
 

Backreaction in strong field QED: A toy model
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As a toy model for QED in strong background fields, we consider the impact of backreaction and loop
effects on scattering processes in quantum optics. We show that neglecting backreaction misses qualitative
and quantitative features of strong-field physics. We are able to study an analog of the Narozhny-Ritus
conjecture on the scaling of higher loop diagrams with intensity: we prove that there is no corresponding
behavior in our model. Implications for QED are identified and discussed.
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I. INTRODUCTION

Dividing a system into a fixed background, and pertur-
bations around it, is a standard and fruitful approach in
many areas of physics. The approach fails when the
perturbation does not remain, in some sense, small com-
pared to the background, and it then becomes necessary to
account for “backreaction” on the latter.
In the interaction of matter with intense lasers [1–4], one

usually treats the laser fields as a fixed, plane wave
background. The assumption that backreaction on this
field can be neglected may be expected to break down
when significant energy is depleted from the laser via, for
example, radiation [5,6] or pair production [7–10]. New
methods of calculation are then required.
QED scattering in strong backgrounds is calculated in

the “Furry picture” (background field perturbation theory)
[11–15]. Here the expansion parameter is the usual, small,
coupling, but where the background is treated exactly at
each order. It has been conjectured, based on the scaling of
certain higher loop diagrams in plane waves, see Fig. 1, that
the effective coupling parameter in the Furry picture is
actually dependent on a (positive) power of the background
field strength [19]. If so, this would imply a breakdown of
perturbative methods, or of the background field approxi-
mation, at sufficiently high intensity, and necessitate an all-
orders resummation of Furry picture Feynman diagrams.
See [20] for a review.
Investigating this conjectured behavior is a target of

future experiments [21–24]. However, questions remain.

The conjecture is based on the special case of a constant
“laser” field, and it is known that the associated scaling
does not appear for general fields [25], nor does it hold at
high energy [26,27].
As these topics are demanding in full QED, we turn here

to a toy model in an effort to shed some light on the
problem. This is the Jaynes-Cummings model [28] (JCM)
of a single photon mode interacting with a single fermion
spin. The model has the advantages that it is exactly
solvable, and that its three-point vertex mimics that of
QED, allowing an analogy with Feynman diagrams. While
this is certainly a gross simplification of QED, single-mode
models commonly reveal new physics and offer methods of
including explicit quantum corrections which are otherwise
hard to capture [29–32]. This approach will provide novel
insights into both JCM and QED.
This paper is organised as follows. In Sec. II we review

some relevant properties of JCM. In Sec. III we show how
the background field approximation, and corrections to it,
arise in a systematic expansion. We give an example of
backreaction at strong coupling in Sec. IV, showing that the
well-known collapse/revival physics of JCM cannot be
captured by any “higher loop” calculation unless back-
reaction is also included. In Sec. V, we prove that the
effective expansion parameter in the JCM Furry picture is
just the coupling. We show, however, that even for weak
couplings it is necessary to include emissions as well as

FIG. 1. Example QED loop diagrams in the Furry picture.
Double lines indicate fermion propagators dressed to all orders by
the background. The asymptotic scalings of the diagrams is also
shown [16–18] where the “quantum nonlinearity” parameter χ is
the product of particle energy and external field intensity (see
(17)) and α is the fine-structure constant.
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loop corrections in order to fully capture strong field
physics. We conclude in Sec. VI.

II. THE JAYNES-CUMMINGS MODEL

The JCM Hamiltonian couples a single photon mode,
frequency ω, to a two-level system, energy gap ωa [28]

H ¼ ωa†aþ ωaτ3 þ ga†τ− þ gaτþ; ð1Þ

where a and a† are the usual ladder operators for the photon
mode, ½a; a†� ¼ 1, the operators τ obey the SU(2) algebra
½τ3; τ�� ¼ �τ�, ½τþ; τ−� ¼ τ3, and g is the coupling. For
reviews see [33–35]. To aid the analogy with QED, we can
take the two-level system to describe the spin states j↓i and
j↑i of an electron, which requires ωa ¼ 0. Calculations are
however simpler, and our results equivalent, in the reso-
nance limit ωa ¼ ω, which we adopt here. The τ may be
represented in terms of the spin states as

