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In this work the neutral meson properties have been investigated in the presence of thermo-magnetic
background using a two-flavor Nambu—Jona-Lasinio model. Mass, spectral function, and dispersion
relations are obtained in the scalar (¢) and pseudoscalar (z°) channels as well as in the vector (p°) and axial
vector (a?) channels. The general Lorentz structures for the vector and axial-vector meson polarization
functions have been considered in detail. The ultraviolet divergences appearing in this work have been
regularized using a mixed regularization technique where the gamma functions arising in dimensional
regularization are replaced with incomplete gamma functions as is usually done in the proper time
regularization procedure. The meson spectral functions obtained in the presence of a magnetic field possess
nontrivial oscillatory structure. Similar to the scalar and pseudoscalar channel, the spectral functions for
each of the modes of p° are observed to overlap with the corresponding modes of its chiral partner a(l)
mesons in the chiral symmetry restored phase. We observe discontinuities in the masses of all the mesonic

excitations for a nonzero external magnetic field.
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I. INTRODUCTION

Based on a considerable amount of research regarding
the generation of magnetic fields in noncentral heavy ion
collision (HIC), there exists a growing consensus that an
extremely strong transient magnetic field of the order of
~10'" G or larger can be produced at the RHIC and the
LHC [1-8]. Being comparable to the energy scale of strong
interaction, though short lived, the produced field can
impart significant modifications in the properties of
strongly interacting matter [9—14] resulting in a plethora
of novel phenomena like chiral magnetic effect [2,15,16],
magnetic catalysis [17-20], inverse magnetic catalysis
[21-23] electromagnetically induced superconductivity,
superfluidity [24,25], and so on. The tools and techniques
developed for studying such magnetic modifications in
HIC experiments also bear significant importance for their
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applicability in many different physical scenarios where a
strong magnetic field can be realized. For example, in the
early universe during the electroweak phase transition,
magnetic fields as high as ~10?* G might have been
produced. Also, in the case of magnetars the surface
magnetic field is of the order of ~10'> G. In the interior,
the field intensity is even higher reaching up to ~10'® G.
Such low temperature and high density extreme states are
expected to be explored in compressed baryonic matter
(CBM) experiment at Facility for Antiproton and Ion
Research (FAIR). On theoretical grounds, at lower temper-
atures, the usual field theoretic approach of studying
quantum chromodynamics (QCD) is not feasible due to
the confining nature of strong interaction that severely
restricts the applicability of perturbative analysis. In this
scenario, an alternative to the nonperturbative lattice QCD
approach is provided by the QCD inspired effective
models. The modification of such effective descriptions
in the presence of an external magnetic field has gained
significant research interests in recent times [26]. One such
model is the Nambu—Jona-Lasinio model [27-32] which
has been widely used in the studies of chiral symmetry
breaking as well as meson properties in the presence of
thermo-magnetic background [33-36].

In the context of studying the mesonic properties in the
presence of a magnetic field in the NJL model, often the
lightest mesons ¢ and z are considered [37—-42]. In some
studies diquarks are also included [43]. p meson properties
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have been discussed in Refs. [44-46]. In Ref. [44], it is
observed that at a vanishing magnetic field, there exists a
temperature when the p mass coincides with twice the
mass of the constituent quark and beyond that temper-
ature no solution for the p meson mass exists which is
described as the p melting. Even at finite magnetic field
the melting persists and two different melting temper-
atures are observed corresponding to the charged and the
neutral p. Comparison with a p° meson suggests that
melting of p* occurs at a lower temperature in the
presence of a magnetic field. For example, in the case
of charged p, no solution exists beyond temperature
169 MeV for eB around 0.2 GeV?. However, similar
analysis on p* in Ritus formalism [46] does find non-
vanishing mass for charged p even at much higher values
of temperature for a similar strength of the background
magnetic field (see for example Fig. 4 of Ref. [46]). The
apparent ambiguity thus demands investigation of the
properties of a neutral p meson in thermo-magnetic
background which essentially will be an extension of
the study presented in Ref. [46].

On a different note, one of the significant features of
studying the meson properties is that at temperatures higher
than a critical value, the masses of the chiral partners
become degenerate. This degeneracy in the meson mass
spectrum serves as an important signature of the chiral
symmetry restoration. Therefore, the restoration of chiral
symmetry in the vector channel can be shown explicitly
only when one includes the @; meson along with p which is
missing in the studies of p mesons discussed earlier [44,46].
It should be mentioned here that in order to investigate the
vector and pseudovector channel, proper incorporation of
the general structure of meson self-energy is required. The
general Lorentz structure for the p meson in the presence of
a thermo-magnetic medium has been recently reported in
Ref. [47]. One may note that the Lorentz structure of a p
meson polarization function has not been considered
in Ref. [44].

In this work the neutral meson properties in scalar (o)
and pseudoscalar (7°) channels as well as vector (p°) and
axial vector (a?) channels have been investigated in the
framework of a two-flavor NJL model in the presence of a
constant background magnetic field. The detailed general
structure for the vector and axial-vector meson polarization
tensor have been considered. The Schwinger scheme has
been implemented in the evaluation of the polarization
tensors. However, as only the neutral mesons are consid-
ered, the Schwinger phase vanishes and Schwinger and
Ritus formalisms are expected to provide identical results
[41]. It should be mentioned here that being an effective
description of QCD at low energy regime, the NJL model is
nonrenormalizable and requires a regularization prescrip-
tion. The most commonly used regularization technique
is to use a three momentum cutoff which acts as a
parameter of the theory and can be fixed to reproduce

some well-known phenomenological quantities, for exam-
ple the pion-decay constant and the condensate value.

However, to obtain the general structure of the self-
energy in a consistent way, we take recourse to the
dimensional regularization (DR) technique. Now, the
ultraviolet divergences in dimensional regularization pre-
scription occurs as a pole of gamma function. In that
procedure, one extra parameter arises which is to be
simultaneously fitted to reproduce the phenomenological
quantities. A detailed description regarding the fitting
procedure can be found in Refs. [48-50]. However, in this
work, to obtain the finite contribution, the gamma functions
arising from DR are replaced with incomplete gamma
functions. We refer to this replacement procedure as
incomplete gamma regularization (IGR). As a reward,
though the number of parameter sets remains identical to
that of usual regularization procedures, in this scheme, the
general Lorentz structure for vector and axial-vector
polarization functions can be obtained systematically.
The regularization scheme has been used to obtain the
neutral meson properties like mass, spectral function, and
dispersion relations. A nontrivial mass jump is observed in
the spectrum for each of the modes in the vector and axial-
vector channel which bears similarity with earlier studies of
pions in the presence of a magnetic field [41,42].

The article is organized as follows. Section II describes
the constituent quark mass and the dressed quark propa-
gators in the real time formalism of thermal field theory
whereas the gap equations and general structure are
described in Sec. I1I. In both the sections, vacuum, thermal,
and thermo-magnetic cases are considered in separate
subsections. The main results for the real and imaginary
parts of the meson polarization functions are listed in
Sec. IV. Section V describes the regularization procedure
used in this work. All the numerical results are presented
in Sec. VI followed by a brief summary in Sec. VII. Some
of the relevant calculational details are provided in the
Appendixes.

II. THE CONSTITUENT QUARK MASS AND
THE DRESSED QUARK PROPAGATOR

The standard expression of the two-flavor
Lagrangian is

NJL

Ly =y (iy*0, —m)y
+ 9{ (ww) (wy) — (wr'ty) - (wr’7w)}
— 9 (@r'aw) - (py, 2w) + (Wr'rTy) - Wy 7))

(1)

where, y = (%) is the quark isospin flavor doublet with u
and d being the up and down quark fields respectively. Each
of the up and down quark fields are [4 x 1] ® [3 x 1]
matrices corresponding to their orientation in Dirac and
color spaces. In Eq. (1), g, and g, are respectively the
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coupling constants in the spin-0 and spin-1 channels for the
four point contact interactions among the quark fields and
m is the current quark mass which is assumed to be equal
for the up and down quarks to ensure isospin symmetry. In
the NJL model the constituent quark mass is dynamically
generated as a consequence of the spontaneous breaking of
chiral symmetry. In the following subsections, we briefly
introduce the formalism required to obtain the constituent
quark mass and the dressed quark propagator for three
different cases separately: (i) 7T =0, B=0, (i) T #0,
B =0, and (iii) T # 0, B # 0.

A.Case I: T=0,B=0

We first consider the pure vacuum case for which the
temperature is zero and the external magnetic field is
switched off. The dressed quark propagator S'(gq) is
calculated from the Dyson-Schwinger equation

§'= 8- Szs (2)

where S(g,m) = q;g;;’ﬁe ® Travor ® Teoior i the free
quark propagator and X is the one-loop self-energy of
the quark. In the mean field approximation (MFA), the
quark self-energy becomes diagonal in Dirac, color and

flavor spaces as

X= ZM]:A]]Dirac ® HF]&VO]‘ ® ﬂColor' (3)

This enables one to solve Eq. (2) trivially to get the
complete propagator as

—(4+M)
S/ s =S 7M =57 0QI avor 1 olor 4
(g, m)=S(q,M) qZ—M2+i€® Flavor @ T ol (4)
where
M=m —l—ReZﬁﬁ‘V“ (5)

is the “constituent quark mass.” The above equation is the
well-known gap equation.

Our next task is to calculate the quantity Zyps. Applying
Feynman rules to Fig. 1, we get the one-loop self-energy of
quark in the MFA as

) . d*k
Ve (M) = —2ig, /WTrc,f,d[S'(k m)]

4
:—m%/ggﬂnmmkM» (6)

It is to be noted that the loop particle in the self-energy is
dressed. In the above equation, the subscripts ¢, d, and f in
the Tr correspond to the traces taken over color, flavor,
and Dirac spaces, respectively. Also note that the quark
self-energy is a function of M itself (since the loop particle

up, down

k

Quark Quark

FIG. 1. Feynman diagram for one-loop quark self-energy. The
bold line corresponds to “complete/dressed” quark propagator
obtained from the Dyson-Schwinger sum.

is dressed) so that Eq. (5) has to be solved self-consistently
to calculate M.

Let us now explicitly evaluate the quantity XureVee,
Substituting Eq. (4) into Eq. (6), we get

d*k 1
(2m)* k> — M? + ie

(7)

ShueVec = 89 N N Mi /

where N, =3 and Ny = 2 are the number of colors and
flavors, respectively. The momentum integral in the above
equation is ultraviolet (UV) divergent. The NJL model,
being a nonrenormalizable theory, requires a proper regu-
larization scheme. There exists many such UV regulators in
the literature such as three-momentum cutoff, Euclidean
four-momentum cutoff, Pauli-Villars, proper time, and so
on. The mostly used regulator is the momentum cutoff
which breaks the Lorentz invariance and usually every
symmetry of the theory. It will be demonstrated later in
Sec. V that the momentum cutoff regulator (or any other
regulator which breaks Lorentz invariance) is not useful
to study the vector meson p in the NJL model. In this
work, we will use “dimensional regularization” as our UV
regulator which respects all the symmetries of the theory.
Going to d dimension, Eq. (7) becomes

d'k 1
(2m)T k> = M? + ie| .y
(8)

ThpreVae — 8g N N MA>~4/% /

where A is a scale of dimension GeV? which has been
introduced to keep the overall dimension of the equation
consistent. Performing the momentum integral in the above
equation, we get

Pure—Vac __
ReXEx =

N.NM? [47)\¢
20 (35 Te-n| O

47 2

-0

where e = 2 — d/2. It is to be noted that the UV divergence
has been isolated as the pole of the Gamma function since
I'(z) has simple poles at z =0, —1, -2, .... The regulari-
zation procedure of the above divergent quantity will be
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discussed in Sec. V. The above equation has the following
expansion about € = 0:

- NNM [ 1 4nl

(10)

which will be used later.

