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We study the structure of scalar, vector, and tensor currents for on shell massive particles of any spin.
When considering higher values for the spin of the particle, the number of form factors (FFs) involved in
the decomposition of the matrix elements associated with these local currents increases. We identify all the
fundamental structures that give rise to the independent FFs, systematically for any spin value. These
structures can be conveniently organized using an expansion in covariant multipoles, built solely from the
Lorentz generators. This approach allows one to uniquely identify the terms which are universal and those
that arise because of spin. We derive counting rules which relate the number of FFs to the total spin j of the
state, showing explicitly that these rules match all the well-known cases up to spin 2.
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I. INTRODUCTION

Matrix elements representing the interaction of quantum
states with local currents are parametrized in terms of form
factors (FFs). The most known examples are the electro-
magnetic and gravitational FFs, which are related to the
electromagnetic current and the energy-momentum tensor
(EMT), respectively, and which carry important informa-
tion on the nature of the system. In the particular case of
QCD, these FFs are fundamental observables which con-
tain a rich information about the internal structure of
hadrons, ranging from their electromagnetic properties to
the spatial and angular momentum distributions of their
internal constituents [1–6].
In hadronic physics, a large amount of attention has been

historically given to the proton, due to its abundance as a
stable particle and its central role in the building of visible
matter. However, recently there has been an increasing
interest in the study of higher-spin hadrons, as unique tools
to study the dynamics of internal constituents beyond the
degrees of freedom typical of a single spin-1

2
nucleon

(proton and neutron) [7–22]. Although measurements of

the FFs for higher-spin particles would be experimentally
challenging and hardly feasible in a foreseeable future,
investigating higher-spin problems nevertheless remains
desirable from a broader theoretical point of view [23–25].
For instance, old-standing problems concerning the funda-
mental interactions for particles of arbitrary spin have been
explored in the past, with different approaches and tech-
niques, but they still lack a global theoretical description.
Only in specific cases, such as the scalar and electromag-
netic interaction, has the formalism developed to study
massive spin-1

2
particles been extended to higher spins: the

precise rule which links the number of electromagnetic FFs
with the value j of the spin was established long ago and
unanimously accepted in the literature [26–29]. However, a
similar systematic and unambiguous counting of FFs is
missing for the tensor currents of higher rank (in particular
for the EMT), and a few past attempts have led to various
answers; see e.g., [26–28].
Finding the most general expression for the EMT, which

is not relegated to a spin-by-spin analysis, is extremely
useful to shed light on the universal properties of particles.
Recently, it was rigorously proven [23,24] that constraints
on the gravitational FFs in the limit of zero momentum
transfer, historically associated to spin-1

2
particles, are

actually universal for states of arbitrary spin. These con-
straints are solely related to Poincaré symmetry and hold
independently of the spin of the particles and their mass.
The crucial starting point to this proof is the realization that,
for all physical states, the conserved (truncated) EMT
matrix element can be expressed as the sum of a spin-
independent part and a term linear in the Lorentz generators
in the given representation [30]. The expansion truncates to
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terms at most linear in the momentum transfer Δ, because
they are the only ones constrained by the generators of
Poincaré symmetry [23,24,31]. A complete expression for
the EMTwould also include terms which depend on higher
powers of Δ and the Lorentz generators.
A natural question that arises is whether it is possible to

characterize the role of the spin of the state in shaping the
structure of the EMT and, consequently, the number of
gravitational FFs, analogously to the vector current case. In
other words, one might wonder what is the best systematic
approach to find the complete parametrization for a given
operator (scalar, vector, and tensor) such that the FF
counting depends only on the total spin j. Additionally,
one might wonder how the expansion changes with the
rank of the operator and which terms appear purely due to
the spin of the particle.
In this work we address this question and present the

complete parametrizations for the matrix elements of scalar,
vector, and rank-2 tensor currents for massive states of
arbitrary spin. Following the existing literature on the
vector current case [29], we first derive in Sec. II a
parametrization using a tensor product approach. We single
out all the possible “core” or “seed” structures, i.e., Lorentz
structures that contribute to the expansion of the matrix
element for a given type of local current, and associate to
them a “tower” of elements, whose number depends on the
spin of the particle. This approach leads to the explicit
expression for the EMT parametrization in a given spin
representation and enables one to determine the number of
FFs as a function of the spin. One limitation though is that
the seeds are specific to each operator (scalar, vector, and
tensor), and their linear independence needs to be checked
explicitly in order to avoid incomplete or overcomplete
expressions.
The choice of basis is of course arbitrary, and different

parametrizations are related to each other and must provide
the same counting rule. In the spirit of Ref. [23] and with
the aim of looking for the most general way to find the
EMT parametrization we present an alternative approach
based on the covariant multipole expansion developed in
Secs. III and IV. One can take advantage of the fact that all
physical observables are elements of the Lorentz group. A
natural basis for the parametrization is therefore based on
covariant multipoles, built from symmetric and traceless
products of Lorentz generators in a given spin representa-
tion. They are the covariant extension of the nonrelativistic
multipoles of the suð2Þ Lie algebra, built from the
generators of rotations. A remarkable advantage of the
multipole expansion is that it truncates at some given order.
In particular, only the first 2jþ 1 multipoles are nonzero,
whereas higher multipoles vanish. In addition, each new
multipole is guaranteed to be independent of the previous
ones. Being formed by symmetrized products of Lorentz
generators, the only nonvanishing 2jþ 1 multipoles are
operators with given symmetry properties on each pair of

Lorentz indices. Starting from this basis of linearly inde-
pendentmultipoles, which is common to all operators (scalar,
vector, tensor) for a given state of spin j, we build the
coefficients of the expansion depending on the symmetry
properties of the problem and on the relevant operator. This
procedure leads to a systematic countingofFFs. Interestingly,
we can show that the counting changes in a nontrivial way
when going from lower to higher-rank operators.
The strength of the multipole expansion lies in its gene-

rality and conceptual intuitiveness. However, the two
approaches developed in this paper mutually aid each other
in reaching the final counting rule. As a natural follow-up
of this work, one can aspire to extend the counting to
higher-rank operators [32] and, interestingly, to nonlocal
currents such as those entering parton distributions like
PDFs, GPDs, and TMDs used to describe observables in
hadronic physics.
Finally, we also include two appendixes. In the first one

we describe the explicit construction of higher-spin polari-
zation tensors. In the second one we derive a large set of
exact and on shell identities, which are used to eliminate
redundant Lorentz structures in the parametrizations.

II. PARAMETRIZATION USING THE
TENSOR PRODUCT APPROACH

Matrix elements representing a generic local rank-k
current for arbitrary spin states of mass M can be written as

hp0;λ0jÔμ1���μkð0Þjp;λi¼ η̄ðp0;λ0ÞOμ1���μkðP;ΔÞηðp;λÞ: ð1Þ

For later convenience we introduce the average four-
momentum P ¼ ðp0 þ pÞ=2 and the four-momentum trans-
fer Δ ¼ p0 − p satisfying the on shell conditions P2 þ
Δ2=4 ¼ M2 and P · Δ ¼ 0. The polarization of physical
states is described by a generalized polarization tensor
(GPT) ηðp; λÞ as in [23,24,31]. GPTs are defined such that
the covariant density matrix in a given representation of the
Lorentz group,

ρABðp; λ; λ0Þ ¼ ηAðp; λÞη̄Bðp; λ0Þ ð2Þ

has normalization Tr½ρðp; λ; λ0Þ� ¼ δλλ0 . An irreducible
representation of the Lorentz group ðj1; j2Þ is in general
reducible under the subgroup of rotations SUð2Þ. It involves
all spin values j obtained by the standard composition rule
of angular momenta,

j1 ⊗ j2 ¼ ⨁
j1þj2

j¼jj1−j2j
j: ð3Þ

A physical particle can therefore be described by
some Lorentz representation ðj1; j2Þ provided that subsid-
iary conditions are imposed to get rid of the unwanted,
unphysical spin representations.
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Let us consider a particle of mass M and spin j. When
j ¼ n is integer, we choose to work with the ðn