τþ ¼ j↑ih↓j; τ− ¼ j↓ih↑j; τ3 ¼
1

2
j↑ih↑j − 1

2
j↓ih↓j:

We are interested in scattering. The time evolution operator
in the interaction picture UðtÞ may be written down exactly
(the Dyson series is convergent for all g); acting on an
initial state which is, for simplicity, spin down but with
arbitrary photon content “in” [33],

UðtÞjin;↓i ¼ cos gt
ffiffiffî
n

p
jin;↓i − ia

sin gt
ffiffiffî
n

p
ffiffiffî
n

p jin;↑i; ð2Þ

where n̂ ¼ a†a is the photon number operator. (Functions
of operators are defined by their power series.) As U is a
function of gt, JCM always runs to a strongly coupled
regime as time evolves. If g is asymptotically switched, we
obtain the “S-matrix” S by replacing gt in (2) with the
integral of gðtÞ over all time; this defines the dimensionless
coupling e which mimics the charge in QED.
Since the interaction HI is a three-point vertex which

couples a single photon to the spin, we can draw Feynman
diagrams which are analogous to those of QED for JCM
processes. For example, consider the analog of Compton
scattering,

ð3Þ

The “−1” above subtracts the disconnected contribution.
The Oðe2Þ term corresponds to tree-level Compton scatter-
ing; this is easily verified by expanding (2) in powers of e,
and checking that this term comes from contractions only
between a-operators in S and a-operators in the asymptotic
states. The Oðe4Þ term, on the other hand, also contains

contractions of a-operators within the S-matrix, which
correspond to one-loop corrections (of which we show
only one of the possible diagrams).

A. Motivation: Spin flip and collapse/revivals

For comparison with strong field QED [1–4], we need a
(strong) background modeling the laser. We therefore
review here relevant results of JCM with coherent states,
which are closely related to background fields [36–38].
Consider placing a spin down particle in a coherent state

jzi of photons, and asking for the probability that the spin
flips as time evolves, which, from above, (2), is the same as
increasing the coupling e. In terms of the displacement
operator DðzÞ ¼ expðza† − z̄aÞ the initial state is

jz;↓i≡DðzÞj0;↓i: ð4Þ

Acting with the S-matrix, projecting onto the spin-up state,
and summing over all possible final photon states, we
obtain the total, inclusive, probability of spin flip,

P ≔
X∞
n¼0

jhn;↑jSjz;↓ij2

¼ 1

2
−
1

2
e−jzj2

X∞
r¼0

jzj2r
r!

cos 2e
ffiffiffi
r

p
: ð5Þ

The properties of the spin flip probability are well known.
As time evolves, P initially exhibits regular Rabi oscil-
lations with frequency ejzj, before “collapsing” to P ¼ 1=2
[39], as illustrated in Fig. 2. The collapse is complete before
e ≃ π, and the probability remains at 1=2 until later times

Exact

Background

2

3
2

e
0.2

0.4

0.6

0.8

1.0

Exact

35 40 45 50 55 60 65
e

0.2

0.4

0.6

0.8

1.0

FIG. 2. Comparison of the spin flip probability (blue/solid)
with that given by the background field approximation (yellow/
dashed) for z ¼ 8. The latter (shown only in the upper panel for
clarity) captures only the initial Rabi oscillations, which it
exhibits for all e, whereas the exact results show collapse (upper
panel) and revivals (lower panel).
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when it “revives” at e ¼ 2πjzj, collapses, and revives again
at e ¼ 2πnjzj for n ¼ 1; 2; 3… [40].
Let us compare this behavior with that predicted by the

background field approximation, which is given replacing
fa; a†g → fz; z†g, in the Hamiltonian, so that the electro-
magnetic field is fixed and classical, and the state space is
spanned by j↑i; j↓i. One finds

P ≃ sin2ðejzjÞ: ð6Þ

Now, this approximation would correspond, in QED, to
performing a tree-level calculation of the exclusive (i.e. no
emission) spin flip probability in a background, which
neglects both quantum corrections (loops) and backreaction
on the background through emission. Hence, if the appro-
ximation (6) differs from the exact result (5), then either
quantum corrections, backreaction, or both, are important.
The two results (5) and (6) are compared in Fig. 2. For
small coupling e, the tree-level background field approxi-
mation works well, reproducing the Rabi oscillations,
which are essentially classical. However, the oscillations
are of fixed amplitude for all e: the approximation does not
reproduce the collapse or revival of the probability, for
which it follows that loop corrections and/or emission are
relevant. We will identify which in Sec. IV.

