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According to the Kubo formulas, we employ the (3þ 1)-d parton cascade, Boltzmann approach of
multiparton scatterings to calculate the anisotropic transport coefficients (shear viscosity and electric
conductivity) for an ultrarelativistic Boltzmann gas in the presence of a magnetic field. The results are
compared with those recently obtained by using the Grad’s approximation. We find good agreements
between both results, which confirms the general use of the derived Kubo formulas for calculating the
anisotropic transport coefficients of quark-gluon plasma in a magnetic field.
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I. INTRODUCTION

The experiments of ultrarelativistic heavy-ion collisions
at the Relativistic Heavy Ion Collider and the Large Hadron
Collider are believed to reach high enough energies to
create the quark-gluon plasma (QGP) [1], which is com-
posed of deconfined quarks and gluons at or close to
thermal equilibrium. The QGP behaves like a nearly perfect
fluid with a small value of the shear viscosity to the entropy
density ratio [2–7]. Because of the existence of a strong
magnetic field in the early stage of relativistic heavy-ion
collisions [8–11], the QGP may behave differently from the
one when ignoring the magnetic field. Actually, the
magnetic field breaks the spatial symmetry and leads to
the anisotropization of transport coefficients [12–16]. Their
values depend on the strength of the magnetic field.
The transport coefficients are important physical quan-

tities characterizing the features of QGP and reflecting the
nature of interactions between quarks and gluons. In the last
decade, dissipative hydrodynamic models [17–25] have
played a very important role in extracting the shear and
bulk viscosity of QGP [26] from the flow measurements
[4,27–34]. Now it is necessary to develop models based on
relativistic magnetohydrodynamics [35,36], in order to
study QGP dynamics in the presence of the magnetic field
[37–48].

How large the magnetic effect (also the chiral magnetic
effect [9,38,49,50]) is depends on the strength of the
magnetic field. The magnetic field in the early stage of a
noncentral heavy-ion collision stems from the passage of
two moving ions and its life time is very short. However,
the rapid decrease of this external magnetic field will lead
to an electromagnetic induction of QGP, so that the total
magnetic field can last longer, if the QGP is a good
conductor with a large electric conductivity. Therefore,
the value of the electric conductivity of the QGP is essential
for the possibility of observing magnetic effects in heavy-
ion collisions.
According to the Green-Kubo relation [51,52], the

transport coefficients are related to the correlation functions
of the corresponding tensor or flux. In Refs. [13,15,16]
Kubo formulas for anisotropic transport coefficients in the
presence of a magnetic field are derived with different
methods. The calculation of the correlation functions of
fluctuating tensor or flux can be realized in kinetic transport
models. In this work, we employ the Boltzmann Approach
of MultiParton Scattering (BAMPS) [53], which solves the
Boltzmann equation for systems of on-shell particles. In the
early studies (in the absence of a magnetic field), BAMPS
has been used to calculate the shear viscosity of a pQCD-
based gluon gas [54,55] and of QGP [56], the electric
conductivity of QGP [57], and recently the shear viscosity
of ultrarelativistic Boson systems in the presence of a Bose-
Einstein condensation [58].
For a simple case such as a one-component system with

massless Boltzmann particles undergoing isotropic binary
elastic collisions, the anisotropic transport coefficients in a
magnetic field can be calculated analytically by using
Grad’s approximations [59]. In this work we consider
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the same particle system as in [59], calculate the anisotropic
transport coefficients with BAMPS via the Kubo formulas
given in [13,15,16], and compare the results with those
obtained in [59]. An agreement of both results will confirm
the general use of the derived Kubo formulas for calculat-
ing the anisotropic transport coefficients of QGP in a
magnetic field.
The paper is organized as follows: In Sec. II we briefly

review the equations of magnetohydrodynamics and give
the Kubo formulas for the corresponding transport coef-
ficients. In Sec. III we introduce the parton cascade
BAMPS and numerical implementations. Subsequently,
in Sec. IV we show our numerical results including the
influence of the magnetic field on the time evolution of
corresponding correlation functions and the values of shear
viscosity and electric conductivity coefficients for a one-
component system of ultrarelativistic Boltzmann particles
with isotropic binary scatterings. Finally, we give a con-
clusion in Sec. V.
We adopt natural units, ℏ ¼ c ¼ kB ¼ 1. The metric

tensor is chosen to be gμν ¼ diagðþ;−;−;−Þ.