2
; n
2
Þ

representation where the GPT ηðp; λÞ ∼ εα1���αnðp; λÞ is
totally symmetric, traceless and satisfies the subsidiary
condition,

pαεαα2���αnðp; λÞ ¼ 0: ð4Þ
When j ¼ nþ 1

2
is half-integer, we choose to work with the

ðnþ1
2
; n
2
Þ ⊕ ðn

2
; nþ1

2
Þ representation where the GPT ηðp; λÞ ∼

uα1���αnðp; λÞ is totally symmetric, traceless and satisfies the
subsidiary conditions,1

pαuαα2���αnðp; λÞ ¼ 0;

ðp −MÞuα1���αnðp; λÞ ¼ 0;

γαuαα2���αnðp; λÞ ¼ 0: ð5Þ
The subsidiary conditions (4) and (5) simply ensure that the
number of degrees of freedom is 2jþ 1. For more details
on the construction of these GPTs, see Appendix A.
When j ¼ n is integer, the expression (1) reads more

explicitly in the ðn
2
; n
2
Þ representation,

hp0;λ0jÔμ1���μkð0Þjp;λi
¼ð−1Þnε�α0

1
���α0nðp0;λ0ÞOμ1���μk;α01���α0nα1���αnðP;ΔÞεα1���αnðp;λÞ:

ð6Þ

The overall ð−1Þn factor ensures that GPTs are properly
normalized η̄Aðp; λÞηAðp; λÞ ¼ ð−1Þnε�α1���αnðp; λÞεα1���αnðp;
λÞ ¼ 1. Thanks to the Lorentz invariance of the theory, the
tensor Oμ1���μk;α01���α0nα1���αn can be expressed as a sum of
Lorentz tensors built out of the Minkowski metric gμν, the
totally antisymmetric Levi-Civita pseudotensor2 ϵμνρσ, and
the four-vectors of the problem Pμ and Δμ. Each of these
Lorentz structures is multiplied by a Lorentz scalar function
of t ¼ Δ2 and are referred to as form factors (FFs).
When j ¼ nþ 1

2
is a half-integer, the expression (1) can

in a similar way be written more explicitly in the ðnþ1
2
; n
2
Þ ⊕

ðn
2
; nþ1

2
Þ representation as

hp0;λ0jÔμ1���μkð0Þjp;λi
¼ð−1Þnūα0

1
���α0nðp0;λ0ÞOμ1���μk;α01���α0nα1���αnðP;ΔÞuα1���αnðp;λÞ:

ð7Þ

The difference with the integer-spin case is that the tensor
Oμ1���μk;α01���α0nα1���αn is now a matrix in Dirac space.3 We can

therefore also use the Dirac matrices γμ and their products
to construct tensor structures. The identification of a proper
basis of structures is consequently even more complex.
Discrete symmetries constrain further the operators [33].

Hermiticity requires operators carrying some Lorentz
indices Ôμ1���μkðxÞ to satisfy

hp0; λ0jÔμ1���μkðxÞjp; λi ¼ hp; λjÔμ1���μkðxÞjp0; λ0i�: ð8Þ

We will also impose P and T symmetries and restrict
ourselves to operators with positive intrinsic parity and
time-reversal properties. These symmetries imply the
following constraints:

Oμ1���μk;α01���α0nα1���αnðP;ΔÞ ¼ ½Oμ1���μk;α1���αnα01���α0nðP;−ΔÞ��
¼ Oμ̄1���μ̄k;ᾱ01���ᾱ0nᾱ1���ᾱnðP̄; Δ̄Þ
¼ ½Oμ̄1���μ̄k;ᾱ01���ᾱ0nᾱ1���ᾱnðP̄; Δ̄Þ��; ð9Þ

when j ¼ n is an integer, and

Oμ1���μk;α01���α0nα1���αnðP;ΔÞ
¼ γ0½Oμ1���μk;α1���αnα01���α0nðP;−ΔÞ�†γ0
¼ γ0Oμ̄1���μ̄k;ᾱ01���ᾱ0nᾱ1���ᾱnðP̄; Δ̄Þγ0
¼ ðiγ1γ3Þ½Oμ̄1���μ̄k;ᾱ01���ᾱ0nᾱ1���ᾱnðP̄; Δ̄Þ��ðiγ1γ3Þ; ð10Þ

when j ¼ nþ 1
2
is a half-integer.4 In these expressions, we

used the convenient notation āμ ¼ aμ̄ ¼ ða0;−a⃗Þ. Factors
of i appearing in the tensor structures are chosen so that FFs
are real-valued functions. Because of the symmetry, trace-
lessness and subsidiary conditions satisfied by the GPTs,
not all of the possible tensor structures are independent. We
therefore have to carefully identify a linearly independent
subset. A list of identities used to obtain our parametriza-
tions is presented in Appendix B.

A. Scalar operator

The simplest operator is the scalar N̂ðxÞ. A typical
example is the condensate operator N̂qðxÞ ¼ ˆ̄ψðxÞψ̂ðxÞ.
When j ¼ n is integer, we find that the elastic matrix
elements can be written in terms of the following basis:

Nα0
1
���α0nα1���αnðP;ΔÞ ¼ 2M

X
ðk;nÞ

FS
kðtÞ; ð11Þ

where the strange sum stands for

X
ðk;nÞ

≡Xn
k¼0

�Yk
i¼1

�
−
Δα0iΔαi

2M2

� Yn
i¼kþ1

gα
0
iαi

�
; ð12Þ

1Note that the first condition is superfluous since it can be
derived from the other two.

2We use the convention ϵ0123 ¼ þ1.
3Dirac indices are omitted for better legibility.

4Here Dirac spinors are chosen in the standard or Dirac
representation.
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and the mass factor accounts for the correct mass dimen-
sion of the operator, since we have normalized the GPTs to
1. The same basis can be used to write the elastic matrix
elements when j ¼ nþ 1

2
is half-integer. The number of

FFs associated with a scalar operator is therefore nþ 1,
where n ¼ bjc is the floor of the spin, i.e., the largest
integer smaller or equal to j.
For spin-0, one has

hp0; λ0jN̂ð0Þjp; λi ¼ 2MFS
0ðtÞ: ð13Þ

For spin5-1
2
,

hp0; λ0jN̂ð0Þjp; λi ¼ 2Mūðp0; λ0Þuðp; λÞFS
0ðtÞ: ð14Þ

For spin-1,

hp0; λ0jN̂ð0Þjp; λi

¼ −2Mε�α0 ðp0; λ0Þ
�
gα

0αFS
0ðtÞ −

Δα0Δα

2M2
FS
1ðtÞ

�
εαðp; λÞ:

ð15Þ

For spin-3
2
,

hp0; λ0jN̂ð0Þjp; λi

¼ −2Mūα0 ðp0; λ0Þ
�
gα

0αFS
0ðtÞ −

Δα0Δα

2M2
FS
1ðtÞ

�
uαðp; λÞ:

ð16Þ

For spin-2,

hp0; λ0jN̂ð0Þjp; λi

¼ 2Mε�α0
1
α0
2
ðp0; λ0Þ

�
gα

0
1
α1gα

0
2
α2FS

0ðtÞ −
Δα0

1Δα1

2M2
gα

0
2
α2FS

1ðtÞ

þ Δα0
1Δα1

2M2

Δα0
2Δα2

2M2
FS
2ðtÞ

�
εα1α2ðp; λÞ: ð17Þ

B. Vector operator

Let us now consider the (four-)vector operator
ĴμðxÞ. A typical example is the charge current ĴμeðxÞ ¼
e ˆ̄ψðxÞγμψ̂ðxÞ. Various parametrizations have been pro-
posed in the literature for spin-1

2
[34], 1 [35], 3

2
[36,37]

and higher [26–29]. We find that its elastic matrix elements
can be written in terms of the following basis:

Jμ;α
0
1
���α0nα1���αnðP;ΔÞ
¼ 2Pμ

X
ðk;nÞ

FV
1;kðtÞ − ðgμα0nΔαn − gμαnΔα0nÞ

X
ðk;n−1Þ

FV
2;kðtÞ;