III. THE BACKGROUND FIELD
APPROXIMATION AND BEYOND

We consider again the initial state jz;↓i. Acting with the
S-matrix, our aim is to write the evolved state Sjz;↓i in
such a way that the background field approximation and
corrections to it become explicit.
We begin with the well-known property of displacement

operators that, for any function f of a and a†,

D†ðzÞfða; a†ÞDðzÞ ¼ fðaþ z; a† þ z̄Þ: ð7Þ

If we choose f to be the S-matrix, it follows from (7) that
any amplitude between coherent states is equivalent to an
amplitude in the presence of a background z of the a-modes
[36–38] (where the matter content of both amplitudes is the
same). We observe that the S-matrix (2) is a function of ea;
it is useful to make this dependence explicit, writing
S ≡ SðeaÞ. We also write unity in the space of a-modes,
1a, as

1a ¼
X
n

DðzÞjnihnjD†ðzÞ≕
X
n

jznihznj: ð8Þ

The jzni are “displaced number states” (and jz0i≡ jzi
above). (See Refs. [41,42] for reviews and [32] and
references therein for their use in other single-mode
approximations to QFT problems.) Working with these
states instead of the number states jni simply corresponds

to using a basis which makes explicit reference to the initial
coherent state, z, in the system.
Combining (8) and (7) and defining ξ ≔ ez we have

SðeaÞjz;↓i≡ 1aSðeaÞDðzÞj0;↓i
¼

X
n

jznihnjSðeaþ ξÞj0;↓i: ð9Þ

This expression implicitly identifies the two truncations
which lie behind the background field approximation and
corrections to it.

(i) Truncating the sum over n in (9) turns 1a into a
projection operator which limits the possible final
state space of the photonic modes. This does not,
though, prevent photons being created and destroyed
during scattering (loop effects) which brings us to
the second approximation.

(ii) The evolution operator in (9) has become a function
of eaþ ξ. The dimensionless coupling to the back-
ground, and the analog of the dimensionless inten-
sity parameter in QED [1,3] is a0 ≔ jξj. Expanding
S in powers of e at fixed ξ gives, at leading order, the
semiclassical (tree-level) approximation to each of
the amplitudes hnjSðeaþ ξÞj0;↓i plus an infinite
series of quantum corrections; this expansion in
powers of e corresponds to the Furry picture loop
expansion in QED, in which the coupling to the
background, a0, is treated exactly [11].

To illustrate, consider the most severe truncation, which
limits the sum over final states to n ∈ f0g and also retains
only the zeroth order terms in e. Then we have the
approximation

SðeaÞjz;↓i ≃ jzih0jSðξÞj0;↓i ð10Þ

in which SðξÞ acts only on the spin degrees of freedom, and
where the final photon state is forced to be exactly equal to
the initial state; the photons are spectator modes, and the
spin degrees of freedom are affected only by the external
field z. The amplitude in (10) then corresponds to the
tree-level two-point function in a background; the spin flips
in an external field, or it does not. The corresponding
approximation to the total flip probability is given by (6)
with ejzj ¼ a0, reproducing the Rabi oscillations. (In this
approximation the inclusive flip probability is exactly equal
to the exclusive probability.)
We can add quantum corrections, corresponding to loops

in QED, by retaining higher orders in e. Retaining all
orders in e yields an all-loops result. In the following two
sections we consider two examples in which loop effects
and backreaction impact the physics of JCM.