II. ANISOTROPIC TRANSPORT COEFFICIENTS
AND KUBO FORMULAS

The dynamics of relativistic fluids in an external mag-
netic field has been studied in Ref. [13]. The authors have
found that due to the breaking of the spatial symmetry in
the presence of a magnetic field, the dissipative functions
contain anisotropic transport coefficients, namely, two
bulk viscosity, five shear viscosity, and three electric
conductivity coefficients. At first we briefly summarize
the results of Ref. [13]. The same results can also be found
in Ref. [60].
For a charged particle system, the basic equations of

magnetohydrodynamics consist of the conservation laws of
energy, momentum, and electric charge, and the constitu-
tive equations for the energy-momentum tensor and the
electric current. The conservation laws can be expressed as

∂μjμ ¼ 0; ð1Þ

∂μTμν ¼ Fνμjμ; ð2Þ

where Fμν is the electromagnetic field-strength tensor. The
electric field is neglected in [13,15] assuming that the
electric field is much smaller than the magnetic field, which
is a good approximation for QGP produced in heavy-ion
collisions for instance. The constitutive equations in the
Landau frame read [13,60]

jμ ¼ qnuμ þ J μ; ð3Þ
Tμν ¼ εuμuν − P⊥Ξμν þ Pkbμbν þ T μν; ð4Þ

where uμ is the fluid four-velocity normalized to
u2 ¼ 1 and bμ ≡ Bμ=B with Bμ ≡ ϵμναβFναuβ=2 and

B≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−BμBμ

p
. q is the particle charge. ε and n denote

the energy and particle number density, respectively. The
tensor which projects onto the three-dimensional space
orthogonal to the flow velocity uμ is defined as
Δμν ≡ gμν − uμuν. Ξμν ≡ Δμν þ bμbν is the tensor, which
projects onto the two-dimensional space orthogonal to both
the flow velocity uμ and the direction of the magnetic
field. Pk and P⊥ are defined as Pk ≡ bμbνTμν and
P⊥ ≡ −ΞμνTμν=2. The dissipative terms in Eqs. (3) and
(4) can be obtained by the derivative expansion to the
leading order and have the form in terms of viscosity and
electric conductivity coefficients,

J μ ¼ Tðκ⊥Ξμν∇να − κkbμbν∇να − κ×bμν∇ναÞ; ð5Þ

T μν ¼ 3

2
ζ⊥Ξμνϕþ 3ζkbμbνψ þ 2η0

�
wμν −

1

3
Δμνθ

�

þ η1

�
Δμν −

3

2
Ξμν

��
θ −

3

2
ϕ

�

− 2η2ðbμΞναbβ þ bνΞμαbβÞwαβ

− 2η3ðΞμαbνβ þ ΞναbμβÞwαβ

þ 2η4ðbμαbνbβ þ bναbμbβÞwαβ; ð6Þ

where α≡ βμ (μ is the chemical potential), bμν≡
ϵμναβbαuβ, wμν ≡ ð∇μuν þ∇νuμÞ=2, ϕ≡ Ξμνwμν, ψ≡
bμbνwμν, θ≡ ∂μuμ, with ∇μ ≡△μν∂ν. The combining
coefficients are identified as five shear viscosity
(η0;…; η4), two bulk viscosity (ζ⊥, ζk), and three electric
conductivity coefficients (κ⊥, κk, κ×).
We now summarize Kubo formulas for the anisotropic

transport coefficients, which are given in Refs. [13,15,16].
Tμν and jμ in the formulas given below are taken at the local
rest frame. The authors of Ref. [13] used Zubarev’s
nonequilibrium statistical operator method to relate the
anisotropic transport coefficients to correlation functions in
equilibrium. The corresponding Kubo formulas are given
by [13,60]

