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We calculate the complete T matrices of pion-nucleon (πN) scattering to the third order in heavy baryon
SU(3) chiral perturbation theory. The baryon mass in the chiral limit M0 and the low-energy constants are
determined by fitting to phase shifts of πN and the experimental octet-baryon masses simultaneously. By
using these constants, we obtain the pion-nucleon sigma terms, σπN ¼ ð34.57� 11.85Þ MeV .We also find
a very small strangeness content of the proton, y ≃ 0. The scattering lengths and the scattering volumes are
predicted, which turn out to be in good agreement with those of other approaches and the available
experimental data. The contributions from the third-order amplitudes are discussed in detail. We find that
the contributions from the internal kaon lines of one-loop diagrams and the counterterms of the third order
are sizeable. In addition, the issue of convergence is also discussed.
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I. INTRODUCTION

Chiral perturbation theory (ChPT), as the effective
field theory of quantum chromodynamics (QCD) at ener-
gies below the scale of chiral symmetry breaking Λχ ∼
1 GeV [1–4], is a suitable framework to compute model-
independent pion-nucleon (πN) scattering amplitude.
However, the relativistic framework for baryons in ChPT
does not naturally provide a simple power-counting scheme
as it does for mesons because of the baryon mass, which
does not vanish in the chiral limit. The first attempt to apply
baryon ChPT to elastic πN scattering was undertaken in
Ref. [5], where the presence of the nucleon mass as a new
large scale in the chiral limit invalided power-counting
arguments in the baryon sector. Over the years, heavy
baryon [6,7] and relativistic (such as infrared regularization
[8] and the extended on-mass-shell scheme [9,10])
approaches have been proposed and developed to solve
the power-counting problem. Relativistic approaches
have made substantial progress in many aspects [11–14].
Particularly, the πN scattering amplitude in the extended-on-
mass shell (EOMS) baryon ChPT has been studied from
SU(2) to SU(3) in detail [15–19] and provided a good
description of the experimental data. However, it is difficult
to combine the study of the nucleon mass and pion-nucleon
scattering data [19]. The heavy baryon chiral perturbation
theory (HBχPT) is still a reasonable and useful tool in the
study of the low-energy hadronic processes. The expansion
in HBχPT is expanded simultaneously in terms ofp=Λχ and
p=M0, wherep represents themesonmomentum or its mass

or the small residue momentum of a baryon in the non-
relativistic limit.
In recent years, the low-energy processes of pions and

nucleons have been studied in detail through SU(2) HBχPT
[20–23]. For processes involving kaons or hyperons, one
has to use three-flavor chiral dynamics. We studied the KN
and K̄N scattering to one-loop order in SU(3) HBχPT by
fitting to partial-wave phase shifts of KN scattering and
obtained reasonable results in Ref. [24]. Then, we extended
this approach to predictions for pseudoscalar meson octet-
baryon scattering in all channels [25]. Unfortunately, we
did not obtain good descriptions for the P-wave phase
shifts of πN scattering at high energies. The reason is that
the contributions from the term q · k of one-loop diagrams
were not considered. Nevertheless, the P-wave phase shifts
of πN scattering are very sensitive to those at high energies.
In this paper, we will calculate the complete T matrices
including the 1=M2

0 corrections for πN scattering to third
order in SU(3) HBχPT. The M0 and the low-energy
constants (LECs) will be determined by fitting to phase
shifts of πN and the experimental octet-baryon masses
simultaneously. The fitting strategy is meaningful to study
πN scattering and related issues. Then, the various σ terms,
the strangeness content of the proton, the scattering lengths,
and the scattering volumes will be predicted by using the
constants. These values are important for the other physical
processes, e.g., σπN relates to the direct detection of dark
matter [26,27]. Therefore, our calculation of πN scattering
in SU(3) HBχPT is interesting. In addition, it is very useful
as a consistency check when considering more general
meson-baryon scattering, but this will involve more LECs.
At present, we do not have enough experimental data to
determine or estimate all of the LECs. For consistency and
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accuracy, we keep our discussion restricted to πN
scattering.
In Sec. II, we summarize the Lagrangians involved in the

evaluation up to the third-order contributions. In Sec. III,
we present the T matrices of the elastic πN scattering. In
Sec. IV, we outline how to calculate phase shifts, scattering
lengths, and scattering volumes. In Sec. V, we explain how
to calculate the baryon masses, the σ terms, and the strange
quark content of the baryons. Section VI contains the
results and discussion and also includes a brief summary.
The Appendix contains the amplitudes from one-loop
diagrams.

II. CHIRAL LAGRANGIAN

In order to calculate the pion-nucleon scattering ampli-
tudes up to order Oðp3Þ in heavy baryon SU(3) chiral
perturbation theory, the corresponding effective Lagrangian
can be written as

Leff ¼ Lð2Þ
ϕϕ þ Lð1Þ

ϕB þ Lð2Þ
ϕB þ Lð3Þ

ϕB: ð1Þ

The traceless Hermitian 3 × 3 matrices ϕ and B include the
pseudoscalar Goldstone boson fields (π, K, K̄, η) and the
octet-baryon fields (N, Λ, Σ, Ξ), respectively. The lowest-
order SU(3) chiral Lagrangians for meson-meson interac-
tion take the form [28]

Lð2Þ
ϕϕ ¼ f2

4
trðuμuμ þ χþÞ; ð2Þ

where f is the pseudoscalar decay constant in the chiral
limit. The axial vector quantity uμ ¼ ifξ†; ∂μξg contains
odd number meson fields. The quantity χþ ¼ ξ†χξ† þ ξχξ
with χ ¼ diagðm2

π; m2
π; 2m2

K −m2
πÞ introduces explicit chi-

ral symmetry breaking terms. We choose the SU(3) matrix

U ¼ ξ2 ¼ expðiϕ=fÞ; ð3Þ

which collects the pseudoscalar Goldstone boson fields.
Note that the so-called sigma parametrization was chosen
in SU(2) HBχPT [20,29].
The lowest-order chiral meson-baryon heavy baryon

