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We study the structure of scalar, vector, and tensor currents for on shell massive particles of any spin.
When considering higher values for the spin of the particle, the number of form factors (FFs) involved in
the decomposition of the matrix elements associated with these local currents increases. We identify all the
fundamental structures that give rise to the independent FFs, systematically for any spin value. These
structures can be conveniently organized using an expansion in covariant multipoles, built solely from the
Lorentz generators. This approach allows one to uniquely identify the terms which are universal and those
that arise because of spin. We derive counting rules which relate the number of FFs to the total spin j of the
state, showing explicitly that these rules match all the well-known cases up to spin 2.
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I. INTRODUCTION

Matrix elements representing the interaction of quantum
states with local currents are parametrized in terms of form
factors (FFs). The most known examples are the electro-
magnetic and gravitational FFs, which are related to the
electromagnetic current and the energy-momentum tensor
(EMT), respectively, and which carry important informa-
tion on the nature of the system. In the particular case of
QCD, these FFs are fundamental observables which con-
tain a rich information about the internal structure of
hadrons, ranging from their electromagnetic properties to
the spatial and angular momentum distributions of their
internal constituents [1-6].

In hadronic physics, a large amount of attention has been
historically given to the proton, due to its abundance as a
stable particle and its central role in the building of visible
matter. However, recently there has been an increasing
interest in the study of higher-spin hadrons, as unique tools
to study the dynamics of internal constituents beyond the
degrees of freedom typical of a single spin—% nucleon
(proton and neutron) [7-22]. Although measurements of
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the FFs for higher-spin particles would be experimentally
challenging and hardly feasible in a foreseeable future,
investigating higher-spin problems nevertheless remains
desirable from a broader theoretical point of view [23-25].
For instance, old-standing problems concerning the funda-
mental interactions for particles of arbitrary spin have been
explored in the past, with different approaches and tech-
niques, but they still lack a global theoretical description.
Only in specific cases, such as the scalar and electromag-
netic interaction, has the formalism developed to study
massive spin—% particles been extended to higher spins: the
precise rule which links the number of electromagnetic FFs
with the value j of the spin was established long ago and
unanimously accepted in the literature [26-29]. However, a
similar systematic and unambiguous counting of FFs is
missing for the tensor currents of higher rank (in particular
for the EMT), and a few past attempts have led to various
answers; see e.g., [26-28].

Finding the most general expression for the EMT, which
is not relegated to a spin-by-spin analysis, is extremely
useful to shed light on the universal properties of particles.
Recently, it was rigorously proven [23,24] that constraints
on the gravitational FFs in the limit of zero momentum
transfer, historically associated to spin—% particles, are
actually universal for states of arbitrary spin. These con-
straints are solely related to Poincaré symmetry and hold
independently of the spin of the particles and their mass.
The crucial starting point to this proof is the realization that,
for all physical states, the conserved (truncated) EMT
matrix element can be expressed as the sum of a spin-
independent part and a term linear in the Lorentz generators
in the given representation [30]. The expansion truncates to
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terms at most linear in the momentum transfer A, because
they are the only ones constrained by the generators of
Poincaré symmetry [23,24,31]. A complete expression for
the EMT would also include terms which depend on higher
powers of A and the Lorentz generators.

A natural question that arises is whether it is possible to
characterize the role of the spin of the state in shaping the
structure of the EMT and, consequently, the number of
gravitational FFs, analogously to the vector current case. In
other words, one might wonder what is the best systematic
approach to find the complete parametrization for a given
operator (scalar, vector, and tensor) such that the FF
counting depends only on the total spin j. Additionally,
one might wonder how the expansion changes with the
rank of the operator and which terms appear purely due to
the spin of the particle.

In this work we address this question and present the
complete parametrizations for the matrix elements of scalar,
vector, and rank-2 tensor currents for massive states of
arbitrary spin. Following the existing literature on the
vector current case [29], we first derive in Sec. II a
parametrization using a tensor product approach. We single
out all the possible “core” or “seed” structures, i.e., Lorentz
structures that contribute to the expansion of the matrix
element for a given type of local current, and associate to
them a “tower” of elements, whose number depends on the
spin of the particle. This approach leads to the explicit
expression for the EMT parametrization in a given spin
representation and enables one to determine the number of
FFs as a function of the spin. One limitation though is that
the seeds are specific to each operator (scalar, vector, and
tensor), and their linear independence needs to be checked
explicitly in order to avoid incomplete or overcomplete
expressions.

The choice of basis is of course arbitrary, and different
parametrizations are related to each other and must provide
the same counting rule. In the spirit of Ref. [23] and with
the aim of looking for the most general way to find the
EMT parametrization we present an alternative approach
based on the covariant multipole expansion developed in
Secs. III and IV. One can take advantage of the fact that all
physical observables are elements of the Lorentz group. A
natural basis for the parametrization is therefore based on
covariant multipoles, built from symmetric and traceless
products of Lorentz generators in a given spin representa-
tion. They are the covariant extension of the nonrelativistic
multipoles of the 3u(2) Lie algebra, built from the
generators of rotations. A remarkable advantage of the
multipole expansion is that it truncates at some given order.
In particular, only the first 2j + 1 multipoles are nonzero,
whereas higher multipoles vanish. In addition, each new
multipole is guaranteed to be independent of the previous
ones. Being formed by symmetrized products of Lorentz
generators, the only nonvanishing 2j 4+ 1 multipoles are
operators with given symmetry properties on each pair of

Lorentz indices. Starting from this basis of linearly inde-
pendent multipoles, which is common to all operators (scalar,
vector, tensor) for a given state of spin j, we build the
coefficients of the expansion depending on the symmetry
properties of the problem and on the relevant operator. This
procedure leads to a systematic counting of FFs. Interestingly,
we can show that the counting changes in a nontrivial way
when going from lower to higher-rank operators.

The strength of the multipole expansion lies in its gene-
rality and conceptual intuitiveness. However, the two
approaches developed in this paper mutually aid each other
in reaching the final counting rule. As a natural follow-up
of this work, one can aspire to extend the counting to
higher-rank operators [32] and, interestingly, to nonlocal
currents such as those entering parton distributions like
PDFs, GPDs, and TMDs used to describe observables in
hadronic physics.