B.CaseII: T #0, B=0

We now turn on the temperature and consider the case
T # 0, B = 0. To include the effect of finite temperature,
we will use the real time formalism (RTF) of finite
temperature field theory [51,52]. In the RTEF, all of the
two point correlation functions including self-energies and
propagators become 2 x 2 matrices (will be denoted by
boldface letters) in thermal space. As a result the Dyson-
Schwinger equation generalizes to a matrix equation in
thermal space

S =S —S§ (11)

where each of the quantities is a 2 X 2 matrix. In the above
equation, S is the free thermal quark propagator given by

S(q,m) 0
S(g.m) =YV . V. (12
(@m) ( 0 —705’(q,m)7°) )
In the above equation, the diagonalizing matrix V is
given by
N, -N
vz< ’ 1) (13)
Ny N,
with
No(g-u) =~/1-f(q-u)®(q-u)
+VI= (g u)B(=g-u). (14
Ni(q-u)=~/f(g-uw)O(q-u)+ /f(—q-u)®(-q - u)

(15)

where u# is the four velocity of the thermal medium. In the
local rest frame (LRF), one has uf g = (1, 6) In the above
equations, ©(x) is the unit step function and f(x)=
[¢*/T 4+ 1]7! is the Fermi-Dirac thermal distribution func-
tion for the quarks. It is well known that the complete
thermal propagator matrix S’ and the thermal self-energy
matrix X are diagonalized by V and V! respectively. Thus
Eq. (11) boils down to an algebraic equation in thermal
space as

S=5-Sz¢ (16)

where S’ and T are respectively the 11-component of the
matrices VS’V and V!XV, As before, in the MFA,
the X is diagonal in Dirac, color and flavor spaces X =
Z“MFAﬂDirac ® 1]Flavor ® ]]Color so that Eq (16) can be
trivially solved to obtain §'(g,m) = S(q, M(T)) where
the thermal constituent mass is given by

M(T) = m + Zypa- (17)

It is easy to check that ReX = ReX,, so that the knowledge
of S}, is sufficient to calculate the quantity ReX. The
explicit form of S/, is given by

St (g.m) = S(q. M) —n(q - u)[S(q.M) —y°S"(q. M);°]

(18)
= (4 + M) oM tic 2xin(q - u)5(q> — M?)
® 1]Flavor ® ]]Colour (19)

where 7(x) = 0(x)f(x) + O(=x)f(-x).

Let us now evaluate the thermal self-energy function
Smra Whose real part is obtained by replacing the vacuum
complete propagator on the RHS of Eq. (6) by §" — 8, as

4

ReZypa (M. T) = —2g,Re [l/ (2n)*

TrealS1i (K m)] |-
(20)

Substituting Eq. (19) into the above equation, we get after
some simplification

ReZypa (M. T) = ReXpiss Ve (M)

IN.NM [o - K
- 20, [Tl pn) )

wy
where @, = V& + M>.

C.CaseIIl: T#0,B #0

Finally, we consider the case of finite temperature and
nonzero external magnetic field. In this case, the complete
thermo-magnetic quark propagator S, satisfies the gener-
alized Dyson-Schwinger equation

B =SB — SpXpSy (22)

where Xp is the thermo-magnetic quark one-loop self-
energy matrix and Sp is the free thermo-magnetic quark
propagator. Analogous to Eq. (12), Sz can be written
explicitly as
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Sg(q.m) 0
SB(q’m):v( 0 —yOSE(q,m)yo)v =)
where
S, 0
sala.m = (¢ ¢ ) 24

in which, S, and S, are respectively the Schwinger proper-
time propagator for up and down quarks. They can be
expressed as a sum over discrete Landau levels as

o [ af
Z le( ) ® ]]Color;f € {u’d}

= q| + i€
(25)
where arq =
M = \/M? + 2l|e;B]| (26)
and
Dis(q) = (4 + M)[{ Ipirac + sign(e;)iy'y*}Ly(2a})

- {ﬂDirac - Sign(ef) iylyz}l‘l—l (205)}
- 4ﬁ¢L11—1(2“§) (27)

with e, being the electric charge of flavor f i.e., e, = %e
and e, = —%e; e is the charge of a proton. In the above
equation, sign(x) = O(x) — O(—x); L{(z) is the general-
ized Laguerre polynomial with the convention L, = 0.
The external magnetic field being in the positive z
direction, the metric tensor can be decomposed as

g" = L(f""’ + ¢ where g""" = diag(1,0,0,—1) and ¢ =
diag(0,—1,—1,0) so that the parallel and perpendicular
four vectors are defined as qﬁ = g““”qy and ¢| = ¢"q,.

Similar to the thermal case, the Dyson-Schwinger
equation in thermo-magnetic medium can be also repre-
sented in diagonal form as

S =S5 —SgxS . (28)

Following the MFA, the T is diagonal in Dirac, color,
and flavor spaces, E = iMFA]]Dirac ® ]]Flavor ®_ﬂ Colour SO

that Eq. (28) can be trivially solved to obtain §'(g,m) =
Sg(q,M(T,B)) where the thermo-magnetic constituent
quark mass is given by

As before, because of the fact ReX = ReX}!, the knowl-

edge of S}, is sufficient to calculate the quantity ReX.
The explicit form of S}, is given by

5;311(61””) = SB(CIaM)
—n(q - u)[Sp(q. M) = °Sk(q. M)y°]
sit o
- ( ; sgg) (30)
where
S (q. M) = Sy(q. M)
—n(g-u)[Se(q. M) = y°SH(q. M)y’ (31)
0 ~1
IZO: qle )[m

M12f>:| ® 1]Color;fe {u, d}

(32)

—2zin(q - u)d(qj —

Let us now evaluate the thermo-magnetic self-energy

function EMFA whose real part is obtained by replacing the
11-component of the complete thermal propagator on the
RHS of Eq. (20) by S}, — S%,, as

= . d*k
RCZMFA(M, T) = —2gSR€ l:l / WTrc,ﬂd [S%l 1 (k, m)] .
(33)

Substituting Eq. (30) into the above equation, we get after
some simplification (see Appendix A for details)

ReZyia (M, B, T) = ReShis V(M) + ReZP¥ic (M., B)

+ ReXBMed(M B, T) (34)

where ReXEN (M, B) is the real part of the magnetic field
dependent vacuum contribution to the quark self-energy
and can be read off from Eq. (A13) as

. MN..
SBee (M, B) = —29, 0% 3 {-Mz

2
4z fef{ud}
M2
M? — 1
(M= |>n<2|ef3|)
M2
—2le/B{InT(——— ) —=InV27z 3 |.
i () -0 25

(35)

The temperature as well as magnetic field dependent
contribution to the self-energy, ReZBMd(M, B, T), can
be obtained from Eq. (A7) as
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RexBMd (M B T) = 295

Z |efB|Z (2-4Y)

fe{u d} 1=0

x / k., —f( ), (36)

It is interesting to note that in Eq. (34), the divergent pure
vacuum contribution ReXypa (M) has completely been
decoupled from the magnetic field and temperature depen-
dent parts. One can notice from Eq. (35) that the quantity
BVac(M, B) is finite and thus the external magnetic field
does not produce any additional divergences.

The formalism described in Appendix A to untangle
the divergent pure vacuum contribution of the one-loop
self-energy graph is closely related to the magnetic
field independent regularization (MFIR) scheme as
developed in Ref. [50]. However, the methodology
we have adopted is slightly different from that of
MFIR. In our case, we have performed a dimensional
regularization to the ddk” integral which leads to
Hurwitz zeta function as a function of the dimension
d. An expansion of the Hurwitz zeta about its pole leads
to the disentanglement of the pure vacuum part. On the
other hand, in MFIR scheme, one does not change the
space time dimension; rather one adds and subtracts the
pure vacuum part. Then, using an integral representation
of the Hurwitz zeta function, the vacuum subtracted
self-energy is written as an integral over Schwinger
proper-time parameter. Finally the proper-time integral
is performed to get the vacuum subtracted finite mag-
netic field dependent self-energy. Regardless of the
methodology used, the two procedures lead to similar
results. Specifically, the expressions in Eqgs. (33)-(36)
are identical to the ones obtained in Refs. [37,50].

III. MESON PROPAGATORS IN RANDOM PHASE
APPROXIMATION IN THE NJL MODEL

Since mesons are the bound state of quarks and anti-
quarks, their propagation can be studied from the scattering
of quarks in different channels using the Bethe-Salpeter
approach [29]. On the other hand, as discussed in Refs.
[45,46], the meson propagators can also be recast into the
form of Dyson-Schwinger equations in the random phase
approximation (RPA). Let us first consider the situation at
vacuum (i.e., 7 =0 and B = 0). In the scalar and pseu-
doscalar channel, the 7 and & meson propagators D), satisfy
the following Dyson-Schwinger equation:

D, =D -DI,D}; he{rn oo} (37)
where D = (—2g,) are the bare propagators and IT,, are the
one-loop polarization functions. The corresponding expres-
sion of the meson propagators DZ”“ in the vector (p) and
pseudovector (a;) channels are given by

DJf = D" — D*Tly,,DYs  He{p.a} (38)
where D* = (2g,¢"*) are the bare propagators and IT;;
are the one-loop polarization functions for the p and a,
mesons.

As already discussed in Sec. II, at finite temperature, all
the real time two point correlation functions become 2 x 2
matrices in thermal space and will be denoted by boldface
letters. Thus, at finite temperature, Eqs. (37) and (38)

generalize to
D, =D -DI11,D,, (39)
D} = D" — D*Tly,D}Y. (40)

However, each term of the above equations can be
diagonalized to express them in terms of analytic functions
[52] (will be denoted by bars) which in turn diagonalizes
the Dyson-Schwinger equation making it an algebric
equation in thermal space as

ﬁh - D - Dﬁhﬁh’ (41)
D" = D — prel, ;D% (42)

In presence of both the finite temperature and external
magnetic field, the generalization of Egs. (39) and (40) is

D =D - DII’D®, (43)
D} =D — premy, D (44)

so that the corresponding thermo-magnetic analytic func-
tions denoted by a double-bar satisfy

ﬁh - D - Dﬁhﬁh? (45)

D//w D;w /ﬁl’

D"“HHaﬁD (46)

Our next task is to solve the Dyson-Schwinger equations
in order to express the complete meson propagators in
terms of the polarization functions. It is trivial to solve

Egs. (37), (41) and (45) for the = and ¢ mesons as

—2g N —2g
Di(g)=(—L), Dg)=(—"— d
(@) <I—ngnh> (4) (1—29‘911,1) o

Do) = (). (47)

- ZQA'Hh

However, for the p and a; channels, additional complica-
tions arise because of the Lorentz indices in Egs. (38), (42)
and (46). It is useful to decompose the polarization function
and the complete propagator in terms of orthogonal tensor
basis (constructed using the available vectors and tensors).
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This will enable one to solve the corresponding Dyson-
Schwinger equation in a covariant way. We will discuss this
in the following subsections.