Lagrangian [28] is

Lð1Þ
ϕB¼ trðiB̄½v ·D;B�ÞþDtrðB̄Sμfuμ;BgÞþF trðB̄Sμ½uμ;B�Þ;

ð4Þ
where Dμ denotes the chiral covariant derivative

½Dμ; B� ¼ ∂μBþ ½Γμ; B�; ð5Þ
and Sμ is the covariant spin operator

Sμ ¼
i
2
γ5σμνvν; S · v ¼ 0; ð6Þ

fSμ; Sνg ¼ 1

2
ðvμvν − gμνÞ; ½Sμ; Sν� ¼ iϵμνσρvσSρ; ð7Þ

where ϵμνσρ is the completely antisymmetric tensor in four
indices, ϵ0123 ¼ 1. The chiral connection Γμ ¼ ½ξ†; ∂μξ�=2
contains even number meson fields. The axial vector
coupling constants D and F can be determined in fits to
semileptonic hyperon decays [30].
Beyond the leading order, the complete heavy baryon

Lagrangian splits up into two parts,

LðiÞ
ϕB ¼ Lði;rcÞ

ϕB þ Lði;ctÞ
ϕB ði ≥ 2Þ; ð8Þ

where Lði;rcÞ
ϕB denotes 1=M0 expansions with fixed coef-

ficients and stems from the original relativistic Lagrangian.
Here, M0 stands for the (average) octet mass in the chiral

limit. The remaining heavy baryon Lagrangian Lði;ctÞ
ϕB is

proportional to the low-energy constants.
The heavy baryon Lagrangian Lð2;ctÞ

ϕB and Lð3;ctÞ
ϕB can be

obtained from the relativistic effective meson-baryon chiral
Lagrangian [31,32]

Lð2;ctÞ
ϕB ¼ bDtrðB̄fχþ;BgÞþbFtrðB̄½χþ;B�Þþb0trðB̄BÞtrðχþÞþb1trðB̄fuμuμ;BgÞþb2trðB̄½uμuμ;B�Þþb3trðB̄BÞtrðuμuμÞ

þb4trðB̄uμÞtrðuμBÞþb5trðB̄fv ·uv ·u;BgÞþb6trðB̄½v ·uv ·u;B�Þþb7trðB̄BÞtrðv ·uv ·uÞþb8trðB̄v ·uÞtrðv ·uBÞ
þb9trðB̄f½uμ;uν�; ½Sμ;Sν�BgÞþb10trðB̄½½uμ;uν�; ½Sμ;Sν�B�Þþb11trðB̄uμÞtrðuν½Sμ;Sν�BÞ; ð9Þ

Lð3;ctÞ
ϕB ¼ h1trfB̄½χ−;v ·u�Bgþh2trfB̄B½χ−;v ·u�gþh3ðtrfB̄v ·ugtrfχ−Bg− trfB̄χ−gtrfv ·uBgÞ

þh4trfiB̄½v ·u;ðv ·Dv ·uÞ�Bgþh5trfiB̄B½v ·u;ðv ·Dv ·uÞ�gþh6ðtrfiB̄v ·ugtrfðv ·Dv ·uÞBg
− trfiB̄ðv ·Dv ·uÞgtrfv ·uBgÞþh7trfiB̄½uμ;ðv ·DuμÞ�Bgþh8trfiB̄B½uμ;ðv ·DuμÞ�g
þh9ðtrfiB̄uμgtrfðv ·DuμÞBg− trfiB̄ðv ·DuμÞgtrfuμBgÞþh10trfiB̄fuμ;ðv ·DuνÞg½Sμ;Sν�Bg
þh11trfiB̄½Sμ;Sν�Bfuμ;ðv ·DuνÞggþh12trfiB̄uμ½Sμ;Sν�Bðv ·DuνÞgþh13trfiB̄½Sμ;Sν�Bgtrfuμðv ·DuνÞg: ð10Þ

The first three terms of Lð2;ctÞ
ϕB proportional to the LECs bD;F;0 result in explicit symmetry breaking. Note that all LECs bi

and hi have dimension mass−1 and mass−2, respectively.
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The Lð2;rcÞ
ϕB reads

Lð2;rcÞ
ϕB ¼D2−3F2

24M0

trðB̄½v ·u; ½v ·u;B��Þ− D2

12M0

trðB̄BÞtrðv ·uv ·uÞ− DF
4M0

trðB̄½v ·u;fv ·u;Bg�Þ− 1

2M0

trðB̄½Dμ; ½Dμ;B��Þ

þ 1

2M0

trðB̄½v ·D; ½v ·D;B��Þ− iD
2M0

trðB̄Sμ½Dμ;fv ·u;Bg�Þ− iF
2M0

trðB̄Sμ½Dμ; ½v ·u;B��Þ− iF
2M0

trðB̄Sμ½v ·u; ½Dμ;B��Þ

−
iD
2M0

trðB̄Sμfv ·u; ½Dμ;B�gÞ: ð11Þ

Note that since we explicitly work out the various 1=M0

expansions, the last three terms ofLð2;rcÞ
ϕB are not absorbed in

the corresponding LECs bi. The L
ð3;rcÞ
ϕB can also be obtained

from the original relativistic leading-order and next-to-
leading-order Lagrangian in terms of path integrals [7]. It is
not necessary to give the explicit expressions since we only
consider pion-nucleon scattering in this paper. The various
1=M0 expansions in SU(3) and SU(2) HBχPT are con-
sistent.