η0 ¼
∂
∂ω ImGR

T12T12 jp¼0;ω→0; ð7Þ

η1 ¼ −
4

3
η0 − 2

∂
∂ω ImGR

P̃kP̃⊥
jp¼0;ω→0; ð8Þ

η2 ¼ −η0 þ
∂
∂ω ImGR

T13T13 jp¼0;ω→0; ð9Þ

η3 ¼
1

4

∂
∂ω ImGR

ðT11−T22ÞT12 jp¼0;ω→0; ð10Þ

η4 ¼
∂
∂ω ImGR

T13T23 jp¼0;ω→0; ð11Þ
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where the retarded Green’s function in quantum statistical
theory has the form GR

AB ≡ iθðx0Þh½AðxÞ; Bð0Þ�i, and the
angular brackets denote the ensemble average in equilib-
rium. Some other symbols in the above formulas are
defined as P̃k ≡ Pk − Θβε − Θαn and P̃⊥ ≡ P⊥ − ðΘβ þ
ΦβÞε − ðΘα þΦαÞn with Θβ ≡ ð∂P∂εÞn;B, Φβ ≡ −Bð∂M∂ε Þn;B,
Θα ≡ ð∂P∂nÞε;B, and Φα ≡ −Bð∂M∂n Þε;B. M≡ ð∂P=∂BÞT;μ is
the magnetization. More details can be found in [13,60].
The coefficients involving magnetization in the definition
of P̃k and P̃⊥ vanish for particles without the dipole
moment or spin, which is the case we consider in this
work. We also note that a sign mistake in the formula of η3
occurred in [13] has been corrected.
The Kubo formulas of the viscosity coefficients were

also given in Refs. [15,16], where a variational approach
and a derivative method were used, respectively. Despite
the sign and/or factor differences after unifying the con-
vention for the transport coefficients, the Kubo formulas for
the five shear viscosity coefficients are definitely the same
among Refs. [13,15,16]. Since the bulk viscosity coeffi-
cients vanish by considering a massless Boltzmann gas,
there is no need to give their Kubo formulas.
The Kubo formulas for the shear viscosity coefficients

can be expressed in real space-time with a integration form
[61–64]:

η0 ¼
1

T

Z
∞

0

dt
Z
V
d3rhT12ðr; tÞT12ð0; 0Þi; ð12Þ

η1 ¼ −
4

3
η0 −

2

T

Z
∞

0

dt
Z
V
d3rhP̃kðr; tÞP̃⊥ð0; 0Þi; ð13Þ

η2 ¼ −η0 þ
1

T

Z
∞

0

dt
Z
V
d3rhT13ðr; tÞT13ð0; 0Þi; ð14Þ

η3 ¼
1

4T

Z
∞

0

dt
Z
V
d3r

× hðT11ðr; tÞ − T22ðr; tÞÞT12ð0; 0Þi; ð15Þ

η4 ¼
1

T

Z
∞

0

dt
Z
V
d3rhT13ðr; tÞT23ð0; 0Þi; ð16Þ

where T is the temperature and the angular brackets denote
the ensemble average. Without loss of generality, we
choose the z direction as the direction of the magnetic
field, Bμ ¼ ð0; 0; 0; B0Þ. Since we consider a homogeneous
particle system, the space dependence of the particle flow
and the energy-momentum tensor that appeared in the
above Kubo formulas can be integrated out directly.
Without the magnetic field (B0 ¼ 0), except for η0,

which should be equal to the standard isotropic shear
viscosity η, all other shear viscosity coefficients should
vanish. It is obvious for η0, η2, η3, and η4, since
hT13ðr;tÞT13ð0;0Þi is equal to hT12ðr; tÞT12ð0; 0Þi and both

hðT11ðr;tÞ−T22ðr;tÞÞT12ð0;0Þi and hT13ðr;tÞT23ð0;0Þi
vanish. For the considered system we have hP̃kðr;
tÞP̃⊥ð0; 0Þi ¼ −hT 33ðr; tÞT 33ð0; 0Þi=2 according to the
definitions of P̃k and P̃⊥. From [55,61] we realize
that hT 33ðr; tÞT 33ð0; 0Þi ¼ 4hT 12ðr; tÞT 12ð0; 0Þi=3 ¼
4hT12ðr; tÞT12ð0; 0Þi=3. Therefore, η1 vanishes.
Because of the breaking of spatial symmetry by a

longitudinal magnetic field, the usual isotropic electric
conductivity becomes anisotropic. The transverse conduc-
tivity is different from the longitudinal one. Charged
particles in the magnetic field experience the Lorentz force,
which results in an electric current in the perpendicular
direction with respect to both electric and magnetic fields.
The electric conductivity associated with this current is
called Hall conductivity.
In Ref. [13] the electric conductivity coefficients asso-

ciated with the diffusion (or heat transfer) are given by the
following Kubo formulas:

κk ¼
∂
∂ω ImGR

G3G3 jp¼0;ω→0; ð17Þ

κ⊥ ¼ ∂
∂ω ImGR

G1G1 jp¼0;ω→0; ð18Þ

κ× ¼ ∂
∂ω ImGR

G1G2 jp¼0;ω→0; ð19Þ

where GiðtÞ ¼ qT0i=4T − ji with i ¼ 1, 2, 3 denoting the
space components. κk; κ⊥, and κ× are the longitudinal,
transverse, and Hall electric conductivity, respectively.
Different from the definitions of κk; κ⊥, and κ×, in

Ref. [16] the electric conductivity (resistivity) coefficients
are induced by an electric and a magnetic field, which are
perpendicular. The corresponding Kubo formulas are
given by

1

ω
ImGR

j3j3ðω;p ¼ 0Þ ¼ σk; ð20Þ

1

ω
ImGR

T01T01ðω;p ¼ 0Þ ¼ ρ⊥
ω2
0

B2
0

; ð21Þ

1

ω
ImGR

T01T02ðω;p ¼ 0Þ ¼ −ρ̃⊥
ω2
0

B2
0

signðB0Þ; ð22Þ

where σk denotes the longitudinal electric conductivity, and
ρ⊥, ρ̃⊥ denote the transverse and Hall electric resistivity,
respectively. ω0 ¼ εþ P is the enthalpy density. All of
these formulas are in the limit p → 0 and ω → 0. We note
that σk; ρ⊥, and ρ̃⊥ have no relation to the diffusion (or heat
transfer).
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We give now the Kubo formulas in real space-time:

κk ¼
1

T

Z
∞

0

dt
Z
V
d3rhG3ðr; tÞG3ð0; 0Þi; ð23Þ

κ⊥ ¼ 1

T

Z
∞

0

dt
Z
V
d3rhG1ðr; tÞG1ð0; 0Þi; ð24Þ

κ× ¼ 1

T

Z
∞

0

dt
Z
V
d3rhG1ðr; tÞG2ð0; 0Þi; ð25Þ

σk ¼
1

T

Z
∞

0

dt
Z
V
d3rhj3ðr; tÞj3ð0; 0Þi; ð26Þ

ρ⊥ ¼ B2
0

ω2
0T

Z
∞

0

dt
Z
V
d3rhT01ðr; tÞT01ð0; 0Þi; ð27Þ

ρ̃⊥ ¼ −signðB0Þ
B2
0

ω2
0T

Z
∞

0

dt
Z
V
d3r

× hT01ðr; tÞT02ð0; 0Þi: ð28Þ

Differences in numerical results of two kinds of electric
conductivity coefficients will be shown later in Sec. IV.
Without the magnetic field (B0 ¼ 0), the longitudinal

and transverse electric conductivity become equal, while
the Hall electric conductivity (or resistivity) is meaningless.
From the above Kubo formulas, it is obvious that κk ¼ κ⊥
and 1=ρ⊥ is infinite. We will show in Sec. IV that σk is also
infinite.

