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Pion-nucleon scattering to O(p®) in heavy baryon SU(3) chiral
perturbation theory
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We calculate the complete 7" matrices of pion-nucleon (zN) scattering to the third order in heavy baryon
SU(3) chiral perturbation theory. The baryon mass in the chiral limit M, and the low-energy constants are
determined by fitting to phase shifts of z/N and the experimental octet-baryon masses simultaneously. By
using these constants, we obtain the pion-nucleon sigma terms, o,y = (34.57 + 11.85) MeV . We also find
a very small strangeness content of the proton, y ~ 0. The scattering lengths and the scattering volumes are
predicted, which turn out to be in good agreement with those of other approaches and the available
experimental data. The contributions from the third-order amplitudes are discussed in detail. We find that
the contributions from the internal kaon lines of one-loop diagrams and the counterterms of the third order
are sizeable. In addition, the issue of convergence is also discussed.
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I. INTRODUCTION

Chiral perturbation theory (ChPT), as the effective
field theory of quantum chromodynamics (QCD) at ener-
gies below the scale of chiral symmetry breaking A, ~
1 GeV [1-4], is a suitable framework to compute model-
independent pion-nucleon (zN) scattering amplitude.
However, the relativistic framework for baryons in ChPT
does not naturally provide a simple power-counting scheme
as it does for mesons because of the baryon mass, which
does not vanish in the chiral limit. The first attempt to apply
baryon ChPT to elastic zNV scattering was undertaken in
Ref. [5], where the presence of the nucleon mass as a new
large scale in the chiral limit invalided power-counting
arguments in the baryon sector. Over the years, heavy
baryon [6,7] and relativistic (such as infrared regularization
[8] and the extended on-mass-shell scheme [9,10])
approaches have been proposed and developed to solve
the power-counting problem. Relativistic approaches
have made substantial progress in many aspects [11-14].
Particularly, the zN scattering amplitude in the extended-on-
mass shell (EOMS) baryon ChPT has been studied from
SU(2) to SU(3) in detail [15-19] and provided a good
description of the experimental data. However, it is difficult
to combine the study of the nucleon mass and pion-nucleon
scattering data [19]. The heavy baryon chiral perturbation
theory (HByPT) is still a reasonable and useful tool in the
study of the low-energy hadronic processes. The expansion
in HByPT is expanded simultaneously in terms of p/A, and
p/M,, where p represents the meson momentum or its mass
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or the small residue momentum of a baryon in the non-
relativistic limit.

In recent years, the low-energy processes of pions and
nucleons have been studied in detail through SU(2) HByPT
[20-23]. For processes involving kaons or hyperons, one
has to use three-flavor chiral dynamics. We studied the KN
and KN scattering to one-loop order in SU(3) HByPT by
fitting to partial-wave phase shifts of KN scattering and
obtained reasonable results in Ref. [24]. Then, we extended
this approach to predictions for pseudoscalar meson octet-
baryon scattering in all channels [25]. Unfortunately, we
did not obtain good descriptions for the P-wave phase
shifts of zN scattering at high energies. The reason is that
the contributions from the term ¢ - k of one-loop diagrams
were not considered. Nevertheless, the P-wave phase shifts
of ZN scattering are very sensitive to those at high energies.
In this paper, we will calculate the complete 7 matrices
including the 1/M3 corrections for zN scattering to third
order in SU(3) HByPT. The M, and the low-energy
constants (LECs) will be determined by fitting to phase
shifts of zN and the experimental octet-baryon masses
simultaneously. The fitting strategy is meaningful to study
zN scattering and related issues. Then, the various ¢ terms,
the strangeness content of the proton, the scattering lengths,
and the scattering volumes will be predicted by using the
constants. These values are important for the other physical
processes, e.g., o,y relates to the direct detection of dark
matter [26,27]. Therefore, our calculation of zN scattering
in SU(3) HByPT is interesting. In addition, it is very useful
as a consistency check when considering more general
meson-baryon scattering, but this will involve more LECs.
At present, we do not have enough experimental data to
determine or estimate all of the LECs. For consistency and
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accuracy, we keep our discussion restricted to zN
scattering.

In Sec. II, we summarize the Lagrangians involved in the
evaluation up to the third-order contributions. In Sec. III,
we present the 7 matrices of the elastic zN scattering. In
Sec. IV, we outline how to calculate phase shifts, scattering
lengths, and scattering volumes. In Sec. V, we explain how
to calculate the baryon masses, the ¢ terms, and the strange
quark content of the baryons. Section VI contains the
results and discussion and also includes a brief summary.
The Appendix contains the amplitudes from one-loop
diagrams.