IV. BACKREACTION AT STRONG COUPLING

Investigations of the high-intensity behavior of scattering
processes in QED have focussed on the addition of higher
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loop corrections, and how they scale. For our first example
we therefore consider adding loop corrections to the tree-
level background field calculation of spin flip (Rabi
oscillations) in JCM, to see if the collapse and revivals
are recovered. It is convenient here to work with the
variables e and z of JCM; this will allow us to study the
impact of backreaction at strong coupling e ≫ 1. (We
consider the Furry expansion proper in the next section.)
We truncate to n ¼ 0 in (9), which neglects all emissions,

but make no other approximation, hence all loops are
retained. The evolved state is then

SðeaÞjz;↓i ≃ jzih0jSðeaþ ξÞj0;↓i; ð11Þ

and the total spin-flip probability is

P ≃ jh0;↑jSðeaþ ξÞj0;↓ij2
¼ jhz;↑jSðeaÞjz;↓ij2

¼ jz2je−2jzj2
����
X∞
n¼0

jzj2n
n!

sin e
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
����
2

: ð12Þ

The second line of the above, written in terms of the origi-
nal coherent state, emphasizes that this is still a background
field approximation in the sense that the final and initial
photon states are the same. The result is plotted in Fig. 3
along with the exact result (5). The all-loops result shows a
collapse and revivals; however, the collapse is to 0 rather
than to 1=2, and the first revival in the exact result is missed
entirely. In fact, all odd-numbered revivals are missed.
Thus we learn that even adding all loop corrections in the

background field approximation is not enough to capture
the physics of JCM. While loops contribute to the even-
numbered revivals, the odd-numbered revivals must be

driven by emission (backreaction) on the initially coherent
photon state. Including these emissions, we can consider
the partially inclusive probability PN of spin flip with up to
N photon emissions, which means summing n in (9) from 1
to N, with the result

PN ≔
XN
n¼0

jhn;↑jSðeaþ ξÞj0;↓ij2: ð13Þ

The larger N must be in order to give a good approximation
of the inclusive flip probability, the more significant is
backreaction. In Fig. 4, we plot PN for z ¼ 4 and various N
up to N ¼ 60, along with the exact result. The figure shows
that a significant number of emissions are required in order
to properly capture the collapse and revivals.
To understand these results we examine the time-evolved

photon state. The fact that the sums in the exact results are
strongly peaked around n ¼ jzj2 allows us to use the well-
known approximation [35,40]

ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jzj2 þ ðn − jzj2Þ

q
≃
jzj
2
þ n
2jzj : ð14Þ

Using this, and assuming jzj2 ≫ 1, we find that the exact
state may be approximately written as a “cat” superposition
of coherent states [35,40],

h↑jSjz;↓i ≃ 1

2
e−ijzj2θjze−iθi − 1

2
eijzj2θjzeiθi; ð15Þ

with θ ≔ e=ð2jzjÞ. It is helpful, in parallel with this
analytic approximation, to visualize the state via the
Wigner quasiprobability distribution [43–45], widely used
in quantum optics, and also in studies of pair production in
QED [46–49]. The Wigner function is defined as
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FIG. 3. Collapse and revivals, with z ¼ 12; adding all loop
corrections to the tree-level result kills the Rabi oscillations, but
only partially recovers collapse and revivals—in particular the
collapse is to 0 rather than 1=2, and all odd-numbered revivals are
missed.

FIG. 4. Spin flip probability at fixed jzj and varying coupling.
“Exact” refers to the probability given by (12), and Nγ means up
to N emissions included. Clearly, the first revival is missed unless
N is quite large, while the second revival is seen even withN ¼ 0,
although quantitatively incorrect.
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WðγÞ ¼ tr
Z

ρ̂ exp½ðz̄ðγ − aÞ − zðγ̄ − a†ÞÞ�d2z; ð16Þ

where ρ̂ is the reduced (i.e., traced over the spin) photon
density matrix and γ is a complex phase-space coordinate.
The Wigner function highlights (quantum) deviations
from (classical) coherent states: the Wigner function of a
coherent state jzi is a Gaussian centered at γ ¼ z, and only
coherent states and squeezed vacua have an everywhere
non-negative Wigner function [50]. Interference in quan-
tum superpositions of states appears in the Wigner function
as regions of negative values [51].
Figure 5 shows the Wigner function for the evolved

state in JCM at different times (couplings). From this and
(15) we see that the initially coherent state splits into a
superposition of two coherent states which counter-rotate
in phase (γ) space as time evolves. As they do, interference
effects appear in the Wigner function. The collapse is
due to these nonclassical effects in the “spinning” cat
state [53,54].
It is clear from (15) that at multiples of e ≃ 2πjzj the cat

