þ tanh

�
q0

2T

�
π

Z
d3k
ð2πÞ3

1

4ωkωp

× ½f1− fðωkÞ− fðωpÞ þ 2fðωkÞfðωpÞgfNμν
H ðk0 ¼ −ωkÞδðq0 −ωk −ωpÞ þNμν

H ðk0 ¼ ωkÞδðq0 þωk þωpÞg
þ f−fðωkÞ − fðωpÞ þ 2fðωkÞfðωpÞgfNμν

H ðk0 ¼ −ωkÞδðq0 −ωk −ωpÞ þNμν
H ðk0 ¼ ωkÞδðq0 þωk þωpÞg�

ð117Þ

where Nhðq; kÞ and Nμν
H ðq; kÞ are defined in Eqs. (D3)

and (D4).
Finally, we consider the case of both finite temperature

as well as a nonzero external magnetic field. The analytic

thermo-magnetic polarization functions ΠhðqÞ and ΠHðqÞ
are related to the 11-components of respective thermo-
magnetic polarization matrices ΠB11

h ðqÞ and ΠB11
H ðqÞ via

similar relations as in Eqs. (108) and (109). Thus, the
11-components of the thermo-magnetic polarization func-
tions are obtained by replacing the vacuum propagators on
the RHS of Eqs. (100)–(103) by S0 → S0B11 where S0B11 is
defined in Eq. (30). Therefore,

ΠB11
π ðqÞ

¼ −i
Z

d4k
ð2πÞ4 Trd;f;c½γ

5τ3S0B11ðqþ k;mÞγ5τ3S0B11ðk;mÞ�:

ð118Þ

ΠB11
σ ðqÞ ¼ i

Z
d4k
ð2πÞ4 Trd;f;c½S

0
B11ðqþ k;mÞS0B11ðk;mÞ�;

ð119Þ

ΠBμν11
ρ ðqÞ

¼ −i
Z

d4k
ð2πÞ4 Trd;f;c½γ

μτ3S0B11ðqþ k;mÞγντ3S0B11ðk;mÞ�;

ð120Þ

ΠBμν11
a1 ðqÞ

¼−i
Z

d4k
ð2πÞ4Trd;f;c½γ

μγ5τ3S0B11ðqþk;mÞγνγ5τ3S0B11ðk;mÞ�:

ð121Þ

Substituting S0011 from Eq. (30) into the above equation and
making use of analogous relations to Eqs. (108) and (109),
we will obtain the real and imaginary parts of the analytic
thermo-magnetic polarization functions. For the simplicity
in analytic calculations, we take q⊥ ¼ 0 for which the
corresponding calculations are provided in Appendix E and
below we only give the final expressions. From Eqs. (E18),
(E19) and (E31)–(E36), we get the real parts of the analytic
thermo-magnetic polarization functions as

ReΠhðqkÞ ¼ ReΠhðqkÞ þ ReΠhBðqk; BÞ −
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

P
�

Nlnf
h ðk0 ¼ −ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 − ωlf

k Þ2 − ðωnf
p Þ2g

þ Nlnf
h ðk0 ¼ ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 þ ωlf

k Þ2 − ðωnf
p Þ2g þ

Nlnf
h ðk0 ¼ −q0 − ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 þ ωnf

p Þ2 − ðωlf
k Þ2g

þ Nlnf
h ðk0 ¼ −q0 þ ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 − ωnf

p Þ2 − ðωlf
k Þ2g

�
; ð122Þ
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ReΠμν
H ðqkÞ ¼ ReΠμν

H ðqkÞ þ ReΠμν
HBðqk; BÞ −

X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

P
�

Nlnfμν
H ðk0 ¼ −ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 − ωlf

k Þ2 − ðωnf
p Þ2g

þ Nlnfμν
H ðk0 ¼ ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 þ ωlf

k Þ2 − ðωnf
p Þ2g þ

Nlnfμν
H ðk0 ¼ −q0 − ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 þ ωnf

p Þ2 − ðωlf
k Þ2g

þ Nlnfμν
H ðk0 ¼ −q0 þ ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 − ωnf

p Þ2 − ðωlf
k Þ2g

�

ð123Þ

where the novel magnetic field dependent vacuum contributions are

ΠπBðqk; BÞ ¼
Nc

4π2
X

f∈fu;dg

�
M2 þ ðjefBj −M2Þ ln

�
M2

2jefBj
�
þ 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	

þ 1

2
q2k

Z
1

0

dx

�
ln z − ψðzÞ − 1

2z

	�
; ð124Þ

ΠσBðqk; BÞ ¼
Nc

4π2
X

f∈fu;dg

�
M2 þ ðjefBj −M2Þ ln

�
M2

2jefBj
�
þ 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	

þ 1

2
ðq2k − 4M2Þ

Z
1

0

dx

�
ln z − ψðzÞ − 1

2z

	�
; ð125Þ

Πμν
ρBðqk; BÞ ¼ −

Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðq2kgμν − qμkq
ν
kÞ2xð1 − xÞ ln z − ðq2kgμνk − qμkq

ν
kÞxð1 − xÞð2ψðzÞ þ 1=zÞ

þ ½ðΔ − 2M2Þψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �; ð126Þ

Πμν
a1B

ðqk; BÞ ¼ −
Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðgμνΔþ xð1 − xÞqμkqνkÞð−2 ln zÞ þ ðgμνk Δþ xð1 − xÞqμkqνkÞð2ψðzÞ þ 1=zÞ

þ ½Δψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �: ð127Þ

The imaginary parts are to be read off from Eqs. (E15) and (E16) as

ImΠhðqkÞ ¼ −signðq0Þ tanh
�
q0

2T

�
π
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

1

4ωlf
k ω

nf
p

× ½f1 − fðωlf
k Þ − fðωnf

p Þ þ 2fðωlf
k Þfðωnf

p ÞgfNlnf
h ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ
þ Nlnf

h ðk0 ¼ ωlf
k Þδðq0 þ ωlf

k þ ωnf
p Þg þ f−fðωlf

k Þ − fðωnf
p Þ

þ 2fðωlf
k Þfðωnf

p ÞgfNlnf
h ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ þ Nlnf
h ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg�; ð128Þ

ImΠμν
H ðqkÞ ¼ −signðq0Þ tanh

�
q0

2T

�
π
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

1

4ωlf
k ω

nf
p

× ½f1 − fðωlf
k Þ − fðωnf

p Þ þ 2fðωlf
k Þfðωnf

p ÞgfNlnfμν
H ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ
þ Nlnfμν

H ðk0 ¼ ωlf
k Þδðq0 þ ωlf

k þ ωnf
p Þg þ f−fðωlf

k Þ − fðωnf
p Þ

þ 2fðωlf
k Þfðωnf

p ÞgfNlnfμν
H ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ þ Nlnfμν
H ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg� ð129Þ

where Nlnf
h ðq; kÞ and Nlnfμν

H ðq; kÞ are defined in Eqs. (E11) and (E12).
It may be emphasized that though the present work uses a real time version of thermal field theory, use of the more

popular imaginary time formalism (ITF) leads to the same expressions. For example, the expression of the thermo-magnetic
quark self-energies or the polarization functions of π0 and σ obtained here are identical to the ones obtained in
Refs. [29,37,44] earlier using the ITF.
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V. REGULARIZATION PROCEDURE
FOR THE NJL MODEL

As already mentioned in the previous sections, the NJL
model requires a proper regularization procedure. Using the
dimensional regularization technique, we have been able to
isolate the UV divergences as the pole of Gamma functions
in Eqs. (10) and (104)–(107). Now, in order to obtain finite
contributions from these equations, we first note that
the integral representation of the Gamma functions can
be written as

ΓðzÞ ¼
Z

∞

0

dte−ttz−1 ¼
Z

r

0

dte−ttz−1 þ
Z

∞

r
dte−ttz−1

¼ γðz; rÞ þ Γðz; rÞ ð130Þ

where γðz; rÞ is the lower incomplete gamma function and
Γðz; rÞ is the (upper) incomplete Gamma function. In the
evaluation of loop diagrams in the NJL model using
Schwinger proper-time method, one often encounters
integrals which can be written in terms of Γ functions
with negative integer argument. Clearly, those are divergent
quantities and need to be regulated. One possible way is to
introduce proper-time regulator where the lower incom-
plete gamma function containing the divergence is dis-
carded and only the Γðz; rÞ part is retained [see for example
Eq. (3.15) in [29] which is the proper-time regularized
version of Eq. (3.13) there in]. Following the similar
procedure, in our regularization scheme, the divergent
Gamma functions obtained from dimensional regulariza-
tion are replaced with the incomplete Gamma function i.e.,