II. CHIRAL LAGRANGIAN

In order to calculate the pion-nucleon scattering ampli-
tudes up to order O(p?) in heavy baryon SU(3) chiral
perturbation theory, the corresponding effective Lagrangian
can be written as

Lo = Lo+ LY5+ L) + LG, (1)

The traceless Hermitian 3 x 3 matrices ¢ and B include the
pseudoscalar Goldstone boson fields (z, K, K, n) and the
octet-baryon fields (N, A, Z, E), respectively. The lowest-
order SU(3) chiral Lagrangians for meson-meson interac-
tion take the form [28]

55/12(/2 %tr(u w+y.), (2)
where f is the pseudoscalar decay constant in the chiral
limit. The axial vector quantity w* = i{&", O*E} contains
odd number meson fields The quantity Xy = EpE + &y
with y = diag(m2, m2,2m% — m2) introduces explicit chi-
ral symmetry breaking terms. We choose the SU(3) matrix

U =& = exp(ip/f). (3)

(2,ct)
E

which collects the pseudoscalar Goldstone boson fields.
Note that the so-called sigma parametrization was chosen
in SU(2) HByPT [20,29].

The lowest-order chiral meson-baryon heavy baryon
Lagrangian [28] is

Ly =t(iB[v-D.B])+ Dt(BS,{u" B})+ Fte(BS,[u" B]),

(4)

where D, denotes the chiral covariant derivative
[D,.B] = 0,B + [, B], (5)

and §, is the covariant spin operator
i
Sﬂ:§y50ﬂ v S-v=0, (6)
1 .

{Sw Su} - 5 (U;lvv - g/u/)’ [S;u Su] - leﬂuapvﬁspv (7)
where €,,,,, is the completely antisymmetric tensor in four

indices, €y1»3 = 1. The chiral connection I'* = [T, 9#¢]/2
contains even number meson fields. The axial vector
coupling constants D and F' can be determined in fits to
semileptonic hyperon decays [30].
Beyond the leading order, the complete heavy baryon
Lagrangian splits up into two parts,
Loy =Ly + Lys" (i22), (8)
where E)B denotes 1/M, expansions with fixed coef-

ficients and stems from the original relativistic Lagrangian.

Here, M, stands for the (average) octet mass in the chiral

limit. The remaining heavy baryon Lagrangian E{:Bd is

proportional to the low-energy constants

The heavy baryon Lagrangian E(/,B Y and £¢3Bm can be
obtained from the relativistic effective meson-baryon chiral
Lagrangian [31,32]

= bptr(B{y,.B}) + bptr(B[y, . B]) + botr(BB)tr(y ;) + bytr(B{u*u,, B}) + bytr(B[u*u,, B]) + bstr(BB)tr(uu, )

+ bytr(But )tr(u, B) + bstr(B{v - uv - u,B}) + betr(B[v- uv - u, B]) + bstr(BB)tr(v - uv - u) + bgtr(Bv - u)tr(v - uB)

+ botr(B{[u", u”].[S,,. S,]B}) + biotr(B[u”

(3.ct)
£{/)B

*].[8,,.8,]B]) + by tr(But )tr(

u[S,. S,]1B), ©)

hitt{By_,v-u|B} + hott{BB[y_,v-u]} + h3(tr{Bv-u}tr{y_B} —tr{By_}tr{v-uB})

+hyte{iB[v-u,(v-Dv-u)|B} + hstr{iBB[v-u,(v-Dv-u)|} + he(tr{iBv-u}tr{(v-Dv-u)B}

—tr{iB(v-Dv-u)}tr{v-uB})+ hstr{iBlu

- (0-Dut)|B} + hgtr{iBB[u

ur (v-Du)]}

+ hy(tr{iBu, }tr{(v- Du*)B} —tr{iB(v- Du*) }tr{u,B}) + hyotr{iB{u*, (v- Du*)}[S,.S,]B}

+h11tr{l.B[Sﬂ

S,)B{u*,(v-Du*)}} + hyptr{iBu"(S,.S,|B(v-Du*)} + hy;tr{iB[S,

S, |B}tr{u(v-Du")}. (10)

The first three terms of £ B proportlonal to the LECs b o result in explicit symmetry breaking. Note that all LECs b;

-2

and h; have dimension mass™' and mass™2, respectively.
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The Etfém) reads

o D?*=3F* D? - DF 1 -
Ty ):Tmtr(g[v.u,[v-u,za]]) - 12M0tr(BB)tr(v-uv-u) —mu( [v-u,{v-u.BY]) —Wtr(B[Dﬂ, (D", B]])
L (Blo-D.[oD.BY) = 22 te(BS, [DF. {01, BY]) — L te(BS, (D, [v- 1. B])) — - te(BS, [v-u. D", B]))
— v-D,|v-D, - v-u, - v-u, - u,|DH,
2M, 2M, 2M, 2M,
iD .
—2—Motr(BS,,{v-u, [DH,B]}). (11)
Note that since we explicitly work out the various 1/M 2
: (2.¢) - yapro (D F) Qw2 —2m2 4 1)+~ (16)
expansions, the last three terms of £, are not absorbed in N 2wf2 7 2
the corresponding LECs b;. The £ SBrC can also be obtained
from the original relativistic leading-order and next-to- w210 _ _ (D +F)? (17)
leading-order Lagrangian in terms of path integrals [7]. It is N 2wfz

not necessary to give the explicit expressions since we only
consider pion-nucleon scattering in this paper. The various
1/M, expansions in SU(3) and SU(2) HByPT are con-
sistent.