III. T MATRICES FOR PION-NUCLEON
SCATTERING

We are considering in this work only elastic pion-
nucleon scattering processes πðqÞþNðpÞ→πðq0ÞþNðp0Þ
in the center-of-mass system (CMS). In the total isospin
I ¼ ð1=2; 3=2Þ of the pion-nucleon system, the correspond-
ing T matrix takes the following form:

TðIÞ
πN ¼ VðIÞ

πNðw; tÞ þ iσ · ðq0 × qÞWðIÞ
πNðw; tÞ; ð12Þ

with w ¼ v · q ¼ v · q0 the pion CMS energy, t ¼ ðq0 − qÞ2
the invariant momentum transfer squared, and

q02 ¼ q2 ¼ M2
Np

2
lab

m2
π þM2

N þ 2MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ p2lab
p ; ð13Þ

where plab denotes the momentum of the incident meson in

the laboratory system. Furthermore, VðIÞ
πNðw; tÞ refers to the

non-spin-flip pion-nucleon amplitude, andWðIÞ
πNðw; tÞ refers

to the spin-flip pion-nucleon amplitude.
In the following, we calculate the T matrices order by

order. The velocity four-vector is chosen as vμ ¼ ð1; 0; 0; 0Þ
throughout this paper. The leading-order OðqÞ amplitudes
resulting from diagrams (a) and (b) in Fig. 1 (and their
crossed partners) read

Vð3=2;LOÞ
πN ¼ ðDþ FÞ2

4wf2π
ð2w2 − 2m2

π þ tÞ − w
2f2π

; ð14Þ

Wð3=2;LOÞ
πN ¼ −

ðDþ FÞ2
2wf2π

; ð15Þ

Vð1=2;LOÞ
πN ¼ −

ðDþ FÞ2
2wf2π

ð2w2 − 2m2
π þ tÞ þ w

f2π
; ð16Þ

Wð1=2;LOÞ
πN ¼ −

ðDþ FÞ2
2wf2π

; ð17Þ

where w ¼ ðm2
π þ q2Þ1=2 and t ¼ 2q2ðz − 1Þ in the center-

of-mass system with z ¼ cosðθÞ the cosine of the angle θ
between q and q0. We take the renormalized (physical)
decay constants fπ instead of f (the chiral limit value).
Since we express the T matrices with fπ rather than f, the
difference is of order Oðq3Þ. The obvious renormalized
decay constants to the next leading order can be found in

(a)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(b)

FIG. 1. Tree diagrams in the heavy baryon approach. Dashed
lines represent Goldstone bosons and solid lines represent octet
baryons. The heavy dots refer to vertices from Lð2Þ

ϕB and the filled

squares refer to insertions from Lð3Þ
ϕB. Diagrams with crossed

meson lines are not shown.
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Ref. [33]. Our results are consistent with the amplitudes
calculated in the SU(2) HBχPT [20]. In fact, all of the
amplitudes from tree diagrams are consistent in the SU(3)
and SU(2) HBχPT after the replacement (Dþ F → gA).

At next-to-leading-order Oðq2Þ, one has the contribu-
tions from the diagrams in the second row of Fig. 1
(including crossed diagrams), which involve vertices from

the Lagrangians Lð2;ctÞ
ϕB and Lð2;rcÞ

ϕB . The amplitudes read

Vð3=2;NLOÞ
πN ¼ 1

f2π
½−2C0m2

π þ 2C2w2 þ C1ð2m2
π − tÞ� þ 1

8M0f2π
ð4m2

π − t − 4w2Þ

−
1

8M0w2f2π
ðDþ FÞ2ð6m4

π − 5m2
πtþ t2 þ 3w2t − 4w4Þ; ð18Þ

Wð3=2;NLOÞ
πN ¼ −

2C3

f2π
−

1

4M0f2π
þ 1

4M0w2f2π
ðDþ FÞ2ð−3m2

π þ tþ w2Þ; ð19Þ

Vð1=2;NLOÞ
πN ¼ 1

f2π
½−2C0m2

π þ 2C2w2 þ C1ð2m2
π − tÞ� þ 1

4M0f2π
ð−4m2

π þ tþ 4w2Þ

þ 1

16M0w2f2π
ðDþ FÞ2ð12m4

π − 8m2
πtþ t2 − 16w4Þ; ð20Þ

Wð1=2;NLOÞ
πN ¼ 4C3

f2π
þ 1

2M0f2π
−

1

8M0w2f2π
ðDþ FÞ2ðtþ 4w2Þ: ð21Þ

Here we have introduced the four linear combinations:

C0 ¼ bD þ bF þ 2b0;

C1 ¼ b1 þ b2 þ 2b3;

C2 ¼ b5 þ b6 þ 2b7;

C3 ¼ b9 þ b10 ð22Þ
of the low-energy constants biði ¼ D;F; 0; 1;…; 11Þ in order to get a more compact representation.
At third order Oðq3Þ, one has contributions from diagrams in the third and fourth rows of Fig. 1 (also including crossed

diagrams), which involve vertices from the Lagrangians Lð3;ctÞ
ϕB and Lð3;rcÞ

ϕB . The amplitudes read

Vð3=2;N2LOÞ
πN ¼ 2w

f2π
ð−H1m2

πþH2t−H3w2Þ− w
16M2

0f
2
π
ð2w2−2m2

πþ tÞ

þ 1

16M2
0w

3f2π
ðDþFÞ2ð−18m6

πþ t3þ5w2t2þ4w4tþ2w6þ21m4
πtþ18m4

πw2−8m2
πt2−20m2

πtw2−4m2
πw4Þ

þ w
M0f2π

½−C3tþC2ð−4m2
πþ tþ4w2Þ�; ð23Þ

Wð3=2;N2LOÞ
πN ¼ 2w

f2π
H4 −

w
8M2

0f
2
π
−

1

8M2
0w

3f2π
ðDþ FÞ2ð9m4

π þ t2 þ 3w2t − 2w4 − 6m2
πt − 6m2

πw2Þ − 2C3w
M0f2π

; ð24Þ

Vð1=2;N2LOÞ
πN ¼ 4w

f2π
ðH1m2

π −H2tþH3w2Þþ w
8M2

0f
2
π
ð2w2−2m2

πþ tÞ

−
1

32M2
0w

3f2π
ðDþFÞ2ð−24m6

πþ t3þ5w2t2þ4w4tþ8w6þ24m4
πtþ24m4

πw2−8m2
πt2−20m2

πtw2−16m2
πw4Þ

þ w
M0f2π

½2C3tþC2ð−4m2
πþ tþ4w2Þ�; ð25Þ

Wð1=2;N2LOÞ
πN ¼ 2w

f2π
H4 þ

w
4M2

0f
2
π
þ 1

16M2
0w

3f2π
ðDþ FÞ2ð6m4

π þ t2 þ 3w2t − 2w4 − 6m2
πt − 6m2

πw2Þ þ 4C3w
M0f2π

; ð26Þ
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where

H1 ¼ 2ð2h1 þ h7Þ; H2 ¼ h7;