Γð0Þ → Γ
�
0;
M2

Λ2

�
and Γð−1Þ → Γ

�
−1;

M2

Λ2

�
ð131Þ

where Λ is a scale parameter to be determined. Thus our
regularization scheme is a mixed procedure where though
the dimensional regularization is used at first to obtain the
consistent Lorentz structure, the divergences that appeared
are regulated following the proper-time regularization.
After these replacements, Eqs. (10) and (104)–(107) can
be simplified to

ReΣPure−Vac
MFA ¼ 2gs

NcNfM3

4π2
Γ
�
−1;

M2

Λ2

�
ð132Þ

and

ΠπðqÞ ¼
NcNf

4π2

�
1

2
q2Γ

�
0;
M2

Λ2

�
þM2Γ

�
−1;

M2

Λ2

��
;

ð133Þ

ΠσðqÞ ¼
NcNf

4π2

�
1

2
ðq2 − 4M2ÞΓ

�
0;
M2

Λ2

�

þM2Γ
�
−1;

M2

Λ2

��
; ð134Þ

Πμν
ρ ðqÞ ¼ −

NcNf

12π2
Γ
�
0;
M2

Λ2

�
q2
�
gμν −

qμqν

q2

�
; ð135Þ

Πμν
a1ðqÞ ¼ −

NcNf

12π2
Γ
�
0;
M2

Λ2

��
ðq2 − 6M2Þ

�
gμν −

qμqν

q2

�

− 6M2
qμqν

q2

�
: ð136Þ

It can be noticed in Eqs. (133)–(136), that if the chiral
symmetry is completely restored (i.e., M ¼ 0), then the
polarization functions of σ and a1 become identical to that
of π and ρ respectively. Moreover, observing the Lorentz
structure in Eq. (135), it immediately follows that the
polarization function of ρ is transverse i.e.,

qμΠ
μν
ρ ðqÞ ¼ 0: ð137Þ

The reason behind this transversality is the conservation of
the vector current JμðxÞ ¼ ΨðxÞγμΨ which is the Noether’s
current corresponding to the Uð1Þ symmetry of the NJL
Lagrangian in Eq. (1). Similar arguments also hold for
the Lorentz structure of the polarization function of a1 in
which the nontransverse piece is proportional to the
constituent quark mass M. This is because of the non-
conservation of the axial-vector current J5μ ¼ ΨðxÞγμγ5Ψ
whose four-divergence is

∂μJ5μ ∝ M: ð138Þ
In the chiral limit (M ¼ 0), the axial-vector current is
conserved leading to a transverse polarization function of a1.
It is worth mentioning that the consistent Lorentz

structure of the polarization functions of ρ and a1 could
be obtained only because we have used dimensional
regularization technique which respects the Lorentz sym-
metry. Any other regulator such as three-momentum cutoff,
Euclidean four-momentum cutoff and Schwinger proper-
time regulator will spoil the Lorentz structures and Πμν

ρ ðqÞ
will no longer be transverse.
We now fix the parameters for the NJL model. For this

we need the expression of pion decay constant (f2π) which
comes out to be

f2π ¼
NcM2

4π2
Γ
�
0;
M2

Λ2

�
ð139Þ

using the dimensional regularization. By simultaneously
fitting the vacuum quark condensate and pion decay
constant values as
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1

Nf
hψψi ¼ −

1

2gsNf
ReΣPure−Vac

MFA ¼ −ð230Þ3 MeV3 and

fπ ¼ 95 MeV ð140Þ

we find Λ ¼ 936 MeV and M ¼ 226 MeV. Next, consid-
ering the current quark mass m ¼ 6.6 MeV and vacuum
pion mass mπ ¼ 135 MeV, the scalar coupling comes out
to be gs ¼ 4.5126 GeV−2. Finally, gv ¼ 4.289 GeV−2 is
chosen to reproduce the vacuum mass of the ρ meson
as mρ ¼ 770 MeV.
It should be mentioned here that the expressions of

ReΣPure−Vac
MFA and f2π in Eqs. (132) and (139) are the same as

those obtained using the proper-time regularization tech-
nique [29,50]. However, the expressions of the polarization
functions will be different if one uses the proper-time
regulator. For example, in that case, the consistent Lorentz
structures of the polarization functions of ρ0 and a01 as in
Eqs. (135) and (136) will not appear automatically as
appears in dimensional regularization. Moreover, the trans-
versality condition qμΠ

μν
ρ ðqÞ ¼ 0 is not satisfied if the

proper-time regularization is used.

VI. NUMERICAL RESULTS

We start this section by showing the variation of the
constituent quark mass as a function of temperature for
different values of an external magnetic field in Fig. 2(a).
As can be seen in the figure, M remains almost constant
in the low temperature region. However, with further
increase in temperature, the constituent quark mass
decreases substantially signifying a phase transition.
Throughout the whole temperature range M remains
single-valued depicting the smooth crossover nature of
the phase transition. Since we are working with finite
current quark mass m ≠ 0, the chiral symmetry is only
partially restored. To obtain the transition temperature, one
can use various susceptibilities which will be discussed in

the next paragraph. For a particular value of temperature,
the constituent quark mass increases with the external
magnetic field as shown in Fig. 2(b).
The transition temperature corresponding to the partial

restoration of chiral symmetry can be obtained from
various susceptibilities. The calculation of the susceptibility
−∂M=∂T and chiral susceptibility χ ¼ 1

2gs
ð∂M∂m − 1Þ have

been provided in Appendix B. In Figs. 3(a) and 3(b),
−∂M=∂T and χ are respectively plotted as a function of
temperature for different values of the external magnetic
field. The position of the peak of −∂M=∂T or χ represents
the transition temperature. As can be noticed from the plots,
with the increase in external magnetic field the peak of the
susceptibilities moves towards higher values of temperature.
Thus, in this framework, the transition temperature increases
with B. This may be identified asmagnetic catalysis (MC) in
the NJL model where the external magnetic field catalyzes
the spontaneous breaking of chiral symmetry [17–20].
Moreover, as the susceptibilities remain continuous and
finite with the change in temperature, the nature of the
phase transition can be inferred as smooth crossover.
We now turn our attention to the mesonic properties.

We define the spectral functions of mesons as the
imaginary part of the respective complete propagators.
From Eq. (47), the spectral function for the π and σ mesons
can be written as

ShðqÞ ¼ ImD0
hðqÞ ¼ Im

�
−2gs

1 − 2gsΠhðqÞ

�

¼ ð−2gsÞ
�

2gsImΠhðqÞ
ð1 − 2gsReΠhðqÞÞ2 þ ð2gsImΠhðqÞÞ2

�
:

ð141Þ

In Figs. 4(a)–4(d), the spectral functions of π have been
shown as a function of its invariant mass

ffiffiffiffiffi
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p
for different
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FIG. 2. Variation of the constituent quark mass (M) as a function of (a) temperature for different values of external magnetic field and
(b) external magnetic field for different values of temperature.
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values of temperature and external magnetic field in

the rest frame of π (i.e., q⃗ ¼ 0⃗). Let us first consider
the B ¼ 0 cases which are shown as solid red curves in
Figs. 4(a)–4(d). At zero temperature, Sπ is a Dirac delta

function at its pole mass (
ffiffiffiffiffi
q2

p
¼ 135 MeV) along with a

two-quark continuum starting at
ffiffiffiffiffi
q2

p
> 2M. It can be

noticed from Fig. 4(b) that at T ¼ 150 MeV, the Dirac
delta function moves towards the higher invariant mass and
the two-quark continuum threshold has significantly
decreased which is due to the decrease in M with temper-
ature. Yet, the delta function is well separated from the
continuum revealing the fact that π is still a bound state.
With further increase in temperature, as shown in Figs. 4(c)
and 4(d), the Dirac delta function disappears and the shape
of the spectral function becomes a Breit-Wigner. These
imply that the pion has now become a resonant state with
finite decay width. Let us now discuss the effect of an
external magnetic field on Sπ . For the lower temperature

(T ¼ 0 and 150 MeV), the Dirac delta functions move
towards higher values of the invariant mass with the
increase in external magnetic field. For higher values of
temperature (T ¼ 200 and 250 MeV), the spectral func-
tions at nonzero B are observed to oscillate about the B ¼ 0
curve and the peak of the Breit-Wigner shifts significantly
towards higher invariant mass. The oscillation frequency
(amplitude) is observed to be large (small) at lower values
of B as compared to its higher values.
The situation is quite different in the case of a σ meson.