III. T MATRICES FOR PION-NUCLEON
SCATTERING

We are considering in this work only elastic pion-
nucleon scattering processes z(q)+N(p)—z(q")+N(p')
in the center-of-mass system (CMS). In the total isospin
I = (1/2,3/2) of the pion-nucleon system, the correspond-
ing T matrix takes the following form:

I I . I
Tow =Vin(w.) +ic- (¢ x Wi (w.1).  (12)
withw = v g = v - ¢’ the pion CMS energy, t = (¢’ — q)*
the invariant momentum transfer squared, and

2.2
2 Mypia,

:q g y
m2 + M% + 2My+\/m% + p2,

where p;,;, denotes the momentum of the incident meson in

the laboratory system. Furthermore, fo]\),(w, t) refers to the

non-spin-flip pion-nucleon amplitude, and WETIA), (w, t) refers

to the spin-flip pion-nucleon amplitude.

In the following, we calculate the 7 matrices order by
order. The velocity four-vector is chosen as v* = (1,0, 0,0)
throughout this paper. The leading-order O(g) amplitudes
resulting from diagrams (a) and (b) in Fig. 1 (and their
crossed partners) read

(13)

D+ F)?
Grao) DIV o - (4)
4wfz 2f%
D+ F)?
Wfr%z’LO) :_( 2;V|—f2) ) (15)

where w = (m2 + ¢*)"/? and t = 2¢*(z — 1) in the center-
of-mass system with z = cos(6) the cosine of the angle 6
between g and ¢’. We take the renormalized (physical)
decay constants f, instead of f (the chiral limit value).
Since we express the T matrices with f, rather than f, the
difference is of order O(g?). The obvious renormalized
decay constants to the next leading order can be found in

(X) @ (m) (n)

FIG. 1. Tree diagrams in the heavy baryon approach. Dashed
lines represent Goldstone bosons and solid 11nes represent octet
baryons. The heavy dots refer to vertices from £? o5 and the filled
squares refer to insertions from £¢B Diagrams with crossed
meson lines are not shown.
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Ref. [33]. Our results are consistent with the amplitudes
calculated in the SU(2) HByPT [20]. In fact, all of the
amplitudes from tree diagrams are consistent in the SU(3)
and SU(2) HByPT after the replacement (D + F — g,).

At next-to-leading-order O(g?), one has the contribu-
tions from the diagrams in the second row of Fig. 1

(including crossed diagrams) which involve vertices from
ct) (2,rc)

the Lagrangians % g5 and ! ¢p - The amplitudes read

1
3/2,NLO
yG/2NL0) _ = [ 2Com2 + 2C,w? + C, (2m2 — 1)) juwmmgr — (= dw?)
1
_W(D+F)2(6mﬁ—5m,2rt+t2+3w2t—4w4), (18)
oW Jx
(3/2.NLO) 2C3 1 ) ) )
v =T D+ F)}(=3m + 1 +w?), 19
. 72 4Mof,%+4Mow2f,%( PR ) (19)
1/2.NLO 1 1
1
+ 16M W2f2 (D + F)Z(IZmi - Sm;%t + t2 - 16W4)7 (20)
0 T
(1/2NL0) _ 4C3 1 1 ) )
4 = - D + F)“(t + 4w*). 21
i T TV AR (1)
Here we have introduced the four linear combinations:
C() = bD + bF +2b0,
Cl - bl + b2 +2b3,
Cy = bs + bg + 2b5,
C3 - bg + blO (22)

of the low-energy constants b;(i = D, F,0, 1, ...,
At third order O(¢?