ð18Þ

when j ¼ n is an integer, and

Jμ;α
0
1
���α0nα1���αnðP;ΔÞ ¼ 2Pμ

X
ðk;nÞ

FV
1;kðtÞ þ iσμνΔν

X
ðk;nÞ

FV
2;kðtÞ

ð19Þ

and when j ¼ nþ 1
2
is a half-integer. The number of FFs

associated with a vector operator is therefore 2jþ 1, as
already established long ago [27,38,39]. We observe that
the basis can be written in terms of “towers” attached to two
“seeds”. The first tower is simply the parametrization of a
scalar operator multiplied by the average four-velocity
Pμ=M playing the role of seed. It can then naturally be
interpreted as the convective part of the vector current. The
second tower is associated with the seed proportional to
iSμνΔν, where Sμν is the generator of Lorentz transforma-
tions in either the four-vector [ðSμνÞα0α ¼ iðgα0μgνα−
gα

0νgμαÞ] or the Dirac [Sμν ¼ 1
2
σμν] representation. It can

accordingly be interpreted as the spin or magnetization part
of the vector current [40,41]. The set of 2jþ 1 vector FFs
can therefore be decomposed into a set of bjc þ 1 con-
vective FFs and a set of ⌈j⌉ spin or magnetization FFs,
where ⌈j⌉ is the ceiling of the spin, i.e., the smallest integer
greater or equal to j. Note that both convective and spin (or
magnetization) parts are separately conserved as one can
easily check by contraction with Δμ. There is no way to
construct a nonconserved Lorentz structure satisfying all
the spacetime symmetry constraints.
For spin-0, one has

hp0; λ0jĴμð0Þjp; λi ¼ 2PμFV
1;0ðtÞ: ð20Þ

For spin-1
2
,

hp0; λ0jĴμð0Þjp; λi ¼ ūðp0; λ0Þ½2PμFV
1;0ðtÞ

þ iσμνΔνFV
2;0ðtÞ�uðp; λÞ: ð21Þ

For spin-1,

hp0; λ0jĴμð0Þjp; λi

¼ −ε�α0 ðp0; λ0Þ
�
2Pμ

�
gα

0αFV
1;0ðtÞ −

Δα0Δα

2M2
FV
1;1ðtÞ

�

− ðgμα0Δα − gμαΔα0 ÞFV
2;0ðtÞ

�
εαðp; λÞ: ð22Þ5For convenience, we choose to normalize the Dirac spinors as

ūðp; λ0Þuðp; λÞ ¼ 1 instead of ūðp; λ0Þuðp; λÞ ¼ 2M.
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For spin-3
2
,

hp0; λ0jĴμð0Þjp; λi ¼ −ūα0 ðp0; λ0Þ
�
2Pμ

�
gα

0αFV
1;0ðtÞ −

Δα0Δα

2M2
FV
1;1ðtÞ

�
þiσμνΔν

�
gα

0αFV
2;0ðtÞ −

Δα0Δα

2M2
FV
2;1ðtÞ

��
uαðp; λÞ:

ð23Þ
For spin-2,

hp0; λ0jĴμð0Þjp; λi ¼ ε�α0
1
α0
2
ðp0; λ0Þ

�
2Pμ

�
gα

0
1
α1gα

0
2
α2FV

1;0ðtÞ −
Δα0

1Δα1

2M2
gα

0
2
α2FV

1;1ðtÞ þ
Δα0

1Δα1

2M2

Δα0
2Δα2

2M2
FV
1;2ðtÞ

�

−ðgμα02Δα2 − gμα2Δα0
2Þ
�
gα

0
1
α1FV

2;0ðtÞ −
Δα0

1Δα1

2M2
FV
2;1ðtÞ

��
εα1α2ðp; λÞ: ð24Þ

C. Tensor operator

The last case we will treat explicitly is the tensor operator T̂μνðxÞ. A typical example is the energy-momentum tensor
(EMT) T̂μν

q ðxÞ ¼ ˆ̄ψðxÞγμiDνψ̂ðxÞ. Various parametrizations have been proposed in the literature for spin-0 [42,43], 1
2
[2,44–

46], and 1 [10,11,14,21,22]. For the higher-spin cases, a few past works have investigated the rank-2 tensor with different
results for the parametrizations; see e.g., [26–28,47]. When j ¼ n is integer, we find that its elastic matrix elements can be
written in terms of the following basis:

Tμν;α0
1
���α0nα1���αnðP;ΔÞ¼2PμPν

X
ðk;nÞ

FT
1;kðtÞþ2ðΔμΔν−gμνΔ2Þ

X
ðk;nÞ

FT
2;kðtÞþ2M2gμν

X
ðk;nÞ

FT
3;kðtÞ−Pfμgνg½α0nΔαn�

X
ðk;n−1Þ

FT
4;kðtÞ

−ðΔfμgνgfα0nΔαng−gμνΔα0nΔαn −gα
0
nfμgνgαnΔ2Þ

X
ðk;n−1Þ

FT
5;kðtÞþM2gα

0
nfμgνgαn

X
ðk;n−1Þ

FT
6;kðtÞ

þΔ½α0ngαn�fμgνg½α0n−1Δαn−1�
X

ðk;n−2Þ
FT
7;kðtÞ−P½μgν�½α0nΔαn�

X
ðk;n−1Þ

FT
8;kðtÞ−Δ½μgν�fα0nΔαng

X
ðk;n−1Þ

FT
9;kðtÞ; ð25Þ

where afμbνg ¼ aμbν þ aνbμ and a½μbν� ¼ aμbν − aνbμ. When j ¼ nþ 1
2
is a half-integer, we find a similar basis,

Tμν;α0
1
���α0nα1���αnðP;ΔÞ ¼ 2PμPν

X
ðk;nÞ

FT
1;kðtÞ þ 2ðΔμΔν − gμνΔ2Þ

X
ðk;nÞ

FT
2;kðtÞ þ 2M2gμν

X
ðk;nÞ

FT
3;kðtÞ

þ Pfμ i
2
σνgρΔρ

X
ðk;nÞ

FT
4;kðtÞ − ðΔfμgνgfα0nΔαng − gμνΔα0nΔαn − gα

0
nfμgνgαnΔ2Þ

X
ðk;n−1Þ

FT
5;kðtÞ

þM2gα
0
nfμgνgαn

X
ðk;n−1Þ

FT
6;kðtÞ þ Δ½α0ngαn�fμgνg½α0n−1Δαn−1�

X
ðk;n−2Þ

FT
7;kðtÞ þ P½μ i

2
σν�ρΔρ

X
ðk;nÞ

FT
8;kðtÞ

− Δ½μgν�fα0nΔαng
X

ðk;n−1Þ
FT
9;kðtÞ: ð26Þ

The total number of tensor FFs is

4jþ 5bjc þ 3 − θðj ≥ 1Þ; ð27Þ

where we defined θðj ≥ 1Þ ¼ 1 when j ≥ 1, and zero otherwise. In particular, the symmetric conserved part (associated to
the FFs FT

i;k with i ¼ 1, 2, 4, 5, 7) is parametrized in terms of 2ðjþ 1Þ þ 3bjc − θðj ≥ 1Þ FFs. The remaining FFs in the
parametrization are divided as follows: 2bjc þ 1 FFs come from the symmetric nonconserved part (i ¼ 3, 6), ⌈j⌉ of them
are related to the antisymmetric conserved part (i ¼ 8), and the last bjcFFs come from the antisymmetric nonconserved part
(i ¼ 9). This agrees with former results for spin 0, 1