In Figs. 4(e)–4(h), the spectral functions of σ have been
shown as a function of its invariant mass for different values
of temperature and external magnetic field for q⃗ ¼ 0⃗. In this
case, the spectral function is always Breit-Wigner shaped
implying that the σ remains always a resonant excitation. As
shown in Figs. 4(e)–4(g), with the increase in temperature
(up to T ¼ 200 MeV), the peak of Sσ moves towards lower
invariant mass. However in Fig. 4(h), (at T ¼ 250 MeV),
the peak again starts moving toward higher
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The effect of an external magnetic field on Sσ is similar to
that of π showing oscillations in Sσ at nonzero B about the
B ¼ 0 curve. The oscillation frequency (amplitude) follows
the similar trend as described for a pion.
Let us now consider the propagation of a ρ and a1

meson. Since we will be considering the special case
q⊥ ¼ 0, we have significant simplifications of the complete
propagators of ρ and a1. As given in Eq. (82), we have for
q⊥ ¼ 0,

ΠH1ðq0; q⃗⊥ ¼ 0⃗Þ ¼ ΠH4ðq0; q⃗⊥ ¼ 0⃗Þ and

ΠH6ðq0; q⃗⊥ ¼ 0⃗Þ ¼ ΠH7ðq0; q⃗⊥ ¼ 0⃗Þ ¼ 0: ð142Þ
Moreover, we find in our numerical calculations that

ΠH5ðq0; q⃗⊥ ¼ 0⃗Þ ¼ 0. Thus, the form factors for the
complete thermo-magnetic propagators in Eqs. (92)–(98)
simplify to

DH1 ¼ DH4 ¼
�

2gv

1þ 2gvΠH1

�
; ð143Þ

DH2 ¼
�

2gv

1þ 2gvΠH2

�
; ð144Þ

DH3 ¼
�

2gv

1þ 2gvΠH3

�
; ð145Þ

DH5 ¼ DH6 ¼ DH7 ¼ 0: ð146Þ

Therefore, the complete thermo-magnetic propagator from
Eq. (90) becomes

D0μν
H ðqk; q⊥ ¼ 0Þ ¼

X7
i¼1

DHiðqk; q⊥ ¼ 0ÞPμν
i

¼
�

2gv

1þ 2gvΠH1

�
ðPμν

1 þ Pμν
4 Þ

þ
�

2gv

1þ 2gvΠH2

�
Pμν
2

þ
�

2gv

1þ 2gvΠH3

�
Pμν
3 : ð147Þ

The second term on the RHS of the above equation

containing the nontransverse tensor Pμν
2 corresponds to a

nonpropagating mode as the corresponding form factor
does not have any pole. Thus, we find three modes of
propagation of ρ and a1 mesons in the thermo-magnetic
medium; two of them are found to be degenerate (corre-

sponding to Pμν
1 and Pμν

4 ). This degeneracy is solely due to
our special choice of q⊥ ¼ 0. Thus, we are left with two
distinct modes for the ρ and a1 propagations. We call them

as mode-(A) and mode-(B) respectively. The spectral
functions for these two modes are therefore defined as

SAH ¼ Im

�
2gv

1þ 2gvΠH1

�

¼ ð−2gvÞ
�

2gvImΠH1ðqÞ
ð1þ 2gsReΠH1ðqÞÞ2 þ ð2gsImΠH1ðqÞÞ2

�
;

ð148Þ

SBH ¼ Im

�
2gv

1þ 2gvΠH3

�

¼ ð−2gvÞ
�

2gvImΠH3ðqÞ
ð1þ 2gsReΠH3ðqÞÞ2 þ ð2gsImΠH3ðqÞÞ2

�
:

ð149Þ
In Figs. 5(a)–5(p), we have presented the spectral

functions of ρ and a1 mesons as a function of their invariant
mass at q⃗ ¼ 0⃗ for different temperature and external
magnetic field. Similar to the case of σ, the ρ and a1 are
always in resonant state so that the shape of their spectral
functions remains Breit-Wigner. Since we have taken q⃗ ¼ 0⃗
in these plots, the two modes are degenerate for B ¼ 0 (the
solid red curves). The external magnetic field breaks this
degeneracy and we find two distinct modes of ρ and a1
propagations even in their rest frames for nonzero values
of B. With the increase in temperature, the peaks of the
spectral functions move toward lower values of invariant
mass. Moreover, the spectral functions at a nonzero
external magnetic field show highly oscillatory behavior
about the B ¼ 0 curves. Similar to the case of π and σ, we
observe higher (lower) oscillation frequency (amplitude) at
lower values of B.
Till now, we have taken q⃗ ¼ 0⃗. To see the effect of

longitudinal momentum on the spectral function, we have
plotted the spectral functions of the mesons as a function of
invariant mass for T ¼ 250 MeV and q⊥ ¼ 0with different
values of qz and external magnetic field in Figs. 6(a)–6(f).
First of all, it can be observed that the spectral functions of
σ and a1 become identical to that of π and ρ respectively in
all the cases as a consequence of the chiral symmetry
restoration. In all the cases, the effect of increase in the qz
decreases the height of spectral functions with a marginal
change of their peak positions. Moreover, comparing the
green-dot and violet-dash-dot curves in Figs. 6(c) and 6(d),
it can be noticed that a nonzero value of qz lifts the
degeneracy of the two modes of ρ and a1 at B ¼ 0.
We now turn our attention to the study of the effect of

temperature and external magnetic field on the meson
masses and dispersion relations. We define the dispersion
relations of the mesons as the value of ωðq⃗Þ at which
the spectral function Sðq0 ¼ ω; q⃗Þ has a peak (global
maxima) or in other words the locus (q0 ¼ ω; q⃗) of the
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peak of the spectral function gives the dispersion rela-
tions. Thus, the (effective) masses of the mesons are
obtained by putting q⃗ ¼ 0⃗ in the dispersion relation
i.e., mh;H ¼ ωh;Hðq⃗ ¼ 0⃗Þ.

In Fig. 7(a), the masses of the mesons are plotted as a
function of temperature at vanishing external magnetic
field. Twice the constituent quark mass is also shown for
comparison. In the lower temperature region, the meson
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FIG. 6. Comparison of the spectral functions of π0 with σ and ρ0 with a01 at T ¼ 250 MeV, q⊥ ¼ 0 for different values of their
longitudinal momentum (qz ¼ 0 and 500 MeV).
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masses remain almost constant. However,mπ starts increas-
ing monotonically with temperature beyond T ≃ 150 MeV
and eventually it becomes larger than 2M. On the other
hand, mσ first decreases to attain a minimum after which it
increases. In the whole temperature range, mσ remains
always greater than 2M maintaining its resonant signature.
At high temperature, the mass of π and σ merge with each
other as a consequence of the chiral symmetry restoration.
Similar behavior can also be noticed for mρ and ma1 where
both decrease with temperature followed by a merging of
their masses in the chiral symmetry restored phase.
It is to be noted that the mass/dispersion relation of the

meson (or of any unstable resonance particle) can have
different definition. The mass/dispersion relation can either
be obtained from the locus (q0, q⃗) of the pole of the
propagator or of the peak of the spectral function. In the
current work, we have used the peak of the spectral

function for the definition of mass/dispersion relation.
However, to check how these two differ from each other,
we have plotted the masses of σ and π0 as a function of
temperature at B ¼ 0 in Fig. 8. As can be seen from Fig. 8,
the two different definitions of mass lead to no noticeable
difference. Moreover, the ratio of the masses calculated
from the pole to that from the peak is exactly unity when
the particle has zero decay width (for example the π0 mass
at low temperature).
Now, keeping the temperature fixed at T ¼ 0, the