11) in order to get a more compact representation.
), one has contributions from diagrams in the third and fourth rows of Fig. 1 (also including crossed

diagrams), which involve vertices from the Lagrangians E((/f; and E{,B The amplitudes read
(3/2N2L0) 2w 2 w 2 2
\%4 -H Hyt—H ———— 2w =2 t
N fz( lm + 2 SW) 16M%f,2,(w mﬂ'+)
—I—m (D+ F)?(=18m8 + > + 5w + 4wt + 2w0 + 21mt 1 + 18miw? — 8m21> — 20m2tw? — dmZw?)
- 0f2[ Cst+ Cy(—4m2 +t+4w?)), (23)
(3/2N2L0) _ 2w w 1 200md 1 12 2 4 2 2,2y _ 2C3w
W, H - D + F)*(9m; + t© + 3wt = 2w"* — 6mzt — 6mzw~) — , (24
T T T A ha Y
4w
yU2NLo) = (Hym2 — Hyt + Hyw?) + f — - (2w2 —2m2 +1)
o) m
1
—m (D + F)?(=24m8 + 1 + 5w 1> + 4wt + 8wS + 24mitt + 24miw? — 8m21> — 20m2tw? — 16m2w*)
+— sz [2C31+ Cy(—4m2 + 1t +4n?)], (25)
(1/2N2L0) 2w w ) 4C3w
w H D+ F)~(6 7+ 3wt — —6m;t—6 , (26
N -7 4+4M(2)f%+16M%w3f2( + F)?(6mg + 1% + 3w? mat — 6m? )+M0f72[ (26)
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where

Hl :2(2h1+h7), H2:h7,
H3 =2hy, Hy = hyo+ hys. (27)

At this order, one also has amplitudes from one-loop
diagrams. The nonvanishing one-loop diagrams generated

by the vertices of Ef;(g and E;}; are shown in Fig. 2. We have

investigated the amplitudes of pseudoscalar meson octet-
baryon scattering from one-loop diagrams in a previous
paper [25]. However, we did not consider the contributions
from the term g - k of Figs. 2(a)-2(d) and 2(i)-2(1) when
evaluating divergent loop integrals in that paper. The P
waves of pion-nucleon scattering are very sensitive to those
at high energies. In this paper, we consider obviously the
complete amplitudes from one-loop diagrams and also use
dimensional regularization and minimal subtraction to
evaluate divergent loop integrals [29,34-37]. Moreover,
the amplitudes from one-loop diagrams receive contribu-
tions from the replacement of f with f, in the O(q)
magnitude. We also use f, in z loops, fx in kaon loops,

- - , ’
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Ne Ne
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S [ S ’ N 1 ’ N
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FIG. 2. Nonvanishing one-loop diagrams contributing at third
chiral order. Diagrams with self-energy correction on external
pion or nucleon lines are not shown.

and f, in 7 loops. The differences only appear at higher
order. The other procedures are consistent with those in
SU(2) HByPT [20]. Thus, our amplitudes are consistent with
those from SU(2) HByPT when only the internal pion was
considered and the same field U collected from the pseu-
doscalar Goldstone boson fields was chosen. In addition, our
results from one-loop diagrams are consistent with the
threshold 7' matrices (¢t — 0) obtained in Refs. [38,39].
Putting all amplitudes from different one-loop diagrams
together, we have

(3/2.LOOP) (3/2.LOOP)

(3/2.LOOP) _ +,(3/2.LOOP)
Viw)  =Viww Ve Vi o (28)
(3/2LOOP) __ 1-/(3/2.LOOP) (3/2.LOOP) (3/2.LOOP)
W(ﬂN) - W(ﬂN.ﬂ) + W(nN.K) + W(ﬂN,i’]) ’
(29)
(1/2LOOP) _ «,(1/2.LOOP) | +,(1/2LOOP) | «,(1/2.LOOP)
Y{/2LOOR) _ {1/2L00F) | /(1/2LO0F)  /(1/2L00R) (3
(1/2LOOP) _ 1:,(1/2.LOOP) (1/2.LOOP) (1/2.LOOP)
Wi =Wavn Wk Wi
(31)

Note that we present the amplitudes from one-loop diagrams
in terms of different internal mesons (7, K, 7). The
corresponding amplitudes can be found in the Appendix.

IV. CALCULATING PHASE SHIFTS AND
SCATTERING LENGTHS

The partial-wave amplitudes fls-l) (q%),where j = 14+1/2
refers to the total angular momentum and [/ to orbital
angular momentum, are obtained from the non-spin-flip
and spin-flip amplitudes by a projection:

My +1 (1)
i\ — dz{V P
87z(w+E)/_1 H{VanPil2)

+ WP (2) - 2Pi(2)], (32)

)
flil/z(qz)

where P;(z) denotes the conventional Legendre polyno-

mial, and w + E = \/m2 + % + /M3 + ¢* is the total
center-of-mass energy. For the energy range considered in

this paper, the phase shifts 6521 /» are calculated by (also see
Refs. [20,40])

I 1
8, = arctan(lg|Ref\, ,(g?)]. (33)

The scattering lengths for s waves and the scattering
volumes for p waves are obtained by approaching the
threshold [41]

1 . — I
aihy = limg @) (34)
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V. BARYON MASSES AND ¢ TERMS

The baryon masses and ¢ terms have been investigated
up to O(g*) in the HByPT [28,42] and the covariant baryon
chiral perturbation theory [14]. However, for consistency in
our calculation, we take the expressions of baryon masses
and o terms from Ref. [42] in which a complete calculation
up to order O(g?) was done by using HByPT. At this order,
the octet-baryon Mz(B = N, A, X, E) masses take the form

1
Mg =M, —m(aﬁmi/ﬁz + agmy/fx + apmy/fy)

+78bp + vEbr — 2bo(m3 + 2m7), (35)

where the chiral limit value f has been replaced with the
physical decay constants (f,, fg, f,) corresponding to
internal mesons (7, K, #), respectively. The numerical
factors o, aX, %, y2, and y% can be found in Eq. (6.9a)
of Ref. [42].