III. THE PARTON CASCADE BAMPS AND
NUMERICAL IMPLEMENTATIONS

The time correlation functions in Eqs. (12)–(16) and
Eqs. (23)–(28) are evaluated numerically for the considered
particle system in a static box with periodic boundary
conditions. Initially, particles are distributed homo-
geneously in coordinate space and thermally in momentum
space. The space-time evolution of particles is calculated
by employing the parton cascade BAMPS [53]. Coupled to
an external electromagnetic field, the Boltzmann equation
[65,66] has the form

pμ∂μfðx; pÞ þ qFμνpν
∂

∂pμ fðx; pÞ ¼ C½fðx; pÞ�; ð29Þ

where fðx; pÞ is the one-particle phase-space distribution
function, and C½fðx; pÞ� denotes the collision term. Since
we restrict ourselves to a single-component gas of particles
carrying no dipole moment or spin, the system will have
vanishing magnetization and polarization and the magnetic
field Fμν involves only a Lorentz force. In the presence of
electromagnetic fields, the local equilibrium distribution
function for Boltzmann particles has the following general
form [66]:

feqðx; pÞ ¼ exp

�
−
ðpμ þ qAμÞuμ − μ

T

�
; ð30Þ

where Aμ is the four-vector potential corresponding to
electromagnetic fields and μ is the chemical potential. Since
we neglect the electric field, in the local rest frame, the
particle distribution in equilibrium has the form:

feqðx; pÞ ¼ exp

�
−
E − μ

T

�
; ð31Þ

where E is the particle energy. For massless particles, the
chemical potential μ ¼ 0.
The microscopic interaction processes among particles

are simulated via Monte Carlo techniques based on the
stochastic interpretation of transition rates [53]. In order to
improve the numerical accuracy, the test particle method
[53] is introduced. The particle number is artificially
increased by a factor of Ntest, while the interaction cross
section is reduced by the same factor simultaneously. Thus,
the physical evolution of the particle system is not
influenced by this implementation. The collision proba-
bility for binary elastic scattering in a spatial cell of a
volume of ΔV and within a time step Δt is

P22 ¼ vrel
σ22
Ntest

Δt
ΔV

: ð32Þ

vrel ¼ s=ð2E1E2Þ is the relative velocity of the incoming
particles with energy E1 and E2, s is the invariant mass, and
σ22 is the total cross section of elastic binary scatterings. We
consider the magnetic field B⃗ to be constant and homo-
geneous, pointing in the z direction. Thus, the Lorentz
force, F⃗L ¼ qv⃗ × B⃗, will change the directions (while not
the magnitude) of particles’ transverse momenta for every
computational time step Δt. Between the collisions, the
particles will move in a circle in the transverse plane, while
they propagate via free streaming in the z direction.
According to the physical definition, the electric current

jμ and energy-momentum tensor Tμν are calculated as

jμðtÞ ¼ q
VNtest

XN
i¼1

pμ
i

Ei
; ð33Þ

TμνðtÞ ¼ 1

VNtest

XN
i¼1

pμ
i p

ν
i

Ei
; ð34Þ

where the sum is running over all the N test particles in the
box at time t and V is the volume of the box. The
correlation is calculated at discrete and equally distributed
time steps tl ¼ t0; t1…; tK by time average in the limit
tK → ∞,
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CðtlÞ ¼
1

smax

Xsmax

s¼0

AðtsÞBðtsþ tlÞ; smax ¼K− l: ð35Þ

AðtÞ and BðtÞ represent the component of the particle flow
or energy-momentum tensor. The ensemble average is
realized by Nrun individual initialization. In the presence
of a magnetic field, some of the correlation functions
oscillate instead of an exponential decrease (as we will
show in the next section). Therefore, we have to evolve the
systems to a much longer time until the correlations
become small.

IV. NUMERICAL RESULTS

We consider a system of massless Boltzmann particles
with a positive charge e. Initially particles are sampled in
momentum space according to the Boltzmann distribution
fðx; pÞ ¼ e−E=T with a temperature of T ¼ 400 MeV.
Since the magnetic fields in noncentral Au-Au collisions
at the Relativistic Heavy Ion Collider can reach eB ∼m2

π ∼
0.02 GeV2 [67] and those at the Large Hadron Collider
are 10 times larger [8], we choose in this work eB ¼
0; 0.01; 0.03; 0.05; 0.1 GeV2. The chosen magnitude of the
magnetic fields is in the region

ffiffiffiffiffiffi
eB

p
< T, where the

Landau quantization of the particles’ cyclotron motion
can be neglected [59]. We assume that particles carry no
dipole moment or spin, so that the gas has vanishing
magnetization and polarization. Since the Lorentz force
does not change the magnitude of the momentum and the
isotropy of the momentum distribution, the system will
always stay in equilibrium. We consider binary elastic
collisions only. The total cross section is set to be a constant
value (σ22 ¼ 1 mb), and the particles scatter isotropically.
In the following we show the results of shear viscosity

and electric conductivity coefficients in the presence of a
magnetic field, respectively.