Finally, we also include two appendixes. In the first one
we describe the explicit construction of higher-spin polari-
zation tensors. In the second one we derive a large set of
exact and on shell identities, which are used to eliminate
redundant Lorentz structures in the parametrizations.

II. PARAMETRIZATION USING THE
TENSOR PRODUCT APPROACH

Matrix elements representing a generic local rank-k
current for arbitrary spin states of mass M can be written as

(p'. 20" (0)

p.A) =n(p" X)0"#(P,A)n(p,2). (1)

For later convenience we introduce the average four-
momentum P = (p’ + p)/2 and the four-momentum trans-
fer A = p' — p satisfying the on shell conditions P? +
A?/4 = M? and P-A =0. The polarization of physical
states is described by a generalized polarization tensor
(GPT) n(p,4) as in [23,24,31]. GPTs are defined such that
the covariant density matrix in a given representation of the
Lorentz group,

P e(p. A ) =t (p. Diip(p. V) (2)

has normalization Trlp(p,4,4")] = &,y. An irreducible
representation of the Lorentz group (j;,j,) is in general
reducible under the subgroup of rotations SU(2). It involves
all spin values j obtained by the standard composition rule
of angular momenta,

Jitja
D J (3)

==l

J1®jr=

A physical particle can therefore be described by
some Lorentz representation (j, j,) provided that subsid-
iary conditions are imposed to get rid of the unwanted,
unphysical spin representations.
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Let us consider a particle of mass M and spin j. When
j=n is integer, we choose to work with the (5.5)
representation where the GPT 5(p,A) ~ é€y,..q,(P.4) is
totally symmetric, traceless and satisfies the subsidiary

condition,

pagaaz-na,, (P, /1) =0. (4)

When j =n+3 1is half-integer, we choose to work with the
e (2. ”;1) representation where the GPT 5(p, A) ~
Ug,...q,(P.4) is totally symmetric, traceless and satisfies the

sub51d1ary conditions,

P Ugy.q, (P A) =0,
(F=M)uy,..q (p.A) =0,
Y Uagya, (P, A) = 0. (5)

The subsidiary conditions (4) and (5) simply ensure that the
number of degrees of freedom is 2j + 1. For more details
on the construction of these GPTs, see Appendix A.

When j = n is integer, the expression (1) reads more
explicitly in the (5,%5) representation,

(210" (0) | p.2)
= (21)1el, (P A ORGP A e (7).
(6)

The overall (—1)" factor ensures that GPTs are properly
normalized i, (p. ) (p.7) = (=1)"¢, ., (p. e (p.
A) = 1. Thanks to the Lorentz invanance of the theory, the
tensor QM #e% @%@ can be expressed as a sum of
Lorentz tensors built out of the Minkowski metric g, , the
totally antisymmetric Levi-Civita pseudotensor” €upos and
the four-vectors of the problem P* and A¥. Each of these
Lorentz structures is multiplied by a Lorentz scalar function
of t = A? and are referred to as form factors (FFs).

When j = n + 1 is a half-integer, the expression (1) can
in a similar way be written more explicitly in the (”;‘ , g) (&)
(2,251) representation as

(p . X10"#4(0)| p,A)
— (_1 )nﬁa’lmrfn (p/,i/)O”J "'Mk,a’, Ay, (P, A)uar»-an (p,ﬂ).

(7)

The difference with the integer-spin case is that the tensor
OF1 iy 41 i now a matrix in Dirac space.” We can

'Note that the first condition is superfluous since it can be
derlved from the other two.

We use the convention €j1,3 = +1.

*Dirac indices are omitted for better legibility.

therefore also use the Dirac matrices y* and their products
to construct tensor structures. The identification of a proper
basis of structures is consequently even more complex.
Discrete symmetries constrain further the operators [33].
Hermiticity requires operators carrying some Lorentz
indices O"1"#(x) to satisfy
(P! 210" (x)|p, 2) = (p. 2|0 (x)| p/ )", (8)
We will also impose P and T symmetries and restrict
ourselves to operators with positive intrinsic parity and
time-reversal properties. These symmetries imply the
following constraints:

OF1-Hicy @, ay -, (P’ A) =
= Ofr i@ GE @ (P A)
= [OPr i@ (P OA)]F(9)

/ /
[OF1H @yt

when j = n is an integer, and

OF1 Hiy @1t (P A)
= yO[om e ad (P _A)]TyO
= YOO ;@ (P Ry
= (iy'y)[or et @@ (P R)(iy'y?),  (10)

when j =n + % is a half-integer.* In these expressions, we
used the convenient notation @ = a” = (a°, —a). Factors
of i appearing in the tensor structures are chosen so that FFs
are real-valued functions. Because of the symmetry, trace-
lessness and subsidiary conditions satisfied by the GPTs,
not all of the possible tensor structures are independent. We
therefore have to carefully identify a linearly independent
subset. A list of identities used to obtain our parametriza-
tions is presented in Appendix B.

A. Scalar operator

The simplest operator is the scalar N(x). A typical
example is the condensate operator Nq(x) =y (x)fr(x).
When j = n is integer, we find that the elastic matrix
elements can be written in terms of the following basis:

i .8 2SO, (1)
(k,n)

where the strange sum stands for

(kz)zk;[lj (—A2M2> H gf’“] (12)

i=k+1

4 . . . .
Here Dirac spinors are chosen in the standard or Dirac
representation.
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and the mass factor accounts for the correct mass dimen-
sion of the operator, since we have normalized the GPTs to
1. The same basis can be used to write the elastic matrix
elements when j = n +1 is half-integer. The number of
FFs associated with a scalar operator is therefore n + 1,
where n = |j| is the floor of the spin, i.e., the largest
integer smaller or equal to j.
For spin-0, one has

(p" 2IN(0)

p.A) = 2MF3(t). (13)
For spins—%,

(P ZIN(0)|p.2) = 2Ma(p X )u(p. A)F5(1).  (14)
For spin-1,

(p". AN (0)