A. General Lorentz structure of the spin-1
polarization function

In order to decompose the polarization function into a
suitable Lorentz basis, we use the fact that the polarization
function is symmetric in its two Lorentz indices. We start
with the simplest case of vacuum (i.e., T =0, B =0).
The available quantities to construct a tensor basis are
the momentum of the meson ¢* and the metric tensor g**.
Only two basis tensors can be constructed which are
the following:

v ., 49"
P = (gﬂ -27 ) (48)
v 9"q"
Ph _—q2 (49)

It can easily be checked that P%* with i = 1, 2 satisfies all
the properties of projection tensors i.e.,

P’ P 0
v vy — 1

gaﬂ( (1>(P P ) - ( L/)’ (50)
Py b 0 P

P 30
gwgaﬂ<P;a)(P/lfv ptz?v) - (O 1). (51)
2

The vacuum polarization function ITy in this basis can
be written as

2
Iy = Z I, P (52)
i=1

where the form factors I1y; are obtained using Eq. (51) as

Iy, = %P’I“JHHW and Iy, = Py'Iy,,. (53)
Note that the form factors can be expressed in terms of the
Lorentz invariants that can be formed by contracting IT;;
with the available tensors and vectors. In this case, we have
g and ¢* so that the form factors can be expressed in terms
of g, 1Ty and g,q,IT};. See Appendix C for details.

Let us now consider the case of finite temperature only
(i.e., T # 0 and B = 0). Apart from ¢* and ¢g**, in this case
we have an additional four-vector u#. Thus one can choose
the following four tensors as the basis:

: g i
Pflw — <g’”’ _ 7 - ) (54)

P — q”;f ’ (55)
q
Py =" (56)
Py = pron (q"w" + q'") 57)
where
=yt — (qq;zu)qﬂ (58)

is a vector orthogonal to ¢*. Similar to the vacuum case,
one can verify that the above tensors qualify to be the
orthogonal projection tensors as they satisfy

P
Pl
ga/} Fﬂa (P‘]HU Pgb Pé}b ng )
3
Py
Y0 0 0
0o P 0 Hil
_ 2 _ (q > ’ ( 59)
0 0 Py (g“a)
0 (qw) (gw) PP
F’il(l
P
gﬂ’/gaﬂ F/m (P‘fb Pgb ng ng)
3
Py
2 0 0O
01 0 O
- (60)
0 010
0 0 0 2

where the angular bracket is the shorthand notation
for (A*B*) = A*BY [V A’B°.

Now, the analytic thermal polarization function IT}; can
be expanded in the above basis as

4
Iy = Zﬁmﬁiw (61)
i=1

where the form factors Ij; are obtained using Eq. (60) as
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— 1—, — — o
l_[Hl = EPIfyHH;wv HHZ = PgDHHyw

_ s _ 1,
M3 = Py, and Iy = S o Mry- (62)

Note that the form factors can be expressed in terms of the
Lorentz invariants that can be formed by contracting ITy;
with the available tensors and vectors. In this case, we have
g, ¢* and u* so that the form factors can be expressed
in terms of g, 1Ty, q,q,00;, w,u,ITy and q,u,IT}. See
Appendix C for details.

Significant care has to be taken while considering the
special case of g = 0 [47,52]. To see this, let us write
q = |q|A where 7 is the unit vector in the direction of g.
In the limit of |g| — 0, we have

T k(6 || = 0) = g/Tlyy + i/ (M) = Thp). (63)

ﬁfg.LRF(qO’ lg| = 0) =v —1n'Tly, (64)

implying that the above components of the polarization
tensors depend of the direction of g even if |g| = 0. This
ambiguity is rectified by imposing additional constraints on

the form factors I1; as

ﬁm (610,
ﬁm((lo,

~—

G=0)=T3(¢°,g=0) and
G=0)=0.

~—

(65)

Finally, we consider the general case of both finite
temperature as well as finite external magnetic field. In
this case, another four vector b* = %G””u,, appears which
specifies the direction of the external magnetic field in the
LRF where G* = % Hap g ap 18 the dual of the field tensor
F,s (we have used €”'* =1). In the LRF, we have
|

P P
Py 0
Py 0
Gop :4(1 (ﬁ/]xy ?gu Ey ﬁ” = Sphv ?gu): 0
P 0

0

0

el
el

?/6411
?/74(1

P rg =(0,0,0,1). Thus using ¢*, u”, b* and ¢", we
can construct the following seven orthogonal tensors:

where

_ w W B
P — v 99 _
(gﬂ q2 ljtz b2
Sw _ 9"q"
A
— W
P3 - ﬁ2 5
. BB
JU
P4 — ’7!2 5
P — 1 HiV 1 Uik
DHHV 1 v vH
q
?ﬂb — — (ﬁﬂgb + ﬁul;ﬂ)
b
~ -b ii-b
b = bH — (qq2 >qﬂ — (uﬁz )ﬁll.

~) (66)

(67)

(68)

(71)

(72)

(73)

It can be shown that the tensors ?’,-w with i =1,2,...,7
satisfy all the properties of projection tensors as

0 0
0 0
Py 0
0 P
vat) (qg'a) 0
0 (¢"b")
T
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g/wgaﬂ

Now, the analytic thermo-magnetic polarization function
IT}; can be expanded in the above basis as

_ T
My = S TP (76)
i=1

where the form factors ﬁH,- are obtained using Eq. (75) as

ﬁHl = FllwﬁH/,w’ ﬁH2 = FZVﬁHﬂw

ﬁHS = FgwﬁH/,w’ ﬁH4 = FflyﬁHﬂw (77)
= 1 :My_ = 1 ==
Hys = 5% My, [ye = EP’é Iy, and
— 1 —uv
l_IH7 - E 174 HH/w (78)

As before, the form factors can be expressed in terms of the

Lorentz invariants that can be formed by contracting ITj;
with the available tensors and vectors. In this case, we have
g*, g#, u* and b* so that the form factors can be expressed

in terms of seven invariant quantities gﬂyﬁ’ﬁ , q”qbﬁ” .
w,u, Iy, b,b 1y, q,b,0T, q,u,ITy and u,b, Iy . See
Appendix C for details.

Similar to the thermal case, significant care has to be

taken while considering the special case of g, = 0. To see
this, let us write ¢, = |g |7 where i is the unit vector in
the direction of g . In the limit of |g, | — 0, we have

1 re(qs G| = 0) = g/ + nind (T — M),
(79)
(a7 (o5 & lalg
My 1re(q)1gL] = 0) =n —an - zq—HH6 ,
9] —q)
(80)

1 0 0 0 0 0 O

01 0 0 0 0 O

001 0 0 0O
P Py=[000 1000 (75)

00 002 00

00 0 O0O020

00 0 0 O0O0 2
I
m; G | 4 5 l9:| =
Hyre(q)s |G = 0) = n' —znm - ZHHG

9 K
(81)

which implies that the above components of the thermo-
magnetic polarization tensors depends of the direction
of g, even if |g,|=0. This ambiguity is rectified by
imposing additional constraints on the form factors IT; as

(82)

B. Solution of the Dyson-Schwinger equation
and complete spin-1 propagators

Having obtained the general Lorentz structure of the
polarization functions in the previous subsection, we can
now solve the Dyson-Schwinger Eqs. (38), (42) and (46) in
order to calculate the complete propagators for p and a,
mesons.

Let us start with solving Eq. (38). We first write

2
DZD = ZDHiP’iw (83)
i=1

where the form factors Dy; are to be determined. Rewriting
Eq. (38) as

2
(D)™ = (D) + T = (29,)7'¢™ + D TPy
i1

2
= Z[(zgv)_l + ] P
i=1

(84)

luo

and making use of gu(D}")T' Dl =g =32, P
along with Eq. (50), one obtains the form factors of the
complete propagator as
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2g,
Dyi=—-"—). 85
i <1 + 2g1zHHi> ( )

Let us now proceed to obtain the complete thermal
propagator by solving Eq. (42). Expressing the complete
propagator in the orthogonal tensor basis as

4
Dy =3 D 86
i=1

where the form factors Dy, are to be determined. Rewriting
Eq. (42) as

(D)™ = (D)7 + Ty
4
= (291/')_lglw + ZﬁHiFliw

i=1

3
Zng ‘P"”+ZHH,P"” (87)
i=1 i=1

and making use of gu(DY")"' DY = g% =31, P
along with Eq. (59), one obtains the form factors of the
complete thermal propagator as

_ Zgy _ 1 _
Dy = ——+— 1, Dy, =—2g,(1 + 2g,11y3),
H1 (14’291;1_[111) H2 Ay 91( v H3)

(88)
_ 1 —
DH3 = _zgv(l + 2g11HH2) and
Ar
_ 1 _
Dpy = A—zgy(—zélunm) (89)
T
where AT = (] + 291)ﬁH2)(] + 2g1jﬁH3) - (291)ﬁH4)2'

Finally we calculate the complete thermo-magnetic
propagator by solving Eq. (46). Expanding the complete
propagator in the orthogonal tensor basis as

Dy ZDH,P’” (90)

where the form factors ﬁH,- are to be determined. Rewriting
Eq. (46) as

JR— N 7 —_ —
= (D) T = (29,)7 g + > TP
i=1

4
Z 291) IP/“/ + ZHHIPIIW’ (91)

i=1 i=1

Con

and making use of gwﬂ(DW)_1 DI = g = 4P
along with Eq. (74), one obtains the form factors of the
complete thermo-magnetic propagator as

- 2 v
Dy = <L> (92)
1 + 2g1)HH1
fry 1 — — —
Dy, = A—Zgy[(l + 29,0y3) (1 + 29,10y) — (29,1047)%].
TB
(93)
— 1 _ _
Dirs = 7 —29,[(1 4 20,T) (1 + 29,Tpa) = (29,TT6)%),
TB
(94)
fr—y 1 — — —
DH4 - A—ng[(l + 2gvHH2)(1 + 2gLHH3) - (ngHHS)Z]’
TB
(95)
— 1 _ _
Dys = A—zgv[(ZQ@HHG)(ngHH7)
TB
- (1 + 2gLﬁH4)(2g@ﬁH5)]’ (96)
= 1
DH6 ./4 291)[(290HH5)(291)HH7>
TB
- (1 + 2gvﬁH3)(2gvﬁH6)]’ (97)
— 1 _
Dy; = ng[(ZQLHHS)(ngHHO
Arg
- (1 + 291;1_[[-12)(29@1_[1-]7)] (98)
where
Arg = (1+ ngﬁm)(l + nguﬁm)(l + ngﬁm)
= 2
(1 + ZgUHHZ)(zgvHH7)
= 2
- (1+ 2gvHH3)<2gvHH6)
= 2
(1 + 2gLHH4)(2gvHH5)
+ ( HHS)(zgvﬁHﬁ)(zg1:ﬁH7)' (99)

IV. POLARIZATION FUNCTIONS
OF THE MESONS

In this section, we will explicitly calculate the polariza-
tion functions in various channels. In the current work, we
only include the charge-neutral mesons ie 7%, o, p° and

0. Thus by , p and a, we will mean z°, p° and a?. We start
w1th the well-known expression for the vacuum polariza-
tion functions (at 7 = 0 and B = 0) of the charge-neutral
mesons
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4
ML(g) = =i | G Marcleas la-+ kmyrns (km),
(100)
4
M(g) = i [ G TrasdlS g+ km (km)]. (101

4

1 (0) = =i | S Tracd S (g kom S (o).
(102)

M, (q)

. d*k
= _I/WTrd,f,c[7”75735/(q +k, m)}’”75735/(k7 m)]

(103)
where 73 = (; °) is the third Pauli isospin matrix and
S’(g, m) is defined in Eq. (4). Similar to the case of quark

self-energy calculation, we will use dimensional regulari-
zation for the evaluation of the above pure-vacuum polari-
zation functions. The calculation has been briefly sketched
in Appendix. D and the final result can be read off from
Egs. (D8)—(D11) as

M, (q) = A;Cgf B q°T'(e) A dx (%)8
+ MT(e—1) %ﬂ (104)
() ="t [y - [ax(*E)
+ MT(e - 1) (‘Zf) ] (105)
0) = - e 1) (7 - L8 )
« /01 dxx(1 - x) <%>6, (106)

ne(q) =" ree) [ ax| (¢ =28 Yo+ 2L ar

7’
4rA\ ¢
X |—]) .
A
As finite temperature, the analytic thermal polarization
functions IT,,(¢) and [T (q) are related to the 11-components

of respective thermal polarization matrices II}!(g) and
I1}} (g) via relations [51,52]