A. Shear viscosity coefficients

The time evolution of correlation functions
hT12ðtÞT12ð0Þi and hT13ðtÞT13ð0Þi, which determine the
shear viscosity coefficients η0 and η2, are shown in Fig. 1.
We can see that the correlation functions behave quite
differently from those without magnetic field. The corre-
lation functions no longer decrease exponentially. The
presence of the magnetic field induces the oscillations of
the correlation function because the Lorentz force changes
the sign of T12 and T13. For a single particle under
cyclotron motion, the absolute value of pxpy does not
change after 1=4, 1=2, 3=4, and 1 period, when compared
with its initial absolute value. The sign of pxpy changes
after 1=4 and 3=4 period, while it does not change after 1=2
and 1 period. The period of a cyclotron motion is propor-
tional to the magnitude of momentum. After sum over all
particles and average over all runs, the time evolution of
hT12ðtÞT12ð0Þi shows the oscillation behavior with peaks
and valleys. Compared with hT12ðtÞT12ð0Þi, the oscillation
frequencies of hT13ðtÞT13ð0Þi are smaller, since the
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FIG. 1. Time evolution of hT12ðtÞT12ð0Þi and hT13ðtÞT13ð0Þiwith various magnetic field strengths. The results are normalized by their
initial values.
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FIG. 2. Same as Fig. 1, but for hP̃kðtÞP̃⊥ð0Þi.
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momenta in the z direction are not influenced by the
Lorentz force and the value of pxpz will change
its sign after 1=2 period, when compared with its initial
value.
The correlation function hP̃kðtÞP̃⊥ð0Þi, which deter-

mines the shear viscosity coefficient η1, is shown in
Fig. 2. For the system we have considered in this work,
we have P̃k¼T33−T00=3 and P̃⊥¼ðT11þT22Þ=2−T00=3¼
T00=6−T33=2. From Fig. 2 we see that the magnetic field
has no influence on this correlation function despite the
small deviation due to numerical fluctuations. This is
because the correlation function only involves particles’
energy and momentum in the z direction, and both of them
are not affected by the magnetic field.
It is obvious that the correlation functions hðT11ðtÞ −

T22ðtÞÞT12ð0Þi and hðT13ðtÞÞT23ð0Þi will vanish if there is
no magnetic field. With the magnetic field, the two
correlation functions, corresponding to η3 and η4, respec-
tively, oscillate due to the same reason for hT12ðtÞT12ð0Þi
and hT13ðtÞT13ð0Þi, as seen in Fig. 3. The sign of pxpx −
pypy changes after 1=4 and 3=4 period and is unchanged
after 1=2 and 1 period, when compared with its initial
value. The two correlation functions behave similarly. The
stronger the magnitude of the magnetic field, the earlier the
maximum value is reached and the larger is the value.
Figure 4 shows the five anisotropic shear viscosity

coefficients for various values of ξB ¼ λmfp=RT , where
the mean free path λmfp ¼ 1=ðnσ22Þ is fixed and RT ¼
T=ðeBÞ varies by varying eB. RT denotes the Larmor radius
of a particle with the transverse momentum being equal to
the temperature. The five shear viscosity coefficients are
normalized by the standard isotropic shear viscosity η ¼
4λmfpP=3 obtained without the magnetic field. We see that
except for η1, which is almost constant at the large mag-
netic field, all the other shear viscosity coefficients are
decreasing.