A)

ad Aa
= —2Me} (p' 2) | F ) = S FY D) ealp. ).
(15)
For spin-3,
(P! X|N(0)|p, 2)
_ AY A"‘
= —2Muy (p', X) | g F3(1) — a2 P10 [a(p. 2).
(16)
For spin-2,
(P, Z|N(0)|p, 2)
S A% A%
=M, (p ) | S B (1) = = g F (1)
{l(l, ZM
Aal A% AaZA”’
ot P00, (1)
B. Vector operator
Let us now consider the (four-)vector operator

J#(x). A typical example is the charge current J4(x) =
ey (x)y*yr(x). Various parametrizations have been pro-
posed in the literature for spln— [34], 1 [35], 2 5 [36,37]
and higher [26-29]. We find that its elastic matrix elements
can be written in terms of the following basis:

For convenience, we choose to normalize the Dirac spinors as
a(p,A)u(p,4) =1 instead of u(p,)u(p,1) = 2M.

Jﬂ’a/l .A.aila] ey, (P A)

= 2P”ZF

gya’ A% — gya,,Aa,, Z F

(k,n—1)

(18)
when j = n is an integer, and
JEG G (P A —2P”ZF (1) + io"™ A ZF
(k,n) (k.n)
(19)

and when j =n —I—% is a half-integer. The number of FFs
associated with a vector operator is therefore 2j + 1, as
already established long ago [27,38,39]. We observe that
the basis can be written in terms of “towers” attached to two
“seeds”. The first tower is simply the parametrization of a
scalar operator multiplied by the average four-velocity
P*/M playing the role of seed. It can then naturally be
interpreted as the convective part of the vector current. The
second tower is associated with the seed proportional to
iS"A,, where S* is the generator of Lorentz transforma-
tions in either the four-vector [($)%® = i(g* g"®
g"””g"“)] or the Dirac [S* = 20””] representation. It can
accordingly be interpreted as the spin or magnetization part
of the vector current [40,41]. The set of 2j + 1 vector FFs
can therefore be decomposed into a set of |j] + 1 con-
vective FFs and a set of [;] spin or magnetization FFs,
where [ ] is the ceiling of the spin, i.e., the smallest integer
greater or equal to j. Note that both convective and spin (or
magnetization) parts are separately conserved as one can
easily check by contraction with A¥. There is no way to
construct a nonconserved Lorentz structure satisfying all
the spacetime symmetry constraints.
For spin-0, one has

(P! 2|7%(0)|p. 2) = 2P*FY (1) (20)
For spin-1,

(p". A17#(0)| p. 2) = a(p". 2)[2P*F{ (1)
+ i A FY o (D]u(p.2). (21)

For spin-1,
(p' X1J*(0)|p. 2)
e ol 20 (ot =S P 0
(8= AP0 e ), (22)
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-3
For spin-3,

" _ : A7 A , - AYA”
(A1) pod) = =) 224 (Y1) = Ty 0 )i &, F 0 = Sy P10 el 2.
(23)
For spin-2,
5 / / Aajl Aal / A(l A(l] A(l A(lz
<p/’/1/|J”(0) p,/1> = €Z,Ia,2 (p/’ /1/) |:2Pﬂ (gOI]a]gazazFKO(t) — 2M2 gagazFYJ (t) + W 2M2 FYZ( ))
, N A% A
(A% — gra AD) (ga]m FZO(t) — WFgl(t))] Eaya, (P A)- (24)

C. Tensor operator
The last case we will treat explicitly is the tensor operator 7#*(x). A typical example is the energy-momentum tensor
(EMT) T’ (x) = w(x)y*iD"y(x). Various parametrizations have been proposed in the literature for spin-0 [42,43], 1 [2,44—
46], and 1 [10,11,14,21,22]. For the higher-spin cases, a few past works have investigated the rank-2 tensor with different

results for the parametrizations; see e.g., [26-28,47]. When j = n is integer, we find that its elastic matrix elements can be
written in terms of the following basis:

TH @ (P A) 2P”P”ZF £)+2(AAY =g A2)> FT +2M2gWZF )—Pligtla Al N " FL (1)
(k.n) (k,n—1)
(A{ﬂgy}{ Aan} _gm/AUf A% _gaj {ygv}a AZ Z FT +M2'gu/n{ﬂgy}a Z F
(k,n—1) (k,n—1)

+ Al gl g,y Aand] Z FL (1) ) = Pl gl pcul Z FL (1) = Al gt pcu} Z FI, (25)
(k,n=2) (k,n—1) (k,n—1)

where al*b*} = a#b¥ + a*b* and a"b¥) = a"b* — a*b*. When j=n —l—% is a half-integer, we find a similar basis,

Trvcimaan (P A) = 2PHPYY CFT (1) + 2(AFAY — ¢ A2)S TFT (1) + 2M2 g > FL (1)
(k.n) (k.n) (k.n)

i / / /
4 plu Eab}pAﬂzF‘{k(I) — (AlrgrHam Amt — g NG At — gl gl A2) Z FT (1)
(k,n) (k,n—1)

+ M2 genlngtan Z FT (1) + Al glle e, Atuei] Z F? t)—l—P[”za PA ZFSk

(k,n—1) (k,n=2) (k.n)
— Al gla g} Z FI.(1) (26)
(k,n—1)
The total number of tensor FFs is
4ji+51j]+3-6(j>1), (27)

where we defined 8(j > 1) = 1 when j > 1, and zero otherwise. In particular, the symmetric conserved part (associated to
the FFs F], with i = 1, 2,4, 5, 7) is parametrized in terms of 2(j 4 1) + 3[,j] — 6(j > 1) FFs. The remaining FFs in the
parametrization are divided as follows: 2| j| 4+ 1 FFs come from the symmetric nonconserved part (i = 3, 6), [j] of them
are related to the antisymmetric conserved part (i = 8), and the last | j |[FFs come from the antisymmetric nonconserved part
(i = 9). This agrees with former results for spin 0, 1 5> and 1. We arranged the bases so to maximize the number of conserved

terms. This is especially important in view of the application to the EMT, where nonconserved terms play a key role in
identifying separate quark and gluon contributions [5,48].
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For spin- -0, L 3 and 1 we recover the known parametrizations. For spin-0, one has