2
, and 1. We arranged the bases so to maximize the number of conserved

terms. This is especially important in view of the application to the EMT, where nonconserved terms play a key role in
identifying separate quark and gluon contributions [5,48].
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For spin-0, 1
2
, and 1 we recover the known parametrizations. For spin-0, one has

hp0; λ0jT̂μνð0Þjp; λi ¼ 2PμPνFT
1;0ðtÞ þ 2ðΔμΔν − gμνΔ2ÞFT

2;0ðtÞ þ 2M2gμνFT
3;0ðtÞ: ð28Þ

For spin-1
2
,

hp0; λ0jT̂μνð0Þjp; λi ¼ ūðp0; λ0Þ
�
2PμPνFT

1;0ðtÞ þ 2ðΔμΔν − gμνΔ2ÞFT
2;0ðtÞ

þ 2M2gμνFT
3;0ðtÞ þ Pfμ i

2
σνgρΔρFT

4;0ðtÞ þ P½μ i
2
σν�ρΔρFT

8;0ðtÞ
�
uðp; λÞ: ð29Þ

For spin-1,

hp0;λ0jT̂μνð0Þjp;λi¼−ε�α0 ðp0;λ0Þ
�
2PμPν

�
gα

0αFT
1;0ðtÞ−

Δα0Δα

2M2
FT
1;1ðtÞ

�
þ2ðΔμΔν−gμνΔ2Þ

�
gα

0αFT
2;0ðtÞ−

Δα0Δα

2M2
FT
2;1ðtÞ

�

þ2M2gμν
�
gα

0αFT
3;0ðtÞ−

Δα0Δα

2M2
FT
3;1ðtÞ

�
−Pfμgνg½α0Δα�FT

4;0ðtÞ−ðΔfμgνgfα0Δαg−gμνΔα0Δα

−gα
0fμgνgαΔ2ÞFT

5;0ðtÞþM2gα
0fμgνgαFT

6;0ðtÞ−P½μgν�½α0Δα�FT
8;0ðtÞ−Δ½μgν�fα0ΔαgFT

9;0ðtÞ
�
εαðp;λÞ: ð30Þ

For spin-3
2
,

hp0; λ0jT̂μνð0Þjp; λi ¼ −ūα0 ðp0; λ0Þ
�
2PμPν

�
gα

0αFT
1;0ðtÞ −

Δα0Δα

2M2
FT
1;1ðtÞ

�
þ 2ðΔμΔν − gμνΔ2Þ

�
gα

0αFT
2;0ðtÞ −

Δα0Δα

2M2
FT
2;1ðtÞ

�

þ 2M2gμν
�
gα

0αFT
3;0ðtÞ −

Δα0Δα

2M2
FT
3;1ðtÞ

�
þ Pfμ i

2
σνgρΔρ

�
gα

0αFT
4;0ðtÞ −

Δα0Δα

2M2
FT
4;1ðtÞ

�
− ðΔfμgνgfα0Δαg − gμνΔα0Δα − gα

0fμgνgαΔ2ÞFT
5;0ðtÞ þM2gα

0fμgνgαFT
6;0ðtÞ

þ P½μ i
2
σν�ρΔρ

�
gα

0αFT
8;0ðtÞ −

Δα0Δα

2M2
FT
8;1ðtÞ

�
− Δ½μgν�fα0ΔαgFT

9;0ðtÞ
�
uαðp; λÞ: ð31Þ

For spin-2,

hp0; λ0jT̂μνð0Þjp; λi ¼ ε�α0
1
α0
2
ðp0; λ0Þ

�
2PμPν

�
gα

0
1
α1gα

0
2
α2FT

1;0ðtÞ −
Δα0

1Δα1

2M2
gα

0
2
α2FT

1;1ðtÞ þ
Δα0

1Δα1

2M2

Δα0
2Δα2

2M2
FT
1;2ðtÞ

�

þ 2ðΔμΔν − gμνΔ2Þ
�
gα

0
1
α1gα

0
2
α2FT

2;0ðtÞ −
Δα0

1Δα1

2M2
gα

0
2
α2FT

2;1ðtÞ þ
Δα0

1Δα1

2M2

Δα0
2Δα2

2M2
FT
2;2ðtÞ

�

þ 2M2gμν
�
gα

0
1
α1gα

0
2
α2FT

3;0ðtÞ −
Δα0

1Δα1

2M2
gα

0
2
α2FT

3;1ðtÞ þ
Δα0

1Δα1

2M2

Δα0
2Δα2

2M2
FT
3;2ðtÞ

�

− Pfμgνg½α02Δα2�
�
gα

0
1
α1FT

4;0ðtÞ −
Δα0

1Δα1

2M2
FT
4;1ðtÞ

�

− ðΔfμgνgfα02Δα2g − gμνΔα0
2Δα2 − gα

0
2
fμgνgα2Δ2Þ

�
gα

0
1
α1FT

5;0ðtÞ −
Δα0

1Δα1

2M2
FT
5;1ðtÞ

�

þM2gα
0
2
fμgνgα2

�
gα

0
1
α1FT

6;0ðtÞ −
Δα0

1Δα1

2M2
FT
6;1ðtÞ

�
þ Δ½α0

2gα2�fμgνg½α01Δα1�FT
7;0ðtÞ

− P½μgν�½α02Δα2�
�
gα

0
1
α1FT

8;0ðtÞ −
Δα0

1Δα1

2M2
FT
8;1ðtÞ

�

− Δ½μgν�fα02Δα2g
�
gα

0
1
α1FT

9;0ðtÞ −
Δα0

1Δα1

2M2
FT
9;1ðtÞ

��
εα1α2ðp; λÞ: ð32Þ
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III. MULTIPOLE EXPANSION TECHNIQUE

The tensor product approach used in the previous section
has the advantage of giving the explicit form for all the
possible structures in the given representation. We explic-
itly derived the parametrizations up to spin 2, which is
necessary in particular for the tensor operator case. A
further increase in the target spin has the effect of
introducing additional factors of gα

0
iαi and Δα0iΔαi , feeding

the towers with new elements, as is clear from the notation
(12). The main disadvantage however is that it is based on
the direct inspection of the structures and on the explicit use
of several on shell identities which are highly nontrivial.
This is the reason why several former parametrizations
proposed in the literature have been found either incom-
plete or overcomplete.
In the following, we develop another technique based on

covariant multipoles, complementary to the tensor product
approach and confirming the number of FFs. As already
stressed earlier, the choice of basis for a parametrization is
arbitrary. Some bases appear however to be more useful
because of their mathematical simplicity or their physical
meaning. The multipole basis is especially interesting since
it is closely related to the symmetries of the problem. In
particular, it clarifies how parametrizations associated with
different target spins are related to each other.

A. Standard suð2Þ multipoles

In nonrelativistic descriptions, it is often convenient to
expand physical quantities in terms of multipoles associ-
ated with the three-dimensional rotation group. In relativ-
istic descriptions, the rotation group appears as the little
group associated with massive representations, i.e., the
subgroup of the Lorentz group which leaves the (timelike)
four-momentum pμ invariant. Accordingly, the standard
suð2Þ multipole expansion remains useful as long as no
four-momentum is transferred to the system. This explains
for example why one can use essentially the same multipole
expansion for the spin density matrix in both nonrelativistic
and relativistic descriptions [49].
In a given spin representation, operators can conveniently

be expanded into products of the rotation generators, Ji,

O ¼ cI þ ciJi þ cijJiJj þ � � � ; ð33Þ

where I is the identity and cij��� are C-valued coefficients.
Because of the suð2Þ Lie algebra ½Ji; Jj� ¼ iϵijkJk and the
suð2Þ Casimir J2 ¼ jðjþ 1ÞI, the coefficients of the multi-
pole expansion can be taken completely symmetric and
traceless, and the suð2Þmultipoles of order k are defined as

Mi1���ik
k ≡ SJi1 � � � Jik ; ð34Þ

where S indicates that the product is symmetrized and
traceless. For example, the first three multipoles read

Monopole M0 ¼ I;

Dipole Mi
1 ¼ Ji;

Quadrupole Mij
2 ¼ 1

2
fJi; Jjg − 1

3
δijJ2: ð35Þ

One can then write the multipole expansion as

O ¼
X
k

ci1���ikMi1���ik
k : ð36Þ

Since the spin representation has finite dimension, the
Cayley-Hamilton theorem ensures that the expansion must
stop at some finite order [50]. More precisely, a spin-j
representation will admit only the first 2jþ 1 multipoles.
Multipoles of higher order simply vanish.