variation of meson masses as a function of external
magnetic field are plotted in Fig. 7(b). Frequent mass
jumps are observed for the distinct modes of ρ and a1. In
between the two successive discontinuities, the effective
mass increases with eB. It can be noticed that the frequency
of oscillation decreases with the external field. In other
words, separation between the two successive discontinu-
ities increases with eB. Also in case of σ mesons, the
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effective mass shows an increasing trend between the
successive discontinuities. However, only one mass jump
can be seen within the plotted range of the magnetic field.
Pion mass on the other hand remains continuous and is
observed to decrease slowly with the external field which is
consistent with Refs. [38,41].
If Fig. 9, we have shown the variation ofmπ as a function

of temperature at two different values of an external
magnetic field. At lower values of temperature, the mass
of pions are almost independent of T. At some particular
temperature, mπ suffers a sudden jump (discontinuity)
corresponding to Mott transition [41,42,53–55]. The jump
structure is in qualitative agreement with most of the
studies. However, there exist differences in the quantitative
nature of the jump structure. For example, the amount of
discontinuity obtained here is smaller in comparison to [42]
which itself is different from [53] as well as [41]. One
should observe that different parameter sets have been
chosen in all these cases along with different regularization
procedures.
Temperature dependence of mσ is shown in Fig. 10(a) at

different values of the external magnetic field. At lower
values of temperature, the nature of mσ is dominated by its
eB dependence. Because of the mass jump present at
T ¼ 0, mσ shows nonmonotonic behavior with respect to

eB variation. For example, the effective mass at eB ¼
0.10 GeV2 is smaller than the effective mass at eB ¼
0.05 GeV2 whereas the corresponding value of mσ at
eB ¼ 0.15 GeV2 remains well above the former two cases.
As a result, with the increase of temperatures, when mσ

decreases, crossing between fixed eB curves develops.
With further increase of temperature, the effective mass
shows discontinuous jump structure for eB ¼ 0.10 and
0.15 GeV2. This mass jump signifies the fact that even in
the case of a sigma meson, there exists a certain set of T and
eB values for which no solution exists for the pole of the σ
propagator. The pole reappears at a higher value giving rise
to a discontinuous jump. In general, this behavior can be
attributed to the oscillatory nature of the polarization
function. One important feature to be noted is that at
eB ¼ 0.05 GeV2, the effective mass of σ does not possess
any discontinuous jump within the plotted temperature
range. We have also checked in our numerical calculations
that at finite temperature as well as at nonzero magnetic
field, the relation m2

σðT; BÞ ¼ m2
πðT; BÞ þ 4M2ðT; BÞ is in

agreement with Refs. [29,37,44].
In Fig. 10(b),mρ is plotted as a function of temperature for

different values of an external magnetic field. The B ¼ 0

curve is degenerate for the two modes. The degeneracy is
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lifted once the external magnetic field is turned on. For a
given value of eB, mρ shows a decreasing trend with
temperature except at particular values where discontinuous
jump occurs. The nature of the discontinuities is similar to
that of mπ and mσ i.e., at the point of discontinuity, the
solution for the pole position always jumps to higher values.
Also in this case, one can observe that there exists certain
magnetic fields for which no discontinuity appears within
the plotted temperature range [see for example, mode-(B) at
eB ¼ 0.15 GeV2]. On the other hand, for a particular
temperature, mρ is found to be oscillatory with the change
in eB. In other words, the effective mass can go to higher as
well as lower values depending upon the external magnetic
field. This is again expected from the highly oscillatory
nature of the effective mass at T ¼ 0 [shown in Fig. 7(b)].
An analogous feature is observed for the case of the a1
meson as shown in Fig. 10(d). However, in this case, the
effective mass of a01 can jump to lower values as well (see for
example, mode-(A) at 0.10 GeV2). Finally, we concentrate
on the dispersion relations of the mesons in the thermo-
magnetic medium. In Figs. 11(a)–11(d), we have plotted ωπ

as a function of longitudinal momentum (qz) at different

values of temperature and external magnetic field. For a
particular temperature, the dispersion curves are mostly
separated around qz ≃ 0. With the increase in qz, the
quantum corrections become subleading as compared to
the kinetic energy which in turn leads to a lightlike
dispersion and the dispersion curves of different eB tend
to merge with each other at high values of qz. Moreover, the
separation among the curves at different values of eB is
highest at the lower temperature as compared to higher
temperature. An asymmetry of the dispersion curves for
nonzero eB about qz ¼ 0 can be noticed as a consequence
of breaking of rotational symmetry by the external magnetic
field. The corresponding dispersion curves for the σ meson is
depicted in Figs. 11(e)–11(h). The nature of ωσ is similar to
that of ωπ .
Next in Figs. 12(a)–12(h), we have plotted the dispersion

curves for the ρ meson as a function of qz for different
values of temperature and external magnetic field. The
dispersion curves for mode-(A) and mode-(B) are degen-
erate at T ¼ 0 and B ¼ 0 and lie on top of each other. This
degeneracy is lifted when we take either T or B ≠ 0.
Moreover, for B ¼ 0 and T ≠ 0, the dispersion curves are
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identical around qz ≃ 0. The nature of the dispersion curves
at different values of eB are similar to that of π and σ as
they are mostly separated near qz ≃ 0 and tend to merge at
high qz. The corresponding plots for the a1 meson is shown
in Figs. 12(i)–12(p) and the nature of the curves are similar
to that of the ρ meson.

VII. SUMMARY AND CONCLUSION

In this work, the neutral meson properties such as mass,
spectral function, and dispersion relations have been
studied in the presence of a constant background magnetic
field using the two-flavor Nambu–Jona-Lasinio model. The
novelty of the study lies in the detailed consideration of the
general Lorentz structure for the vector and axial-vector
meson polarization functions, which, to the best of our
knowledge, has been ignored in similar studies of vector
mesons. Apart from the consideration of the modified
Lorentz structure in the presence of a magnetic field, the
Schwinger propagator expressed as a sum over Landau
levels has been used in the calculation of the quark self-
energy and meson polarization functions. For simplicity in
the analytic calculation, only longitudinal mesons (q⊥ ¼ 0)
are considered. To obtain the Lorentz structure of the
vector and axial-vector meson systematically, we have
adopted a hybrid regularization scheme where as a first
step, the dimensional regularization is used to isolate the
ultraviolet divergences as the poles of gamma functions.
Subsequently, those gamma functions are replaced by
incomplete gamma functions as usually done in the proper
time regularization scheme. We call this hybrid regulari-
zation procedure as the incomplete gamma regularization
(IGR). As a reward, the number of parameters remain
identical to that of usual cutoff regularization procedures.
We have obtained two distinct modes for the ρ0 and a1
mesons. At eB ¼ 0 the effective mass of the modes remains
degenerate; however, the external magnetic field lifts the
degeneracy. At temperatures above the critical temperature
for chiral symmetry restoration, the spectral functions for
each of the modes of ρ0 are observed to overlap with the
corresponding modes of its chiral partner a01 meson for both
zero and nonzero values of the external magnetic field.
The discontinuity in the pion mass near the Mott

transition temperature is observed which is consistent with
recent works [41,42]. However, in our case, the discon-
tinuous mass jump is also observed in the effective mass of

the sigma meson which seems to be absent in Ref. [38] (see
Fig. 1). Also in [41], it is mentioned that no mass jump for σ
can exist in the NJL model as mσ always lies above 2M. In
our work too, we observe that the condition mσ > 2M is
always satisfied. Thus, we conclude that this condition may
not be the correct explanation of the absence of a mass
jump in the case of mσ in [38]. In our work, discontinuous
mass jumps have also been observed in different modes of
the ρ and a1 mesons. The presence of the mass jump in fact
depends nontrivially on the oscillation of the meson
polarization function. This implies that the existence of a
real solution for the pole of the propagator will depend on
the external parameters. For example, there can be certain
values of the magnetic fields for which no mass jump will
occur [see for example Fig. 10(a) for eB ¼ 0.05 GeV2]
within a certain range of temperature. Moreover, one
should keep in mind that the polarization function also
requires a regularization prescription. In our two step
regularization scheme, the dimensional regularization is
the essential first step to obtain the Lorentz structure for the
vector and axial-vector mesons. As mentioned earlier, the
Lorentz structure cannot be achieved systematically in the
thermo-magnetic case with the cutoff procedure commonly
used. Thus, it is very interesting to study the similar
analysis in another covariant regularization prescription
such as the Pauli-Villars method to conclude about the
regularization scheme independent qualitative properties of
the mesons.