(p', 2|T"(0)|p, A) = 2P*PYFT (1) + 2(AFAY — g A2)FL (1) + 2M2 g™ F7 (¢). (28)
For spin-3,
(P! X" (0)|p.2) = a(p'. 2) {2P”P”F To(t) +2(A"AY — ¢ A%)F] (1)
i i
+2M2 g7 FT (1) + P Eav}ﬂA,,R{O(t) + Pl EMPA,,FST,O(t)] u(p,a). (29)
For spin-1,

A Aa Aa ,
(o ATO0p.2) == 2) o2 (4B o0 =SB ) + 200 o) (K ()= S )
AY A®

2M2 v a’aFT t
=+ g <g 3,0() M2

a2 Faal )) — Pl e ACIFT (1) — (Al He A} — g A A
—g* g1 a)F g,o(’)+M29a/{”gy}aFg,0(l)—ngu][“/A“]FgT,O(l)—A[f’g”]{‘fA“}F;O(l)}&1([7,/1)- (30)
For spln——

i i / A7 A" , A7 A
(AP O)lpod) = = (0 2222 (o) = G FEL () + 280 = ) (PR = o FL )

AYA” i AY A"
2w (L (0 = S P10 ) + P oo, (R0 - o FEL0)

_ (A{ﬂgy}{a’Aa} _ g,uyAa’Aa _ g(f{ﬂgy}aAZ)F;O(t) + MZga/{ﬂgy}aFgO(t)

i , A% A
+Prion, <9«1(1F§0(,) S Pl )> _ Awng{(fA(,}F;O(z)] u,(p. 2). (31)

For spin-2,

R i o A%AY AMAD AR A®
(p’,/l’|T””(0)|p,/1> — Ea’,a’2<plv/1/) [Zpﬂpu <ga|algaza'2F{0(t) _ IV gazazpil(t) +WWF1T2<t)>

Aa A Aa’] A AajzAaz
(AﬂAD gyuA2)< oy a azFT ( ) 2M gazazFT ( ) 4 2M2 2M2 ;‘2( )>
) ) Aal A% Aal A% A 5 AR
+ 2M2g/41/ (gCl]algazllego(I) - 2M2 ga F ( ) +WW §2( ))

/ Aa Aal
— plugiltpm] (g"'“‘Ff,o(f) I FL())

, , , , A% A
_ (A{”g”}{“zA‘lz} — PVABA® — gaz{ugv}amz) <ga1a| FST,O(Z) — WFsTl ([)>

, , Aal A% ,
+ Mgl g <g“'“’F£,o(t> —a ol )) + Alaguling e ATFT o (1)

/ . A% A%
- i) (i ) - 55 R0
o ol paat ((gian g7y~ ATA™ o
— A gl/ a A% galalFQ,O(t) _WFQ’](I) Sulaz(p,i). (32)
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III. MULTIPOLE EXPANSION TECHNIQUE

The tensor product approach used in the previous section
has the advantage of giving the explicit form for all the
possible structures in the given representation. We explic-
itly derived the parametrizations up to spin 2, which is
necessary in particular for the tensor operator case. A
further increase in the target spin has the effect of
introducing additional factors of ¢%% and A% A%, feeding
the towers with new elements, as is clear from the notation
(12). The main disadvantage however is that it is based on
the direct inspection of the structures and on the explicit use
of several on shell identities which are highly nontrivial.
This is the reason why several former parametrizations
proposed in the literature have been found either incom-
plete or overcomplete.

In the following, we develop another technique based on
covariant multipoles, complementary to the tensor product
approach and confirming the number of FFs. As already
stressed earlier, the choice of basis for a parametrization is
arbitrary. Some bases appear however to be more useful
because of their mathematical simplicity or their physical
meaning. The multipole basis is especially interesting since
it is closely related to the symmetries of the problem. In
particular, it clarifies how parametrizations associated with
different target spins are related to each other.

A. Standard 31(2) multipoles

In nonrelativistic descriptions, it is often convenient to
expand physical quantities in terms of multipoles associ-
ated with the three-dimensional rotation group. In relativ-
istic descriptions, the rotation group appears as the little
group associated with massive representations, i.e., the
subgroup of the Lorentz group which leaves the (timelike)
four-momentum p* invariant. Accordingly, the standard
31(2) multipole expansion remains useful as long as no
four-momentum is transferred to the system. This explains
for example why one can use essentially the same multipole
expansion for the spin density matrix in both nonrelativistic
and relativistic descriptions [49].

In a given spin representation, operators can conveniently
be expanded into products of the rotation generators, J*,

O=cl+cJ +cVJJ+---, (33)

where [ is the identity and ¢ are C-valued coefficients.
Because of the 3u(2) Lie algebra [J/, J/] = ie"/*J* and the
3u(2) Casimir J? = j(j + 1)1, the coefficients of the multi-
pole expansion can be taken completely symmetric and
traceless, and the 31 (2) multipoles of order k are defined as

My =S i, (34)

where S indicates that the product is symmetrized and
traceless. For example, the first three multipoles read

Monopole M, =1,
Dipole M! =J',

THEE RS 1.
Quadrupole MZZJZE{J’,JJ}—gé”JZ. (35)

One can then write the multipole expansion as
0= chiMy ™. (36)
k

Since the spin representation has finite dimension, the
Cayley-Hamilton theorem ensures that the expansion must
stop at some finite order [50]. More precisely, a spin-j
representation will admit only the first 2j + 1 multipoles.
Multipoles of higher order simply vanish.

B. Covariant 8[(2,C) multipoles

The rotation group being a subgroup of the Lorentz
group motivates the extension of the multipole expansion
technique to the whole set of 8[(2, C) generators S#*. That
such an expansion exists has been suggested by a complete
parametrization of the EMT for spin-1 hadrons, see
Appendixes B and C of [21]. Recently, elements of a
covariant multipole expansion have been exposed in [25].
Our aim here is to develop this technique further before
applying it to our problem.