B. Covariant slð2;CÞ multipoles

The rotation group being a subgroup of the Lorentz
group motivates the extension of the multipole expansion
technique to the whole set of slð2;CÞ generators Sμν. That
such an expansion exists has been suggested by a complete
parametrization of the EMT for spin-1 hadrons, see
Appendixes B and C of [21]. Recently, elements of a
covariant multipole expansion have been exposed in [25].
Our aim here is to develop this technique further before
applying it to our problem.
Similarly to the suð2Þ case, one can conveniently

expand operators in a given representation into products
of the Lorentz generators,

O ¼ cI þ cμνSμν þ cμν;ρσSμνSρσ þ � � � ð37Þ
In the following, we will refer to pairs of antisymmetric
indices as bi-indices. Because of the slð2;CÞ Lie
algebra ½Sμν; Sρσ� ¼ iðgμρSνσ − gνρSμσ þ gμσSρν − gνσSρμÞ,
the coefficients of the multipole expansion can be taken
completely symmetric under the exchange of bi-indices,

c���;μν;���;ρσ;��� ¼ c���;ρσ;���;μν;��� ð38Þ

Unlike the suð2Þ case, there are two types of “traces”
for bi-indices. The first one, gμ½ρgσ�ν, has mixed symmetry
and is even under parity, whereas the second one,
iϵμνρσ, is totally antisymmetric and odd under parity.
Accordingly one gets two quadratic slð2;CÞ Casimirs C≡
1
2
SμνSμν ¼ J2 −K2 ¼ 2½j1ðj1 þ 1Þ þ j2ðj2 þ 1Þ� and C̃≡

i
4
ϵμνρσSμνSρσ ¼ ifJi;Kig¼ 2½j1ðj1þ1Þ− j2ðj2þ1Þ�. For
example, for a Dirac particle one gets C ∝ 1 and
C̃ ∝ γ5, both matrices commuting indeed with the
Lorentz generators Sμν ¼ 1

2
σμν. The four-vector and more

generally all ðn
2
; n
2
Þ representations are characterized by the

vanishing of the second Casimir C̃ ¼ 0. The multipole
expansion (37) can then be reorganized as follows (the
coefficients c and c̃ do not involve the Levi-Civita tensor):
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O ¼
X
k

ðcμ1ν1;���;μkνk I þ c̃μ1ν1;���;μkνk C̃ÞMμ1ν1;���;μkνk
k ; ð39Þ

where the slð2;CÞ multipoles of order k are defined as

Mμ1ν1;���;μkνk
k ≡ SSμ1ν1 � � � Sμkνk ; ð40Þ

with S indicating here that the product is symmetrized over
bi-indices and all traces are removed. The latter involve
two, three or four bi-indices,

M���;μν;���;ρσ;���gμνρσ ¼ 0;

M���;μμ0;���;νν0;���;ρσ;���gμνρσ ¼ 0;

M���;μμ0;���;νν0;���;ρρ0;���;σσ0;���gμνρσ ¼ 0; ð41Þ
where gμνρσ ¼ gμ½ρgσ�ν or iϵμνρσ. For example, the first three
covariant multipoles read

monopole M0 ¼ I;

dipole Mμν
1 ¼ Sμν;

quadrupole Mμν;ρσ
2 ¼ 1

2
fSμν; Sρσg

−
1

12
gμ½ρgσ�νSλτSλτ

þ 1

4!
ϵμνρσϵλτλ0τ0SλτSλ

0τ0 : ð42Þ

Once again Cayley-Hamilton theorem ensures that in a
spin-j representation the expansion stops at order k ¼ 2j.

IV. PARAMETRIZATION IN TERMS OF
COVARIANT MULTIPOLES

We construct now an alternative parametrization for the
matrix elements of the scalar, vector and tensor operators
in terms of covariant multipoles. Like in Sec. II we will use
the ðn

2
; n
2
Þ representation for integer spin targets and the

ðnþ1
2
; n
2
Þ ⊕ ðn

2
; nþ1

2
Þ representation for half-integer spin tar-

gets. Using various on shell relations derived in Appendix B,
we observe that all covariant multipoles contracted with Pμ

can be discarded from the list of independent tensor struc-
tures. Discrete symmetries expressed by the constraints in
Eqs. (9) and (10) allow us to further reduce the number of
independent tensor structures. Since we are restricting our-
selves to operators with positive intrinsic parity, we can set
c̃μ1ν1;…;μkνk ¼ 0 in the multipole expansion (39). Time-rever-
sal symmetry implies that odd covariant multipoles should be
multiplied by i for the FFs to be real-valued, and Hermiticity
imposes that the coefficients in front of even (odd) multipoles
involve an even (odd) number of factors of Δμ.

A. Scalar operator

In the case of a scalar operator, we need to fully contract
the bi-indices of the multipoles. Owing to the above
constraints, only even multipoles can be used

M0;

Mρ1Δ;ρ2Δ
2 gρ1ρ2 ;

Mρ1Δ;ρ2Δ;ρ3Δ;ρ4Δ
4 gρ1ρ2gρ3ρ4 ;

..

. ð43Þ

where an index Δ means contraction with Δσ , e.g.,
MρΔ;��� ¼ Mρσ;���Δσ. Note that since covariant multipoles
are symmetric under the exchange of bi-indices, the
independent contractions can always be put in the canoni-
cal form (43). For convenience we shall use the notation,

M���;•Δ;•Δ
2k ¼ M���;ρ1Δ;ρ2Δ

2k gρ1ρ2 : ð44Þ

Since a multipoleM2k has 2k bi-indices, the fully contracted
even multipoles of the scalar parametrization contain k
pairwise contractions. The fact that there is only one type
of contraction associated with each multipole is reflected in
the existence of only one seed in the parametrization (11).
The multipole parametrization for the scalar operator

then reads

NðP;ΔÞ ¼ 2M
X
k

1

2kM2k M
•Δ;���;•Δ
2k F S

kðtÞ; ð45Þ

where k runs over integer numbers and the series truncates
for k > j, because the (even) multipoles M2k vanishes.
Increasing the multipole order with the same contraction
pattern generates the tower associated by the strange sum
multiplying the seed in (11). Since only even multipoles are
allowed, this explains why the number of scalar FFs
is bjc þ 1.

B. Vector operator

A vector operator carries one open Lorentz index. In
constructing the multipole decomposition, we bare in mind
that the open index is carried either by the coefficient or by
the multipole. In the first case we are left again with only
even multipoles, whereas in the second case only odd
multipoles can contribute, i.e.,

2PμM0;

iMμΔ
1 ;

2PμM•Δ;•Δ
2 ;

iMμΔ;•Δ;•Δ
3 ;

2PμM•Δ;•Δ;•Δ;•Δ
4 ;

..

. ð46Þ

In other words, there is an additional possible contraction
which concerns only the odd multipoles.
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The multipole parametrization for the vector current then
reads

JμðP;ΔÞ ¼
X
k

1

2kM2k ½2PμM•Δ;���;•Δ
2k FV

1;kðtÞ

þiMμΔ;•Δ;���;•Δ
2kþ1 FV

2;kðtÞ�: ð47Þ

Here it is understood that k runs over integers and that the
series truncates when the nth multipole Mn vanishes, i.e.,
for n > 2j. The total number of terms is 2jþ 1, where
bjc þ 1 FFs come from the even multipole expansion and
the remaining ⌈j⌉ come from the odd multipole expansion.
Each term is manifestly conserved. Note that thanks to the
covariant multipole approach, we are able to write a single
parametrization valid for both integer and half-integer
spins, as already suggested by the similitude between
Eqs. (18) and (19).