The five anisotropic shear viscosity coefficients of a
massless Boltzmann gas undergoing binary isotropic elastic
collisions in a magnetic field have been derived analytically
in Ref. [59] by using the method of 14-moment Grad’s
approximation. We list the results below:

η0 ¼
12λmfpP

9þ 4ξ2B
; η1 ¼

64

9

ξ2BλmfpP

9þ 4ξ2B
;

η2 ¼
36ξ2BλmfpP

½9þ 4ξ2B�½9þ ξ2B�
; η3 ¼

4ξBλmfpP

9þ 4ξ2B
;

η4 ¼
4ξBλmfpP

9þ ξ2B
: ð36Þ

The analytical results are depicted by different curves in
Fig. 4. We see excellent agreements with our numerical
results. From the formulas in Eq. (36) it is clear that η1=η
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FIG. 3. Time evolution of hðT11ðtÞ − T22ðtÞÞT12ð0Þi=2 and hðT13ðtÞÞT23ð0Þi with various magnetic field strengths. The results are
normalized by hðT12ð0ÞÞ2i. The results without the magnetic field are zero.
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goes to a constant of 4=3 for large ξB (large eB), while all
the other shear viscosity coefficients go to zero.
Furthermore, by equating Eqs. (12) and (14) to η0 and η2

in Eq. (36) we find that

V
T

Z
∞

0

dthT12ðr; tÞT12ð0; 0Þi ¼ 12λmfpP

9þ 4ξ2B
; ð37Þ

V
T

Z
∞

0

dthT13ðr; tÞT13ð0; 0Þi ¼ 12λmfpP

9þ ξ2B
: ð38Þ

Therefore, the correlation function hT12ðtÞT12ð0Þi at ξB
(or B) is the same as hT13ðtÞT13ð0Þi at 2ξB (or 2B).
This behavior can be observed in Fig. 1. A similar
scaling behavior between hðT11ðtÞ − T22ðtÞÞT12ð0Þi=2
and hðT13ðtÞÞT23ð0Þi seen in Fig. 3 can also be explained
by equating Eqs. (15) and (16) to η3 and η4 in Eq. (36).

B. Electric conductivity coefficients

First, we calculate the longitudinal electric conductivity
within BAMPS by applying the Kubo formulas, Eq. (23)
and Eq. (26), respectively. σk is induced purely by an
electric field, while κk is related to the diffusion (or heat
transfer). The correlation functions that determine κk and σk
are hG3ðtÞG3ð0Þi and hj3ðtÞj3ð0Þi. We note that these two
correlation functions (also κk and σk) are not influenced by
the magnetic field, since the Lorentz force does not affect
the dynamics in the direction of the magnetic field. In Fig. 5
we show the time evolution of the two correlation functions
and see that hG3ðtÞG3ð0Þi decreases to zero, while
hj3ðtÞj3ð0Þi approaches a nonzero value. The latter indi-
cates an infinite large electric conductivity σk, which is true
for a one-component system of charged particles, since
there is no energy loss of changed particles in each
collision. We mention that the electric conductivity of a
multicomponent system such as the quark-gluon plasma
has been calculated in [57] within BAMPS without a
magnetic field.
The electric conductivity κk, which is related to the

diffusion (or heat transfer), is finite. In the top panel of
Fig. 8, κk scaled by the temperature T are shown by the
solid symbols. Charges are multiplied out in the results with
e2 ¼ 4π=137. The electric conductivity calculated here is
related with the diffusion coefficient by the Wiedemann-
Franz law. In Ref. [68] the diffusion coefficients for a one-
component system without a magnetic field are calculated
by using the 14-, 23-, 32-, and 41-moment Grad’s method.
To make comparisons, the results obtained in [68] are
multiplied by e2=T according to the Wiedemann-Franz law
and shown in the top panel of Fig. 8 by the dashed and
dotted lines corresponding to the 14- and 41-moment
approximation. We see that our numerical results are about
17% smaller than those in the 14-moment approximation,
while they agree nicely with those in the 41-moment
approximation.
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FIG. 5. Time evolution of hG3ðtÞG3ð0Þi and hj3ðtÞj3ð0Þi. The
results are normalized by their initial values.
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We now turn to calculate the transverse and Hall electric
conductivity. The time evolution of the correlation func-
tions corresponding to these conductivity coefficients [see