H3 ¼ 2h4; H4 ¼ h10 þ h13: ð27Þ

At this order, one also has amplitudes from one-loop
diagrams. The nonvanishing one-loop diagrams generated

by the vertices ofLð2Þ
ϕϕ andL

ð1Þ
ϕB are shown in Fig. 2. We have

investigated the amplitudes of pseudoscalar meson octet-
baryon scattering from one-loop diagrams in a previous
paper [25]. However, we did not consider the contributions
from the term q · k of Figs. 2(a)–2(d) and 2(i)–2(l) when
evaluating divergent loop integrals in that paper. The P
waves of pion-nucleon scattering are very sensitive to those
at high energies. In this paper, we consider obviously the
complete amplitudes from one-loop diagrams and also use
dimensional regularization and minimal subtraction to
evaluate divergent loop integrals [29,34–37]. Moreover,
the amplitudes from one-loop diagrams receive contribu-
tions from the replacement of f with fπ in the OðqÞ
magnitude. We also use fπ in π loops, fK in kaon loops,

and fη in η loops. The differences only appear at higher
order. The other procedures are consistent with those in
SU(2)HBχPT [20]. Thus, our amplitudes are consistentwith
those from SU(2) HBχPT when only the internal pion was
considered and the same field U collected from the pseu-
doscalarGoldstone boson fieldswas chosen. In addition, our
results from one-loop diagrams are consistent with the
threshold T matrices (t → 0) obtained in Refs. [38,39].
Putting all amplitudes from different one-loop diagrams
together, we have

Vð3=2;LOOPÞ
ðπNÞ ¼Vð3=2;LOOPÞ

ðπN;πÞ þVð3=2;LOOPÞ
ðπN;KÞ þVð3=2;LOOPÞ

ðπN;ηÞ ; ð28Þ

Wð3=2;LOOPÞ
ðπNÞ ¼ Wð3=2;LOOPÞ

ðπN;πÞ þWð3=2;LOOPÞ
ðπN;KÞ þWð3=2;LOOPÞ

ðπN;ηÞ ;

ð29Þ

Vð1=2;LOOPÞ
ðπNÞ ¼Vð1=2;LOOPÞ

ðπN;πÞ þVð1=2;LOOPÞ
ðπN;KÞ þVð1=2;LOOPÞ

ðπN;ηÞ ; ð30Þ

Wð1=2;LOOPÞ
ðπNÞ ¼ Wð1=2;LOOPÞ

ðπN;πÞ þWð1=2;LOOPÞ
ðπN;KÞ þWð1=2;LOOPÞ

ðπN;ηÞ :

ð31Þ

Note that we present the amplitudes from one-loop diagrams
in terms of different internal mesons (π, K, η). The
corresponding amplitudes can be found in the Appendix.

IV. CALCULATING PHASE SHIFTS AND
SCATTERING LENGTHS

The partial-wave amplitudes fðIÞj ðq2Þ, where j ¼ l� 1=2
refers to the total angular momentum and l to orbital
angular momentum, are obtained from the non-spin-flip
and spin-flip amplitudes by a projection:

fðIÞl�1=2ðq2Þ ¼
MN

8πðwþ EÞ
Z þ1

−1
dzfVðIÞ

πNPlðzÞ

þ q2WðIÞ
πN ½Pl�1ðzÞ − zPlðzÞ�g; ð32Þ

where PlðzÞ denotes the conventional Legendre polyno-
mial, and wþ E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ q2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ q2
p

is the total
center-of-mass energy. For the energy range considered in

this paper, the phase shifts δðIÞl�1=2 are calculated by (also see
Refs. [20,40])

δðIÞl�1=2 ¼ arctan½jqjRefðIÞl�1=2ðq2Þ�: ð33Þ

The scattering lengths for s waves and the scattering
volumes for p waves are obtained by approaching the
threshold [41]

aðIÞl�1=2 ¼ lim
jqj→0

q−2lfðIÞl�1=2ðq2Þ: ð34Þ

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

FIG. 2. Nonvanishing one-loop diagrams contributing at third
chiral order. Diagrams with self-energy correction on external
pion or nucleon lines are not shown.
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V. BARYON MASSES AND σ TERMS

The baryon masses and σ terms have been investigated
up toOðq4Þ in the HBχPT [28,42] and the covariant baryon
chiral perturbation theory [14]. However, for consistency in
our calculation, we take the expressions of baryon masses
and σ terms from Ref. [42] in which a complete calculation
up to orderOðq3Þwas done by using HBχPT. At this order,
the octet-baryonMBðB ¼ N;Λ;Σ;ΞÞ masses take the form

MB ¼ M0 −
1

24π
ðαπBm3

π=f2π þ αKBm
3
K=f

2
K þ αηBm

3
η=f2ηÞ

þ γDBbD þ γFBbF − 2b0ðm2
π þ 2m2

KÞ; ð35Þ
where the chiral limit value f has been replaced with the
physical decay constants (fπ , fK , fη) corresponding to
internal mesons (π, K, η), respectively. The numerical
factors απB, α