becomes approximately coherent at j � zi again, see Fig. 5,
depending on whether the multiple is odd or even. At these
points the classical Rabi oscillations reappear; these are the

revivals. For the even-numbered revivals, the state approx-
imately returns to the original coherent state jzi, which is
why (an approximation to) these revivals can be seen by
including only loop effects. For the odd-numbered revivals,
however, the state is approximately coherent, but at j − zi,
meaning it has undergone a phase shift of π relative to the
initial state jzi; this is backreaction on the field, and indeed
is as severe a backreaction as is possible with a single
undamped mode. Since jzi has significant Fock space
components up to n ≈ ejzj2, capturing this backreaction
requires the emission of a large large number, Oðejzj2Þ, of
photons, as we saw above in Fig. 4.
These results have direct implication for models of

backreaction in QED. It has been suggested [55] to con-
sider transitions between different initial and final coherent
states jzii and jzfi to account for backreaction in the
form of depletion. This essentially amounts to displacing
a ↦ aþ zi, a† ↦ a† þ z̄f, so that the gauge field Aμ is
shifted by a complex value. Applying this with zf ¼ −zi,
one can capture the odd-numbered revivals in JCM, without
including emissions, but the even-numbered revivals would
be missed. Further, between revivals, we have seen that
backreaction puts the field in a nonclassical cat state, and
no single jzfi offers a good approximation without emis-
sions. Instead, the state (15) and Fig. 5 suggest that to go
beyond [55] one should consider a superposition of
coherent states, or other nonclassical states, to better
capture quantum aspects of backreaction.
What we have discussed here is an example of back-

reaction at strong coupling, since e is required to be large
for collapse/revivals to occur at all. In the next section we
consider a situation more analogous to QED in which the
coupling is kept fixed and small, but the strength of the
external field a0 is allowed to vary.

V. BACKREACTION AT HIGH INTENSITY
AND THE FURRY EXPANSION

We turn now to the Furry picture proper, where inter-
actions with the background field are taken into account to
all orders in a0, but emissions and loops are still treated
perturbatively as a series in the coupling e, which is
therefore now assumed to be small.
It has been conjectured in QED that, in a high-intensity

background, the effective coupling is not the fine-structure
constant α, but rather αχ2=3, where the “quantum non-
linearity parameter” χ is

χ ¼ e
m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνkνÞ2

q
; ð17Þ

in which e is the elementary charge, m the electron mass,
Fμν the background field strength, and kμ a probe particle
momentum. χ is essentially the product of particle energy
and field intensity a0. Such a dependence would imply a
breakdown of Furry picture perturbation theory at

FIG. 5. Wigner function WðγÞ for an initially coherent state
with z ¼ 4, as a function of coupling/time. The horizontal/
vertical axes are the real/imaginary parts of γ. The cat state,
evident in the second and third panels, has been observed
experimentally, and measurements of its Wigner function made
[52]. The quadratic terms neglected in (14) lead to squeezing, and
eventually the state completely loses coherence. Without back-
reaction, WðγÞ would not change at all.
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a0 ≫ 1, in the sense that all loop corrections would have
to be resummed. This conjecture follows from the
scaling, with intensity or χ, of some higher loop diagrams
calculated in constant plane wave fields. Such calcula-
tions are extremely challenging, even more so in more
general fields. While the locally constant field approxi-
mation would suggest that the same scaling applies to all
fields (even beyond plane wave [56]), there are exactable
solvable examples which show that the scaling does not
hold for all fields [25], and it does not hold if the
composite parameter χ is made large by going to high
energy [26,27].
In the much simpler JCM, we will be able determine

the asymptotic scalings of all loop diagrams, with any
number of emissions. While we have no energy param-
eter in JCM, and thus no χ, we do have a coupling/field
strength a0 analogous to that in QED; our interest here is
therefore in the asymptotic scaling of diagrams at
high a0.
Some low-loop-order amplitudes can be explicitly cal-

culated by “brute force” expansion of the S-matrix, keeping
track of powers of e and z. For example, writing ξ ¼ a0eiϕ,
we can find the tree-level amplitude for spin flip without
emission, from above,

ð18Þ

its order e2, or one-loop, correction,

ð19Þ

and the tree-level amplitude for flip with one emission,
which is the analog of nonlinear Compton scattering [56]
(for a review see [57]),

ð20Þ

(Figure 6 shows the flip probability based on the above
results; this will be discussed in Sec. V B.) In contrast to
QED, these amplitudes are bounded for large a0; we will
show below that this holds to all loop orders.