Similarly to the 8u(2) case, one can conveniently
expand operators in a given representation into products
of the Lorentz generators,

O = cl + ¢S + CpupeS™SP° + -+ (37)

uv.po

In the following, we will refer to pairs of antisymmetric
indices as bi-indices. Because of the 8[(2,C) Lie
algebra [S;w’ S/)o‘] — l'(g/l/)Sl/O' _ gD/)SMO' + g;mS/)z/ _ gDO—S/)”),
the coefficients of the multipole expansion can be taken
completely symmetric under the exchange of bi-indices,

¢ =c.. (38)

O PO U,

Unlike the 8u(2) case, there are two types of “traces”
for bi-indices. The first one, g,(,9,),» has mixed symmetry
and is even under parity, whereas the second one,
[€,,p5> 1s totally antisymmetric and odd under parity.
Accordingly one gets two quadratic 81(2, C) Casimirs C =
LomS,, ==K =2[ji(ji + 1) + j2(jo+ 1)] and C=
ﬁeﬂD/}ﬂSﬂDS/’f’ = i{‘]i7Ki} = 2[]1 (]1 + 1) _j2(j2 + 1)] For
example, for a Dirac particle one gets C x 1 and
C «ys, both matrices commuting indeed with the
Lorentz generators S* = 1 ¢#*. The four-vector and more
generally all (5,%) representations are characterized by the
vanishing of the second Casimir C = 0. The multipole
expansion (37) can then be reorganized as follows (the
coefficients ¢ and ¢ do not involve the Levi-Civita tensor):
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0= Z(Cl‘l’/l~"'~l4kl’kl + Eﬂll/l~"'~141<l'kC>Mll:1”1"“’ﬂkyk’ (39)
k

where the 8[(2, C) multipoles of order k are defined as
M = s g (40)

with S indicating here that the product is symmetrized over
bi-indices and all traces are removed. The latter involve
two, three or four bi-indices,

AUy PO o
M / g;w/w - 0,
e /."',IJD/.“',)(T.“' _
Mo g g;w/)rf - 0’
e /,"',I/l//,"',) / o 00 _
Mh# P g;wp(i - 0’ (41)

where g,,,5 = 9u[p9o)u OF i€,,6- For example, the first three
covariant multipoles read

MO = I,
dipole M}" = $,

monopole

1
quadrupole M5 = 3 {sr, 8o}

1
- EQ”LOQ"]”SMSAT

1 10
eSS (42)

Once again Cayley-Hamilton theorem ensures that in a
spin-j representation the expansion stops at order k = 2.

IV. PARAMETRIZATION IN TERMS OF
COVARIANT MULTIPOLES

We construct now an alternative parametrization for the
matrix elements of the scalar, vector and tensor operators
in terms of covariant multipoles. Like in Sec. II we will use
the (4.5) representation for integer spin targets and the
(1.2 @ (.24 representation for half-integer spin tar-
gets. Using various on shell relations derived in Appendix B,
we observe that all covariant multipoles contracted with P*
can be discarded from the list of independent tensor struc-
tures. Discrete symmetries expressed by the constraints in
Egs. (9) and (10) allow us to further reduce the number of
independent tensor structures. Since we are restricting our-
selves to operators with positive intrinsic parity, we can set
Copuy....r, = 010 the multipole expansion (39). Time-rever-
sal symmetry implies that odd covariant multipoles should be
multiplied by i for the FFs to be real-valued, and Hermiticity
imposes that the coefficients in front of even (odd) multipoles
involve an even (odd) number of factors of A¥.

A. Scalar operator

In the case of a scalar operator, we need to fully contract
the bi-indices of the multipoles. Owing to the above
constraints, only even multipoles can be used

MO’

p1ApA
M; pips>

P1Ap2Ap3ApyA
M4 Ip1p29p3p4>

(43)

where an index A means contraction with A°, e.g.,
MPA = MPo A, . Note that since covariant multipoles
are symmetric under the exchange of bi-indices, the
independent contractions can always be put in the canoni-
cal form (43). For convenience we shall use the notation,

NG e Ay A
M2k’ Aes = Mkal ’? g/’lﬂz' (44)

Since a multipole M, has 2k bi-indices, the fully contracted
even multipoles of the scalar parametrization contain k
pairwise contractions. The fact that there is only one type
of contraction associated with each multipole is reflected in
the existence of only one seed in the parametrization (11).

The multipole parametrization for the scalar operator
then reads

1 e
N(P, A):ZMZWMﬁ’ AFS(1),  (45)
k

where k runs over integer numbers and the series truncates
for k > j, because the (even) multipoles M, vanishes.
Increasing the multipole order with the same contraction
pattern generates the tower associated by the strange sum
multiplying the seed in (11). Since only even multipoles are
allowed, this explains why the number of scalar FFs
is [j]+ L.

B. Vector operator
A vector operator carries one open Lorentz index. In

constructing the multipole decomposition, we bare in mind
that the open index is carried either by the coefficient or by
the multipole. In the first case we are left again with only
even multipoles, whereas in the second case only odd
multipoles can contribute, i.e.,

2P* M),

iME,

2PEMAE,

i MgA,-A,-A’

QPUMAAAA,
(46)

In other words, there is an additional possible contraction
which concerns only the odd multipoles.
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The multipole parametrization for the vector current then
reads

JE(P,A) = szl

p gHA A oA
+HiMy F

2P M A FY (1)

2 (D))

Here it is understood that k runs over integers and that the
series truncates when the nth multipole M, vanishes, i.e.,
for n > 2j. The total number of terms is 2j + 1, where
|j] + 1 FFs come from the even multipole expansion and
the remaining [;] come from the odd multipole expansion.
Each term is manifestly conserved. Note that thanks to the
covariant multipole approach, we are able to write a single
parametrization valid for both integer and half-integer
spins, as already suggested by the similitude between
Egs. (18) and (19).