C. Tensor operator

For a tensor operator, the two open Lorentz indices can
be carried entirely by the coefficient, or the multipole, or
both. In the first two cases only even multipoles appear,
whereas in the last case both even and odd multipoles

contribute. In particular, new types of contractions of the
even multipoles appear in addition to those involved for the
vector operator. They can be put in the canonical form,

Mμ•;ν•;•Δ;���;•Δ
2k ; ΔfμMνg•;•Δ;���;•Δ

2k ;

Δ½μMν�•;•Δ;���;•Δ
2k ; MμΔ;νΔ;•Δ;���;•Δ

2k ; ð48Þ

owing to the symmetry under the exchange of bi-indices
and the tracelessness of the covariant mulipoles. These
operators have k pairwise contractions, except for
MμΔ;νΔ;•Δ;…;•Δ

2k which has k − 1 contractions and which
is responsible for generating the tower associated with the
FFs FT

k;7 of Eq. (26). It appears only for 0 < k < bjc, while
for k ¼ bjc it is not independent of the other types of
contractions involving the multipole M2bjc. For example,
for spin j < 2 we find that

2MμΔ;νΔ;•Δ;���;•Δ
2 − ΔfμMνg•;•Δ;���;•Δ

2 − Δ2Mμ•;ν•;•Δ;���;•Δ
2

− gμνM•Δ;���;•Δ
2 ¼ 0: ð49Þ

The multipole parametrization for the tensor current
maximizing the number of conserved structures then reads

TμνðP;ΔÞ ¼
X
k

1

2kM2k ½2PμPνM•Δ;���;•Δ
2k F T

1;kðtÞ þ 2ðΔμΔν − gμνΔ2ÞM•Δ;���;•Δ
2k F T

2;kðtÞ þ 2M2gμνM•Δ;���;•Δ
2k F T

3;kðtÞ

þ PfμiMνgΔ;•Δ;���;•Δ
2kþ1 F T

4;kðtÞ þ ðΔfμMνg•;•Δ;���;•Δ
2k þ Δ2Mμ•;ν•;•Δ;���;•Δ

2k þ gμνM•Δ;���;•Δ
2k ÞF T

5;kðtÞ
þM2Mμ•;ν•;•Δ;���;•Δ

2k F T
6;kðtÞ þ θðbjc > kÞMμΔ;νΔ;•Δ;���;•Δ

2k F T
7;kðtÞ þ P½μiMν�Δ;•Δ;���;•Δ

2kþ1 F T
8;kðtÞ

þΔ½μMν�•;•Δ;���;•Δ
2k F T

9;kðtÞ�: ð50Þ

Here it is again understood that k runs over integers and that
the series truncates when the nth multipole Mn vanishes,
i.e., for n > 2j. Contrary to the scalar and vector cases, the
relations between the “curly” tensor FFs F T

i;k of this section
and the “straight” FT

j;k of Sec. II mix in general different
towers i ≠ j. This can easily be seen by writing down
explicitly the covariant multipoles in the ðn

2
; n
2
Þ and

ðnþ1
2
; n
2
Þ ⊕ ðn

2
; nþ1

2
Þ representations. In the symmetric part,

there are 3ðbjc þ 1Þ FFs associated with fully contracted
multipoles (i ¼ 1, 2, 3), 3bjc − θðj ≥ 1Þ FFs associated
with partially contracted even multipoles (i ¼ 5, 6, 7), and
⌈j⌉FFs associated with odd multipoles (i ¼ 4). In the
antisymmetric part, there are bjcFFs associated with
partially contracted even multipoles (i ¼ 9) and ⌈j⌉FFs
associated with odd multipoles (i ¼ 8). The total number of
FFs is therefore 4jþ 5bjc þ 3 − θðj ≥ 1Þ in agreement
with the counting of Sec. II.
In Refs. [23,24] general constraints from Poincaré

symmetry have been derived for targets with arbitrary
spin. The key point was that the symmetric part of the

conserved total EMT involves only two Lorentz structures
to linear order in Δ. Expanding our complete parametriza-
tion (50) to that order, we find

TμνðP;ΔÞ ¼ 2PμPνF T
1;0ð0Þ þ 2M2gμνF T

3;0ð0Þ
þ PfμiSνgΔF T

4;0ð0Þ þM2Mμ•;ν•
2 F T

6;1ð0Þ
þ P½μiSν�ΔF T

8;0ð0Þ þOðΔ2Þ: ð51Þ

Keeping only the symmetric conserved part, we are left
with 2PμPνF T

1;0ð0Þ þ PfμiSνgΔF T
4;0ð0Þ. Poincaré sym-

metry then imposes that for the total EMT F T
1;0ð0Þ ¼

F T
4;0ð0Þ ¼ 1 [23,24].

D. Summary of the results for spin j ≤ 2

In Table I we display the complete set of structures
appearing in the parametrizations of scalar, vector, and
tensor operators for spin values up to 2. The number of FFs
for each spin value includes the structures at the relevant
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spin entry and all the ones above it. The results should be
compared with Sec. II.

V. CONCLUSIONS AND OUTLOOK

In this work we have derived the general Lorentz
covariant form factor (FF) parametrizations for the matrix
elements of local scalar, vector, and tensor operators for
massive particle states of arbitrary spin. We have followed
two distinct and complementary approaches. The first one,
whichwe refer to as the tensor product approach, follows the
spirit of the existing literature, where all possible structures
that build the parametrization are explicitly derived. We
recalled the knownvector case and extended the treatment to
the rank-2 tensor operator, especially relevant because of the
applications to the energy-momentum tensor. We found that
the counting of FFs in the tensor case depends on the spin
value j in a nontrivial way.
The second approach, of central importance for our

work, is based on the expansion of the operators in terms
of covariant multipoles, built from the Lorentz generators

in the chosen spin representation. The latter technique
is especially useful because it underlines the intrinsic
universal properties of the multipole expansions, independ-
ently of the particle spin and the operator type. The
fundamental basis of linearly independent multipoles,
constructed from symmetric and traceless products of
Lorentz generators, can be used as a universal starting
point for analysing the arbitrary spin matrix elements of any
operator, including those that are nonlocal and of higher-
rank. The specificity of the problem, such as the operator
type and the spin of the particle state, dictates the actual
arrangements of the multipole elements. Namely, the rank
of the operator is responsible for selecting the allowed
contractions that give rise to the various structures in front
of the FFs, which are different in the scalar, vector, and
tensor cases. The value of the particle spin is, on the other
hand, responsible for the truncation of the multipole series
at a certain order. We find an exact correspondence between
the FF counting rules in the two different approaches, as
one would expect since the total number of independent

TABLE I. Summary of the linearly independent structures appearing in the parametrization of the matrix element of local operators,
built from the covariant multipoles. In the case of a tensor operator, the term with a symbol ð�Þ built from the even multipoleM2bjc does
not appear.

Spin Multipoles Scalar N Vector Jμ Tensor Tμν

j ≥ 0 M0 M0 PμM0 PμPνM0

ΔμΔνM0

gμνM0

j ≥ 1
2

Mμ1ν1
1 iMμΔ

1 PfμiMνgΔ
1

P½μiMν�Δ
1

j ≥ 1 Mμ1ν1;μ2ν2
2 M•Δ;•Δ

2 PμM•Δ;•Δ
2 PμPνM•Δ;•Δ

2

ΔμΔνM•Δ;•Δ
2

gμνM•Δ;•Δ
2

Mμ•;ν•
2

ΔfμMνg•;•Δ
2

Δ½μMν�•;•Δ
2

MμΔ;νΔ
2 ð�Þ

j ≥ 3
2

Mμ1ν1;μ2ν2;μ3ν3
3 iMμΔ;•Δ;•Δ

3 PfμiMνgΔ;•Δ;•Δ
3

P½μiMν�Δ;•Δ;•Δ
3

j ≥ 2 Mμ1ν1;μ2ν2;μ3ν3;μ4ν4
4 M•Δ;•Δ;•Δ;•Δ

4 PμM•Δ;•Δ;•Δ;•Δ
4 PμPνM•Δ;•Δ;•Δ;•Δ

4

ΔμΔνM•Δ;•Δ;•Δ;•Δ
4

gμνM•Δ;•Δ;•Δ;•Δ
4

Mμ•;ν•;•Δ;•Δ
4

ΔfμMνg•;•Δ;•Δ;•Δ
4

Δ½μMν�•;•Δ;•Δ;•Δ
4

MμΔ;νΔ;•Δ;•Δ
4 ð�Þ

Total number 2jþ 1 bjc þ 1 2jþ 1 4jþ 5bjc þ 3 − θðj ≥ 1Þ
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FFs cannot depend upon the bases chosen for the
parametrization.
As previously mentioned, a natural extension of this

work would be to apply the covariant multipole expansion
to the matrix elements of nonlocal currents. This could be
achieved via the introduction of an additional vector nμ

which defines the light-front direction along which the
operator is nonlocal [51]. Nonlocal currents have potential
applications for many observables in QCD, including those
that are expressed in terms of standard parton distributions
and their generalizations (PDFs, GPDs, TMDs, etc.). This
interesting follow-up is left for future work.
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APPENDIX A: GENERALIZED
POLARIZATION TENSORS