The sigma terms are the scalar form factors of baryons
which measure the strength of the various matrix elements
m,qq in the baryons. According to the Feynman-Hellman
theorem, the octet-baryon sigma terms o, and o, at zero
momentum transfer are given as

025 = (B(p) i+ d|B(p)) = DI (36)
o5 = my(B(p)|5s|B(p)) = m 22 (37)

s bl
Omg

where m = (m, + my)/2. Note that we use the leading-
order meson mass formulas m2=2mB,, m% = (i + m)B,,
and the Gell-Mann-Okubo relation 4m% = 3m3 + m2 in
this paper. Then, we have

1

O = = g ME(6hm,/ [3 4 3alm/ [ + 2aym, / 13)
—2m%(BRbp + Phbr + 2by). (38)

1

O = —@ (Zm%( - mz%)@“ﬁ’"l(/f%{ + 4a’113m7]/f%)
—2(2m% — m2)(602bp + 05bp + by), (39)

where

b =1, ph =1, L =2, pE =0,
2
p2=1.  pi=-1. B=3.  B=0
0b =1, o = —1, 62 =0, 0f =0,

=1 oE=1, . 0f=0.  (40)

To leading order in the quark masses, the strange quark
content of the baryons (yz) can be calculated:

2(B(p)I5s|B(p))  _ 120,
(B(p)|au+ dd|B(p)) mg 6.5

B= (41)

VI. RESULTS AND DISCUSSION

Before making predictions, we have to determine the
pertinent constants. Throughout this paper, we use
m,=139.57TMeV, mg=493.68MeV, m, = 547.86 MeV,
fr=292.07 MeV, fx=110.03 MeV, f, = 1.2f,, My =
938.92 +£ 1.29 MeV, My = 1191.01 £ 4.86 MeV, Mz =
1318.26 = 6.30 MeV, and M, = 1115.68 £ 5.58 MeV
[43]. Following Ref. [39], we take the central value of
My, Ms, and Mz to be the average of the isospin multiplet.
Their error is simply the mass splitting of the isospin
multiplet. The error of M, is added by approximately 0.5%
of the baryon mass because of the typical electromagnetic
correction. We also set the scale 1 = 4zf, = 1.16 GeV as
the chiral symmetry breaking scale. Recently, the axial
vector coupling constant g, was determined to be around
1.27 from the calculation in lattice quantum chromody-
namics [44] and the measurement in the decay of free
neutrons [45]. Therefore, we take the D = 0.80 and F =
0.47 as their physical values.

We have two fitting strategies to determine the pertinent
constants. One is using the octet-baryon masses (My x =)
and the phase shifts of zN scattering simultaneously, and
the other is using the phase shifts of z/N scattering directly.
First, we determine M, bp, bg, by, C1,3, and Hy 534 by
using the octet-baryon masses and the phase shifts of the
WIOS8 solution [46,47] for zN scattering simultaneously.
Since the WIOS8 solution includes no uncertainties for the
phase shifts, we choose a common uncertainty of +4% to
all phase shifts before the fitting procedure. The data points
of the S and P waves in the range of 50-100 MeV pion lab
momentum are used. Thus, there are 40 (36 + 4) data in
total for this fitting. The resulting M, and LECs can be
found in fit 1 of Table I. The uncertainty for the respective
parameter is purely statistical, and it measures how much
a particular parameter can be changed while maintain-
ing a good description of the fitted data, as detailed in
Refs. [48,49]. The corresponding S- and P-wave phase
shifts are shown by the solid lines of Fig. 3. Following the
WIO08 solution [46], the partial waves are denoted by Ly, »;
with L the angular momentum, / the total isospin, and J the
total angular momentum. Clearly, we obtain a reasonable
M, value and a good description for all waves below
100 MeV. Furthermore, we can make a reasonable pre-
diction of the o,y value (34.57 £11.85 MeV) that is
consistent with the values (around 30 to 40 MeV) from
the lattice QCD [50-53]. However, it fails to describe the
S31-, S11-, and P11-wave phase shifts above 100 MeV.
But, that does not mean that a good description cannot be
obtained for the phase shifts of zN scattering in SU(3)
HByPT. In fact, each of the bp r can be obtained because
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TABLE I.  Values of the various fits. For a detailed description of these fits, see the main text. Note that the (a) value is calculated by
bp ro, and the (b) value is fixed as input.