(47)

C. Tensor operator

For a tensor operator, the two open Lorentz indices can
be carried entirely by the coefficient, or the multipole, or
both. In the first two cases only even multipoles appear,
whereas in the last case both even and odd multipoles

|

1 .
PP 8) = D s PP 1) 2 -
o+ PUMESTS T FL (1) + (MM

FARME SR ETD (1]

Here it is again understood that k runs over integers and that
the series truncates when the nth multipole M, vanishes,
i.e., for n > 2j. Contrary to the scalar and vector cases, the
relations between the “curly” tensor FFs F7, of this section
and the “straight” Fka of Sec. II mix in general different
towers i # j. This can easily be seen by writing down
explicitly the covariant multipoles in the (5,%) and
(“1,1) @ (2.4 representations. In the symmetric part,
there are 3(|j| + 1) FFs associated with fully contracted
multipoles (i =1, 2, 3), 3|j] —0(j > 1) FFs associated
with partially contracted even multipoles (i = 5, 6, 7), and
[J1FFs associated with odd multipoles (i =4). In the
antisymmetric part, there are |j|FFs associated with
partially contracted even multipoles (i =9) and [j]|FFs
associated with odd multipoles (i = 8). The total number of
FFs is therefore 4j 4 5[j| +3—6(j > 1) in agreement
with the counting of Sec. II.

In Refs. [23,24] general constraints from Poincaré
symmetry have been derived for targets with arbitrary
spin. The key point was that the symmetric part of the

B AP
+ M MESEEFL (0 +0(L) > K Mg F

contribute. In particular, new types of contractions of the
even multipoles appear in addition to those involved for the
vector operator. They can be put in the canonical form,

A{ﬂMD}.’.A’W’.A,
MMA JARA, - A’ (48)

Mu RZK VANV
A[”Mz]k.'.A’m’.A’

owing to the symmetry under the exchange of bi-indices
and the tracelessness of the covariant mulipoles. These
operators have k pairwise contractions, except for

e  which has k— 1 contractions and which
is responsible for generating the tower associated with the
FFs F], of Eq. (26). It appears only for 0 < k < |j|, while
for k = |j] it is not independent of the other types of
contractions involving the multipole M, ;). For example,
for spin j < 2 we find that

ZMSA,UAJA,-”,'A _ A{MM;}-’A,“','A
DA gD oA

e pe oA oA
- A2 M)
(49)

The multipole parametrization for the tensor current
maximizing the number of conserved structures then reads

FUAYMEG T (1) + 2MP g MR F T (1)

S M FL()
(1) + PRMEET (1)
(50)

conserved total EMT involves only two Lorentz structures
to linear order in A. Expanding our complete parametriza-
tion (50) to that order, we find

T (P, A) = 2P*PYF{(0) + 2M2g F1(0)
+ PSS FT (0) + M2ME™ FL L (0)

+ PliSUAFT (0) + O(A?). (51)
Keeping only the symmetric conserved part, we are left
with 2PAPYFT(0) + PWiS“AFT (0). Poincaré sym-
metry then imposes that for the total EMT F7,(0) =
Fio(0) =1[2324].

D. Summary of the results for spin j < 2

In Table I we display the complete set of structures
appearing in the parametrizations of scalar, vector, and
tensor operators for spin values up to 2. The number of FFs
for each spin value includes the structures at the relevant
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TABLE I. Summary of the linearly independent structures appearing in the parametrization of the matrix element of local operators,
built from the covariant multipoles. In the case of a tensor operator, the term with a symbol (x) built from the even multipole My does

not appear.

Spin Multipoles Scalar N

Vector JH Tensor T+

j=0 Mo Mo

Hivy
M)

(SIS

. M V1ol A A
j>1 le ' M2

M/;W] Hal2p3V3

[ST{9%)

j > 2 MT”l#z’/z»ﬂzDz#zxm M-A,-A,-A,-A

Total number 2j+1 Lj] +1

PrM, PFPY M,
AAY M,
gﬂDMO

My PHiMA
LA V1A
P[/‘l./\/ll]

PIMM'ZA.'A PFPLM;A'.A
AﬂADM;A.'A

grMEE

Mg.:. .

A{ﬂM;] ’A

U)o,

v
M ()

ngA,-A:A P{”I.Mg}A.-A.'A
 ASASA
P[/‘z./\/l3]

pu MZ‘A.-A.-A"A prpv M;A,-A.-A.-A
A”ADM;A.-A,-A,-A
v M:‘A.-A.-A.-A
MZ"D.'.A'.A
A{”MZ}."A‘.A’.A
AU,MZ]-A,-A.-A;A
ApA A A
MIE )

2j+1 4j+50j]+3-0(i>1)

spin entry and all the ones above it. The results should be
compared with Sec. II.

V. CONCLUSIONS AND OUTLOOK

In this work we have derived the general Lorentz
covariant form factor (FF) parametrizations for the matrix
elements of local scalar, vector, and tensor operators for
massive particle states of arbitrary spin. We have followed
two distinct and complementary approaches. The first one,
which we refer to as the tensor product approach, follows the
spirit of the existing literature, where all possible structures
that build the parametrization are explicitly derived. We
recalled the known vector case and extended the treatment to
the rank-2 tensor operator, especially relevant because of the
applications to the energy-momentum tensor. We found that
the counting of FFs in the tensor case depends on the spin
value j in a nontrivial way.

The second approach, of central importance for our
work, is based on the expansion of the operators in terms
of covariant multipoles, built from the Lorentz generators

in the chosen spin representation. The latter technique
is especially useful because it underlines the intrinsic
universal properties of the multipole expansions, independ-
ently of the particle spin and the operator type. The
fundamental basis of linearly independent multipoles,
constructed from symmetric and traceless products of
Lorentz generators, can be used as a universal starting
point for analysing the arbitrary spin matrix elements of any
operator, including those that are nonlocal and of higher-
rank. The specificity of the problem, such as the operator
type and the spin of the particle state, dictates the actual
arrangements of the multipole elements. Namely, the rank
of the operator is responsible for selecting the allowed
contractions that give rise to the various structures in front
of the FFs, which are different in the scalar, vector, and
tensor cases. The value of the particle spin is, on the other
hand, responsible for the truncation of the multipole series
at a certain order. We find an exact correspondence between
the FF counting rules in the two different approaches, as
one would expect since the total number of independent
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FFs cannot depend upon the bases chosen for the
parametrization.