A. Furry expansion to all loop orders

For concreteness, we consider the S-matrix element for
spin flip with the emission of n photons (to all loops),
hn;↑jSðeaþ ξÞj0;↓i, but the arguments in this section go
through regardless of incoming/outgoing spin state. As in
field theory, we write the S-matrix in normal-ordered form,
using the formula [58,59]

ða†aÞr ¼
Xr

k¼0

Skrða†Þkak ð21Þ

where Skr is a Stirling number of the second kind. Applying
this to the S-matrix and using the recurrence relation
defining the Stirling numbers, we find

h↑jSðeaþ ξÞj↓i ¼ −i
X∞
r¼0

X∞
k¼0

ð−1Þre2rþ1−2k

ð2rþ 1Þ! × Skþ1
rþ1ðea† þ ξ̄Þkðeaþ ξÞkþ1: ð22Þ

This is the analog of a sum over Feynman diagrams with
2rþ 1 vertices and kþ 1 incoming (k outgoing) photon
legs, each of which can be coupled either to the background
or to an absorbed (emitted) photon. In the former case, the
diagram picks up a factor a0 (up to a phase), and in the
latter a factor e. A spin-flip diagram with 2rþ 1 vertices
and 2kþ 1 external lines has l ≔ r − k contractions, or
loops, and with n emitted photons will be of order e2lþn.

Performing the sum at fixed l then gives us the l-loop
contribution, with all orders in a0 included; this is the Furry
loop expansion. The Stirling number Srþ1−l

rþ1 is then the
analog of a loop integral, as it arises from contractions in
normal-ordering the S-matrix.
We therefore go over to variables r and l, and perform

the sum in (22) at fixed l. To do so we require the photon
contribution to the S-matrix element, viz.

0 1 2 3 4
a0

0.2

0.4

0.6

0.8

1.0

Incl. 1 loop exactExcl. tree

Excl. 1 loop

FIG. 6. Spin flip probability at fixed coupling e ¼ 0.75. As
intensity increases, one-loop corrections are needed to capture the
exact result. For higher intensities, though, emission (nonlinear
Compton scattering) is also required, i.e. the exclusive and
inclusive probabilities differ. At this coupling the order e2

inclusive probability is almost equal to the exact result.
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hnjðea† þ ξ̄Þr−lðeaþ ξÞr−lþ1j0i ¼
ffiffiffiffiffi
n!

p �
r − l
n

�
enξ̄r−l−nξr−lþ1: ð23Þ

Thus, expressing the l-loop amplitude in terms of a0 and e, we have

� loops

n

ð24Þ

in which

Pl;nðrÞ ≔ Srþ1−l
rþ1

�
r − l
n

�
: ð25Þ

The properties of the binomial coefficient and the Stirling
numbers mean that Pl;nðrÞ is a polynomial in r; we will
demonstrate this below, here we just observe that we may
shift Pl;n outside the sum by trading each power of r in the
polynomial for the same power of

D ≔
a0
2

∂
∂a0 ; ð26Þ

acting on ar0 in (24). Doing so allows us to perform the sum
over r, yielding

hn;↑jSðeaþ ξÞj0;↓iðlÞ

¼ −i
ffiffiffiffiffi
n!

p
eiðnþ1Þϕ

�
e
a0

�
2lþn

a0Pl;nðDÞ sin a0
a0

: ð27Þ

This is the l-loop Furry picture spin flip amplitude with
the emission of n photons. We do not believe this
expression has previously appeared in the JCM literature.
It remains to ascertain the leading-order behavior of the
amplitudes as a function of a0. To do so we need some
properties of Pl;n.
In the definition (25) the binomial coefficient is a

polynomial in r of degree n. That the Stirling number is
also a polynomial in r follows from its defining recurrence
relation, Srr ¼ 1 and

Srþ1−l
rþ1 ¼

Xr
k¼0

kSk−l−1k ; l ≥ 1: ð28Þ

For l ¼ 1, (28) is a sum of linear terms, so Srþl−1
rþ1 is a

quadratic in r. For l ¼ 2, (28) is a sum of cubics (and lower
order terms), so Srþl−1

rþ1 is a quartic in r and so on. Thus,
Srþ1−l
rþ1 is in general a polynomial of degree 2l in r and

Pl;nðrÞ is a polynomial of degree 2lþ n in r.