Fit 1 Fit 2 Fit 3
My (MeV) 963.58 + 153.97 1530.20 £ 290.87 963.58(»)
bp (GeV™) 0.06 £ 0.00
br (GeV™) —0.48 £0.00
by (GeV™) —0.69 £0.15
Cy (GeV™h) ~1.79 + 0.30@ -3.19+£0.23 -3.63+£0.19
C, (GeV™h) -6.75+0.14 —7.39 £0.10 —7.27£0.09
C, (GeV™h) 5.30 £0.35 4.81+0.22 4.34+0.14
C; (GeV™h) 1.57 £0.06 1.72 £0.04 1.61 £0.02
H, (GeV7?) 4.84 £2.57 8.77 £0.95 7.96 £+ 1.00
H, (GeV™?) 4.68 £0.23 5.17£0.16 5.35+£0.17
H; (GeV~?) —-6.71 £2.12 —10.25 £0.71 -9.46 £0.72
H, (GeV™?) —6.69 £ 0.57 -8.33 £0.31 -7.92 £0.31
y%/d.o.f. 1.60 1.63 1.86
o,y MeV) 34.57 £ 11.85 88.99 +£9.10 106.12 £ 7.36

of the use of the octet-baryon masses so that we can make
predictions of the various ¢ terms. Second, we determine
My, Cy123, and Hy,3,4 by using the phase shifts of the
WIOS solution [46,47] for zN scattering directly. We also
choose a common uncertainty of £4% to all phase shifts.
The data points of the S and P waves in the range of the
50-150 MeV pion lab momentum are used. Therefore, there
are 66 data in total for this fitting. The resulting M and
LECs are shown in fit 2 of Table I. The uncertainty for the
respective parameter is the same as fit 1. The corresponding
S- and P-wave phase shifts are shown by the dashed lines in
Fig. 3. This time, we obtain a good description of all waves.

In Ref. [25], it fails to describe the P-wave phase shifts at
high energies because we did not consider the complete
contributions from the loop diagrams. For zN scattering, the
other three approaches including the SU(2) HByPT,
SUR) EOMS, and SUB3) EOMS were used to fit the
corresponding S- and P-wave phase shifts directly. They
all obtained good descriptions. One can find those results
in Refs. [17,19-21]. However, we can find that the M,
appears incredibly large (1530.20 £ 290.87). It is larger
than any physical value of the octet-baryon mass. In
addition, the o,y will be negative when we make a
prediction of its value by using the baryon masses and

= 0 31 g %0 —
I (=)
3 -2 g -05} P31 | a0 P33
o -4 N " -1.0 P 15
= , £ 15} X £
& -6 . 5 .1 510
Q N o -2.0f . [
8 _g 18 25
B | £ 25 5,
-1 N s s N \ s " .
% 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Piab (MeV) Piab (MeV) Piab (MeV)
~15 T ' 00 00 ;
o S ) Pl
H S11 § 02l P11 g N
2 10 /el g —0.4} \ . - .
§ 5 -",, 5 -0.6} ﬁ -1.0 .
O . [} A
: i S E s
o 0 o -1.0f P o - v\
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Piab (MeV) Piab (MeV) Piab (MeV)

FIG. 3.

Fits and predictions for the WIO8 phase shifts versus the pion laboratory momentum |py,,| in pion-nucleon (zN) scattering. The

solid lines (fit 1), dashed lines (fit 2), and dotted lines (fit 3) are our results, and the black dots denote the WIO8 solutions. Note that the
dashed and dotted lines almost coincide with each other. Fitting for all zN waves are the data in the range of 50-100 MeV for fit 1 and
50-150 MeV for fits 2 and 3. For higher and lower energies, the phase shifts are predicted.
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TABLE II.

The o terms and the strangeness content of the octet

baryons at the physical point. The errors are obtained by the
standard error propagation formula from the fitting constants.

0,5 MeV) oy (MeV) VB
N 34.57 £ 11.85 0.00 £ 0.00 0.05 £ 0.05
A 15.06 = 11.84 15.06 + 15.06 0.10 £0.10
z 11.95+11.86 57.44 +£57.44 0.48 £0.48
= 297+2.97 66.27 + 66.27 2244224