K
B , α

η
B, γ

D
B , and γFB can be found in Eq. (6.9a)

of Ref. [42].
The sigma terms are the scalar form factors of baryons

which measure the strength of the various matrix elements
mqq̄q in the baryons. According to the Feynman-Hellman
theorem, the octet-baryon sigma terms σπB and σsB at zero
momentum transfer are given as

σπB ¼ m̂hBðpÞjūuþ d̄djBðpÞi ¼ m̂
∂MB

∂m̂ ; ð36Þ

σsB ¼ mshBðpÞjs̄sjBðpÞi ¼ ms
∂MB

∂ms
; ð37Þ

where m̂ ¼ ðmu þmdÞ=2. Note that we use the leading-
order meson mass formulasm2

π¼2m̂B0,m2
K ¼ðm̂þmsÞB0,

and the Gell-Mann-Okubo relation 4m2
K ¼ 3m2

η þm2
π in

this paper. Then, we have

σπB ¼ −
1

96π
m2

πð6απBmπ=f2π þ 3αKBmK=f2K þ 2αηBmη=f2ηÞ
− 2m2

πðβDBbD þ βFBbF þ 2b0Þ; ð38Þ

σsB ¼ −
1

96π
ð2m2

K −m2
πÞð3αKBmK=f2K þ 4αηBmη=f2ηÞ

− 2ð2m2
K −m2

πÞðθDBbD þ θFBbF þ b0Þ; ð39Þ

where

βDN ¼ 1; βFN ¼ 1; βDΣ ¼ 2; βFΣ ¼ 0;

βDΞ ¼ 1; βFΞ ¼ −1; βDΛ ¼ 2

3
; βFΛ ¼ 0;

θDN ¼ 1; θFN ¼ −1; θDΣ ¼ 0; θFΣ ¼ 0;

θDΞ ¼ 1; θFΞ ¼ 1; θDΛ ¼ 4

3
; θFΛ ¼ 0: ð40Þ

To leading order in the quark masses, the strange quark
content of the baryons (yB) can be calculated:

yB ¼ 2hBðpÞjs̄sjBðpÞi
hBðpÞjūuþ d̄djBðpÞi ¼

m̂
ms

2σsB
σπB

: ð41Þ

VI. RESULTS AND DISCUSSION

Before making predictions, we have to determine the
pertinent constants. Throughout this paper, we use
mπ¼139.57MeV, mK¼493.68MeV, mη ¼ 547.86 MeV,
fπ ¼ 92.07 MeV, fK ¼ 110.03 MeV, fη ¼ 1.2fπ, MN ¼
938.92� 1.29 MeV, MΣ ¼ 1191.01� 4.86 MeV, MΞ ¼
1318.26� 6.30 MeV, and MΛ ¼ 1115.68� 5.58 MeV
[43]. Following Ref. [39], we take the central value of
MN ,MΣ, andMΞ to be the average of the isospin multiplet.
Their error is simply the mass splitting of the isospin
multiplet. The error ofMΛ is added by approximately 0.5%
of the baryon mass because of the typical electromagnetic
correction. We also set the scale λ ¼ 4πfπ ¼ 1.16 GeV as
the chiral symmetry breaking scale. Recently, the axial
vector coupling constant gA was determined to be around
1.27 from the calculation in lattice quantum chromody-
namics [44] and the measurement in the decay of free
neutrons [45]. Therefore, we take the D ¼ 0.80 and F ¼
0.47 as their physical values.
We have two fitting strategies to determine the pertinent

constants. One is using the octet-baryon masses (MN;Σ;Ξ;Λ)
and the phase shifts of πN scattering simultaneously, and
the other is using the phase shifts of πN scattering directly.
First, we determine M0, bD, bF, b0, C1;2;3, and H1;2;3;4 by
using the octet-baryon masses and the phase shifts of the
WI08 solution [46,47] for πN scattering simultaneously.
Since the WI08 solution includes no uncertainties for the
phase shifts, we choose a common uncertainty of �4% to
all phase shifts before the fitting procedure. The data points
of the S and P waves in the range of 50–100 MeV pion lab
momentum are used. Thus, there are 40 (36þ 4) data in
total for this fitting. The resulting M0 and LECs can be
found in fit 1 of Table I. The uncertainty for the respective
parameter is purely statistical, and it measures how much
a particular parameter can be changed while maintain-
ing a good description of the fitted data, as detailed in
Refs. [48,49]. The corresponding S- and P-wave phase
shifts are shown by the solid lines of Fig. 3. Following the
WI08 solution [46], the partial waves are denoted by L2I;2J

with L the angular momentum, I the total isospin, and J the
total angular momentum. Clearly, we obtain a reasonable
M0 value and a good description for all waves below
100 MeV. Furthermore, we can make a reasonable pre-
diction of the σπN value (34.57� 11.85 MeV) that is
consistent with the values (around 30 to 40 MeV) from
the lattice QCD [50–53]. However, it fails to describe the
S31-, S11-, and P11-wave phase shifts above 100 MeV.
But, that does not mean that a good description cannot be
obtained for the phase shifts of πN scattering in SU(3)
HBχPT. In fact, each of the bD;F;0 can be obtained because
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of the use of the octet-baryon masses so that we can make
predictions of the various σ terms. Second, we determine
M0, C0;1;2;3, and H1;2;3;4 by using the phase shifts of the
WI08 solution [46,47] for πN scattering directly. We also
choose a common uncertainty of �4% to all phase shifts.
The data points of the S and P waves in the range of the
50–150MeV pion labmomentum are used. Therefore, there
are 66 data in total for this fitting. The resulting M0 and
LECs are shown in fit 2 of Table I. The uncertainty for the
respective parameter is the same as fit 1. The corresponding
S- and P-wave phase shifts are shown by the dashed lines in
Fig. 3. This time, we obtain a good description of all waves.