(107)

Rell,(¢) =Rell}'(q), Relly(q)= Rel'l’;,”ll (), (108)

0
ImIT,(q) = sign(¢°) tanh <;]—T) ImIl}!(g) and

Imﬁ/w( o 0 uvll
" (q) = sign(¢°) tanh ImIL;, " (g). (109)

2T

Now, the 11-components of the thermal polarization func-
tions are obtained by replacing the vacuum propagators on the
RHS of Egs. (100)—(103) by §" — S}, where S}, is defined in
Eq. (19). Therefore,

d*k
H}:I(CI): l/(z )4Trdfc[7 T3S11(Q+k m))’ 73511(k m),

(110)

4
()= [ S MurlSiu(a+kmSiy ). (111

" (g)
d*k
=—i (2r )4Trdfc[7 7387, (q + k, m)y*z38%, (k, m)],
(112)
I (q)

[ d'%k
——z/WTrd,fyc[y”ﬁﬁS’“(q+k,m)y”y5¢3S’”(k,m)}.
(113)

Substituting S7, from Eq. (19) into the above equation
and making use of Egs. (108) and (109), we get after some
simplifications the real parts of the polarization functions as

—wp) f(wy)
201 {(q° — wy)* - a)f,}

3 0_

Rell, (q) = Rell,,(q) _/(;Z”]; [ Ny (K’ =
Nu(k = op) f ()

20{(¢° + wp)* — 03}

Ny’ = =4 —w,)f(w),)
20,{(¢" + w,)* — o}

Ny(k® = —¢° + wp)f(wp)]
20,{(¢" -, i} |

(114)

—wp) f(wy)

_wk>2 —wf,}

S H Pk N;g kO =
RelT}; (q) =Relly (¢) — / 2n) [2wk{(( 7
Ny (K = o) f (o)
20 {(q° + wi)* —w}}
Ny (K ==¢"~w,)f(@,)
20,{(¢°+@,)* —wi}
Ny (K =—¢" +wp)f(wp)]
20,{(¢"~w,)* -a}

(115)
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and imaginary parts as

0 3
ImIl,(q) = —sign(q") tanh <§T> /%ﬁ
x [{1 = flaog) = fw,) + 2f (@) f (@
+{=flwr) = flw,) + 2f () f (e

0 3
ImIT}; (¢) = —sign(¢°) tanh <2qT> / (;iﬂ]; @
x {1 = flax) = flo,) +2f () f(o
+{=flog) = flw,) +2f (o) f (@

where N, (g, k) and N%/ (g, k) are defined in Egs. (D3)
and (D4).

Finally, we consider the case of both finite temperature
as well as a nonzero external magnetic field. The analytic

thermo-magnetic polarization functions IT,,(¢) and Ty (q)
are related to the 11-components of respective thermo-
magnetic polarization matrices II?!!(g) and M2 (q) via
similar relations as in Eqs. (108) and (109). Thus, the
11-components of the thermo-magnetic polarization func-
tions are obtained by replacing the vacuum propagators on
the RHS of Egs. (100)~(103) by §" — S%,, where S%,, is
defined in Eq. (30). Therefore,

Iz (q)

- "/ <;Z4I§

B B d*k
Hﬂll(q) _l/(2 )

Trdfc[}’ 735311(‘1 + k, m)V 735311(" m)].

(118)

7 Trasc[Sp (g + k,m)Sy, (k. m)],

(119)
|

o (I+1)

=2 2

Rell,,(q)) = Rell,(q)) + Rell;z(g). B

Nilﬂf(ko _ wkf)f(wif) lnf(ko _

= —wk)5(q0 e
) HNL (K = —a)8(¢° — oy —

p)HNA (K

p) HNG (K
p) HNE (K =

> [rdp[ M=
l I
2% 2wkf{(q0 _ wkf)z

[=0 n=(I-1) fe{u,d}

w,) + Ny(k = 0)8(¢° + wy + ,)}
wp) + Ny(k = 0)5(q° + o + o)}
(116)

= —w;)8(q° — 0 —w,) + N (K = w,)5(¢° + o + w,,) }
—0)8(q° — wp — w,) + N (K = 0,)8(¢° + 0 + w,,) }]
(117)

B;wll(q)
. d*k
= —Z/WTrd,ﬂc[}’”ﬁslgn(‘I +k, m)7”73S};11(k’ m)],

(120)

I (g)

[ d*%
- _l/WTrd.f,c [7”757332311 (‘1+k»m)YUYST3S/Bu (k,m)].

(121)

Substituting S’, from Eq. (30) into the above equation and
making use of analogous relations to Egs. (108) and (109),
we will obtain the real and imaginary parts of the analytic
thermo-magnetic polarization functions. For the simplicity
in analytic calculations, we take ¢, = 0 for which the
corresponding calculations are provided in Appendix E and
below we only give the final expressions. From Egs. (E18),
(E19) and (E31)-(E36), we get the real parts of the analytic
thermo-magnetic polarization functions as

b (K = o) (@)
- (@)}

N (K0 = —q° + o) ) f(@))

- o)) f(0}))

20/ {(¢° + o) > = (0} )}

20/ {(¢° +w”f )2 —

122
205/ {(q° = 0} ) = (0 )7} 122)

~ (@)%}
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o (+1) Infuv 170 lf If
. odk, [ Nk = —ol)f(!))
RelTy; (¢)) = RelTy; (q)) + RelTs (g, B) = Y Z > / —7’[ lf) :

l n
1=0 n—(I~1) fe{ud) 27" 2o {(¢° - — (@) )?}

N (K = o) f(@)f) Ny (0 = —¢° — o} )f(wp) Ny (K = —¢° + wpf ) f(a} )}
20/ {(¢" + @) = (@)} 205/ {(" + i) )~ (@)} 203/{(" - 0}))? — (@)}

(123)
where the novel magnetic field dependent vacuum contributions are
N, 5 5 M2 M?
fe{ud}
L, [! 1
+5q) [ dxilnz—y(z) = (124)
2 0 27
N, M? M?
Mg(q).B) =5 M? + (le;B| — M?)In +2|e;B|{ InT —InV27
fef{ud} ;
L, o ! 1
+=(qt —4M?) [ dxqlnz—w(z) —=—¢|, (125)
2 Ml o 2z
pw N, oy 24 My
H/}B(q”?B) :_4 3 Z [(qHQ# q”qH)Zx(l - x) lnz—(quf“‘ —qu”)x(l—x)(2y/(z)+1/z)
T reluay /0
+ [(A =2M*)y(z+x) + A+ 2|efB|{InT'(z + x) — Inv2x}|¢], (126)
v NC : v v v v
Wig(aB) == [ drl(A+x(1 = glan)(-21n2) + (A + (1 =)l ah) 2u(2) + 1/2)
fefud}
+ [Ay(z +x) + A+ 2|erB|{In['(z + x) —InV2x}]g]. (127)

The imaginary parts are to be read off from Eqgs. (E15) and (E16) as
T, ( (L) 3 mdk, 1
x [{1= fley) - f(w'i:f) + 2f(wk )f (wﬁf)}{NZ’f(kO = -0 )3(¢" - v - wy)
+ Ny (K = 0)8(g° + wif + @)} + {=f (@) = f)
+2f (@) (@ YHN (K = ~0)8(¢° = off = wp) + N (K = 0)8(¢" + wi +@})}]. (128)

ImIT}; (q) = —sign(q )tanh( )72' / — 7
7)) =2 (I-1) fe{ud} 2” 4a’f f

x [{1 = f(@) = f(@}) + 2f (0 ) f (0 YHNE (K = —0])5(¢° — of — w})
+ NP R = w0 )8(¢° + ol + )} + {~f (@] ) - f(a))
+2f (0 ) F Y HNE™ (1 = -0 )6(q° — o — @) + N (K0 = 0 )5(q° + o + 0 )] (129)

where N (g, k) and N}/*(q, k) are defined in Eqs. (E11) and (E12).
It may be emphasized that though the present work uses a real time version of thermal field theory, use of the more
popular imaginary time formalism (ITF) leads to the same expressions. For example, the expression of the thermo-magnetic

quark self-energies or the polarization functions of 7° and ¢ obtained here are identical to the ones obtained in
Refs. [29,37,44] earlier using the ITF.
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V. REGULARIZATION PROCEDURE
FOR THE NJL MODEL

As already mentioned in the previous sections, the NJL
model requires a proper regularization procedure. Using the
dimensional regularization technique, we have been able to
isolate the UV divergences as the pole of Gamma functions
in Egs. (10) and (104)—(107). Now, in order to obtain finite
contributions from these equations, we first note that
the integral representation of the Gamma functions can
be written as

() r (59
I'(z) :/ dte™'r! :/ dte='t! +/ dte™'t!
0 0 r

=y(z,r) +T(z, 1) (130)

where y(z, r) is the lower incomplete gamma function and
I'(z,r) is the (upper) incomplete Gamma function. In the
evaluation of loop diagrams in the NJL model using
Schwinger proper-time method, one often encounters
integrals which can be written in terms of I' functions
with negative integer argument. Clearly, those are divergent
quantities and need to be regulated. One possible way is to
introduce proper-time regulator where the lower incom-
plete gamma function containing the divergence is dis-
carded and only the I'(z, r) part is retained [see for example
Eq. (3.15) in [29] which is the proper-time regularized
version of Eq. (3.13) there in]. Following the similar
procedure, in our regularization scheme, the divergent
Gamma functions obtained from dimensional regulariza-
tion are replaced with the incomplete Gamma function i.e.,

2

F(O)—>F<O,A/;Iz> and r(-1)-»r<—1,]‘[€> (131)

where A is a scale parameter to be determined. Thus our
regularization scheme is a mixed procedure where though
the dimensional regularization is used at first to obtain the
consistent Lorentz structure, the divergences that appeared
are regulated following the proper-time regularization.
After these replacements, Egs. (10) and (104)—(107) can
be simplified to

NN M? M?
re— _ ctVf
RCZEXF?\ Vac — 299 4—71_2F<—1, F) (132)
and
NN, 1 M? M?
I1 =—J1_4r(0,— ) + MT(-1,— )|,
Aa) =" Lq ( A2)+ ( AQ)

(133)

N.N, 1 M?
(o) = s 5 (a2 = ver (0.3

2 M2
M r<_1,p)},

v NCN' M? quqv
1 (q) == ed (0.5 )2 (- 1), 139)

(134)

’ N.N M? . 4'q
I, (q) = —Tﬂzfr<0,ﬁ> [(CI2 — 6M?) (9” - 7)
iV
— 6M? %}. (136)
q

It can be noticed in Egs. (133)—(136), that if the chiral
symmetry is completely restored (i.e., M = 0), then the
polarization functions of ¢ and a; become identical to that
of z and p respectively. Moreover, observing the Lorentz
structure in Eq. (135), it immediately follows that the
polarization function of p is transverse i.e.,

Qﬂngy(q) =0.

The reason behind this transversality is the conservation of
the vector current J#(x) = W(x)y*¥ which is the Noether’s
current corresponding to the U(1) symmetry of the NJL
Lagrangian in Eq. (1). Similar arguments also hold for
the Lorentz structure of the polarization function of a; in
which the nontransverse piece is proportional to the
constituent quark mass M. This is because of the non-
conservation of the axial-vector current J* = ¥(x)y#y ¥
whose four-divergence is

(137)

DI x M. (138)
In the chiral limit (M = 0), the axial-vector current is
conserved leading to a transverse polarization function of a;.

