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After reminding of properties of the condensate of the complex scalar field in the external uniform
magnetic field H, focus is made on the study of phases of the complex neutral vector-boson fields coupled
with magnetic field by the Zeeman coupling and phases of the charged vector-boson fields. The systems
may behave as nonmagnetic and ferromagnetic superfluids and ordinary and ferromagnetic super-
conductors. Response of these superfluid and superconducting systems occupying half of space on the
external uniform static magnetic field H is thoroughly studied. Then the spin-triplet pairing of neutral
fermions at conserved spin is considered. Novel phases are found. In external magnetic field, the phase with
zero mean spin proves to be unstable to the formation of a phase with a nonzero spin. For a certain
parameter choice ferromagnetic superfluid phases are formed already for H ¼ 0, characterized by an own
magnetic field h. For H > Hcr2, the spin-triplet pairing and ferromagnetic superfluidity continue to exist
above the “old” phase transition critical temperature Tcr. Formation of domains is discussed. Next, spin-
triplet pairing of charged fermions is studied. Novel phases are found. Then, the 3P2 nn pairing in neutron
star matter is studied. Also, a 3P2 pp pairing is considered. Numerical estimates are performed in the BCS
weak-coupling limit and beyond it for the 3P2 nn and pp pairings, as well as for the 3S1 np pairing.
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I. INTRODUCTION

In the condensed matter physics, the spin-ordered
pairing is known from the studies of the 3He liquid,
heavy-fermion systems like UPt3, some Rb-and La-based
superconductors and other materials; see Refs. [1–7] for
review. A Josephson supercurrent through the strong
ferromagnet CrO2 was observed in [8], from which it
was inferred that it is a spin-triplet supercurrent. A long-
range supercurrent in Josephson junctions containing Co
(a strong ferromagnetic material) was observed [9] when
one inserted thin layers of either PdNi or CuNi weakly
ferromagnetic alloys between the Co and the two super-
conducting Nb electrodes.
In cold atomic Fermi gases, strong magnetic dipolar

interaction may cause pairing in the state with orbital
angular momentum L, spin S, and total angular momentum
J equal to one, i.e., in the ð2Sþ 1ÞLJ ¼ 3P1 [10]. Isotopes
161Dy and 163Dy are the most magnetic fermionic atoms
with magnetic moments as high as 10μe;B, where μe;B is
the electron Bohr magneton. The lowest temperature
reached in experiments [11] for the spin-polarized 161Dy
is a factor 0.2 below the Fermi temperature ϵF ¼ 300 nK.
The cotrapped 162Dy cools to approximately critical tem-
perature for the Bose-Einstein condensation, realizing a
novel nearly quantum degenerate dipolar Bose-Fermi gas
mixture. In some systems such as dilute Fermi gases, the

p-wave pairing may occur even in the case of a re-
pulsive interaction [12–14]. Conventional electron-phonon
interactions induce triplet pairing in time-reversal three-
dimensional (3D) Dirac semimetals, if magnetic impurities
or exchange interaction is sufficiently strong, cf. [15] and
refs therein. Very recently, a paramagnetic Meissner effect
in an Nb-Ho-Au structure was observed [16]. In this
system, superconductivity enhances the magnetic signal
rather than expel it. Reference [17] demonstrated that by
combining superconductors with spin-orbit coupled mate-
rials the Meissner effect can be modulated by the orienta-
tion of an external magnetic field.
Since the magnetic field is the axial vector, it is efficient

pair breaker for s-wave superconductors but it should not
break pairs with parallel spins. The Zeeman coupling of
pairs with Sz ¼ �1, where Sz is the spin projection on the
quantization axis, is responsible for this effect. For in-
stance, the phase A of the p-wave spin-triplet pairing in the
3He survives in the external magnetic field, which can also
induce a specific A1 phase [18,19]. The 3He-A1 phase
behaves as the magnetic superfluid in the external magnetic
field. Superconductivity of the spin-triplet electron pairs in
unconventional superconductors in external magnetic fields
was extensively studied; see Refs. [20,21] and review [22].
Interaction of the vector order parameter with the magnetic
field is introduced with the help of the minimal coupling
and the Zeeman coupling.
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In the description of the 3He, the rotation field was
introduced in [23] with the help of the Galilean variable
shift, similarly to that for the magnetic field. To the best of
our knowledge, a possibility of the appearance of own
magnetic and rotation fields in the whole volume of fermion
superfluids has not been considered.
The 1S0 channel provides the largest nn and pp