APPENDIX A: CALCULATION OF
ReΣMFAðM;B;TÞ

In this Appendix, we will briefly sketch the calculation

of the quantity ReΣMFAðM;B; TÞ. Substituting Eq. (30) into
Eq. (33) and performing the traces over color and flavor
spaces, we arrive at

ReΣMFAðM;B; TÞ

¼ −2gsNc
X

f∈fu;dg
Re

�
i
Z

d4k
ð2πÞ4 TrdfS

11
f ðk;MÞg

�
:

ðA1Þ

Again substituting S11f from Eq. (32) in the above equation
and evaluating the trace over Dirac matrices, we get,

ReΣMFAðM;B; TÞ ¼ −2gsNc4M
X

f∈fu;dg
Re

�
i
Z

d4k
ð2πÞ4

X∞
l¼0

ð−1Þle−αfkfLlð2αfkÞ − Ll−1ð2αfkÞg

×

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

	�
: ðA2Þ

The d2k⊥ integral of the above equation is now performed using the orthogonality of the Laguerre polynomials and we are
left with
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ReΣMFAðM;B; TÞ ¼ −2gs
NcM
π

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l ÞRe
�
i
Z

d2kk
ð2πÞ2

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

	�
ðA3Þ

¼ ReΣVac
MFAðM;BÞ þ ReΣB-Med

MFA ðM;B; TÞ ðA4Þ

where

ReΣVac
MFAðM;BÞ ¼ 2gs

NcM
π

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l ÞRe
�
i
Z

d2kk
ð2πÞ2

1

k2k −M2
lf þ iϵ

�
; ðA5Þ

ReΣB-Med
MFA ðM;B; TÞ ¼ −2gs

NcM
π

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l Þ
Z

d2kk
ð2πÞ2 2πηðk · uÞδðk

2
k −M2

lfÞ ðA6Þ

are respectively the magnetic field dependent and both temperature as well as magnetic field dependent contributions to the
self-energy fucntion. Equation (A6) can be further simplified by performing the dk0 integral using the Dirac delta function
to obtain

ReΣB-Med
MFA ðM;B; TÞ ¼ −2gs

NcM
π2

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l Þ
Z

∞

0

dkz
1

ωlf
k

fðωlf
k Þ: ðA7Þ

Note that the quantity ReΣVac
MFAðM;BÞ contains the divergent pure vacuum self-energy ReΣPure−Vac

MFA ðMÞ which has to be
separated out. To do this, we use the formalism developed in Ref. [47] and simplify Eq. (A5) using the dimensional
regularization. Going to d dimension, we get

ReΣVac
MFAðM;BÞ ¼ 2gs

NcM
π

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l ÞRe
�
i
Z

ddkk
ð2πÞd

λ1−d=2

k2k −M2
lf þ iϵ

�����
d→2

ðA8Þ

where the scale λ of dimension GeV2 has been introduced to keep the overall dimension of the equation consistent. It is now
straightforward to perform the remaining momentum integral of the above equation to reach at

ReΣVac
MFAðM;BÞ ¼ 2gs

NcM
4π2

ΓðεÞ
X

f∈fu;dg
jefBj

X∞
l¼0

ð2 − δ0l Þ
�

4πλ

M2 þ 2ljefBj
�

ε
����
ε→0

ðA9Þ

where ε ¼ ð1 − d=2Þ and we have used Eq. (26). The infinite sum over the index l in the above equation can now be
expressed in terms of Hurwitz-Riemann zeta function as

ReΣVac
MFAðM;BÞ ¼ 2gs

NcM
4π2

ΓðεÞ
X

f∈fu;dg
jefBj

��
4πλ

M2

�
ε

þ 2

�
4πλ

2jefBj
�

ε

ζ

�
ε; 1þ M2

2jefBj
������

ε→0

: ðA10Þ

An expansion of the RHS of the above equation about ε ¼ 0 yields

ReΣVac
MFAðM;BÞ ¼ 2gs

NcNfM3

4π2

�
−
1

ε
þ γE − 1 − ln

�
4πλ

M2

��

− 2gs
MNc

4π2
X

f∈fu;dg

�
−M2 þ ðM2 − jefBjÞ ln

�
M2

2jefBj
�
− 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	�
: ðA11Þ

The first term on the RHS can now be identified [see Eq. (10)] as the magnetic field independent divergent pure vacuum
contribution to the self-energy ReΣPure−Vac

MFA ðMÞ which has been separated from ReΣVac
MFAðM;BÞ so that we rewrite the above

equation as
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ReΣVac
MFAðM;BÞ ¼ ReΣPure-Vac

MFA ðMÞ þ ReΣB-Vac
MFA ðM;BÞ ðA12Þ

where

ΣB-Vac
MFA ðM;BÞ ¼ −2gs

MNc

4π2
X

f∈fu;dg

�
−M2 þ ðM2 − jefBjÞ ln

�
M2

2jefBj
�
− 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	�
: ðA13Þ

APPENDIX B: EXPRESSIONS OF THE SUSCEPTIBILITIES

In this Appendix, we will specify the explicit expressions for the susceptibilities. We will do this for the two cases
separately: (i) B ¼ 0 and (ii) B ≠ 0 in the following subsections.

1. Case-I: B = 0

A straightforward differentiation of the gap equation at B ¼ 0 with respect to T and m yields

−
∂M
∂T ¼ 1

ð1þDVac þDMedÞ
2gs

2NcNfM

π2T2

Z
∞

0

djk⃗jk⃗2fðωkÞf1 − fðωkÞg; ðB1Þ

χ ¼ 1

2gs

�∂M
∂m − 1

�
¼ −

1

2gs

�
DVac þDMed

1þDVac þDMed

�
ðB2Þ

where

DVac ¼ −2gs
NcNf

4π2

�
Λ2e−M

2=Λ2 − 3M2Γ
�
0;
M2

Λ2

��
; ðB3Þ

DMed ¼ 2gs
2NcNf

π2T

Z
∞

0

djk⃗jk⃗2 1

ω3
k

½Tk⃗2 −M2ωkf1 − fðωkÞg�fðωkÞ: ðB4Þ

2. Case-II: B ≠ 0

A straightforward differentiation of the gap equation at B ≠ 0 with respect to T and m yields

−
∂M
∂T ¼ 1

ð1þDVac þDBVac þDBMedÞ
2gs

NcM
π2T2

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l Þ
Z

∞

0

dkzfðωlf
k Þf1 − fðωlf

k Þg; ðB5Þ

χ ¼ 1

2gs

�∂M
∂m − 1

�
¼ −

1

2gs

�
DVac þDBVac þDBMed

1þDVac þDBVac þDBMed

�
ðB6Þ

where

DBVac ¼ −2gs
Nc

4π2
X

f∈fu;dg
½jefBjfln yþ 2 lnΓðyÞ − lnð2πÞ þ 2g þM2f1 − 3 ln yþ 2ψðyÞg�; ðB7Þ

DBMed ¼ 2gs
Nc

π2T

X
f∈fu;dg

jefBj
X∞
l¼0

ð2 − δ0l Þ
Z

∞

0

dkz
1

ðωlf
k Þ3

½Tðk2z þ 2ljefBjÞ −M2ωlf
k f1 − fðωlf

k Þg�fðωlf
k Þ ðB8Þ

with y ¼ M2=j2efBj.
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APPENDIX C: FORM FACTORS OF THE
POLARIZATION FUNCTION IN TERMS OF

LOCAL INVARIANTS

In this Appendix we will enlist the different form factors
in terms of the Lorentz invariant quantities. Let us start with
the case T ¼ 0 and B ¼ 0. Substituting Eqs. (48) and (49)
into Eq. (53), we get, after some simplifications,

ΠH2 ¼
1

q2
qμqνΠ

μν
H and

ΠH1 ¼
1

3
ðgμνΠμν

H − ΠH2Þ: ðC1Þ

Now, at T ≠ 0 and B ¼ 0, we substitute Eqs. (54) and
(57) into Eq. (62) to obtain

ΠH2 ¼
1

q2
qμqνΠ

μν
H ; ðC2Þ

ΠH3 ¼
1

ũ2

�
uμuνΠ

μν
H þ ðq · uÞ2

q2
ΠH2 − 2

ðq · uÞ
q2

qμuνΠ
μν
H

�
;