Eqs. (24), (25), (27), and (28)] are shown in Figs. 6 and 7.
As explained for Figs. 1 and 3, the oscillation of the
correlation functions comes from the cyclotron motion of
particles under the Lorentz force. The transverse conduc-
tivity coefficients κ⊥ and 1=ρ⊥ scaled by T are depicted in
the middle panel of Fig. 8 by the solid and open symbols,
respectively. The values of 1=ρ⊥ are divided by a factor of
100. At B ¼ 0, 1=ρ⊥ is infinite [see Eq. (27)], while κ⊥ is
finite. Both are equal to the longitudinal electric conduc-
tivity σk and κk, respectively. From the middle panel of
Fig. 8 we also see that both κ⊥ and 1=ρ⊥ become smaller
for stronger magnetic field strength and 1=ρ⊥ is roughly
100 times larger than κ⊥.
In the bottom panel of Fig. 8 we show the Hall electric

conductivity κ× and 1=ρ̃⊥ scaled by T. The latter is divided
by a factor of 5 for comparisons. At B ¼ 0, 1=ρ̃⊥ is infinite
[see Eq. (28)], while κ× is zero. 1=ρ̃⊥ agrees with the
classical result en=Bwhen comparing with the dotted curve
in the bottom panel of Fig. 8. (Remember that 1=ρ̃⊥ has
been divided by a factor of 5.) With increasing B, κ×
increases first and then decreases as en=ð5BÞ. Thus, 1=ρ̃⊥
is almost 5 times larger than κ×. We realize that the electric
conductivity coefficients induced by an electric field are
always larger than those related with the diffusion (or heat
transfer).
The anisotropic diffusion coefficients of a one-

component system in a magnetic field have been calculated
in Ref. [59] by using the 14-moment Grad’s method. We
multiply these results by e2=T to obtain the electric
conductivity coefficients according to the Wiedemann-
Franz law [69]:

κk ¼
3e2λmfpn

16T
; κ⊥ ¼ 48e2λmfpn

ð256þ 225ξ2BÞT
;

κ× ¼ 45e2ξBλmfpn

ð256þ 225ξ2BÞT
: ð39Þ
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κk is exactly the same as that obtained from [68] and has
been shown in the top panel of Fig. 8. κ⊥ and κ× from
Eq. (39) are depicted by the dashed curves (scaled by T) in
the middle and bottom panels of Fig. 8. We see agreements
with the numerical results.

V. CONCLUSIONS

In this work, we have calculated the anisotropic transport
coefficients of relativistic fluids in the presence of a
magnetic field according to the Kubo formulas given in
Refs. [13,16]. The time correlations of the components of
the energy-momentum tensor and electric current, which
are fluctuating in time at thermal equilibrium, are calcu-
lated numerically within the kinetic transport approach
BAMPS. For comparisons with results from the early
studies we have considered a massless one-component
Boltzmann gas with isotropic binary collisions, although
calculations within BAMPS can be performed for multi-
component systems with more complicated scattering
processes such like pQCD (in)elastic scatterings of gluons
and quarks [56].
We have found that the magnetic field dependence of the

five shear viscosity coefficients that we achieved agrees
perfectly with the analytical results obtained by using the
14-moment Grad’s approximations [59]. For strong mag-
netic field, η1 approaches 4=3-fold of η (the standard shear
viscosity without the magnetic field) and all the other shear
viscosity coefficients decrease to zero.
We have also compared two kinds of electric conduc-

tivity coefficients with each other. One electric conductivity
coefficients are associated with the diffusion (or heat
transfer), another coefficients are induced by an electric
field and have no cross effect with the diffusion constant (or
heat conductivity). We found that the three electric

conductivity coefficients associated with the diffusion
are always smaller than those induced by an electric field.
In addition, the magnetic field dependence of the three
electric conductivity coefficients associated with the dif-
fusion agrees well with the results from the 14-moment
Grad’s approximations [59]. A better agreement for the
longitudinal electric conductivity is seen when comparing
the result from the 41-moment approximation [68].
The agreements between the numerical and analytical

results on the anisotropic transport coefficients for a one-
component system of Boltzmann particles with isotropic
scatterings confirm the general use of the derived Kubo
formulas for multicomponent particle systems with more
complicated scattering processes. Calculations of the
anisotropic transport coefficients for a multicomponent
system in a strong magnetic field such like the QGP
produced in heavy-ion collisions are in progress. New
results will be shown in a future publication.
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