In Ref. [25], it fails to describe the P-wave phase shifts at
high energies because we did not consider the complete
contributions from the loop diagrams. For πN scattering, the
other three approaches including the SU(2) HBχPT,
SU(2) EOMS, and SU(3) EOMS were used to fit the
corresponding S- and P-wave phase shifts directly. They
all obtained good descriptions. One can find those results
in Refs. [17,19–21]. However, we can find that the M0

appears incredibly large (1530.20� 290.87). It is larger
than any physical value of the octet-baryon mass. In
addition, the σπN will be negative when we make a
prediction of its value by using the baryon masses and

FIG. 3. Fits and predictions for the WI08 phase shifts versus the pion laboratory momentum jplabj in pion-nucleon (πN) scattering. The
solid lines (fit 1), dashed lines (fit 2), and dotted lines (fit 3) are our results, and the black dots denote the WI08 solutions. Note that the
dashed and dotted lines almost coincide with each other. Fitting for all πN waves are the data in the range of 50–100 MeV for fit 1 and
50–150 MeV for fits 2 and 3. For higher and lower energies, the phase shifts are predicted.

TABLE I. Values of the various fits. For a detailed description of these fits, see the main text. Note that the (a) value is calculated by
bD;F;0, and the (b) value is fixed as input.

Fit 1 Fit 2 Fit 3

M0 (MeV) 963.58� 153.97 1530.20� 290.87 963.58ðbÞ

bD (GeV−1) 0.06� 0.00
bF (GeV−1) −0.48� 0.00
b0 (GeV−1) −0.69� 0.15
C0 (GeV−1) −1.79� 0.30ðaÞ −3.19� 0.23 −3.63� 0.19
C1 (GeV−1) − 6.75� 0.14 −7.39� 0.10 −7.27� 0.09
C2 (GeV−1) 5.30� 0.35 4.81� 0.22 4.34� 0.14
C3 (GeV−1) 1.57� 0.06 1.72� 0.04 1.61� 0.02
H1 (GeV−2) 4.84� 2.57 8.77� 0.95 7.96� 1.00
H2 (GeV−2) 4.68� 0.23 5.17� 0.16 5.35� 0.17
H3 (GeV−2) −6.71� 2.12 −10.25� 0.71 −9.46� 0.72
H4 (GeV−2) −6.69� 0.57 −8.33� 0.31 −7.92� 0.31
χ2=d:o:f. 1.60 1.63 1.86
σπN (MeV) 34.57� 11.85 88.99� 9.10 106.12� 7.36
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the large M0 values as input. We also find that the σπN ¼
88.99� 9.10 is larger than the majority of values (below
80 MeV) in this fit. It seems difficult to properly predict the
σπN value just by using the phase shifts of πN scattering. At
last, we determine C0;1;2;3 and H1;2;3;4 by using the phase
shifts of πN scattering again. All options are the same as fit 2
except that we choose M0 ¼ 963.58, which is the same as
the value from fit 1 as input. The resulting LECs are
presented in fit 3 of Table I. As expected, the other LECs
are different from fit 1 because we obtain a different
description for the phase shifts of πN scattering. The
corresponding S- and P-wave phase shifts are shown by
the dotted lines in Fig. 3. Obviously, we obtain a good
description of all waves. Note that the dotted (fit 3) and the
dashed (fit 2) lines almost coincide with each other except
for the P11 wave at high energies. However, it is not
surprising that σπN appears large (106.12� 7.36 MeV)
because it is inversely proportional to M0 approximately
in this fitting strategy. From the above discussion, we can
make predictions of the various σ terms by using the octet-
baryonmasses and the phase shifts of πN scattering in range
of 50–100 MeVas input. We also obtain a good description
of the phase shifts ofπN scattering below200MeVby fitting
the phase shift directly in SU(3) HBχPT. It will be very
useful as a consistency check for considering more general
meson-baryon scattering.
In the following, we make predictions of the σ terms and

the strangeness content of the octet baryons at the physical
point through the above constants (fit 1) determined by the
πN phase shifts and the octet-baryon masses. The various
values are shown in Table II. The errors are only statistical
because they are obtained from the above constants through

the standard error propagation formula. We obtain large
errors for these values because of the large error of the b0.
Note that the values except for σπN, σπΛ, and σπΣ are shown
as the central values redefined by ranging from zero to the
upper limit because we only study the values at the physical
point. We can make a comparison with the values from
Ref. [14]. The values of σπB, e.g., σπN ¼ ð43� 7Þ MeV,
are consistent with our results within errors, while the
values of σsB like σsN ¼ ð126� 78Þ MeV are larger than
our values. However, the value of σπN can be obtained in
lattice QCD [50–53] and various approaches [26,54–56].
Our result for σπN is consistent with the value (around 30 to
40 MeV) from lattice QCD. Furthermore, we find that the
strangeness content of the octet baryons is smaller than
those from Ref. [14]. Our values are also reasonable
because a small strangeness content of the proton was
found in Ref. [57].
Next, let us apply the above constants (fit 1) to estimate

the pion-nucleon scattering lengths and scattering volumes.
The scattering lengths and the scattering volumes are
obtained by using an incident pion momentum jplabj ¼
10 MeV and approximating their values at the threshold.
We present the values of the scattering lengths and the
scattering volumes in Table III in comparison with the
values of the various analyses. The errors for our results are
also statistical and can be obtained by the standard error
propagation formula from the fitting constants. First, we
observe that our results for both scattering lengths and
scattering volumes are consistent with the ones from SU(2)
HBχPT and SP98 [20]. The values of SP98 are obtained by
the use of dispersion relationswith the help of a fairly precise
tree-level model. In addition, there are two experimental
values for scattering lengths in Table III. The latter,
EXP2015, are obtained by combining with the analysis of
the results from Refs. [58–61], as done in Ref. [26].
However, our results for scattering lengths are still consistent
with those valueswithin errors. As expected, our predictions
for scattering lengths and scattering volumes are reliable.
Now we discuss the contributions from the third-order

amplitudes in detail. First, we can study the contributions
involving different mesons’ (π, K, η) internal lines from
one-loop diagrams at third chiral order, as shown in Fig. 4.