An explicit construction of the GPTs has been proposed
long ago [52–55]. It consists of coupling the maximum
possible spin of two lower-order GPTs. In the half-integer
spin case it is convenient to adopt the Rarita-Schwinger
approach [56], i.e., to consider the following product of a
Dirac spinor6 with an integer-spin GPT:

uα1���αnðp; λÞ ¼
X
m;m0

D1
2
m; nm0

���jλEuðp;mÞεα1���αnðp;m0Þ

¼
ffiffiffiffiffiffiffiffiffiffi
jþ λ

2j

s
u

�
p;þ 1

2

�
εα1���αn

�
p; λ −

1

2

�
þ

ffiffiffiffiffiffiffiffiffiffi
j − λ

2j

s
u

�
p;−

1

2

�
εα1���αn

�
p; λþ 1

2

�
; ðA1Þ

where hj1m1; j2m2jjmi represents the Clebsch-Gordan coefficient in the Condon-Shortley phase convention. In this way,
one just needs to focus on the GPT for integer spin only. It can be constructed from the recursion formula,

εα1���αnðp; λÞ ¼
X
m;m0

h1m; ðn − 1Þm0jnλiεα1ðp;mÞεα2���αnðp;m0Þ; ðA2Þ

where εαiðp; λÞ is the standard polarisation four-vector. Iterating this formula, one finds

εα1���αnðp; λÞ ¼
X

fmi¼0;�1g

�Yn
l¼1

h1ml; ðn − lÞm0
n−ljðn − lþ 1Þm0

n−lþ1iεαlðp;mlÞ
�
;

where the sum is implicitly restricted to configurations such that
P

n
i¼1 mi ¼ λ, and where m0

l ¼
P

n
k¼n−lþ1mk. Since the

Clebsch-Gordan coefficients can be written as [57]

h1mlmljðlþ 1ÞðmþmlÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1þm
2 Clþml

2l

Clþmlþmþ1
2lþ2

vuut ; Ck
n ¼

�
n

k

�
≡

� n!
k!ðn−kÞ! ; n ≥ k ≥ 0

0; otherwise
; ðA3Þ

one obtains the expression,

εα1���αnðp; λÞ ¼
X

fmi¼0;�1g

Q
n
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
C1þml
2

q
εαlðp;mlÞffiffiffiffiffiffiffiffiffiffi

Cnþλ
2n

q :

When λ ≥ 0 this can be rewritten more conveniently as [58]

εα1���αnðp; λÞ ¼
Xm=2

k¼0

P
P½
Q

k
l¼1 εαPðlÞ ðp;−1Þ�½

Q
m−k
l¼kþ1 εαPðlÞ ðp; 0Þ�½

Q
n
l¼m−kþ1 εαPðlÞ ðp;þ1Þ�

2k−m=2k!ðm − 2kÞ!ðn −mþ kÞ! ffiffiffiffiffiffiffiffi
Cm
2n

p ; ðA4Þ

where P stands for a permutation of f1;…; ng and m ¼ n − λ. The expression for λ < 0 is obtained using the relation,

εα1���αnðp; λÞ ¼ ð−1Þλε�α1���αnðp;−λÞ; ðA5Þ

6For convenience, we choose to normalise the Dirac spinors as ūðp; λ0Þuðp; λÞ ¼ 1 instead of ūðp; λ0Þuðp; λÞ ¼ 2M.
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and takes the form,

εα1���αnðp; λÞ ¼
Xm=2

k¼0

P
P½
Q

k
l¼1 εαPðlÞ ðp;þ1Þ�½Qm−k

l¼kþ1 εαPðlÞ ðp; 0Þ�½
Q

n
l¼m−kþ1 εαPðlÞ ðp;−1Þ�

2k−m=2k!ðm − 2kÞ!ðn −mþ kÞ! ffiffiffiffiffiffiffiffi
Cm
2n

p : ðA6Þ

APPENDIX B: USEFUL IDENTITIES

1. General identities

A particularly useful identity is the Schouten identity,

iϵμνρσgτλ þ iϵνρστgμλ þ iϵρστμgνλ þ iϵστμνgρλ þ iϵτμνρgσλ ¼ 0;

ðB1Þ

which states that there cannot be totally antisymmetric
tensors with rank larger than the spacetime dimension.
Contracting this relation with an antisymmetric tensor
Aστ ¼ −Aτσ leads then to

iϵμνρσ Aσλ ¼ Ãνρgμλ þ Ãρμgνλ þ Ãμνgρλ; ðB2Þ

where we defined the dual antisymmetric tensor as

Ãμν ¼ −
i
2
ϵμνρσAρσ: ðB3Þ

In other words, an incomplete contraction between a Levi-
Civita tensor with an antisymmetric tensor can always be
rewritten in terms of the dual antisymmetric tensor (i.e., a
full contraction). A typical antisymmetric tensor is iσμν for
which

iσ̃μν ¼ iσμνγ5: ðB4Þ

One can also contract Eq. (B1) with aτaλ leading to

iϵμνρσa2 þ iϵνρστaτaμ − iϵρσμτaτaν þ iϵσμντaτaρ

− iϵμνρτaτaσ ¼ 0: ðB5Þ

Note that ϵμνρσ and γ5 ¼ i
4!
ϵμνρσγ

μγνγργσ can be dis-
carded from our parametrizations. Indeed, amplitudes with
intrinsic positive parity necessarily involve an even number
of ϵμνρσ (possibly in the form of γ5), and the product
ϵμνρσϵαβτλ can always be rewritten in terms of the metric
only.

ϵμνρσϵαβτλ ¼ −

���������

gμα gμβ gμτ gμλ
gνα gνβ gντ gνλ
gρα gρβ gρτ gρλ
gσα gσβ gστ gσλ

���������
: ðB6Þ

2. On shell identities

On shell polarization four-vectors are orthogonal to their
four-momentum argument,

p · εðp; λÞ ¼ 0; p0 · ε�ðp0; λ0Þ ¼ 0: ðB7Þ

In terms of the symmetric variables P ¼ ðp0 þ pÞ=2 and
Δ ¼ p0 − p, these on shell conditions read

P · εðp; λÞ ¼ Δ · εðp; λÞ=2;
P · ε�ðp0; λ0Þ ¼ −Δ · ε�ðp0; λ0Þ=2: ðB8Þ

Since we reserved the indices αi and α0i to GPTs, we can
write

Pαi ≐
Δαi

2
; Pα0i ≐ −

Δα0i

2
; ðB9Þ

where ≐ means on shell equality, i.e., equality once
contracted with GPTs like in (B8). In our parametrizations,
we chose to eliminate the contractions P · ε and P · ε�.
Dirac bilinears also satisfy a number of on shell relations

derived using the Dirac equation. The most famous one is
the Gordon identity,

ūðp0; λ0Þγμuðp; λÞ ¼ ūðp0; λ0Þ
�
Pμ

M
þ iσμνΔν

2M

�
uðp; λÞ;

ðB10Þ

which can be rewritten using on shell equality as

γμ ≐
Pμ

M
þ iσμνΔν

2M
: ðB11Þ

The (over)complete set of on shell relations has been
derived in [59] and reads

1 ≐
=P
M

; 0 ≐ =Δ; ðB12Þ

γ5 ≐
=Δγ5
2M

; 0 ≐ =Pγ5; ðB13Þ

γμ ≐
Pμ

M
þ iσμΔ

2M
; 0 ≐

Δμ

2
þ iσμP; ðB14Þ

γμγ5 ≐
Δμγ5
2M

þ iσμP

M
; 0 ≐ Pμγ5 þ

iσμΔγ5
2

; ðB15Þ
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iσμν ≐ −
Δ½μγν�

2M
þ iϵμνPλγλγ5

M
; 0 ≐ −P½μγν� þ iϵμνΔλγλγ5

2
;