It is worth mentioning that the consistent Lorentz
structure of the polarization functions of p and a; could
be obtained only because we have used dimensional
regularization technique which respects the Lorentz sym-
metry. Any other regulator such as three-momentum cutoff,
Euclidean four-momentum cutoff and Schwinger proper-
time regulator will spoil the Lorentz structures and 115" (q)
will no longer be transverse.

We now fix the parameters for the NJL. model. For this
we need the expression of pion decay constant (f2) which
comes out to be

N .M? M?
2
=" (02) (139)
using the dimensional regularization. By simultaneously
fitting the vacuum quark condensate and pion decay
constant values as
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) = -

and
Ny

Rezfire-Vae = —(230)3 MeV?

[z =95 MeV (140)
we find A = 936 MeV and M = 226 MeV. Next, consid-
ering the current quark mass m = 6.6 MeV and vacuum
pion mass m, = 135 MeV, the scalar coupling comes out
to be g, = 4.5126 GeV~2. Finally, g, = 4.289 GeV~? is
chosen to reproduce the vacuum mass of the p meson
as m, =770 MeV.

It should be mentioned here that the expressions of
ReXPure=Vac and 2 in Eqs. (132) and (139) are the same as
those obtained using the proper-time regularization tech-
nique [29,50]. However, the expressions of the polarization
functions will be different if one uses the proper-time
regulator. For example, in that case, the consistent Lorentz
structures of the polarization functions of p° and a? as in
Egs. (135) and (136) will not appear automatically as
appears in dimensional regularization. Moreover, the trans-
versality condition ¢,IT)"(g) = 0 is not satisfied if the
proper-time regularization is used.

VI. NUMERICAL RESULTS

We start this section by showing the variation of the
constituent quark mass as a function of temperature for
different values of an external magnetic field in Fig. 2(a).
As can be seen in the figure, M remains almost constant
in the low temperature region. However, with further
increase in temperature, the constituent quark mass
decreases substantially signifying a phase transition.
Throughout the whole temperature range M remains
single-valued depicting the smooth crossover nature of
the phase transition. Since we are working with finite
current quark mass m # 0, the chiral symmetry is only
partially restored. To obtain the transition temperature, one
can use various susceptibilities which will be discussed in

0.3 :
~ B=0 ——
> ,,,,,,,,,,,,,,,,,
S 025F eB=0.10GeV2 -~
= eB =0.20 GeV~
2 02
B
= 0.15
~ 0.
5
=
o
2 0.1
Q
=
Z 005
o
O
L@ . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
Temperature (GeV)

the next paragraph. For a particular value of temperature,
the constituent quark mass increases with the external
magnetic field as shown in Fig. 2(b).

The transition temperature corresponding to the partial
restoration of chiral symmetry can be obtained from
various susceptibilities. The calculation of the susceptibility
—OM/OT and chiral susceptibility y zﬁ(g—%— ) have
been provided in Appendix B. In Figs. 3(a) and 3(b),
—OM /0T and y are respectively plotted as a function of
temperature for different values of the external magnetic
field. The position of the peak of —OM /OT or y represents
the transition temperature. As can be noticed from the plots,
with the increase in external magnetic field the peak of the
susceptibilities moves towards higher values of temperature.
Thus, in this framework, the transition temperature increases
with B. This may be identified as magnetic catalysis (MC) in
the NJL model where the external magnetic field catalyzes
the spontaneous breaking of chiral symmetry [17-20].
Moreover, as the susceptibilities remain continuous and
finite with the change in temperature, the nature of the
phase transition can be inferred as smooth crossover.

We now turn our attention to the mesonic properties.
We define the spectral functions of mesons as the
imaginary part of the respective complete propagators.
From Eq. (47), the spectral function for the 7 and ¢ mesons
can be written as

- m:, —Im i
Sn(g) = ImD';(q) =1 [1—ngﬁh(Q):|
o 29,ImIT,,(q)
= (=29,) [ (1 = 2g.RelT, (9)) + (ZgSImﬁh(Q))z] |

(141)

In Figs. 4(a)-4(d), the spectral functions of 7 have been
shown as a function of its invariant mass /¢ for different
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0 0.05 0.1

eB (GeV?)
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FIG. 2. Variation of the constituent quark mass (M) as a function of (a) temperature for different values of external magnetic field and

(b) external magnetic field for different values of temperature.
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FIG. 3.

external magnetic field.

values of temperature and external magnetic field in

the rest frame of = (ie., § = 6). Let us first consider
the B = 0 cases which are shown as solid red curves in
Figs. 4(a)-4(d). At zero temperature, S, is a Dirac delta

function at its pole mass (1/¢> = 135 MeV) along with a

two-quark continuum starting at \/q_2 > 2M. It can be
noticed from Fig. 4(b) that at T = 150 MeV, the Dirac
delta function moves towards the higher invariant mass and
the two-quark continuum threshold has significantly
decreased which is due to the decrease in M with temper-
ature. Yet, the delta function is well separated from the
continuum revealing the fact that z is still a bound state.
With further increase in temperature, as shown in Figs. 4(c)
and 4(d), the Dirac delta function disappears and the shape
of the spectral function becomes a Breit-Wigner. These
imply that the pion has now become a resonant state with
finite decay width. Let us now discuss the effect of an
external magnetic field on S,. For the lower temperature

B =0.10 GeV>

B , T lql=0
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(a) Variation of the —OM/OT and (b) the chiral susceptibility (y) as a function of temperature for different values of

(T =0 and 150 MeV), the Dirac delta functions move
towards higher values of the invariant mass with the
increase in external magnetic field. For higher values of
temperature (7 = 200 and 250 MeV), the spectral func-
tions at nonzero B are observed to oscillate about the B = 0
curve and the peak of the Breit-Wigner shifts significantly
towards higher invariant mass. The oscillation frequency
(amplitude) is observed to be large (small) at lower values
of B as compared to its higher values.

The situation is quite different in the case of a 6 meson.
In Figs. 4(e)—-4(h), the spectral functions of ¢ have been
shown as a function of its invariant mass for different values

of temperature and external magnetic field for ¢ = 0. In this
case, the spectral function is always Breit-Wigner shaped
implying that the o remains always a resonant excitation. As
shown in Figs. 4(e)—4(g), with the increase in temperature
(up to T = 200 MeV), the peak of S; moves towards lower
invariant mass. However in Fig. 4(h), (at T = 250 MeV),

the peak again starts moving toward higher \/¢” values.

eB=0.10 GeV§
eB =0.15 GeV

eB=0 ——

-0
eB = 0.05 GeV?> ol

02 03 04 05 0.6 07
Invariant Mass (GeV)

0.2 03 04 0.5 0.6 0.7
Invariant Mass (GeV)

FIG. 4. Spectral function of z° and & mesons as a function of invariant mass for § = 0 at different values of temperature and external

magnetic field. The arrows represent Dirac delta functions.
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The effect of an external magnetic field on S, is similar to
that of z# showing oscillations in S, at nonzero B about the
B = 0 curve. The oscillation frequency (amplitude) follows
the similar trend as described for a pion.

Let us now consider the propagation of a p and a,
meson. Since we will be considering the special case
q . = 0, we have significant simplifications of the complete
propagators of p and a;. As given in Eq. (82), we have for

q. =0,
ﬁHl(CI()’ éj_ = 0)

ﬁHﬁ(QOﬁL = 0)

= ﬁH4(qu g, =0) and

= ﬁm(qO’ él = O) =0.

Moreover, we find in our numerical calculations that

ﬁHS(qo,é'L = 6) = 0. Thus, the form factors for the
complete thermo-magnetic propagators in Eqgs. (92)—(98)
simplify to

(142)

oY - 291}
Dy, =Dy, = <—:> (143)
1 + 291)HH1
p— 2 y
D = (), (144)
I+ ngHHZ
= 29,
D= (), (145)
1 + 2gvHH3
ﬁ]_]s - 3[‘]6 — 3].[7 — 0 (146)

Therefore, the complete thermo-magnetic propagator from
Eq. (90) becomes

_ T
D' (q).q. =0) = ZD (q).9. =0)P;

oy
1+ 297 I—[Hl

2
1+ 2gan2

2 v
+ <L> P
1 + 2g1)HH3

The second term on the RHS of the above equation

(147)

containing the nontransverse tensor P5  corresponds to a
nonpropagating mode as the corresponding form factor
does not have any pole. Thus, we find three modes of
propagation of p and a; mesons in the thermo-magnetic
medium; two of them are found to be degenerate (corre-
sponding to P and P"). This degeneracy is solely due to
our special choice of ¢, = 0. Thus, we are left with two
distinct modes for the p and a; propagations. We call them

as mode-(A) and mode-(B) respectively. The spectral
functions for these two modes are therefore defined as

2
S4 = Im [%}
1 + 2gvHH1
— (=2g )[ 2g,ImIT;;, (q) ]
- v f— 2 — 2
(14 2g,Relly;(q))” + (2g,ImIly (¢))
(148)
S5 — Im [%}
I+ 2g,1y3
— (=2g )[ 2g,ImIT;3(q) ]
= v = 2 = 2|
(1 +2g,Relly3(q))” + (29,ImIly3(q))
(149)

In Figs. 5(a)-5(p), we have presented the spectral
functions of p and a@; mesons as a function of their invariant

mass at g = 0 for different temperature and external
magnetic field. Similar to the case of o, the p and a; are
always in resonant state so that the shape of their spectral

functions remains Breit-Wigner. Since we have taken g = 0
in these plots, the two modes are degenerate for B = 0 (the
solid red curves). The external magnetic field breaks this
degeneracy and we find two distinct modes of p and a;
propagations even in their rest frames for nonzero values
of B. With the increase in temperature, the peaks of the
spectral functions move toward lower values of invariant
mass. Moreover, the spectral functions at a nonzero
external magnetic field show highly oscillatory behavior
about the B = 0 curves. Similar to the case of 7 and o, we
observe higher (lower) oscillation frequency (amplitude) at
lower values of B.

Till now, we have taken g = 0. To see the effect of
longitudinal momentum on the spectral function, we have
plotted the spectral functions of the mesons as a function of
invariant mass for 7 = 250 MeV and ¢, = 0 with different
values of ¢, and external magnetic field in Figs. 6(a)-6(f).
First of all, it can be observed that the spectral functions of
o and a; become identical to that of 7 and p respectively in
all the cases as a consequence of the chiral symmetry
restoration. In all the cases, the effect of increase in the g,
decreases the height of spectral functions with a marginal
change of their peak positions. Moreover, comparing the
green-dot and violet-dash-dot curves in Figs. 6(c) and 6(d),
it can be noticed that a nonzero value of ¢, lifts the
degeneracy of the two modes of p and a; at B = 0.

We now turn our attention to the study of the effect of
temperature and external magnetic field on the meson
masses and dispersion relations. We define the dispersion
relations of the mesons as the value of w(g) at which
the spectral function S(¢° = w,q) has a peak (global
maxima) or in other words the locus (¢° = w, g) of the
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FIG.5. Spectral functions of p° and a(l) mesons as a function of invariant mass for g = 0 at different values of temperature and external

magnetic field.