Now, the binomial part of Pl;n has highest-power coef-
ficient 1=n!. Because

P
r
k¼0 k

p ¼ rpþ1=ðpþ 1Þ þOðrpÞ,
the highest-power coefficient in Srþ1−l

rþ1 is 1=ð2lÞ!! ¼
1=ð2ll!Þ. Thus we have the highest-power behavior1

Pl;nðDÞ ¼ D2lþn

2ln!l!
þ � � � ð29Þ

We can finally give the leading-order behavior in a0. The
highest power of a0 comes from the highest-power term in
Pl;nðDÞ, which is of order a2lþn

0 , precisely the inverse of
the prefactor. The derivatives in D2lþn act on sinða0Þ=a0;
the leading-order behavior is given by that term in which all
derivatives act on sinða0Þ. We conclude that, in JCM, l-
loop Furry picture diagrams with n emitted photons have
the leading-order large a0 behavior

∼
en

2nn!
e2l

8ll!

�
sin a0
cos a0

�
þOða−10 Þ ð30Þ

with either sin or cos depending on the diagram in question.
There is no power-law scaling with a0. This can be
contrasted with the conjectured behavior of QED ampli-
tudes at high intensity [19,20,26,27], where successive loop
orders come with higher powers of a0. In JCM, however,
the effective expansion parameter does not acquire an
intensity dependence; it clearly remains e in the Furry
picture. Our arguments extend to amplitudes for no spin
flip, for other initial spin states, and (see the Appendix) to
arbitrary detuning.

B. Inclusive vs exclusive observables
at weak coupling

Consider the regime of weak coupling, e < 1, and strong
field a0 > 1, which mirrors the typical situation in QED.
For e < 1 there can be no collapse or revival, and so the

1The full polynomial may be determined by fitting to Srþ1−l
rþ1

for 2lþ 1 values of r, or recursively using (28) and Faulhaber’s
formula. One may check that P0;0 ¼ 1, P1;0ðrÞ ¼ rðrþ 1Þ=2,
and P0;1ðrÞ ¼ r which recovers the one-loop amplitudes above.
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tree-level background field approximation (Rabi oscilla-
tions) is a good approximation to the full physics of JCM.
Despite this, it is interesting to note the relative importance
of loops and emissions—in the context of αχ2=3, only loop
corrections are studied, whereas physical observables are at
least partially inclusive [60,61].
In Fig. 6 we plot the spin flip probability in several

approximations at e ¼ 0.75, using the amplitudes (18) to
(20). For low field strength a0, the tree-level exclusive
probability (Rabi oscillations) is a good approximation.
For a0 ≃ 1, though, its one-loop correction is needed to
track the exact result. As a0 increases, we see that the
exclusive probability differs from the inclusive, which
includes 1-photon emission. Hence for some a0 spin flip
occurs predominantly through nonlinear Compton scatter-
ing. This suggests that, even for weak coupling, one still
has to account for emission as well as loops.

VI. CONCLUSIONS

We have studied the background field approximation,
and corrections to it, in the Jaynes-Cummings model, as a
toy model of QED. The simplicity of the model allows us to
calculate exactly in all parameters, and this has yielded new
insights of relevance to both JCM and QED.
We have seen that even (the analog of) all-orders loop

corrections in JCM are insufficient to capture collapse/
revival physics. In particular, odd-numbered revivals occur
when the field has experienced the maximal backreaction
available in the model (a π phase shift). Without back-
reaction in the form of significant photon emission, the
revivals are not seen.
It is not strictly possible in JCM to consider backreaction

in the form of depletion, since the Hamiltonian can change
photon number by at most �1. As an extension which
would allow for depletion, we could add a second photon
mode with the same frequency, taking the interaction to be
HI ¼ ðg1a1 þ g2a2Þτþ þH:c.. with couplings g1 and g2.
An SUð2Þ rotation decouples one of the modes, and we
could proceed as above [62]. However, rotating back to the
original representation, the analytic S-matrix becomes
unmanageable for large initial photon numbers [62], and
numerics become expensive because of the greatly enlarged
state space. In principle, though, our methods could be
applied to look at, e.g., how an initial mode-1 coherent state
depletes into mode-2 photons.
We have learnt several lessons for QED. For example