attractive interactions at low densities in the neutron star
matter. Thereby, A.B. Migdal suggested the Cooper pairing
and superfluidity of neutrons in neutron stars in the 1S0
state [24]. With an increase of the baryon density, the NN
interaction in the s wave is weakened. The nucleon-nucleon
(NN) phase shift in the 3P2 partial wave becomes the
largest one among others at sufficiently high momenta
owing to the strong spin-orbit NN interaction in the
vacuum that allows for the nn pairing in 3P2 state [25–28].
Therefore, in the neutron star interiors, neutrons are
supposed to be paired in the 1S0 state at a low baryon
density n ≤ ð0.7–0.8Þn0, where n0 is the nuclear saturation
density, and in 3P2 state for ð3–4Þn0 ≥ n ≥ 0.8n0, cf. [29]
and recent works [30,31]. However, the value of the 3P2 nn
gap in the neutron matter is poorly known and varies in
various calculations from tiny values ≲10 KeV up to
values of the order of several MeV and may be more;
see Refs. [28,32–37]. Uncertainties appear largely due to a
lack of knowledge of the efficiency of the three-body forces
in a dense baryon matter [38]. Note that the cooling history
of neutron stars is appropriately described in the nuclear
medium cooling scenario within an Ansatz that the 3P2
pairing gap has only a tiny value, cf. [39–41]. Because of
all these uncertainties, and since microscopic calculations
of the gap are beyond the scope of the given work, we
further consider the critical temperature as an external
phenomenological parameter varying in broad limits.
Mixing of 3P2 and 3F2 partial waves increases the value

of the 3P2 gap. In some density interval, the nn 3PF2
pairing may coexist with the pp 1S0 pairing. The 1S0
channel is most attractive for protons, as a consequence
of their small concentration in neutron stars but in the
hyperon-enriched central regions of sufficiently massive
neutron stars proton concentration increases and protons
can be paired also in the 3PF2 state [42], as well as Λ
hyperons [43]. Besides hyperons [44,45], Δð3

2
; 3
2
Þ isobars

may exist in central regions of sufficiently massive neutron
stars [46,47]. Pairing in the fermion systems of spin 3=2
was recently discussed in [48]. Moreover, a developed pion
condensate may exist in the central regions of sufficiently
massive neutron stars. In the presence of the developed
pion condensate, there is only one Fermi sea of a mixture of
the baryon quasiparticles consisted of neutrons, protons,
and Δ isobars [49–53], and thereby they can be paired in
the 3S1 state.
The phases of the 3P2 nn pairing were studied in [54–58]

within the BCS weak-coupling approximation, when the
ground state corresponds to the symmetric (magnetically

neutral) phase. The order parameter for the 3P2 nn pairing
is the 3 × 3 matrix. The Ginzburg-Landau free-energy
functional is ordinarily considered as the expansion in
the order parameter up to fourth power. However, the sixth-
order term calculated within the BCS approximation proves
to be negative [54] causing a possibility of the first-order
phase transitions in the system. Recently, the Ginzburg-
Landau free-energy functional was expanded in the order
parameter up to eighth power and coefficients of expansion
were found in the BCS approximation [56]. A particular
role of the Zeeman and gradient terms, which are of our key
interest here, was not studied, cf. [58].
Magnetic fields in ordinary pulsars, like the Crab

pulsar, reach values ∼ð1012–1013Þ Gs at their surfaces.
At the surface of magnetars, magnetic fields may reach
values ≳1015 Gs. In the interior, the magnetic field might
be even stronger (up to ∼1018 Gs) depending on the
assumed (still badly known) mechanism of magnetic
field formation [59]. Still stronger magnetic fields appear
in noncentral heavy-ion collisions. The first estimate
of the value of the magnetic field in heavy-ion collisions
performed in Ref. [60] argued for the presence of the
magnetic fields of the order of ∼1017 ÷ 1018 G at collision
energies ∼GeV=A. Subsequent calculations [61] demon-
strated that typical values of magnetic fields may reach
∼ð1017–1019Þ Gs in heavy-ion collision experiments from
GSI to LHC energies. Thus, the coupling of a spin-triplet
order parameter to a magnetic field might be of importance
for the description of nuclear systems prepared in periph-
eral heavy-ion collisions.
For low densities, the 3S1 channel provides the largest