the large M|, values as input. We also find that the o,y =
88.99 4+ 9.10 is larger than the majority of values (below
80 MeV) in this fit. It seems difficult to properly predict the
o,y value just by using the phase shifts of zNV scattering. At
last, we determine C,3 and H,,34 by using the phase
shifts of zV scattering again. All options are the same as fit 2
except that we choose M, = 963.58, which is the same as
the value from fit 1 as input. The resulting LECs are
presented in fit 3 of Table I. As expected, the other LECs
are different from fit 1 because we obtain a different
description for the phase shifts of zN scattering. The
corresponding S- and P-wave phase shifts are shown by
the dotted lines in Fig. 3. Obviously, we obtain a good
description of all waves. Note that the dotted (fit 3) and the
dashed (fit 2) lines almost coincide with each other except
for the P11 wave at high energies. However, it is not
surprising that o,y appears large (106.12 & 7.36 MeV)
because it is inversely proportional to M, approximately
in this fitting strategy. From the above discussion, we can
make predictions of the various ¢ terms by using the octet-
baryon masses and the phase shifts of zV scattering in range
of 50-100 MeV as input. We also obtain a good description
of the phase shifts of zN scattering below 200 MeV by fitting
the phase shift directly in SU(3) HByPT. It will be very
useful as a consistency check for considering more general
meson-baryon scattering.

In the following, we make predictions of the ¢ terms and
the strangeness content of the octet baryons at the physical
point through the above constants (fit 1) determined by the
zN phase shifts and the octet-baryon masses. The various
values are shown in Table II. The errors are only statistical
because they are obtained from the above constants through

TABLE III.
standard error propagation formula from the fitting constants.

the standard error propagation formula. We obtain large
errors for these values because of the large error of the b,.
Note that the values except for o,y, 6,4, and o5 are shown
as the central values redefined by ranging from zero to the
upper limit because we only study the values at the physical
point. We can make a comparison with the values from
Ref. [14]. The values of 6,p, €.g., 6,y = (43 £7) MeV,
are consistent with our results within errors, while the
values of o,z like o,y = (126 £ 78) MeV are larger than
our values. However, the value of 6,y can be obtained in
lattice QCD [50-53] and various approaches [26,54-56].
Our result for o, is consistent with the value (around 30 to
40 MeV) from lattice QCD. Furthermore, we find that the
strangeness content of the octet baryons is smaller than
those from Ref. [14]. Our values are also reasonable
because a small strangeness content of the proton was
found in Ref. [57].

Next, let us apply the above constants (fit 1) to estimate
the pion-nucleon scattering lengths and scattering volumes.
The scattering lengths and the scattering volumes are
obtained by using an incident pion momentum |p,,| =
10 MeV and approximating their values at the threshold.
We present the values of the scattering lengths and the
scattering volumes in Table III in comparison with the
values of the various analyses. The errors for our results are
also statistical and can be obtained by the standard error
propagation formula from the fitting constants. First, we
observe that our results for both scattering lengths and
scattering volumes are consistent with the ones from SU(2)
HByPT and SP98 [20]. The values of SP98 are obtained by
the use of dispersion relations with the help of a fairly precise
tree-level model. In addition, there are two experimental
values for scattering lengths in Table III. The latter,
EXP2015, are obtained by combining with the analysis of
the results from Refs. [58-61], as done in Ref. [26].
However, our results for scattering lengths are still consistent
with those values within errors. As expected, our predictions
for scattering lengths and scattering volumes are reliable.

Now we discuss the contributions from the third-order
amplitudes in detail. First, we can study the contributions
involving different mesons’ (7, K, #) internal lines from
one-loop diagrams at third chiral order, as shown in Fig. 4.

Values of the S- and P-wave scattering lengths and scattering volumes. The errors for our results are obtained by the

Our results SUQ) [20] SP98 [20] EXP2001 [62] EXP2015 [26]
a?)f (fm) —0.132 £0.042 -0.120 —-0.125 £ 0.002 —0.125 £+ 0.003 —0.122 4+ 0.003
a(l)f (fm) 0.214 £ 0.066 0.250 0.250 £ 0.002 0~250f8:882 0.240 £ 0.003
aif (fm®) 0.617 £0.014 0.632 0.595 £ 0.005
a:/+2 (fm?) —0.070 £ 0.010 —-0.060 —0.038 £ 0.008
ai/_z (fm) —0.108 £ 0.012 —0.111 —0.122 £ 0.006
12 fm3 —0.192 £0.018 —0.194 —0.207 £ 0.007
a _ (fm?)
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FIG. 4. Contributions involving different mesons’ (7, K, ) internal lines from one-loop diagrams at third chiral order are shown as
the real part of the phase shifts. The dashed, dotted, dash-dotted, thick-solid, and thin-solid lines denote the contributions from mesons’
(z, K, n) internal lines and the total contributions from one-loop diagrams of the SU(3) HByPT and SU(2) HByPT [20], respectively.