TABLE III. Values of the S- and P-wave scattering lengths and scattering volumes. The errors for our results are obtained by the
standard error propagation formula from the fitting constants.

Our results SU(2) [20] SP98 [20] EXP2001 [62] EXP2015 [26]

a3=20þ (fm) −0.132� 0.042 −0.120 −0.125� 0.002 −0.125� 0.003 −0.122� 0.003

a1=20þ (fm) 0.214� 0.066 0.250 0.250� 0.002 0.250þ0.006
−0.004 0.240� 0.003

a3=21þ (fm3) 0.617� 0.014 0.632 0.595� 0.005 � � � � � �
a1=21þ (fm3) −0.070� 0.010 −0.060 −0.038� 0.008 � � � � � �
a3=21− (fm3) −0.108� 0.012 −0.111 −0.122� 0.006 � � � � � �
a1=21− (fm3) −0.192� 0.018 −0.194 −0.207� 0.007 � � � � � �

TABLE II. The σ terms and the strangeness content of the octet
baryons at the physical point. The errors are obtained by the
standard error propagation formula from the fitting constants.

σπB (MeV) σsB (MeV) yB

N 34.57� 11.85 0.00� 0.00 0.05� 0.05
Λ 15.06� 11.84 15.06� 15.06 0.10� 0.10
Σ 11.95� 11.86 57.44� 57.44 0.48� 0.48
Ξ 2.97� 2.97 66.27� 66.27 2.24� 2.24

BO-LIN HUANG and JING OU-YANG PHYS. REV. D 101, 056021 (2020)

056021-8



For all waves, except for P11 wave, the amplitudes
involving the π internal lines are dominant in the one-loop
contributions. However, the contributions from the K
internal lines are sizeable for all waves. In particular, the
contribution involving the K internal lines for P11 wave is
the leading contribution of the one-loop amplitudes. The
contribution involving the η internal lines is very small. To
some extent, they can be ignored. We also compare the
contributions from the amplitudes of the one-loop diagrams
involving the π internal lines and those from the SU(2)
HBχPT [20]. They are the same for S-wave phase shifts,

while they are the different for P waves. The reason is that
the so-called sigma parametrization U¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ϕ2=f2

p
þ

iτ ·ϕ=f was taken in SU(2) HBχPT. Note that we choose
a different fieldU; see Eq. (3). When the contributions from
the amplitudes of the one-loop diagrams are only consid-
ered, it also suggests that thePwave for πN scattering is very
sensitive to the choice of the field U collected from the
pseudoscalar Goldstone boson fields, while the Swave is the
opposite. However, the phase shifts of πN scattering from
the complete amplitudes are not dependent on the choice
of the field U in all waves. Second, we preform the analysis

FIG. 4. Contributions involving different mesons’ (π, K, η) internal lines from one-loop diagrams at third chiral order are shown as
the real part of the phase shifts. The dashed, dotted, dash-dotted, thick-solid, and thin-solid lines denote the contributions from mesons’
(π, K, η) internal lines and the total contributions from one-loop diagrams of the SU(3) HBχPT and SU(2) HBχPT [20], respectively.

FIG. 5. Contributions from the third-order amplitudes are shown as the real part of phase shifts. The dashed, dotted, dash-dotted, and
solid lines denote the contributions from counterterms, one-loop diagrams, relativistic corrections, and total amplitudes, respectively.
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of the contributions from the third-order amplitudes;
see Fig. 5. For S-wave phase shifts, we find the third-order
counterterm contributions are smaller than the contributions
from one-loop diagrams. These are consistent with the
results estimated from resonance exchange [35,63].
However, for P-wave phase shifts, the situation is compli-
cated. The counterterm contributions are larger than the
contributions from one-loop diagrams in the P11 and P13
waves, while they are almost the same in the P33 wave.
Compared with the other contributions, the contributions
from relativistic corrections are still sizeable in theS31,P11,
and P13 waves. Thus, the relativistic corrections should be
considered completely at this order.

Finally, we discuss the convergence. For the 1=M0

expansion (M0 ¼ 963.58 MeV) of πN phase shifts, we
obtain a good convergence, as shown in Fig. 6. The 1=M2

0

contributions are very small, especially for P-wave phase
shifts. To some extent, they can be ignored. However, a
good convergence has not been received for chiral expan-
sions up to third order; see Fig. 7 in which the constants are
from fit 1. In the S-wave phase shifts, the second- and third-
order contributions are small up to 100 MeV. For higher
energies, there are sizeable cancellations between the
second and third order. The same property was found in
SU(2) HBχPT [20]. For the P31 wave, the first-order
contributions give a good description of the empirical phase

FIG. 6. Convergence properties for the 1=M0 expansion of πN phase shifts. The dashed, dotted, and solid lines denote the 1=M0,
1=M2

0, and the total of their corrections, respectively.

FIG. 7. Convergence properties for the πN phase shifts. The dashed, dotted, and dashed-dotted lines denote the first, second, and third
order, respectively. The solid lines give the sum of the first-, second-, and third-order contributions.
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shifts. That means the second- and third-order contributions
should be canceled out in any perturbative calculations up
to third order. For the P11 and P13waves, the situations are
similar to the P31 wave at smaller energies. We obtain a
good convergence in the P33 wave. The third-order
contribution is very small. According to all of these results,
a higher-order Oðq4Þ calculation is needed.
In summary, we calculated the complete T matrices