In Fig. 7(a), the masses of the mesons are plotted as a
function of temperature at vanishing external magnetic
field. Twice the constituent quark mass is also shown for
comparison. In the lower temperature region, the meson

peak of the spectral function gives the dispersion rela-
tions. Thus, the (effective) masses of the mesons are

obtained by putting 21’26 in the dispersion relation
i.e., my g = wh.H(ZI) = 0)

n,q,=0 —— 7 q,=500MeV - — - ,q,=0 —— p,q, =500 MeV e
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FIG. 6. Comparison of the spectral functions of z° with ¢ and p° with a(l) at T =250 MeV, g, = 0 for different values of their
longitudinal momentum (¢, = 0 and 500 MeV).
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FIG. 7. Variation of masses of z°, ¢, p° and a? as a function of (a) temperature at B = 0 and (b) external magnetic field at 7 = 0.
Two times the value of the constituent quark mass is also shown in (a).

masses remain almost constant. However, m,, starts increas-
ing monotonically with temperature beyond 7' ~ 150 MeV
and eventually it becomes larger than 2M. On the other
hand, m, first decreases to attain a minimum after which it
increases. In the whole temperature range, m, remains
always greater than 2M maintaining its resonant signature.
At high temperature, the mass of z and ¢ merge with each
other as a consequence of the chiral symmetry restoration.
Similar behavior can also be noticed for m, and m, where
both decrease with temperature followed by a merging of
their masses in the chiral symmetry restored phase.

It is to be noted that the mass/dispersion relation of the
meson (or of any unstable resonance particle) can have
different definition. The mass/dispersion relation can either
be obtained from the locus (¢°, §) of the pole of the
propagator or of the peak of the spectral function. In the
current work, we have used the peak of the spectral

0.5 ‘
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FIG. 8. The masses of ¢ and z° calculated from the pole of the

propagator and peak of the spectral function as a function of
temperature at zero magnetic field. The inset plot shows the ratio
of masses obtained from pole and peak.

function for the definition of mass/dispersion relation.
However, to check how these two differ from each other,
we have plotted the masses of ¢ and 7° as a function of
temperature at B = 0 in Fig. 8. As can be seen from Fig. 8,
the two different definitions of mass lead to no noticeable
difference. Moreover, the ratio of the masses calculated
from the pole to that from the peak is exactly unity when
the particle has zero decay width (for example the 7° mass
at low temperature).

Now, keeping the temperature fixed at 7 =0, the
variation of meson masses as a function of external
magnetic field are plotted in Fig. 7(b). Frequent mass
jumps are observed for the distinct modes of p and a;. In
between the two successive discontinuities, the effective
mass increases with eB. It can be noticed that the frequency
of oscillation decreases with the external field. In other
words, separation between the two successive discontinu-
ities increases with eB. Also in case of o mesons, the

0.5 , ' .
7777777777 . 2 x Quark, eB = 0.05 GeV> —
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FIG. 9. Neutral pion mass is plotted as a function of temper-
ature for different values of external magnetic field. Twice the
constituent quark mass is also shown for comparison.
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FIG. 10. Variation of masses of (a) o, (b) p° and (c) a‘l’ as a function of temperature for different values of an external magnetic field.

effective mass shows an increasing trend between the
successive discontinuities. However, only one mass jump
can be seen within the plotted range of the magnetic field.
Pion mass on the other hand remains continuous and is
observed to decrease slowly with the external field which is
consistent with Refs. [38,41].

If Fig. 9, we have shown the variation of m, as a function
of temperature at two different values of an external
magnetic field. At lower values of temperature, the mass
of pions are almost independent of 7. At some particular
temperature, m, suffers a sudden jump (discontinuity)
corresponding to Mott transition [41,42,53-55]. The jump
structure is in qualitative agreement with most of the
studies. However, there exist differences in the quantitative
nature of the jump structure. For example, the amount of
discontinuity obtained here is smaller in comparison to [42]
which itself is different from [53] as well as [41]. One
should observe that different parameter sets have been
chosen in all these cases along with different regularization
procedures.

Temperature dependence of m, is shown in Fig. 10(a) at
different values of the external magnetic field. At lower
values of temperature, the nature of m, is dominated by its
eB dependence. Because of the mass jump present at
T = 0, m, shows nonmonotonic behavior with respect to
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FIG. 11. The dispersion curves of the z° and ¢ mesons
temperature and external magnetic field.

with vanishing transverse momentum (g ; = 0) for different values

eB variation. For example, the effective mass at eB =
0.10 GeV? is smaller than the effective mass at eB =
0.05 GeV? whereas the corresponding value of m, at
eB = 0.15 GeV? remains well above the former two cases.
As a result, with the increase of temperatures, when m,,
decreases, crossing between fixed eB curves develops.
With further increase of temperature, the effective mass
shows discontinuous jump structure for eB = 0.10 and
0.15 GeV?. This mass jump signifies the fact that even in
the case of a sigma meson, there exists a certain set of 7" and
eB values for which no solution exists for the pole of the &
propagator. The pole reappears at a higher value giving rise
to a discontinuous jump. In general, this behavior can be
attributed to the oscillatory nature of the polarization
function. One important feature to be noted is that at
eB = 0.05 GeV?, the effective mass of ¢ does not possess
any discontinuous jump within the plotted temperature
range. We have also checked in our numerical calculations
that at finite temperature as well as at nonzero magnetic
field, the relation m2(T, B) = m2(T, B) +4M*(T, B) is in
agreement with Refs. [29,37,44].

In Fig. 10(b), m,, is plotted as a function of temperature for
different values of an external magnetic field. The B =0
curve is degenerate for the two modes. The degeneracy is
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lifted once the external magnetic field is turned on. For a
given value of eB, m, shows a decreasing trend with
temperature except at particular values where discontinuous
jump occurs. The nature of the discontinuities is similar to
that of m, and m, i.e., at the point of discontinuity, the
solution for the pole position always jumps to higher values.
Also in this case, one can observe that there exists certain
magnetic fields for which no discontinuity appears within
the plotted temperature range [see for example, mode-(B) at
eB = 0.15 GeV?]. On the other hand, for a particular
temperature, m,, is found to be oscillatory with the change
in eB. In other words, the effective mass can go to higher as
well as lower values depending upon the external magnetic
field. This is again expected from the highly oscillatory
nature of the effective mass at 7 = 0 [shown in Fig. 7(b)].
An analogous feature is observed for the case of the a,
meson as shown in Fig. 10(d). However, in this case, the
effective mass of a‘l) can jump to lower values as well (see for
example, mode-(A) at 0.10 GeV?). Finally, we concentrate
on the dispersion relations of the mesons in the thermo-
magnetic medium. In Figs. 11(a)-11(d), we have plotted w,
as a function of longitudinal momentum (g,) at different

eB =0, Mode-(A)
eB =0, Mode-(B)

B = 0.10 GeV>, Mode-(A)
eB =0.10 GeV~, Mode-(B)

values of temperature and external magnetic field. For a
particular temperature, the dispersion curves are mostly
separated around ¢, ~0. With the increase in ¢, the
quantum corrections become subleading as compared to
the kinetic energy which in turn leads to a lightlike
dispersion and the dispersion curves of different eB tend
to merge with each other at high values of g,. Moreover, the
separation among the curves at different values of eB is
highest at the lower temperature as compared to higher
temperature. An asymmetry of the dispersion curves for
nonzero eB about ¢, = 0 can be noticed as a consequence
of breaking of rotational symmetry by the external magnetic
field. The corresponding dispersion curves for the ¢ meson is
depicted in Figs. 11(e)—11(h). The nature of w,, is similar to
that of w,.

Next in Figs. 12(a)-12(h), we have plotted the dispersion
curves for the p meson as a function of g, for different
values of temperature and external magnetic field. The
dispersion curves for mode-(A) and mode-(B) are degen-
erate at 7 = 0 and B = 0 and lie on top of each other. This
degeneracy is lifted when we take either 7 or B # 0.
Moreover, for B =0 and T # 0, the dispersion curves are

eB = 0.15 GeV>, Mode-(A)
eB =0.15 GeV~, Mode-(B)

eB =0, Mode-(A)
eB =0, Mode-(B)

0.9
> N >
8 o8l 3
= =
S c
0.7
0.8 P\
> >
S S
= 07 ~
Q (=8
S c
0.6 L= ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.6 -5 ‘ ‘ ‘ LT .
-04 02 0 02 04 -04 02 0 02 04 -04 02 0 02 04 -04 02 0 02 04
q, (GeV) q, (GeV) q, (GeV) q, (GeV)
eB =0, Mode-(A) eB =0.10 GeVZ, Mode-(A) Qporg =0 eB =0, Mode-(A) ¢B = 0.15 GeV2, Mode-(A) Aoy =0
eB =0, Mode-(B) ------ ¢B =0.10 GeV?, Mode-(B) —— — perp £8 =0, Mode-(B) ------ eB = 0.15 GeV?, Mode-(B) —— — petp
~ 1 ™ T=0 + T = 150 MeV 1
0 Q
2 09 <]
g g
0.8
_08RN R
> >
Q (5]
<) ]
=07 \ =
< g <
3 :‘t.f: . ot " 3
AL 1 B ] ) P
04 -02 0 02 04 04 02 0 02 04 04 -02 0 02 04 04 02 0 02 04
q, (GeV) q, (GeV) q, (GeV) q, (GeV)

FIG. 12. The dispersion curves of the p° and a(f mesons with vanishing transverse momentum (g, = 0) for different values of
temperature and external magnetic field.
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identical around g, ~ 0. The nature of the dispersion curves
at different values of eB are similar to that of # and o as
they are mostly separated near g, ~ 0 and tend to merge at
high g,. The corresponding plots for the a; meson is shown
in Figs. 12(1)-12(p) and the nature of the curves are similar
to that of the p meson.

VII. SUMMARY AND CONCLUSION

In this work, the neutral meson properties such as mass,
spectral function, and dispersion relations have been
studied in the presence of a constant background magnetic
field using the two-flavor Nambu—Jona-Lasinio model. The
novelty of the study lies in the detailed consideration of the
general Lorentz structure for the vector and axial-vector
meson polarization functions, which, to the best of our
knowledge, has been ignored in similar studies of vector
mesons. Apart from the consideration of the modified
Lorentz structure in the presence of a magnetic field, the
Schwinger propagator expressed as a sum over Landau
levels has been used in the calculation of the quark self-
energy and meson polarization functions. For simplicity in
the analytic calculation, only longitudinal mesons (¢, = 0)
are considered. To obtain the Lorentz structure of the
vector and axial-vector meson systematically, we have
adopted a hybrid regularization scheme where as a first
step, the dimensional regularization is used to isolate the
ultraviolet divergences as the poles of gamma functions.
Subsequently, those gamma functions are replaced by
incomplete gamma functions as usually done in the proper
time regularization scheme. We call this hybrid regulari-
zation procedure as the incomplete gamma regularization
(IGR). As a reward, the number of parameters remain
identical to that of usual cutoff regularization procedures.
We have obtained two distinct modes for the p° and a,
mesons. At eB = 0 the effective mass of the modes remains
degenerate; however, the external magnetic field lifts the
degeneracy. At temperatures above the critical temperature
for chiral symmetry restoration, the spectral functions for
each of the modes of p® are observed to overlap with the
corresponding modes of its chiral partner ¢ meson for both
zero and nonzero values of the external magnetic field.

The discontinuity in the pion mass near the Mott
transition temperature is observed which is consistent with
recent works [41,42]. However, in our case, the discon-
tinuous mass jump is also observed in the effective mass of

ReZypa(M.B.T) = —2g,NAM Y Re [i /

fe{ud}

-1
X _—_—
{k2 — Mj; +ic

~ min(l u)(K - Mgf)}] |

the sigma meson which seems to be absent in Ref. [38] (see
Fig. 1). Alsoin [41], it is mentioned that no mass jump for ¢
can exist in the NJL model as m,, always lies above 2M. In
our work too, we observe that the condition m, > 2M is
always satisfied. Thus, we conclude that this condition may
not be the correct explanation of the absence of a mass
jump in the case of m, in [38]. In our work, discontinuous
mass jumps have also been observed in different modes of
the p and a; mesons. The presence of the mass jump in fact
depends nontrivially on the oscillation of the meson
polarization function. This implies that the existence of a
real solution for the pole of the propagator will depend on
the external parameters. For example, there can be certain
values of the magnetic fields for which no mass jump will
occur [see for example Fig. 10(a) for eB = 0.05 GeV?]
within a certain range of temperature. Moreover, one
should keep in mind that the polarization function also
requires a regularization prescription. In our two step
regularization scheme, the dimensional regularization is
the essential first step to obtain the Lorentz structure for the
vector and axial-vector mesons. As mentioned earlier, the
Lorentz structure cannot be achieved systematically in the
thermo-magnetic case with the cutoff procedure commonly
used. Thus, it is very interesting to study the similar
analysis in another covariant regularization prescription
such as the Pauli-Villars method to conclude about the
regularization scheme independent qualitative properties of
the mesons.