ðC3Þ

ΠH1 ¼
1

2
ðgμνΠμν

H − ΠH2 − ΠH3Þ; ðC4Þ

ΠH4 ¼
1ffiffiffiffiffiffiffiffiffiffi
q2ũ2

p ½qμuνΠμν
H − ðq · uÞΠH2�: ðC5Þ

Similarly for the case T ≠ 0 and B ≠ 0, substituting
Eqs. (66) and (72) into Eqs. (77) and (78), we get

ΠH2 ¼
1

q2
qμqνΠ

μν
H ; ðC6Þ

ΠH3 ¼
1

ũ2

�
uμuνΠ

μν
H þ ðq · uÞ2

q2
ΠH2 − 2

ðq · uÞ
q2

qμuνΠ
μν
H

�
;

ðC7Þ

ΠH5 ¼
1ffiffiffiffiffiffiffiffiffiffi
q2ũ2

p ½qμuνΠμν
H − ðq · uÞΠH2�; ðC8Þ

ΠH6¼
1ffiffiffiffiffiffiffiffiffiffi
q2b̃2

p
�
qμbνΠ

μν
H −ðq ·bÞΠH2−

ðb · ũÞ
ũ2

ffiffiffiffiffiffiffiffiffiffi
q2ũ2

q
ΠH5

�
;

ðC9Þ

ΠH7 ¼
1ffiffiffiffiffiffiffiffiffiffi
q2b̃2

p
�
uμbνΠ

μν
H −

ðq · uÞ
q2

qμbνΠ
μν
H −

ðq · bÞ
q2

ffiffiffiffiffiffiffiffiffiffi
q2ũ2

q
ΠH5 − ðb · ũÞΠH3

�
; ðC10Þ

ΠH4 ¼
1

b̃2

�
bμbνΠ

μν
H þ 1

q2

�ðb · ũÞ
ũ2

ðq · uÞ− ðq · bÞ
	
qμbνΠ

μν
H −

ðb · ũÞ
ũ2

uμbνΠ
μν
H −

ðq · bÞ
q2

ffiffiffiffiffiffiffiffiffiffi
q2b̃2

q
ΠH6 −

ðb · ũÞ
ũ2

ffiffiffiffiffiffiffiffiffiffi
ũ2b̃2

p
ΠH7

�
;

ðC11Þ

ΠH1 ¼ ðgμνΠμν
H − ΠH2 − ΠH3 − ΠH4Þ: ðC12Þ

APPENDIX D: CALCULATION OF THE PURE-VACUUM POLARIZATION FUNCTIONS USING
DIMENSIONAL REGULARIZATION

In this Appendix, we will simplify Eqs. (100)–(103) by evaluating the momentum integral using dimensional
regularization. Substituting S0ðq;mÞ from Eq. (4) and evaluating the traces over color, flavor, and Dirac spaces we
can express the polarization functions as

ΠhðqÞ ¼ i
Z

d4k
ð2πÞ4

Nhðq; kÞ
ðk2 −M2 þ iϵÞfðkþ qÞ2 −M2 þ iϵg ; h ∈ fπ; σg; ðD1Þ

Πμν
H ðqÞ ¼ i

Z
d4k
ð2πÞ4

Nμν
H ðq; kÞ

ðk2 −M2 þ iϵÞfðkþ qÞ2 −M2 þ iϵg ;H ∈ fρ; a1g ðD2Þ

where

Nh ¼ 4NcNfðk2 þ k · q − aM2Þ; ðD3Þ

Nμν
H ¼ −4NcNf½gμνðk2 þ k · q − aM2Þ − 2kμkν − ðkμqν þ kνqμÞ� ðD4Þ
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with a ¼ f 1
−1

for π;ρ
for σ;a1

. Now using the standard Feynman parametrization, the denominators of Eqs. (D1) and (D2) are
combined to get

ΠπðqÞ ¼ i4NcNfλ
2−d=2

Z
ddk
ð2πÞd

�
1

k2 −M2 þ iϵ
−
1

2
q2

Z
1

0

dx
1

½ðkþ xqÞ2 − Δ�2
�����

d→4

; ðD5Þ

ΠσðqÞ ¼ i4NcNfλ
2−d=2

Z
ddk
ð2πÞd

�
1

k2 −M2 þ iϵ
−
1

2
ðq2 − 4M2Þ

Z
1

0

dx
1

½ðkþ xqÞ2 − Δ�2
�����

d→4

; ðD6Þ

Πμν
H ðqÞ ¼ iλ2−d=2

Z
1

0

dx
Z

ddk
ð2πÞd

Nμν
H ðq; kÞ

½ðkþ xqÞ2 − Δ�2
����
d→4

;H ∈ fρ; a1g ðD7Þ

where Δ ¼ M2 − xð1 − xÞq2 − iϵ and the space-time dimension has been changed from 4 to d in order to implement the
dimensional regularization. Shifting momentum k → ðk − xqÞ, we perform the momentum integrals of the above equations
to get

ΠπðqÞ ¼
NcNf

4π2

�
1

2
q2ΓðεÞ

Z
1

0

dx

�
4πλ

Δ

�
ε

þM2Γðε − 1Þ
�
4πλ

M2

�
ε
�
; ðD8Þ

ΠσðqÞ ¼
NcNf

4π2

�
1

2
ðq2 − 4M2ÞΓðεÞ

Z
1

0

dx

�
4πλ

Δ

�
ε

þM2Γðε − 1Þ
�
4πλ

M2

�
ε
�
; ðD9Þ

Πμν
ρ ðqÞ ¼ −

NcNf

2π2
ΓðεÞ

�
gμν −

qμqν

q2

�
q2

Z
1

0

dxxð1 − xÞ
�
4πλ

Δ

�
ε

; ðD10Þ

Πμν
a1ðqÞ ¼

NcNf

2π2
ΓðεÞ

Z
1

0

dx

��
gμν −

qμqν

q2

�
Δþ qμqν

q2
M2

��
4πλ

Δ

�
ε

ðD11Þ

where ε ¼ ð2 − d=2Þ and note that the UV divergences have appeared as the pole of the Gamma functions. The above
quantities have the following expansion about ε ¼ 0:

ΠπðqÞ ¼
NcNf

4π2

�
−M2

�
1

ε
− γE þ 1þ ln

�
4πλ

M2

�	
þ 1

2
q2

Z
1

0

dx

�
1

ε
− γE þ ln

�
4πλ

Δ

�	�
; ðD12Þ

ΠσðqÞ ¼
NcNf

4π2

�
−M2

�
1

ε
− γE þ 1þ ln

�
4πλ

M2

�	
þ 1

2
ðq2 − 4M2Þ

Z
1

0

dx

�
1

ε
− γE þ ln

�
4πλ

Δ

�	�
; ðD13Þ

Πμν
ρ ðqÞ ¼ −

NcNf

2π2

�
gμν −

qμqν

q2

�
q2

Z
1

0

dxxð1 − xÞ
�
1

ε
− γE þ ln

�
4πλ

Δ

��
; ðD14Þ

Πμν
a1ðqÞ ¼

NcNf

2π2

Z
1

0

dx

��
gμν −

qμqν

q2

�
Δþ qμqν

q2
M2

��
1

ε
− γE þ ln

�
4πλ

Δ

��
: ðD15Þ

APPENDIX E: CALCULATION OF THERMO-MAGNETIC POLARIZATION FUNCTIONS

In this Appendix, we will briefly sketch how to obtain Eqs. (122)–(129). Substituting S011 from Eq. (30) into
Eqs. (118)–(121), we get after evaluating the traces over flavor and color spaces for q⊥ ¼ 0