for pion-nucleon scattering to the third order in SU(3)
HBχPT. We fitted the WI08 phase shifts of πN scattering
and the experimental octet-baryon masses to determine
the M0 and the LECs. This led to a good description of the
phase shifts below 100 MeV pion momentum in the
laboratory. We also obtained theM0 and LEC uncertainties
through statistical regression analysis. We predicted the σ
term, σπN ¼ ð34.57� 11.85Þ MeV, and the result is in fair
agreement with that of lattice QCD. The other σ terms for
octet baryons are also predicted in our calculations and
reasonable results were obtained. With the two σ-term
values, σπN and σsN , we found a very small strangeness
content of the proton, yN ≃ 0. The value is reasonable and
agrees with the recent result. A good description for the
phase shifts of πN scattering below 200 MeV was also
obtained by fitting to the phase shifts directly. It will be very
useful as a consistency check to consider the other meson-
baryon scattering. We calculated the scattering lengths and

scattering volumes, which turned out to be in good agree-
ment with those of the approaches and available exper-
imental data. We discussed the contributions from the
third-order amplitudes and found the contributions from
the K internal lines of the one-loop diagrams and the
counterterms of the third order are sizeable. Finally, we
discussed the convergence of the 1=M0 expansion and
chiral expansion for πN scattering. We expect to obtain
improved results for πN scattering in forthcoming higher-
order calculations.
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APPENDIX: ONE-LOOP AMPLITUDES

In this Appendix, we present the amplitudes from
nonvanishing one-loop diagrams after renormalizing f to
fπ in the leading-order terms. In terms of different internal
mesons (π, K, η), the renormalized one-loop chiral cor-
rections are given by

Vð3=2;LOOPÞ
ðπN;πÞ ¼ 1

288π2w2f4π
ðDþ FÞ4ð2w2 − 2m2

π þ tÞ
�
−12πm3

π þ 6wm2
π − 5w3 þ 6w3 ln

mπ

λ

þ 6ðw2 −m2
πÞJπðwÞ þ 9iπðw2 −m2

πÞ3=2
�

−
1

576π2f4π
ðDþ FÞ2

�
−18πm3

π þ 36πmπt − 48wm2
π þ 13wt −

9πð2m4
π − 5m2

πtþ 2t2Þffiffiffiffiffi
−t

p arctan

ffiffiffiffiffi
−t

p
2mπ

− 30wt ln
mπ

λ
þ 6wð8m2

π − 5tÞIπðtÞ
�

þ w
576π2f4π

�
24m2

π − 5t − 36w2 þ 6ð12w2 þ tÞ lnmπ

λ
− 6ð4m2

π − tÞIπðtÞ þ 72wJπðwÞ þ 36iπw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −m2

π

q �
;

ðA1Þ

Wð3=2;LOOPÞ
ðπN;πÞ ¼ 1

144π2w2f4π
ðDþ FÞ4

�
6πm3

π − 6wm2
π − w3 − 6w3 ln

mπ

λ
− 6ðw2 −m2

πÞJπðwÞ − 3iπðw2 −m2
πÞ3=2

�

þ 1

64πf4π
ðDþ FÞ2

�
−2mπ þ

t − 4m2
πffiffiffiffiffi

−t
p arctan

ffiffiffiffiffi
−t

p
2mπ

�
; ðA2Þ
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Vð3=2;LOOPÞ
ðπN;KÞ ¼ 1

1728π2w2f2πf2K
ð2w2 − 2m2

π þ tÞ
�
−3ð19D4 þ 12D3F þ 58D2F2 − 36DF3 þ 75F4Þπm3

K

− ð67D4 − 36D3F þ 26D2F2 þ 108DF3 þ 123F4Þw3 þ 6iπðD2 þ 6DF − 3F2Þ2ðw2 −m2
KÞ3=2

þ 6ð17D4 − 12D3F − 2D2F2 þ 36DF3 þ 57F4Þ
�
wm2

K þ w3 ln
mK

λ
þ ðw2 −m2

KÞJKðwÞ
��

þ 1

3456π2f2πf2K

�
−9πð5D2 − 6DF þ 9F2Þ

�
2mKtþ

ffiffiffiffiffi
−t

p ðt − 2m2
KÞ arctan

ffiffiffiffiffi
−t

p
2mK

�

þ ðD2 − 6DF − 3F2Þw
�
−48m2

K þ 13t − 30t ln
mK

λ
þ 6ð8m2

K − 5tÞIKðtÞ
��

þ w
1152π2f2πf2K

�
24m2

K − 5t − 36w2 þ 6ð12w2 þ tÞ lnmK

λ
− 6ð4m2

K − tÞIKðtÞ

þ 72wJKðwÞ þ 72iπw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 −m2

K

q �
; ðA3Þ

Wð3=2;LOOPÞ
ðπN;KÞ ¼ 1
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�
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p
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�
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2mπ −
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πffiffiffiffiffi
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p arctan

ffiffiffiffiffi
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2mπ
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Vð1=2;LOOPÞ
ðπN;KÞ ¼ 1

1728π2w2f2πf2K
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πþ tÞ
�
−3ð19D4þ12D3Fþ58D2F2−36DF3þ75F4Þπm3
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þ3iπð53D4−12D3Fþ54D2F2þ36DF3þ189F4Þðw2−m2
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−12ð17D4−12D3F−2D2F2þ36DF3þ57F4Þ
�
wm2

Kþw3 ln
mK

λ
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KÞJKðwÞ
��

þ 1

3456π2f2πf2K

�
−9πð5D2−6DFþ9F2Þ

�
2mKtþ
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p
2mK
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��

þ w
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�
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;

ðA9Þ

Wð1=2;LOOPÞ
ðπN;KÞ ¼ −

1

2592π2w2f2πf2K

�
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K
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�
wm2

K þ w3 ln
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ðπN;ηÞ ¼ 1
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�
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Wð1=2;LOOPÞ
ðπN;ηÞ ¼ 1
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ðD−3FÞ2ðDþFÞ2

�
−6πm3

η−6wm2
η−w3−6w3 ln

mη
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�
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where

IϕðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ϕ

t
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ln

0
B@
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4m2
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q
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p

2mϕ

1
CA; ðA13Þ
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ϕ

q
ln

0
B@ w
mϕ

þ
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ϕ

− 1

s 1
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with ϕ ¼ π, K, η.
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