APPENDIX A: CALCULATION OF
ReZMFA (M,B,T)
In this Appendix, we will briefly sketch the calculation

of the quantity ReSys (M. B, T). Substituting Eq. (30) into
Eq. (33) and performing the traces over color and flavor
spaces, we arrive at

ReEMFA(M ,B,T)

= —2g,Nc Y  Re {i / %Trd{S}l(k,M)} .

fe{ud}
(Al)

Again substituting S} from Eq. (32) in the above equation
and evaluating the trace over Dirac matrices, we get,

i i(—l)’e—%f- {Li2a) = Limi e}

(A2)

The d”k | integral of the above equation is now performed using the orthogonality of the Laguerre polynomials and we are

left with
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_ ) 2 _
ReEMFA(M,B,T)z—zgSN;M 3 |efB|Z(2—6?)Re[i / T { L orin(k- ws (ki — M )H (A3)

2
fefudy =0 (2m)* \kj = M + ie
= ReXVi€, (M, B) + ReZBMed(M B, T) (A4)

where

ReZVisy (M, B) = ng

NM 5~ |efB|§:(2—5?)Re[i/é1k)”2k2 ! +i€], (AS)

fe{ud} =0 I
d’k
ReSBMed() B T) = —2g, f;d}|ef3|lz(;2 ) / )“ 2an(k - u)3(k} = M3,) (A6)
€

are respectively the magnetic field dependent and both temperature as well as magnetic field dependent contributions to the
self-energy fucntion. Equation (A6) can be further simplified by performing the dk° integral using the Dirac delta function
to obtain

Me e 1 I
RS, 8.7) = =20, 50 S eyl > 2 ) [ ko p(ol), (A7)
k

refud} =0

Note that the quantity ReZ\i%, (M, B) contains the divergent pure vacuum self-energy ReZ{is—Va¢(M) which has to be
separated out. To do this, we use the formalism developed in Ref. [47] and simplify Eq. (AS5) using the dimensional
regularization. Going to d dimension, we get

dik, a2
I } (A8)

N.M 0 ,
ReZYx, (M, B) =20, —— > |efB|Z(2—5?)Re[l / T
fefud} =0 I

— M +ie] | 42n

where the scale 1 of dimension GeV? has been introduced to keep the overall dimension of the equation consistent. It is now
straightforward to perform the remaining momentum integral of the above equation to reach at

ac N.M iy ) €
RSl (4.8 = 20530 32 1> (5 )
fefady =0

(A9)

where ¢ = (1 —d/2) and we have used Eq. (26). The infinite sum over the index / in the above equation can now be
expressed in terms of Hurwitz-Riemann zeta function as

N.M 47l 4zd \© M?
ReXVi, (M, B) = 2g,—5T Bl|(— 2| —— 4+ — Al10
-0 5 () ) o)L o

fefud} €
An expansion of the RHS of the above equation about € = 0 yields
ac N.NM [ 1 472
Rezl\\//IFA(M’ B) = 2g‘4—71,'2 |:—;+ YE — 1- IH<W>:|
MN M? M?

— 20— [—M2 + (M? — |e;B|) In < > 2|efB|{lnF< ) —1In \/2;1}]. (A11)

471' fG{l.l,d} ’ ‘ | 2| fB|

The first term on the RHS can now be identified [see Eq. (10)] as the magnetic field independent divergent pure vacuum
contribution to the self-energy ReZtie—Va¢ (M) which has been separated from ReZi%, (M, B) so that we rewrite the above
equation as
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ReXVi, (M, B) = ReZtueVac (M) + ReZBYa(M, B) (A12)

where

B-Vac MN ’ ) M? M2
er erB

fe{u.d}

APPENDIX B: EXPRESSIONS OF THE SUSCEPTIBILITIES

In this Appendix, we will specify the explicit expressions for the susceptibilities. We will do this for the two cases
separately: (i) B =0 and (ii) B # 0 in the following subsections.

1. Case-I: B=0
A straightforward differentiation of the gap equation at B = 0 with respect to 7 and m yields

oM 1 INNM [ -
TOT " (1 + Dyge + Dyea) nZTQ A dlk|k”f (@) {1 = f (o) }. (B1)

1 oM 1 DVaC + DMed
2 \am ') T~ B2
g 29 (am ) 29, (1 + DVac + DMed ( )

where

N.N M2

Dvac = =29, > —— [Az MYN 3M2r<o AZ)} (B3)
2N.N
DMedzzgs ﬂsz/ d|k|k e [Tk —Mzcok{l— (a)k)}]f(a)k) (B4)
k

2. Case-II: B # 0
A straightforward differentiation of the gap equation at B # 0 with respect to 7" and m yields

oM 1 o
_oM_ ) Bzao/dk DL = flof)}.  (BS
OT (1 + Dyye + Dovac + Dimed) % ZTzfe%:d}|ef |,ZO: 0 Sl = f(@E)} (B5)
:L(G_M_ ):_L< Dyac + Divac + Pemea > (B6)
om 295 \1 + Dyqc + Divac + Dimed
where
N,
Divae = =29, 3 llesB[{lny +2InT(y) — In(27) + 2} + M>{1 = 3Iny + 2y (y)}]. (B7)

fef{ud}
1
Divis = 20, 5. 3 [egB)S 2~ 4) ) [7 ke (1 4 2le8]) = w0 (1 - fO Wf @) (B9
refud} =0 0 (wk)

with y = M?/|2¢,B|.
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APPENDIX C: FORM FACTORS OF THE
POLARIZATION FUNCTION IN TERMS OF
LOCAL INVARIANTS

In this Appendix we will enlist the different form factors
in terms of the Lorentz invariant quantities. Let us start with
the case 7= 0 and B = 0. Substituting Egs. (48) and (49)
into Eq. (53), we get, after some simplifications,

1
HH2 :—2qu”1_[#13' and

— 1

Iy = 2 (91T — gy — Mp3), (C4)
_ 1 Y _
My = \/ﬁ [quu, 1y — (q - u)Ip,). (C5)

Similarly for the case T #0 and B # 0, substituting
Egs. (66) and (72) into Egs. (77) and (78), we get

1

q ﬁH2 = ?qﬂqvﬁﬂl/’ (C6)
1
Iy = g(gﬂl/n — ). (C1) ( )2 ( )
= 1 q u)” — q U =
My == [ HH + My, —2—— unDH’;'I:|
Now, at T # 0 and B = 0, we substitute Eqs. (54) and u 4q
(57) into Eq. (62) to obtain (C7)
Iy, = izq/tql/ﬁ’;;’ (C2) ﬁHs = ; [%“ My —(q- ”)ﬁm]v (C8)
q /q2ﬁ2
— 1 i, (g 1)’ (g-u) o ! { = (b-ft)
s = — " T, -2 |, My = b0 — (q- D)y =21/ P TT
e V2 e -
(C3) (C9)
|
= 1 v (g-u =w (g-b
iy = —== [ b, TT; ( 5 ) b, ITy _la-h) PiTlys — (b - )T 3] (C10)
qb q q’
= 1 b i v b o7 = . b ~h= ~h=
M, = [b b, T qZ{( i) (g-u)—(q b)}qﬂb i ~2”)u b, T —(qq—z) 25 2h?
(C11)
ﬁm = (Qﬂpﬁ/g - ﬁ1112 - ﬁm - ﬁ114)- (C12)

APPENDIX D: CALCULATION OF THE PURE-VACUUM POLARIZATION FUNCTIONS USING
DIMENSIONAL REGULARIZATION

In this Appendix, we will simplify Eqs. (100)—(103) by evaluating the momentum integral using dimensional
regularization. Substituting S’'(g, m) from Eq. (4) and evaluating the traces over color, flavor, and Dirac spaces we

can express the polarization functions as

d*k Ny(q.k)
n _ shedrn o}, DI
D=1 e itk qpF e ey S o

d*k Ny (q.k)
(0 — i ACE JH € {p, b2
n(a) l/ (27)* (k2 = M2 + ie){(k + q)* = M + i€}’ ) .

where

Nh=4NCNf(k2+k'q_aM2)’ (D3)
Nl = —4N N (g™ (R + k- g — aM?) = 2Kk = (K'q¥ + k*q)] (D4)
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with a = {_11 ff)"rra”;l . Now using the standard Feynman parametrization, the denominators of Egs. (D1) and (D2) are

combined to get

d
I,(q) = i4NCNf/12‘d/2/ o [ > 12 . —lqz/ldx%} ’ (D3)
)4 k> —=M?* +ie 2 0 [(k+xq)* — A]*] |40
d'k 1 1 ! 1
I1 = '4NN,12—d/2/ —— (g% — AM? / dx— , D6
o(q) = 4NNy 2n)? K> = M? + ie i ) o Ikt xg? — AP | s (0e)
dk  N¥( q k)
Iy (q) = iA*~ d/z/ / . ‘H e {p, D7
k+xq A]z - {p Cl]} ( )

where A = M? — x(1 — x)g? — ie and the space-time dimension has been changed from 4 to d in order to implement the
dimensional regularization. Shifting momentum k — (k — xq), we perform the momentum integrals of the above equations

o go
(o) = "t [perte) [ax(*E) e (). (08

M) =t [ - are) [Lax(*F) e (5 | (09)

(q) == 1) (- L4 )2 [ a1 - (2 (D10)
T O N

where ¢ = (2 — d/2) and note that the UV divergences have appeared as the pole of the Gamma functions. The above
quantities have the following expansion about & = 0:

I, (q) :A:fgf {—Mz{l—yg#-l—l-ln(‘;;f)}—l—%qz/ dx{l—yEJrln(‘T) H (D12)

1, (q) :A;‘gf {—Mz{é—yﬁ-f-l—kln(%)}+%(q2—4M2)A dx{l—yE+ln<4Z/1> H (D13)
I(q) = — NNf (g’“’— = )q%ldxxu—x) F—yEﬂn(“Z’lﬂ, (D14)
Hﬁf(q):]\;‘gf Oldx[(g”” q2q>A+q2—q ][é—yE—f—ln(%)]. (D15)

APPENDIX E: CALCULATION OF THERMO-MAGNETIC POLARIZATION FUNCTIONS

In this Appendix, we will briefly sketch how to obtain Eqgs. (122)—(129). Substituting S}, from Eq. (30) into
Eqgs. (118)—(121), we get after evaluating the traces over flavor and color spaces for g, =0

;' (q)) ’iz Z /( )4Ninf(q\\vk) {ﬁ‘zﬂﬂ}(k'”)&kﬁ—”f%ﬁ

=0 n=0 fe{u.d} I
-1
X L’ﬁT 2zin(p - u)s(p} _M%f):|v (E1)
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Buvll _.oo - dk”lnfv -1 : 2 2
I (‘IH)*’ZZ Z /(2ﬂ)4N (). k) W—zmﬂ(’(%)&kll_”’lﬂ

where p = (¢ + k) and
N2 (g K) = =N (=) e T Dy (07 Do ()], (E3)
N7 (g k) = No(=1)17e 24 Try[Dy (k) Dy (p)], =
N (g ) = No =) e AT [ Dy (07 Do (), =)
N (g1, K) = Ne(=1)7e 2Ty [Dyy (0)1,° Doy (017 (E6)