ΠB11
h ðqkÞ ¼ i

X∞
l¼0

X∞
n¼0

X
f∈fu;dg

Z
d4k
ð2πÞ4 Ñ

lnf
h ðqk; kÞ

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

�

×
�

−1
p2
k −M2

nf þ iϵ
− 2πiηðp · uÞδðp2

k −M2
lfÞ

�
; ðE1Þ
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ΠBμν11
H ðqkÞ ¼ i

X∞
l¼0

X∞
n¼0

X
f∈fu;dg

Z
d4k
ð2πÞ4 Ñ

lnfμν
H ðqk; kÞ

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

�

×

�
−1

p2
k −M2

nf þ iϵ
− 2πiηðp · uÞδðp2

k −M2
lfÞ

�
ðE2Þ

where p ¼ ðqþ kÞ and

Ñlnf
π ðqk; kÞ ¼ −Ncð−1Þlþne−2α

f
kTrd½DlfðkÞγ5DnfðpÞγ5�; ðE3Þ

Ñlnf
σ ðqk; kÞ ¼ Ncð−1Þlþne−2α

f
kTrd½DlfðkÞDnfðpÞ�; ðE4Þ

Ñlnfμν
ρ ðqk; kÞ ¼ Ncð−1Þlþne−2α

f
kTrd½DlfðkÞγμDnfðpÞγν�; ðE5Þ

Ñlnfμν
a1 ðqk; kÞ ¼ Ncð−1Þlþne−2α

f
kTrd½DlfðkÞγμγ5DnfðpÞγνγ5�: ðE6Þ

Evaluating the trace over Dirac matrices, the above equations become

Ñlnf
h ðqk; kÞ ¼ −Ncð−1Þlþne−2α

f
k8½−8k2⊥L1

l−1ð2αfkÞL1
n−1ð2αfkÞ

− ðk2k þ kk · qk − aM2ÞfLlð2αfkÞLnð2αfkÞ þ Ll−1ð2αfkÞLn−1ð2αfkÞg�; ðE7Þ

Ñlnfμν
H ðqk; kÞ ¼ Ncð−1Þlþne−2α

f
k8½8ð2kμ⊥kν⊥ − k2⊥gμνÞL1

l−1ð2αfkÞL1
n−1ð2αfkÞ

− fðk2k þ kk · qk − aM2Þgμνk − 2kμkk
ν
k − ðkμkqνk þ kνkq

μ
kÞgfLlð2αfkÞLnð2αfkÞ þ Ll−1ð2αfkÞLn−1ð2αfkÞg

þ ðk2k þ kk · qk − aM2Þgμν⊥ fLlð2αfkÞLn−1ð2αfkÞ þ Ll−1ð2αfkÞLnð2αfkÞg� ðE8Þ

with a ¼ f 1
−1

for π;ρ
for σ;a1

. Substituting Eqs. (E7) and (E8) into Eqs. (E1) and (E2), we can perform the d2k⊥ integral using the
orthogonality of the Laguerre polynomials to obtain

ΠB11
h ðqkÞ ¼ i

X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
d2kk
ð2πÞ2N

lnf
h ðqk; kÞ

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

�

×

�
−1

p2
k −M2

nf þ iϵ
− 2πiηðp · uÞδðp2

k −M2
lfÞ

�
; ðE9Þ

ΠBμν11
H ðqkÞ ¼ i

X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
d2kk
ð2πÞ2N

lnfμν
H ðqk; kÞ

�
−1

k2k −M2
lf þ iϵ

− 2πiηðk · uÞδðk2k −M2
lfÞ

�

×

�
−1

p2
k −M2

nf þ iϵ
− 2πiηðp · uÞδðp2

k −M2
lfÞ

�
ðE10Þ

where

Nlnf
h ðqk; kÞ ¼ −

Nc

π
jefBj½4jefBjnδn−1l−1 − ðk2k þ kk · qk − aM2Þðδnl þ δn−1l−1 Þ�; ðE11Þ

Nlnfμν
H ðqk; kÞ ¼

Nc

π
jefBj½4jefBjnδn−1l−1 g

μν
k − fðk2k þ kk · qk − aM2Þgμνk − 2kμkk

ν
k − ðkμkqνk þ kνkq

μ
kÞgðδnl þ δn−1l−1 Þ

− ðk2k þ kk · qk − aM2Þgμν⊥ ðδn−1l þ δnl−1Þ�: ðE12Þ
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Note that the presence of the Kronecker delta in the above equations has eliminated one of the double sums in Eqs. (E9) and
(E10) so that the sum over index n runs from (l − 1) to (lþ 1).
The calculation of the imaginary parts of Eqs. (E9) and (E10) is trivial since the imaginary parts are free from any UV

divergences. Evaluating the dk0 integral of Eqs. (E9) and (E10) and making use of the relations

ImΠhðqkÞ ¼ signðq0Þ tanh
�
q0

2T

�
ImΠB11

h ðqkÞ; ðE13Þ

ImΠμν
H ðqkÞ ¼ signðq0Þ tanh

�
q0

2T

�
ImΠBμν11

h ðqkÞ ðE14Þ

we get

ImΠhðqkÞ ¼ −signðq0Þ tanh
�
q0

2T

�
π
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

1

4ωlf
k ω

nf
p
½f1 − fðωlf

k Þ − fðωnf
p Þ þ 2fðωlf

k Þfðωnf
p Þg

× fNlnf
h ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ þ Nlnf
h ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg
þ f−fðωlf

k Þ − fðωnf
p Þ þ 2fðωlf

k Þfðωnf
p ÞgfNlnf

h ðk0 ¼ −ωlf
k Þδðq0 − ωlf

k − ωnf
p Þ

þ Nlnf
h ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg�; ðE15Þ

ImΠμν
H ðqkÞ ¼ −signðq0Þ tanh

�
q0

2T

�
π
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

1

4ωlf
k ω

nf
p
½f1 − fðωlf

k Þ − fðωnf
p Þ þ 2fðωlf

k Þfðωnf
p Þg

× fNlnfμν
H ðk0 ¼ −ωlf

k Þδðq0 − ωlf
k − ωnf

p Þ þ Nlnfμν
H ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg
þ f−fðωlf

k Þ − fðωnf
p Þ þ 2fðωlf

k Þfðωnf
p ÞgfNlnfμν

H ðk0 ¼ −ωlf
k Þδðq0 − ωlf

k − ωnf
p Þ

þ Nlnfμν
H ðk0 ¼ ωlf

k Þδðq0 þ ωlf
k þ ωnf

p Þg�: ðE16Þ

The temperature dependent real parts of Eqs. (E9) and (E10) are also easy to simplify because of the presence of the Dirac
delta functions. Thus, evaluating the dk0 integral of the temperature dependent real parts, and making use of the relations

ReΠhðqkÞ ¼ ReΠB11
h ðqkÞ and ReΠμν

H ðqkÞ ¼ ReΠBμν11
h ðqkÞ ðE17Þ

we get

ReΠhðqkÞ ¼ ReΠhVacðqk; BÞ −
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

P
�

Nlnf
h ðk0 ¼ −ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 − ωlf

k Þ2 − ðωnf
p Þ2g þ

Nlnf
h ðk0 ¼ ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 þ ωlf

k Þ2 − ðωnf
p Þ2g

þ Nlnf
h ðk0 ¼ −q0 − ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 þ ωnf

p Þ2 − ðωlf
k Þ2g

þ Nlnf
h ðk0 ¼ −q0 þ ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 − ωnf

p Þ2 − ðωlf
k Þ2g

�
; ðE18Þ

ReΠμν
H ðqkÞ ¼ ReΠμν

HVacðqk; BÞ −
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
∞

−∞

dkz
2π

P
�

Nlnfμν
H ðk0 ¼ −ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 − ωlf

k Þ2 − ðωnf
p Þ2g þ

Nlnfμν
H ðk0 ¼ ωlf

k Þfðωlf
k Þ

2ωlf
k fðq0 þ ωlf

k Þ2 − ðωnf
p Þ2g

þ Nlnfμν
H ðk0 ¼ −q0 − ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 þ ωnf

p Þ2 − ðωlf
k Þ2g

þ Nlnfμν
H ðk0 ¼ −q0 þ ωnf

p Þfðωnf
p Þ

2ωnf
p fðq0 − ωnf

p Þ2 − ðωlf
k Þ2g

�
ðE19Þ

where ReΠhVacðqk; BÞ and ReΠμν
HVacðqk; BÞ are the temperature independent real parts of the analytic thermo-magnetic

polarization functions. They, respectively, contain the magnetic field independent and UV-divergent pure vacuum
polarization functions ReΠhðqkÞ and ReΠμν