attractive interaction for the np pairing in the isospin-
symmetrical matter. With increasing density, the 3D2

channel becomes most attractive, cf. [31]. One of the
hypothesis for the explanation of the level structure of
superdeformed (rotated) nuclei is the spin-triplet pairing
[62–64]. Spin-triplet pairing in N ¼ Z nuclei with A > 140
may be favored, since the spin-orbit force becomes vanish-
ing [65]. In the vicinity of the proton drip in heavier
nuclei, the spin-triplet pairing also could potentially
become important. The 3SD1 spin-triplet np pairing in
nuclei was studied in [66]. The BCS calculations for the
symmetric matter with the vacuum interactions predict the
np pairing gaps as large as ≃12 MeV. Even with the effect
of the depletion of the Fermi surface taken into account,
one estimates the np pairing gap in maximum to be as high
as ≃4 MeV. Reference [67] studying the level structure of
92Pd found signals of the spin aligned np-paired state with
J ¼ 9 and L ≠ 0.
There exist millisecond pulsars, being fast-rotating

neutron stars with the angular rotation frequencies as high
as ∼104 Hz; see Ref. [59]. The rotation frequency of the
fireball in ultrarelativistic heavy-ion collisions at the freeze-
out [68] is estimated as ∼1022 Hz. For low energies, the
spectator pieces in heavy-ion collisions can rotate at a still
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larger frequency (> 1022 Hz). In a sense, the rotation acts
in a neutral system similar to a magnetic field in a charged
system. Thereby, description of the behavior of the spin-
triplet condensates in the magnetic and the rotation fields is
an important issue.
Another phenomenon, which might be relevant to our

study, is a condensation of the charged ρ mesons in a dense
isospin-asymmetric baryon matter [69–71]. The ρ mesons,
being bosons with the spin and isotopic spin equal to one,
are described by the vector–isospin-vector field ρaν , where
a ¼ 1, 2, 3 is the isospin index and μ ¼ 0, 1, 2, 3 is the
Lorentz index. In the quantum field theory, relevant
phenomena are condensations of non-Abelian charged ρ
and W bosons in superstrong magnetic fields ≳1019 G in
vacuum; see Refs. [72–74]. Presence of strong magnetic
fields in neutron star interiors would promote the charged ρ
meson condensation [75]. Gluons become massive in the
hot quark-gluon plasma and may form condensates at some
conditions. Thereby, a ferromagnetic superconductivity of
the condensate of charged vector fields is another issue
of our interest. The axial-vector–isospin-vector boson may
also play a role in nuclear phenomena forming condensates
at some conditions, cf. [76,77]. Finally, the order parameter
in color superconductors has a matrix structure and a spin-
triplet diquark pairing is allowed in some cases [78–81].
The Ginzburg-Landau description is relevant not only

below critical point for the order parameters but also for
their long-range fluctuations within a fluctuation region
above the critical point. The width of the fluctuation region
is determined by the Ginzburg number Gi following the so-
called Ginzburg-Levanyuk criterion [82]. In the substances
with a strong interaction between quasiparticles, the
Ginzburg number Gi ∼ 1 and the fluctuation region should
be broad [83]. For instance, the fluctuation region might be
very broad for the color superconductors and for the proton
pairing in neutron stars [84]. Thereby, the consideration of
a triplet paring correlations above the critical point is also
an important issue.
In this work, we study nonmagnetic, diamagnetic, para-

magnetic, and ferromagnetic responses of superfluid and
superconductive condensates of vector bosons and spin-
triplet Cooper pairs. We start with a reminding of superfluid
and superconductive properties of the complex scalar field
at the negative squared effective mass of the boson (in
Sec. II) and then (in Sec. III) we focus on the description of
the complex vector field of neutral and charged bosons at
the conditions when their squared effective masses might
be either negative or positive. Influence of the external
magnetic field is considered. Various nonmagnetic and
ferromagnetic superfluid phases and nonmagnetic, super-
diamagnetic, and ferromagnetic superconducting phases
will be studied. In Sec. IV, we perform a general analysis
of the spin-triplet pairing of charge-neutral fermions with a
magnetic moment, interacting with the magnetic field by
the Zeeman coupling. First, we assume that spin-orbit