Evaluating the trace over Dirac matrices, the above equations become

NIM (k) = =N (=1)""e48[-8k2 L], (2a})L}_, (2a])

— (k} + &y - q) — aM®){L,(2a} )L, (2a}) + Ly (2a) L,y (2a})}], (E7)

N (qy.k) = N (=1)1e 248 [8 (2K K — K3 )L}, 2a)L}_ (2a])
_ {(kﬁ +ky g - aMz)d' - 2kﬁkH (kﬁqﬁ HqH)}{L (2()5{) n(2a{) +L1—1(2“1/:)Ln—1(20‘£)}
+ (K + K - g = aM?)g {Ly () L1 (20) + Licy (20 L, (20))] (E8)

with a = {_ | for zp . Substituting Egs. (E7) and (E8) into Egs. (E1) and (E2), we can perform the @’k integral using the

1 for 0.a,
orthogonality of the Laguerre polynomials to obtain

o (I+1) 42k 1
HE“(QH) = iz Z / H Nlnf(q”’ k) [W - 2”i’1(k‘ ”)5(kﬁ - M%f):|

1=0 n=(I=1) fe{ud} (27)* [ iy i€

-1 . 2 2
oo 2l (02 - )| (B9)

o (I+1) 42k -1
Hgﬂyu(qu) _ iz z(: Z / (27[)”2 NZ’fW(qH,k) [kz— —27in(k - u)5(kﬁ — Mlzf)}

=0 n=(-1) féfud} [ tie
-1
- i - u)S(p? — M2, E10
<[ Ve 2 00 D) (E10)
where
In Nc n— n n—
Ny (g k) = —7|€f3|[4|6f3|”51_11 — (ki + k- g — aM?)(8] + 817, (E11)

njuv NC — v v —_
Ni™ (g1 k) === leBI[4]esBIndi g — {(Kf + K - g — aM*)g|" = 2Kkt — (Kigf + kg }@ + 51
— (kj + k- gy — aM?) g (677" + 51,)). (E12)
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Note that the presence of the Kronecker delta in the above equations has eliminated one of the double sums in Eqs. (E9) and
(E10) so that the sum over index n runs from (I — 1) to (I + 1).

The calculation of the imaginary parts of Egs. (E9) and (E10) is trivial since the imaginary parts are free from any UV
divergences. Evaluating the dk” integral of Eqgs. (E9) and (E10) and making use of the relations

0
ImIT, (g) = sign(¢°) tanh (ﬁ) ImIT;' (g)). (E13)
=) . 610 Buvll
ImITy (q) = mgn(qo)tanh(ﬁ)lmﬂh’” (q1) (E14)

we get

(14+1)

(o) = —sian(a?)tanh ($7)25° 5" 3 [ 1 0l - S0 + 210 0)

=0 n=(I-1) fe{u.d}

< ANY (K0 = 0 )3(q° = of — o) + NV (K0 = 0 )8(¢° + ol + o))}
+{=flo)) = f(@}) + 2f (@) (0 YHNP (K = ~0)5(¢° - off — @)
+ N (K0 = 0 )5(q° + wff + )}, (E15)

_ q° o (1) ©
I (q)) = —sienlg”)ann ($:)5 > Y- 30 "G 1= o) = ) + 2101 (0))

If nf
=0 n=(I-1) fe{u,d} 7 = 27 4w

x ANG (K0 = —0)8(¢° — of — ) + N (K0 = 0)5(q° + o + o)}

+{=f (@) = F(@}) + 2f (@] ) f(@f Y HNG™ (K = =0 )8(¢° - o = o)
NI = 0)6(¢0 + olf + )] (E16)

The temperature dependent real parts of Eqgs. (E9) and (E10) are also easy to simplify because of the presence of the Dirac
delta functions. Thus, evaluating the dk° integral of the temperature dependent real parts, and making use of the relations

Reﬁh(q”) =RelI}''(¢)) and Reﬁ’;}/(qu) = Rel;""(¢)) (E17)
we get
o (I+1) In I I In [ l
Rell,(g)) = Rellee(q). B) = > > / mﬁp[ My = o) o) + Ny (K = o) (o)
’ [ [ n I I n
1=0 n=(I1-1) fe{ud} ¥ ~*® 27 Zwkf{(qo - wkf)2 - (wpf)z} zwkf{(qo + wkf)2 - (‘Upf>2}

MR =P~ o) M0 = o) )
205 {(q° + 0 2 = (0 )2} 20/ {(¢° - 0} * = (o) )}
o  (H41) Infuv (0 Ify pf o If nfuw (10 — o £(olf
= o dk N (k0 = - ) f(w)]) Ny (K =) f(o])
RelTy (q)) = Relljjy,. (). B Z Z / B [2 10— a2 — (2% 2l { (20 "
1=0 n=(I-1) fe{u.d} o/ {(¢" - o2 = (0} )} 207{(¢° + o] )* - (0} )}

Ng™ (€ = =¢° = i) f(@pf) | Ng™ (#0 = q°+w”f>f<wﬁf>] (E19)

20 {(@° + @i 2 = (@)} 205 {(¢° -0} = (0 )}
where ReHhVaC(qH,B) and ReH’;}’Vac(qH, B) are the temperature independent real parts of the analytic thermo-magnetic
polarization functions. They, respectively, contain the magnetic field independent and UV-divergent pure vacuum

polarization functions Rell,(¢,) and Rell}; (g) which have to be separated. To this end, we will use the dimensional
regularization technique as already developed in Ref. [47]. We have
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°° d*k 1

| aglns
I § j § : § j Ny, k E20
waclq) B) =i /(271') (g, )(kﬁ—M%f—l—ie)(pﬁ—Mﬁf—!—ie)’ (E20)

=0 n=(I-1) fe{u.d}

0 l+1> dzk 1
124 I Infuv
I ac q , —l E E E /—N (q ,k) - —. (EZI)
ivac(9)- B e (27)2 H I (kﬁ —l— l€)(pﬁ - Mflf + ie)

Using standard Feynman parametrization, the denominators of the above equations are combined and we get after some
simplifications,

|efB| . ddkH 1 1. 1 1 2
I B)=N, § > (2 = 89)A1-d/2 / -N / d
wvac (4] DAL gy I3 — M3 +ie 2 olay) [ d (ky + xq))? = A,

d—2

=0 fe{ud}
(E22)
A SN S a6 g ! 2 (E23)
Wirvae(q)- B) = i / dxd™~ /—dNZ} “ayk [ } E23
1=0 n—=(I-1) fefud} (27) (ky 4 xq))? - ALl o

where A = M? — x(1 - x)qﬁ +2|e;B|(l — xI 4 xn) — ie and we have changed the longitudinal space-time dimension
from 2 to d so that as before a scale A of dimention GeV? has been introduced. In Eq. (E22), N h(qH) = qﬁ if h=x and
Ny(q)) = (qﬁ — 4M?) if h = 6. We now perform the d’k| integral after a momentum shift k; — (kj — xq). After some
simplifications, we arrive at

4rh 1. 1 4h\ 1+e
Myvac(q). B = 22 > lesBl(2- 50)KM2> F(s)+§Nh(q)/ dx(—f> F(1+£)} . (E24)
=0 fe{ud} lf 0 Ay -0
o (I+1)
H/;-;/Vac(qll’ Z |€fB|/ dx|:4|€fB|n§" 1 D-f—{(aM +x(1- )qﬁ)gﬁy
I= -1) fefud}
Y 1
(1 - x)qﬁqﬁ}(éf ) + (@M x(1 = X))@ + 0T+ 1)
In
7 n—1 v ul n—1 v 4mh\
— {67 + 65 )‘?dﬁ —(1=e)(8, + 87} (e) A (E25)
In e=0

The sum over the indices [ and n in the above equations can now be performed and be expressed in terms of the Hurwitz zeta

function as
N, 2lesBI\¢ M?
Mvae(9)-B) = 15 > [|efB|{—<—]V-If2 > +2§<e,2|e B I'(e)
Q) !

1. 1 1 4z \¢
1% (9, B) = _é\;cz ) /1 dx{[4le/BI(C(e.2) = 2L(1 + £.2))g" + {(aM? + x(1 = x)g?)g"
fe{ud} 0
= 2x(1 = x)q)qf }2L(1 +e,.2) = 27'7°) + 2(aM? + x(1 = x)g}){ (1 + &, 2+ )¢ T (e + 1)
e\ y 4zl \¢
—2lesBl{e(2l(e.2) — z )dﬁ —2(1 —¢e)(e.z+x)g I (e)] <2|€—fB|> » (E27)
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where z = 2|e 3, B Expanding the above equations about ¢ = 0, we get after some simplifications,
N.N; 1 47l I 4z
_ el
HhVac(qH’B) = 47[2 |:—M2{g—}’E +1 +IH<M )} + = Nh C])/ dx{——yE +ln< A >}:|
N M? M?
5 ) [M2+(|efB|—M2)l ( >+2|ef13|{1nr<2 >—ln\/27t}
4 fe{ud} | | | f ‘
1. ! 1
+5Niu(q)) | dxqInz—y(z) =+, (E28)
2 0 2z
N.N 9,9 1 4rh
v AVf I
HZVac(QH’B) __7((] qH >CZ/ dxx(1 - )[E—VEHn(Mz)}
S [ anltaie - dhapas == @ - a1 - 020 () + 172
fe{ud}
+ [(A =2M*)y(z +x) + A+ 2|efB|{InT'(z + x) — Inv2x}|¢], (E29)

NN, [1 q”qH 4] 1 472
I*y..(q, B) :_f/ dx[(g"” A+ 1M yg +1n
Vacd| 27% Jo qH qﬁ £ M

4” dx (¢ A+ x(1 —x)qq})(=21Inz) + (" A + x(1 — x)q q}) 2w(2) + 1/2)
Jefud
+ [Ap(z + x) + A+ 2|e/B|{InT(z + x) — In V2z}]¢!]. (E30)

Comparing the RHS of Eqgs. (E28)—(E30) with that of Egs. (D12)—(D15), we find that the divergent pure vacuum
contributions have completely been untangled on the RHS of the above equations. Thus making use of Egs. (D12)—(D15),
the above equations can be rewritten as

Myvae(q, B) = T4(q)) + (g, B), (E31)
Wivec () B) = Iy (q)) + Myp(qy. B) (E32)

where

- N, 2 2)1 m? 2 InT M —Inv2
”B(qu,B)fm Z M? + (le;B| — M?)In e ] +2le;B|< In e Bl nv2r

fe{ud}

+%q” /1 dx{lnz —y(z) — ZLZH (E33)

H,,B(qH,B):i]TCZ S M2 4 (|esB] - M2)1n< |M2 |> +2|ef3|{1nr<2MfB|> m\/_}

fe{ud}
+%(qﬁ —4M2)/01 dx{lnz—l//(z) _;ZH’ (E34)
H N Hou 2 oy
H/)B(q”,B) :_4”2 Z /) [(‘1”9” q”(]H)2X<1—x)lnz—(quﬁ —q“q”)x(l—x)(2u/(z)+1/z)
fef{ud}
(A= 2022+ x) + A+ 2le,B{InT(z + x) — In 27} g, (E35)
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I, 5(q). B) = - N > Al dx[(¢”A + x(1 —x)qq})(~21Inz) + (9" A + x(1 —x)qq}) 2w (2) + 1/2)

2
A ey

+ [Ap(z + x) + A+ 2|eB|{InT(z + x) — In V2z}]¢7].

(E36)
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