As previously mentioned, a natural extension of this
work would be to apply the covariant multipole expansion
to the matrix elements of nonlocal currents. This could be
achieved via the introduction of an additional vector n*
which defines the light-front direction along which the
operator is nonlocal [51]. Nonlocal currents have potential
applications for many observables in QCD, including those
that are expressed in terms of standard parton distributions
and their generalizations (PDFs, GPDs, TMDs, etc.). This
interesting follow-up is left for future work.
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APPENDIX A: GENERALIZED
POLARIZATION TENSORS

An explicit construction of the GPTs has been proposed
long ago [52-55]. It consists of coupling the maximum
possible spin of two lower-order GPTs. In the half-integer
spin case it is convenient to adopt the Rarita-Schwinger
approach [56], i.e., to consider the following product of a
Dirac spinor6 with an integer-spin GPT:

JAYu(p. e, q, (p.m')

(A1)

where (j,my, jom,|jm) represents the Clebsch-Gordan coefficient in the Condon-Shortley phase convention. In this way,
one just needs to focus on the GPT for integer spin only. It can be constructed from the recursion formula,

areay (P A) = S (Im. (0 = D)0}, (p. M)y, (.0,

m,m'’

(A2)

where ¢, (p. ) is the standard polarisation four-vector. Iterating this formula, one finds

buap) = 3 [T (=m0 = 1+ D ) )|

{m=0.%1} LI=1

where the sum is implicitly restricted to configurations such that ) " ; m; = A, and where m; = > }_ _, | my. Since the

Clebsch-Gordan coefficients can be written as [57]

Cl+mcl+m1 n %’ n> k > 0
(g (1+ D) (m + my)) = | 22 cﬁ=< )z{k'( o . (A3)
Cyls k 0, otherwise
one obtains the expression,
[T /€™ e, (pom)
€apa,(PA) = D : :
{m=0.+1} \/ Col*
When 1 > 0 this can be rewritten more conveniently as [58]
e (]) /1) . % ZP[ 5{:1 e(l'p([) (p1 _1)” ’ln:_k]fH gap(z)(p’ O)][H;l:m—kJrl gap(l)(p’ +1)] (A4)
e o 2k=m2k) (m — 2k)\(n — m + k)1 /CY ’
where P stands for a permutation of {1,...,n} and m = n — 1. The expression for 1 < 0 is obtained using the relation,
oy, (p’ A’) = (_] )18; e, (p» _i)’ (AS)

®For convenience, we choose to normalise the Dirac spinors as it(p, A )u(p, ) = 1 instead of i(p, X )u(p,1) = 2M.
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and takes the form,

L2l €apy (P +D)]]

;n:_k]ikl Eap([) (p’ 0)] [H?:m—k+1 8073(1) (p’ _1)]

8a| ey, (p’ /1) = Z

" 26=m2\(m = 2k)(n — m + k)1 /T

APPENDIX B: USEFUL IDENTITIES

1. General identities

A particularly useful identity is the Schouten identity,

ieﬂbpagﬁl + l'eupargld + l'epm'ﬂgbl + iearﬂugpl + ierﬂupgo% — 0’

(B1)

which states that there cannot be totally antisymmetric
tensors with rank larger than the spacetime dimension.
Contracting this relation with an antisymmetric tensor
A, = —A,, leads then to

ie/;_l/pAml —_ Aupg/d + Apﬂgwl + A,uugm’ (BZ)
where we defined the dual antisymmetric tensor as
~ i
AW = — 3 e"P7A . (B3)

In other words, an incomplete contraction between a Levi-
Civita tensor with an antisymmetric tensor can always be
rewritten in terms of the dual antisymmetric tensor (i.e., a
full contraction). A typical antisymmetric tensor is io** for
which

i6" = io"ys. (B4)
One can also contract Eq. (B1) with a,a, leading to
. 2 . . .
ie"r°ac + ie"’°*a.at — ie’ " a.a’ + ie**a.a’
— e a0’ = 0. (B5)

Note that €,,,, and ys = £:€,,,,7*7*y’y° can be dis-
carded from our parametrizations. Indeed, amplitudes with
intrinsic positive parity necessarily involve an even number
of €,,,, (possibly in the form of ys), and the product
€upo€aprr CaN always be rewritten in terms of the metric

only.

Yua  Gup  Gur  Guar
Gva Gup  Gur Gua
Yoo Gpp Gpr Goa|
Yoa  Y9op YGor Yoir

€uvpo€aprs = —

(A6)

|
2. On shell identities

On shell polarization four-vectors are orthogonal to their

four-momentum argument,

p-ep.4)=0,  p-e(pA)=0. (B7)

In terms of the symmetric variables P = (p’ + p)/2 and
A = p’ — p, these on shell conditions read

P-e(p.A) =A-e(p.2)/2,

P-e(p'.X)=—-A-€e(p' . X)/2. (BS)
Since we reserved the indices ; and o} to GPTs, we can
write

A = & : : &
P% = 7 5 (B9)
where = means on shell equality, i.e., equality once
contracted with GPTs like in (B8). In our parametrizations,
we chose to eliminate the contractions P - ¢ and P - €*.