[55] attempts to model backreaction by allowing an initially
coherent state to evolve into another; we have seen that
to improve upon this one could instead use nonclassical

superpositions of coherent states, because in JCM the
system is, between revivals, in a cat state, exhibiting the
quantum nature of backreaction.
We have also considered the Furry expansion of ampli-

tudes in JCM, prompted by the conjectured QED behavior
that the effective coupling becomes intensity-dependent
[19]. We have seen that there is no such behavior in JCM.
The implications for QED are not conclusive. In particular,
JCM has only a finite number of degrees of freedom, and
“loop” contributions do not involve momentum integrals.
There is also no energy variable, so that while we can
identify an intensity parameter corresponding to a0 in
QED, there is no composite parameter like χ; it may
be, due to the lack of universal χ-dependence in QED
[26,27,63–65], that the precise way in which χ enters loop
integrals is important. It would in future work be interesting
to find a more complex, but still solvable, model, which
brings the calculations here closer to QED proper.
Encouragingly, though, our results mean that the con-

jectured breakdown of background field perturbation
theory at high intensity in QED is not a necessary feature
of general quantum theories in background fields.
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APPENDIX: LOOP EXPANSION WITH
NONZERO DETUNING

A nonzero detuning does not change the conclusion
of Sec. V; the same argument goes through, with a few
extra steps that obfuscate the presentation. We will illus-
trate using, as before, the S-matrix element for spin flip,
which is [35]

h↑jSj↓i ¼ −
iaffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2 þ n̂
p sin e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ n̂

p
: ðA1Þ

Here we have defined the dimensionless detuning
Δ ¼ ðω − ωaÞ=2jgj, in the notation used in (1). As for
zero detuning, we expand the sine in its power series,
displace ea ↦ eaþ ξ, normal order using (21), identify a
variable l corresponding to the number of loops, and take
the initial and final photonic states to be j0i and jni,
respectively, using (23). After using the binomial theorem
and a change of summation variables, we arrive at

Ml ≔
eiθffiffiffiffiffi
n!

p hn;↑jSðeaþ ξÞj0;↓iðlÞ ¼
�
e
a0

�
2lþn

a0
X∞
s¼0

X∞
r¼0

ð−1Þsþr

ð2sþ 2rþ 1Þ!
�
sþ r
s

�
ðeΔÞ2se2lþnSr−lþ1

rþ1

�
r − l
n

�
a2r0

ðA2Þ
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for a phase θwhich is unimportant for our purposes. The effect of nonzero detuning is that in any loop diagram, any number
of “two-point vertices” ∝ ðeΔÞ2 can be inserted. Intuitively, this cannot make a diagram grow faster with a0.

As before, we identify Pl;n;s ¼ ðsþr
s Þðr−ln ÞSrþ1

r−lþ1 as a polynomial in r, of degree 2lþ nþ s. Therefore,

Ml ¼
�
e
a0

�
2lþn

a0
X∞
s¼0

Pl;n;sðDÞðeΔÞ2s
X∞
r¼0

ð−1Þsþr

ð2sþ 2rþ 1Þ!a
2r
0 ¼

�
e
a0

�
2lþn

a0
X∞
s¼0

Pl;n;sðDÞ
�
eΔ
a0

�
2s
sinc≥sða0Þ ðA3Þ

where by sin c≥s we mean sinc but with the s first terms of its power series omitted. The s ¼ 0 term recovers the zero-
detuning result, i.e., it goes like sinða0Þ or cosða0Þ plus terms that areOða−10 Þ. By power-counting, the terms with s ≥ 1 are
Oða−20 Þ. Again, other initial and final spin states can be handled in the same way.
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