For all waves, except for P11 wave, the amplitudes
involving the z internal lines are dominant in the one-loop
contributions. However, the contributions from the K
internal lines are sizeable for all waves. In particular, the
contribution involving the K internal lines for P11 wave is
the leading contribution of the one-loop amplitudes. The
contribution involving the # internal lines is very small. To
some extent, they can be ignored. We also compare the
contributions from the amplitudes of the one-loop diagrams
involving the z internal lines and those from the SU(2)
HByPT [20]. They are the same for S-wave phase shifts,

while they are the different for P waves. The reason is that

the so-called sigma parametrization U =/1—¢?/f> +
it-¢/f was taken in SU(2) HByPT. Note that we choose
a different field U; see Eq. (3). When the contributions from
the amplitudes of the one-loop diagrams are only consid-
ered, it also suggests that the P wave for zN scattering is very
sensitive to the choice of the field U collected from the
pseudoscalar Goldstone boson fields, while the S wave is the
opposite. However, the phase shifts of zN scattering from
the complete amplitudes are not dependent on the choice
of the field U in all waves. Second, we preform the analysis

~ 6fF ~ ~
S, S 2
2 3 2 .
£ 9 = £
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e 1 9 @ .2
® 0 [} (]
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FIG.5. Contributions from the third-order amplitudes are shown as the real part of phase shifts. The dashed, dotted, dash-dotted, and
solid lines denote the contributions from counterterms, one-loop diagrams, relativistic corrections, and total amplitudes, respectively.
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FIG. 6. Convergence properties for the 1/M, expansion of zN phase shifts. The dashed, dotted, and solid lines denote the 1/M,,

1/ M?, and the total of their corrections, respectively.

of the contributions from the third-order amplitudes;
see Fig. 5. For S-wave phase shifts, we find the third-order
counterterm contributions are smaller than the contributions
from one-loop diagrams. These are consistent with the
results estimated from resonance exchange [35,63].
However, for P-wave phase shifts, the situation is compli-
cated. The counterterm contributions are larger than the
contributions from one-loop diagrams in the P11 and P13
waves, while they are almost the same in the P33 wave.
Compared with the other contributions, the contributions
from relativistic corrections are still sizeable in the S31, P11,
and P13 waves. Thus, the relativistic corrections should be
considered completely at this order.

Finally, we discuss the convergence. For the 1/M,
expansion (M, = 963.58 MeV) of zN phase shifts, we
obtain a good convergence, as shown in Fig. 6. The 1/M3
contributions are very small, especially for P-wave phase
shifts. To some extent, they can be ignored. However, a
good convergence has not been received for chiral expan-
sions up to third order; see Fig. 7 in which the constants are
from fit 1. In the S-wave phase shifts, the second- and third-
order contributions are small up to 100 MeV. For higher
energies, there are sizeable cancellations between the
second and third order. The same property was found in
SU(2) HByPT [20]. For the P31 wave, the first-order
contributions give a good description of the empirical phase
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FIG. 7.

Convergence properties for the zN phase shifts. The dashed, dotted, and dashed-dotted lines denote the first, second, and third

order, respectively. The solid lines give the sum of the first-, second-, and third-order contributions.
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shifts. That means the second- and third-order contributions
should be canceled out in any perturbative calculations up
to third order. For the P11 and P13 waves, the situations are
similar to the P31 wave at smaller energies. We obtain a
good convergence in the P33 wave. The third-order
contribution is very small. According to all of these results,
a higher-order O(g*) calculation is needed.

In summary, we calculated the complete 7 matrices
for pion-nucleon scattering to the third order in SU(3)
HByPT. We fitted the WIO8 phase shifts of zN scattering
and the experimental octet-baryon masses to determine
the M, and the LECs. This led to a good description of the
phase shifts below 100 MeV pion momentum in the
laboratory. We also obtained the M and LEC uncertainties
through statistical regression analysis. We predicted the o
term, o,y = (34.57 = 11.85) MeV, and the result is in fair
agreement with that of lattice QCD. The other ¢ terms for
octet baryons are also predicted in our calculations and
reasonable results were obtained. With the two o-term
values, o,y and o,y, we found a very small strangeness
content of the proton, yy ~ 0. The value is reasonable and
agrees with the recent result. A good description for the
phase shifts of zN scattering below 200 MeV was also
obtained by fitting to the phase shifts directly. It will be very
useful as a consistency check to consider the other meson-
baryon scattering. We calculated the scattering lengths and

|

scattering volumes, which turned out to be in good agree-
ment with those of the approaches and available exper-
imental data. We discussed the contributions from the
third-order amplitudes and found the contributions from
the K internal lines of the one-loop diagrams and the
counterterms of the third order are sizeable. Finally, we
discussed the convergence of the 1/M, expansion and
chiral expansion for zN scattering. We expect to obtain
improved results for zN scattering in forthcoming higher-
order calculations.
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APPENDIX: ONE-LOOP AMPLITUDES

In this Appendix, we present the amplitudes from
nonvanishing one-loop diagrams after renormalizing f to
[ in the leading-order terms. In terms of different internal
mesons (7, K, 1), the renormalized one-loop chiral cor-
rections are given by
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