forces are weak and spin of the pair is a good quantum
number. The spin-triplet pairing is then described by a
vector order parameter, as for a composed spin-one charge-
neutral boson with an anomalous magnetic moment. Some
of the phases are characterized by the spin-order parameter
and a self-magnetization. In this sense, we deal with a
ferromagnetic superfluidity. Note that an another type of
the ferromagnetic superfluidity, when a magnetization
exists already in the absence of the Cooper pairing and
remains in presence of the superfluidity, as it may occur in
some uranium compounds, is not of our interest here; see
[85,86]. In Sec. V, we consider the spin-triplet pairing in
charged fermion superconducting systems described by the
vector order parameter. In Sec. VI, focus is made on the
description of the 3P2 nn pairing in the neutron star matter.
Various phases are found. Some numerical evaluations are
performed in Sec. VII for the 3P2 nn and pp pairings and
for the 3S1 np pairing and some physical consequences of
the ferromagnetic superfluidity and superconductivity for
neutron stars and heavy-ion collisions are specified. In
Sec. VIII, we formulate our conclusions.
Throughout the paper, we use units ℏ ¼ c ¼ 1, Lattin

indices are i ¼ 1, 2, 3, Greek indices are Lorentz ones,
μ ¼ 0, 1, 2, 3. For three-vectors, where it does not cause a
confusion, we use the ordinary three-dimensional nota-
tions, a⃗ ¼ ða1; a2; a3Þ. Summation over repeated indices is
implied, if not presented explicitly.

II. PRELIMINARIES

A. Superfluidity and superconductivity
of complex scalar fields

1. Lagrangian and equations of motion

Consider the model described by the Lagrangian density,

L ¼ DμϕDμϕ� −m2
scjϕj2 − λjϕj4=2 − FμνFμν=ð16πÞ; ð1Þ

ϕ ¼ ðϕ1 − iϕ2Þ=
ffiffiffi
2

p
is the spin-zero complex field of a

negatively charged boson, ϕ1 and ϕ2 are real components,
ϕþ ¼ ϕ� ¼ ðϕ1 þ iϕ2Þ=

ffiffiffi
2

p
is spin-zero complex field of a

positively charged boson, Aμ is the electromagnetic field,

Fμν ¼ ∂μAν − ∂νAμ; Dμ ¼ ∂μ þ ieAμ − iμδμ0; ð2Þ

e < 0 is the charge of the electron, e2 ¼ 1=137, μ is the
chemical potential of the negatively charged boson, e.g., in
the neutron-star matter due to reactions nþ e → nþ π−,
n → pþ π− one gets μπ− ¼ μe ¼ μn − μp. The quantity
m2

sc ¼ m2 þU, where m > 0 is the mass of the vector
particle,U is a scalar potential, which we assume to be zero
in vacuum and heaving a negative value in the medium.
We will only use that in a deep potential, U < −m2, in the
medium the quantity m2

sc becomes negative.
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Equations of motion are

DμDμϕþm2
scϕþ λjϕj2ϕ ¼ 0; ð3Þ

∂μFμν ¼ −4πδLϕ=δAν ¼ 4πJν; ð4Þ

with the four-current-density

Jν ¼ −ieϕD�νϕ� þ c:c:;

which is conserved, ∂νJν ¼ 0; the abbreviation c.c. denotes
complex conjugation, Lϕ is the part of the Lagrangian
density depending on ϕ.
For the case of the static field, ϕ and the static magnetic

field equations of motion render

ð∇ − ieA⃗Þ2ϕ −m2
efϕ − λjϕj2ϕ ¼ 0; ð5Þ

ΔA⃗ ¼ −4πJ⃗; J⃗ ¼ ieðϕ∇ϕ� − ϕ�∇ϕÞ − 2e2A⃗jϕj2; ð6Þ

where m2
ef ¼ m2

sc − μ2 has a sense of the squared effective

mass term. It is used that divA⃗ ¼ 0.
We introduce the Gibbs free-energy density G¼F−

M⃗H⃗−H⃗2=8π, F is the free-energy density, M⃗¼ðh⃗−H⃗Þ=4π
is the density of the magnetization, H⃗ is the strength of the
external uniform static magnetic field. Note that in the
given paper we use the definition of G, which differs from
the often used definition by the shift on the constant value
H⃗2=8π. Thus, the Gibbs free-energy density is