ðB16Þ

iσμνγ5≐−
P½μγν�γ5

M
þ iϵμνΔλγλ

2M
; 0≐−

Δ½μγν�γ5
2

þ iϵμνPλγλ;

ðB17Þ

where a contraction with a four-vector is denoted by
replacing a Lorentz index by the four-vector, like e.g.,
iσμΔ ≡ iσμνΔν. In our parametrizations, we chose to para-
metrize the parity-even sector in terms of 1 and iσμν and
eliminated iσμP using (B14). Combining Eqs. (B14) and
(B16) we find

P2iσμΔ ≐
Δ2

2
Pμ −MiϵμPΔλγλγ5: ðB18Þ

Combining Eqs. (B2), (B4), and (B15) we also get

−2iϵμνρPγ5 ≐ Δμiσνρ þ Δνiσρμ þ Δρiσμν: ðB19Þ

Together with Eq. (B5), this allows us to eliminate the
product ϵμνρσγ5 from our parametrizations.
Since Rarita-Schwinger spinors satisfy the constraint,

γαiuα1���αnðp; λÞ ¼ 0; ūα0
1
���α0nðp0; λ0Þγα0i ¼ 0;

i ∈ f1; � � � ; ng ðB20Þ

the structures iσμν carrying an αi or α0i index can also be
eliminated owing to

iσα
0μ ≐ gα

0μ; iσνα ≐ gνα: ðB21Þ

We can derive a number of interesting relations. Starting
from the product of four Dirac matrices,

γργμγνγσ ¼ gρμgνσ − gρνgμσ þ gρσgμν þ iϵρμνσγ5

− gρμiσνσ þ gρνiσμσ − gρσiσμν

− iσρμgνσ þ iσρνgμσ − iσρσgμν; ðB22Þ

we find using Eqs. (B20) and (B21),

iϵρμναγ5 ≐ gαρiσμν þ gαμiσνρ þ gανiσρμ; ðB23aÞ

iϵα
0μνσγ5 ≐ gα

0σiσμν þ gα
0μiσνσ þ gα

0νiσσμ; ðB23bÞ

iϵα
0μναγ5 ≐ gα

0αiσμν þ gα
0μgνα − gα

0νgμα: ðB23cÞ

Contracting the last relation with P and Δ we get using
Eq. (B14),

iϵα
0Pναγ5 ≐

1

2
gα

0αΔν þ P½α0gα�ν; ðB24aÞ

iϵα
0Δναγ5 ≐ −gα0αiσνΔ þ Δ½α0gα�ν; ðB24bÞ

iϵα
0PΔαγ5 ≐

1

2
gα

0αΔ2 þ P½α0Δα�: ðB24cÞ

From the product of three Dirac matrices,

γργμγσ ¼ gρμγσ − gρσγμ þ gμσγρ − iϵρμσλγλγ5; ðB25Þ

γργμγσγ5 ¼ gρμγσγ5 − gρσγμγ5 þ gμσγργ5 − iϵρμσλγλ; ðB26Þ

we find using Eq. (B20),

iϵρμαλγλγ5≐gμαγρ−gραγμ; iϵρμαλγλ≐gμαγργ5−gραγμγ5;

ðB27aÞ

iϵα
0μσλγλγ5≐gα

0μγσ−gα
0σγμ; iϵα

0μσλγλ≐gα
0μγσγ5−gα

0σγμγ5;

ðB27bÞ

iϵα
0μαλγλγ5 ≐ −gα0αγμ; iϵα

0μαλγλ ≐ −gα0αγμγ5: ðB27cÞ

Combining these with Eqs. (B1) and (B13), we find

iϵα
0μναγ5 ≐

1

2M
½ðgμαγν − gναγμÞΔα0

þ ðgμα0γν − gνα
0
γμÞΔα þ gα

0αðγμΔν − γνΔμÞ�:
ðB28Þ

This relation is quite remarkable since it allows one to
replace a structure antisymmetric under α0 ↔ α by a
symmetric one, which can of course only be true on shell.
Contracting Eqs. (B27) with P and Δ, and using Eq. (B12)
and (B13), we get

iϵρPαλγλγ5 ≐ Pαγρ −Mgρα; iϵρPαλγλ ≐ Pαγργ5; ðB29aÞ

iϵρΔαλγλγ5 ≐ Δαγρ; iϵρΔαλγλ ≐ Δαγργ5 − 2Mgραγ5;

ðB29bÞ

iϵPΔαλγλγ5 ≐ MΔα; iϵPΔαλγλ ≐ −2MPαγ5; ðB29cÞ

iϵα
0Pσλγλγ5 ≐ Pα0γσ −Mgα

0σ; iϵα
0Pσλγλ ≐ Pα0γσγ5;

ðB29dÞ

iϵα
0Δσλγλγ5 ≐ Δα0γσ; iϵα

0Δσλγλ ≐ Δα0γσγ5 − 2Mgα
0σγ5;

ðB29eÞ

iϵα
0PΔλγλγ5 ≐ −MΔα0 ; iϵα

0PΔλγλ ≐ 2MPα0γ5; ðB29fÞ
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iϵα
0Pαλγλγ5 ≐ −Mgα

0α; iϵα
0Pαλγλ ≐ 0; ðB29gÞ

iϵα
0Δαλγλγ5 ≐ 0; iϵα

0Δαλγλ ≐ −2Mgα
0α: ðB29hÞ

If we contract Eqs. (B23c) and (B28) withΔν and use the
Gordon identity (B11), we obtain the nontrivial relation
quoted without proof in [36],

Δα0gμα − Δαgμα
0 ≐ 2M

�
1 −

Δ2

4M2

�
gα

0αγμ − 2gα
0αPμ

þ 1

M
Δα0Δαγμ: ðB30Þ

Our derivation shows in particular that this on shell relation
holds not only for spin-3=2, but also for all higher-spin
Rarita-Schwinger spinors.
Let us now consider a single contraction between two

Levi-Civita tensors,

−iϵρστλ iϵλαβμ ¼ gραgσβgτμ þ gρβgσμgτα þ gρμgσαgτβ

− gρβgσαgτμ − gραgσμgτβ − gρμgσβgτα: ðB31Þ

Using Schouten identity (B1) and Eq. (B12), we have

−iϵPΔμνγλ þMiϵλΔμν ≐ iϵλPΔ½μγν�: ðB32Þ

Contracting this with −iϵα0αPλ gives then

MΔ½α0gα�½μPν� ≐ P½α0Δα�P½μγν� þ P2Δ½α0gα�½μγν�; ðB33Þ

where we used Eqs. (B29g) and (B31). Finally, thanks to
Gordon identity (B11) and Eq. (B9) we obtain

Δ2

2
Δ½α0gα�½μPν�≐−Δα0ΔαP½μiσν�ΔþP2Δ½α0gα�½μiσν�Δ: ðB34Þ

Another nontrivial relation can be found as follows.
Using the Schouten identity (B1) we can write

−g½α0fμiϵα�νgPΔγ5 ¼ 2gμνiϵPΔα
0αγ5 − PfμiϵνgΔα0αγ5

þ ΔfμiϵνgPα0αγ5; ðB35Þ

which leads to

−g½α0fμiϵα�νgPΔγ5 ≐ Δ2gμνgα
0α − 2gμνΔα0Δα − gα

0αPfμiσνgΔ

þ Δ½α0gα�fμPνg − gα
0αΔμΔν

þ 1

2
Δfα0gαgfμΔνg ðB36Þ

using Eqs. (B24). Alternatively, using Eq. (B12) and again
the Schouten identity gives

−g½α0fμiϵα�νgPΔγ5 ≐
1

2M
g½α0fμðΔα�iϵνgPΔλ − Δνgiϵα�PΔλ

− Δ2iϵα�νgPλÞγλγ5; ðB37Þ

which leads to

−g½α0fμiϵα�νgPΔγ5 ≐
1

2
Δ½α0gα�fμiσνgΔ

−
1

2
Δfα0gαgfμΔνg þ Δ2gα

0fμgνgα ðB38Þ

using Eqs. (B29) and (B9).
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