H ðqkÞ which have to be separated. To this end, we will use the dimensional
regularization technique as already developed in Ref. [47]. We have
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ΠhVacðqk; BÞ ¼ i
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
d2kk
ð2πÞ2 N

lnf
h ðqk; kÞ

1

ðk2k −M2
lf þ iϵÞðp2

k −M2
nf þ iϵÞ ; ðE20Þ

Πμν
HVacðqk; BÞ ¼ i

X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
d2kk
ð2πÞ2N

lnfμν
H ðqk; kÞ

1

ðk2k −M2
lf þ iϵÞðp2

k −M2
nf þ iϵÞ : ðE21Þ

Using standard Feynman parametrization, the denominators of the above equations are combined and we get after some
simplifications,

ΠhVacðqk;BÞ ¼ Nc

X∞
l¼0

X
f∈fu;dg

jefBj
π

ð2− δ0l Þλ1−d=2i
Z

ddkk
ð2πÞd

�
1

k2k −M2
lf þ iϵ

−
1

2
ÑhðqkÞ

Z
1

0

dx

�
1

ðkk þ xqkÞ2 −Δf
ll

	
2
�����

d→2

;

ðE22Þ

Πμν
HVacðqk; BÞ ¼ i

X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

Z
1

0

dxλ1−d=2
Z

ddkk
ð2πÞd N

lnfμν
H ðqk; kÞ

�
1

ðkk þ xqkÞ2 − Δf
ln

�
2
����
d→2

: ðE23Þ

where Δf
ln ¼ M2 − xð1 − xÞq2k þ 2jefBjðl − xlþ xnÞ − iϵ and we have changed the longitudinal space-time dimension

from 2 to d so that as before a scale λ of dimention GeV2 has been introduced. In Eq. (E22), ÑhðqkÞ ¼ q2k if h≡ π and

ÑhðqkÞ ¼ ðq2k − 4M2Þ if h≡ σ. We now perform the ddkk integral after a momentum shift kk → ðkk − xqkÞ. After some

simplifications, we arrive at

ΠhVacðqk; BÞ ¼
Nc

4π2
X∞
l¼0

X
f∈fu;dg

jefBjð2 − δ0l Þ
��

4πλ

M2
lf

�
ε

ΓðεÞ þ 1

2
ÑhðqkÞ

Z
1

0

dx

�
4πλ

Δf
ll

�
1þε

Γð1þ εÞ
�����

ε→0

; ðE24Þ

Πμν
HVacðqk; BÞ ¼ −

Nc

4π2
X∞
l¼0

Xðlþ1Þ

n¼ðl−1Þ

X
f∈fu;dg

jefBj
Z

1

0

dx

�
½4jefBjnδn−1l−1 g

μν
k þ fðaM2 þ xð1 − xÞq2kÞgμνk

− 2xð1 − xÞqμkqνkgðδnl þ δn−1l−1 Þ þ ðaM2 þ xð1 − xÞq2kÞðδnl−1 þ δn−1l Þgμν⊥ �Γðεþ 1Þ 1

Δf
ln

− fðδnl þ δn−1l−1 Þεgμνk − ð1 − εÞðδnl−1 þ δn−1l Þgμν⊥ gΓðεÞ
��

4πλ

Δf
ln

�
ε
����
ε→0

: ðE25Þ

The sum over the indices l and n in the above equations can now be performed and be expressed in terms of the Hurwitz zeta
function as

ΠhVacðqk; BÞ ¼
Nc

4π2
X

f∈fu;dg

�
jefBj

�
−
�
2jefBj
M2

�
ε

þ 2ζ

�
ε;

M2

2jefBj
�	

ΓðεÞ

þ 1

2
ÑhðqkÞ

Z
1

0

dx

�
−
1

2
z−1−ε þ ζð1þ ε; zÞ

	
Γðεþ 1Þ

��
4πλ

2jefBj
�

ε
����
ε→0

; ðE26Þ

Πμν
HVacðqk; BÞ ¼ −

Nc

8π2
X

f∈fu;dg

Z
1

0

dx½½4jefBjðζðε; zÞ − zζð1þ ε; zÞÞgμνk þ fðaM2 þ xð1 − xÞq2kÞgμνk

− 2xð1 − xÞqμkqνkgð2ζð1þ ε; zÞ − z−1−εÞ þ 2ðaM2 þ xð1 − xÞq2kÞζð1þ ε; zþ xÞgμν⊥ �Γðεþ 1Þ

− 2jefBjfεð2ζðε; zÞ − z−εÞgμνk − 2ð1 − εÞζðε; zþ xÞgμν⊥ gΓðεÞ�
�

4πλ

2jefBj
�

ε
����
ε→0

ðE27Þ
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where z ¼ Δ
2jefBj. Expanding the above equations about ε ¼ 0, we get after some simplifications,

ΠhVacðqk; BÞ ¼
NcNf

4π2

�
−M2

�
1

ε
− γE þ 1þ ln

�
4πλ

M2

�	
þ 1

2
ÑhðqkÞ

Z
1

0

dx

�
1

ε
− γE þ ln

�
4πλ

Δ

�	�

þ Nc

4π2
X

f∈fu;dg

�
M2 þ ðjefBj −M2Þ ln

�
M2

2jefBj
�
þ 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	

þ 1

2
ÑhðqkÞ

Z
1

0

dx

�
ln z − ψðzÞ − 1

2z

	�
; ðE28Þ

Πμν
ρVacðqk; BÞ ¼ −

NcNf

2π2

�
gμν −

qμkq
ν
k

q2k

�
q2k

Z
1

0

dxxð1 − xÞ
�
1

ε
− γE þ ln

�
4πλ

M2

��

−
Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðq2kgμν − qμkq
ν
kÞ2xð1 − xÞ ln z − ðq2kgμνk − qμkq

ν
kÞxð1 − xÞð2ψðzÞ þ 1=zÞ

þ ½ðΔ − 2M2Þψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �; ðE29Þ

Πμν
a1Vac

ðqk; BÞ ¼
NcNf

2π2

Z
1

0

dx

��
gμν −

qμkq
ν
k

q2k

�
Δþ

qμkq
ν
k

q2k
M2

��
1

ε
− γE þ ln

�
4πλ

M2

��

−
Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðgμνΔþ xð1 − xÞqμkqνkÞð−2 ln zÞ þ ðgμνk Δþ xð1 − xÞqμkqνkÞð2ψðzÞ þ 1=zÞ

þ ½Δψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �: ðE30Þ

Comparing the RHS of Eqs. (E28)–(E30) with that of Eqs. (D12)–(D15), we find that the divergent pure vacuum
contributions have completely been untangled on the RHS of the above equations. Thus making use of Eqs. (D12)–(D15),
the above equations can be rewritten as

ΠhVacðqk; BÞ ¼ ΠhðqkÞ þ ΠhBðqk; BÞ; ðE31Þ

Πμν
HVacðqk; BÞ ¼ Πμν

H ðqkÞ þ Πμν
HBðqk; BÞ ðE32Þ

where

ΠπBðqk; BÞ ¼
Nc

4π2
X

f∈fu;dg

�
M2 þ ðjefBj −M2Þ ln

�
M2

2jefBj
�
þ 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	

þ 1

2
q2k

Z
1

0

dx

�
ln z − ψðzÞ − 1

2z

	�
; ðE33Þ

ΠσBðqk; BÞ ¼
Nc

4π2
X

f∈fu;dg
½M2 þ ðjefBj −M2Þ ln

�
M2

2jefBj
�
þ 2jefBj

�
lnΓ

�
M2

2jefBj
�
− ln

ffiffiffiffiffiffi
2π

p 	

þ 1

2
ðq2k − 4M2Þ

Z
1

0

dx

�
ln z − ψðzÞ − 1

2z

	�
; ðE34Þ

Πμν
ρBðqk; BÞ ¼ −

Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðq2kgμν − qμkq
ν
kÞ2xð1 − xÞ ln z − ðq2kgμνk − qμkq

ν
kÞxð1 − xÞð2ψðzÞ þ 1=zÞ

þ ½ðΔ − 2M2Þψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �; ðE35Þ
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Πμν
a1B

ðqk; BÞ ¼ −
Nc

4π2
X

f∈fu;dg

Z
1

0

dx½ðgμνΔþ xð1 − xÞqμkqνkÞð−2 ln zÞ þ ðgμνk Δþ xð1 − xÞqμkqνkÞð2ψðzÞ þ 1=zÞ

þ ½Δψðzþ xÞ þ Δþ 2jefBjflnΓðzþ xÞ − ln
ffiffiffiffiffiffi
2π

p
g�gμν⊥ �: ðE36Þ
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