G ¼ jð∇ − ieA⃗Þϕj2 þm2
ef jϕj2 þ

λ

2
jϕj4 þ ðh⃗ − H⃗Þ2

8π
; ð7Þ

where h⃗ ¼ curlA⃗. The condensate of the charged boson
field appears provided m2

ef < 0 in a part of the space.
A superfluid nonrelativistic motion of the system with

the velocity v⃗ is described with the help of the replacement
D⃗ → D⃗þ imqpv⃗, where mqp is a quasiparticle mass coef-
ficient, the value which is not of our interest at present.
Replacing ϕ → ϕeiχ we find the contribution to the density
of the momentum of the system J⃗v ¼ 2∇χjϕj2, v⃗ ¼ ∇χ,
p⃗ ¼ mqpv⃗ is the momentum of the particle of the
superfluid.

2. Neutral complex scalar field. Nonmagnetic
superfluid phase

Consider a complex scalar field, which does not interact
with the electromagnetic field. Thus, we put e ¼ 0. Then
μ ¼ 0 as well, and thereby m2

ef ¼ m2
sc.

Let us consider the half-space x < 0 medium, where
m2

sc ¼ m2
0 < 0 is the constant, and the system is placed in

the external uniform static magnetic field H⃗. For x > 0,

m2
sc ¼ m2 > 0. The specific interactions, which may pro-

vide inequality m2
0 < 0, are not of our interest here.

For x ≤ 0 from Eqs. (5) and (6) putting there e ¼ 0, we
obtain solutions

ϕ ¼ f0th½ðx − x0Þ=ð
ffiffiffi
2

p
lϕÞ�; h⃗ ¼ h⃗0 ¼ const;

f0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

0=λ
q

θð−m2
0Þ; lϕ ¼ 1=

ffiffiffiffiffiffiffiffiffi
jm0j

p
; x0 ¼ const;

ð8Þ

θðzÞ is the step function. For x ≥ 0, we put ϕ ¼ 0, h⃗ ¼ H⃗. It
is possible to do provided lϕ ≫ 1=m, i.e., jm0j ≪ m, that
we assume for simplicity. Such an approximation in the
phase transition theory is usually called the Landau
approximation. From the boundary conditions for x ¼ 0,
we get x0 ¼ 0 and h0 ¼ H. Thus, we conclude that the
magnetic field and condensate decouple.
With these solutions, we obtain the space-averaged

Gibbs free-energy density,

Ḡ ¼
R
d3xGR
d3x

¼ −
m4

0

2λ

�
1 −

4
ffiffiffi
2

p

3

lϕ
dx

�
θð−m2

0Þ; ð9Þ

dx is the length of the system in the x direction. Note that
for the semi-infinite matter dx → ∞ and surface-energy
term is vanishingly small. However, after the replacement
dx → dx=2, Eq. (9) holds also for the layer of a finite length
provided dx ≫ lϕ.

3. Charged complex scalar field. Superdiamagnetic
response, superconductivity, and mixed Abrikosov state

Assume that m2
ef ¼ m2

sc − μ2 ¼ m2
ef;0 for x < 0, with

m2
ef;0 ¼ const < 0 and that m2

ef ¼ m2 > 0 for x > 0, and
the system is placed in the static uniform magnetic field
parallel z. For 1=lϕ ≫ eHlh, where m2

ef;0 now replaces the
valuem2

0 in previous example, lh is the penetration depth of
the magnetic field in the medium, assuming lϕ ≫ 1=m
from Eq. (5) we recover solution (8). With this solution at
hand, Eq. (6) in the gauge divA⃗ ¼ 0 simplifies as

ΔA⃗ − 8πe2jϕj2A⃗ ¼ 0; x ≤ 0: ð10Þ

For

lh ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πe2f20

q
≫ lϕ;

we may put jϕj2 ¼ f20 in (10). The value mγ ¼ 1=lh plays
the role of the photon mass in the superconducting region,
the quantity κ ¼ ffiffiffiffiffiffiffiffiffiffi

lh=lϕ
p

is the Ginzburg-Landau param-
eter. The inequality 1=lϕ ≫ eHlh is rewritten as H ≪ Hcr,
with the thermodynamical critical field
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Hcr ¼
ffiffiffiffiffiffi
4π

p
jm2

ef j=
ffiffiffi
λ

p
:

For H ≪ Hcr, the solution of Eq. (10) is

A2ðx ≤ 0Þ ¼ Hlhex=lH ;

where we used the gauge A⃗ ¼ ð0; A2ðxÞ; 0Þ for H⃗kz and the
boundary conditions A0

2ðx → 0Þ ¼ H, jA2ðxÞj < ∞. This
solution demonstrates the Meissner-Higgs effect of the
repulsion of the magnetic field from the superconducting
region. For H⃗ky, a similar Meissner effect exists for A3ðxÞ
with A⃗ ¼ ð0; 0; A3ðxÞÞ.
The volume part of the space-averaged Gibbs free-

energy density in the presence of the condensate, with
the magnetic field being repelled from the condensate
matter (phase I: ϕ ¼ f0, h̄ ¼ 0), is as follows:

ḠI ¼ − m4
ef

2λ þ H2

8π . The volume part of the averaged Gibbs
free-energy density in the absence of the condensate, with
the magnetic field (phase II: ϕ ¼ 0, h̄ ¼ H) is ḠII ¼ 0.
Thus, for H < Hcr, the condensate phase is energetically
favorable, since ḠI < ḠII.
For the Ginzburg-Landau parameter, κ ≫ 1 (actually it is

sufficient to have κ > 1=
ffiffiffi
2

p
) in a range of the fields Hc1 <

H < Hc2 the Abrikosov mixed phase is formed. Already
for H > Hcr1 (at Hcr1 < Hcr) the surface energy of the
system is decreased, if there appear filament vortices of
the normal phase. The typical transversal size of the
normal filament vortex directed parallel H⃗ is ∼lϕ, whereas
the magnetic field decreases at the distance ∼lh in the
transversal direction. Thus, the Gibbs free-energy gain
due to the appearance of the single vortex is estimated as
∼ − πl2hdzH

2=8π and the energy loss is ∼πl2ϕdzm4
ef=2λ.

Comparing the gain and loss contributions we see that the
Gibbs free energy is indeed gained for H < Hc1 ∼Hc=κ.
ForH > Hcr1, the vortices form the triangular lattice, which
proves to be energetically more favorable compared to the
quadratic lattice originally considered by Abrikosov,
cf. [87]. Thus, for H > Hcr1, the solution for the field ϕ
should satisfy the periodic boundary conditions. Such a
solution replaces the solution satisfying the boundary
conditions for x ¼ 0 that we had for H < Hcr1. With
subsequent increase of H, the distance between vortices
decreases, the condensate weakens, and vanishes for
H ¼ Hcr2.
For H slightly below Hcr2, the condensate field is weak

and the equations of motion (5) and (6) can be linearized.
Then the solution can be found analytically. Equation (5)
for A⃗ ¼ ðA1ðyÞ; A2ðxÞ; 0Þ renders

−ðD2
1 þD2

2Þϕ ¼ −m2
efϕ: ð11Þ

With A⃗ ≃ ð0; Hx; 0Þ, being the solution of the linearized
Eq. (6), we may rewrite Eq. (11) in the form

−
ð∇ − ieA⃗Þ2ϕ

2maux
≃ −

m2
efϕ

2maux
ð12Þ

of the Schrödinger equation for the nonrelativistic spin-less
particle in the uniform magnetic field, where the quantity
maux is an auxiliary mass coefficient.

The energy in the ground state is Emin ¼ jm2
ef j

2maux
¼

jejHcr2=2maux, from where we find

Hcr2 ¼ jm2
ef=ej ¼ Hcr

ffiffiffi
2

p
κ: ð13Þ

For the further usage, let us introduce the auxiliary
condition

Diϕi ¼ 0; or Dϕ ¼ 0; ð14Þ

where i ¼ 1, 2, ϕi ¼ ðϕ;−iϕÞ, D ¼ D1 − iD2. Let us
apply the operator D ¼ D1 þ iD2 to (14). Then, we obtain
equation

ðD2
1 þD2

2 − i½D1; D2�−Þϕ ¼ 0; ð15Þ

with ½a; b�− ¼ ab − ba, i½D1; D2�−ϕ ¼ eh3ϕ, h3 ¼
∂1A2 − ∂2A1. Thus,

−ðD2
1 þD2

2Þϕ ¼ −eh3ϕ > 0: ð16Þ

With A⃗ ≃ ð0; Hc2x; 0Þ, this equation is equivalent to
Eq. (11). The solution has the form