Dirac bilinears also satisfy a number of on shell relations
derived using the Dirac equation. The most famous one is
the Gordon identity,

Pt oA
u ,12/ H 9}“ =1u /’A'/ v g 917
a(p', A)r'u(p.2) = u(p )[M+ IT }u(p )
(B10)
which can be rewritten using on shell equality as
Pr o icA
Ho= z B11
S YRREYY (B11)

The (over)complete set of on shell relations has been
derived in [59] and reads

P
1=L 0=4, BI2
M? A ( )
A]’S
=7 = B1
5 ZM’ 0 Py57 ( 3)
prighh b "
=l =" | ot B
VR 5 i, (Bl4)
Abye  ighP iohh
yhys = 2&%—‘]’” . 0= Phys+ "2“, (B15)
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o = — A[ﬂyl‘] l.(:’llVPﬂ}’AYS 0= —P[ﬂ}/y] n igﬂVAiylyS
2M M ’ 2 ’
(B16)
Pluy] [ VAL IN2%2
iotys = — 1}"4 75 X l€2M]/,1 0= 7; 75 + ie’“’”n,
(B17)

where a contraction with a four-vector is denoted by
replacing a Lorentz index by the four-vector, like e.g.,
io"® = ic**A,. In our parametrizations, we chose to para-
metrize the parity-even sector in terms of 1 and i¢*” and
eliminated ic*” using (B14). Combining Egs. (B14) and
(B16) we find

A2
P’igh® = TP” — MiettP™y,ys. (B18)

Combining Egs. (B2), (B4), and (B15) we also get

—2ie""Pys = AFic”’ + AVic™* + APicH . (B19)

Together with Eq. (B5), this allows us to eliminate the
product e*7°ys from our parametrizations.
Since Rarita-Schwinger spinors satisfy the constraint,

y(liual_,.a" (p,l) = 0, Ijta/la; (p/’ i/)y(f, g O’

ie{l,-.n} (B20)

the structures ic*” carrying an a; or «; index can also be
eliminated owing to

o= gt = g (B21)

We can derive a number of interesting relations. Starting
from the product of four Dirac matrices,

YT = 9"gT — 99+ 9 + i€y
_‘gpﬂial/ﬁ _i_gpl/l'o.ﬂo' — gpﬁiaﬂl/

—io" ¢ + io" g — ic" g, (B22)

we find using Eqgs. (B20) and (B21),
ie?ys = ¢ich + gMic' + gic,  (B23a)
feTy = i L i 4 gigm (B23b)
feTHays = g7 igh 4 gTHgT — gV e, (B23¢)

Contracting the last relation with P and A we get using
Eq. (B14),

jedPray s = % FTAY 1 Pl g, (B24a)
je?hvays = _grajGhh 1 Al gal (B24b)
je?Phays = % g7* A% 4 Pl A%, (B24c)
From the product of three Dirac matrices,
YT =g = @+ ¢y — i€ yys. (B25)

YrYrs = P1rs — FOr'rs + ¢y ys — ey, (B26)
we find using Eq. (B20),

iy, = g ys — Y s,
(B27a)

€71y s = gy — P

i€“hohy, = g"1yoys — g7yt s,
(B27b)

o uch - du,c adc
€'y ys =g* 'y’ = g" v,

i My ys = =gt ey, = =g yys. (B2c)

Combining these with Eqs. (B1) and (B13), we find

/ 1 /
;0 pva -~ Ayl _ My X
i eys = o (g = g7r")
+ (g,un/yy _ gya’yﬂ)Aa + ga/(l(yﬂAv _ ]/VA”)]
(B28)
This relation is quite remarkable since it allows one to
replace a structure antisymmetric under o <> a by a
symmetric one, which can of course only be true on shell.

Contracting Eqgs. (B27) with P and A, and using Eq. (B12)
and (B13), we get
ie”"yys = Py = Mg, iy, = PYyys, (B29a)

l.(:‘/)A(M]/A - A{l}’/}]/S _ 2Mg’”’7/5 ,
(B29b)

l'e/)Amlyﬂ/s -~ Aa]//),

iePA%y ys = MAY, iePAdty, = OMP%s,  (B29c)

l.€a/Pm1]/}L]/5 = Pajy(r _ Mga’(r’ l'ea/Pov{},}L = Pa’yo’ys’

(B29d)
iy ys = ATy, e Ay, = MYy = 2M gy,

(B29%)
i€ Phhy s = —MA” ie“PMy, = 2MPYys, (B29f)
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llé‘ajpal}’jys = —Mga/”, l-€a/P(M]/,1 =0, (B29g)

€Yy e =0, i€y, = _DMgPe, (B29h)
If we contract Egs. (B23c) and (B28) with A, and use the
Gordon identity (B11), we obtain the nontrivial relation

quoted without proof in [36],

AN :
Aa’g;m _ Aag;m’ = 2M<1 _ 4M2)ga(1},ﬂ _ zg(l(lPﬂ

1,
—AY Ay, B30
+3 Y (B30)

Our derivation shows in particular that this on shell relation
holds not only for spin-3/2, but also for all higher-spin
Rarita-Schwinger spinors.

Let us now consider a single contraction between two
Levi-Civita tensors,

—ié‘gﬂie’laﬂ/‘ = PGP g+ PP g g g g gt
— ' = g7 - g (B31)

Using Schouten identity (B1) and Eq. (B12), we have

—iePAyt  Miett = je?PAly), (B32)
Contracting this with —ie”*”, gives then
MAW gl prl = ple Ad pliyl - p2 A gelligr] - (B33)

where we used Eqs. (B29g) and (B31). Finally, thanks to
Gordon identity (B11) and Eq. (B9) we obtain

AZ / / /
= Al @l prl = A Aaplijgd o p2AI pllejoIn (B34)

Another nontrivial relation can be found as follows.
Using the Schouten identity (B1) we can write
_g[a’{ﬂiea]u}PAys — zg/,wl'ePAa’ays _ P{ﬂiey}Aa’ayS

+ A{ﬂiel/}Pa’ayS’ (B35)

which leads to
_g[d{ﬂ iea]u}PAys = AZQ;wga’a _ ZgﬂyAa’ AY — ga’ap{ﬂ l'GD}A
+ Al gellupr} _ grlapp A

L o
43 Al i (B36)
using Egs. (B24). Alternatively, using Eq. (B12) and again
the Schouten identity gives

1
[@{p( Na]; v} PAL _ AV} a]PAL
i (AYje Avije

_ AZl'ea]p}P/l)ylys ,

_g[aj{/‘iea]u}PAys =
(B37)

which leads to
[ {p; alv}PA,, - 1 lo Jal{u; ~v}A
—g* Wie Y5 = EA gVio
1 J /
-5 A g Av 4 A2l gle (B38)

using Egs. (B29) and (B9).
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