ϕ ¼
X∞
n¼−∞

CneiknyϕnðxÞ; ϕnðxÞ ¼ e−ðx−xnÞ
2=2l2ϕ ;

where xn ¼ nkl2ϕ, CnþN ¼ Cn, k ¼ je�jHcr2x0, N ¼ 1 cor-
responds to the quadratic lattice, N ¼ 2, to the triangular
one. This solution can be then used as the probe function to
calculate the space-averaged Gibbs free-energy Ḡ within
the mixed state and by variation of the free parameters to
find its minimum.
In the toy model considered above, we were not

interested in specification of the interactions, which provide
the inequalitym2

sc < 0 for the neutral system and inequality
m2

ef ¼ m2
sc − μ2 < 0 for the charged system. In the neutron-

star matter, there exists a fraction of protons, and one can
consider a possibility of the π− condensation, described by
the negatively charged field ϕ ¼ ϕπ− . Chemical potentials
of particles fulfill equalities μp ¼ μn − μe and μπ− ¼ μe. In
the approximation of the ideal pion gas, the s-wave π−

condensation would occur for μeðnÞ > mπ, where n is the
baryon density. However, it proves to be that the ideal
gas approximation is hardly realized in a realistic problem
due to the presence of the s-wave repulsive Weinberg-
Tomozawa π−n interaction. The latter interaction does
not allow for the s-wave π− condensation up to high
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densities [88]. The π− condensation with the field ϕ ¼
f0eik⃗0 r⃗ for k0 ≠ 0 in neutron star matter may appear for
n > nπc ∼ ð1.5 − 3Þn0 due to a strong p-wave πN attraction
[53,88]. The condensate π− has properties of an unconven-
tional superconductor of the second kind. In the external
magnetic field, for H > Hcr1, the vortices form the plane-
layer structures rather than the filamentary structures and
the value Hcr2 proves to be very high [53,60]. Also, for
n > ðnK−

c ; nK
0

c Þ ∼ ð2 − 4Þn0, there may appear the s-wave
[44,89] and p-wave [89,90] antikaon condensates. The
condensate K− has properties of a superconductor and K̄0,
of a superfluid.

B. Zeeman coupling of neutral fermions and
ferromagnetic state

In the quantum field theory in the famous Nambu-Jona-
Lasinio (NJL) model [91,92], the hðψ̄ψÞ2i self-interaction
of quarks represents the squared chiral condensate ψ̄ψ .
Angular brackets denote averaging over the equilibrium
state of the fermion medium. Reference [76] considers a
generalization of the NJL model with the spin-spin inter-
action term in the free-energy density bshðψ̄ γ⃗ γ5ψÞ2i
instead of hðψ̄ψÞ2i term in the original NJL model, γi,
γ5 are the Dirac matrices, the spin operator of the fermion is
S⃗ ¼ 1

2
ψ̄ γ⃗ γ5ψ , i ¼ 1, 2, 3. The spin-spin interaction for

bs < 0 causes a spontaneous magnetization. Such an
interaction appears also in the model of the neutral massive
fermion field ψ interacting with the own static magnetic
field h⃗ ¼ curlA⃗ by the Zeeman coupling, A⃗ is the vector
potential of the magnetic field. The Lagrangian density is
as follows:

L ¼ ψ̄ðiγν∂ν þ iγ0μ −mFÞψ −U þ ηS⃗ h⃗−h⃗2=8π;

mF is the bare fermion mass, M⃗ ¼ ηS⃗ is the magnetic
moment of the fermion, U is a fermion interaction term not
depending on h.
The contribution to the Gibbs free-energy density

dependent on h is

Gh ¼ −ηhðψ̄ γ⃗ γ5ψÞh⃗i=2þ ðh⃗ − H⃗Þ2=8π:

For hψ̄γ3γ5ψi ≠ 0 and hψ̄γ1;2γ5ψi ¼ 0, minimizing Gh in h
(let it be parallel z), one gets

h⃗ ¼ H⃗ þ n⃗3 · 2πηhðψ̄γ3γ5ψÞi;

where n⃗3 ¼ ð0; 0; 1Þ, and

Gh ¼ −πη2hψ̄γ3γ5ψi2=2þ ηhðψ̄γ3γ5ψÞiH3=2:

The first term represents a spin-spin interaction. For the
polarized spin state, this contribution to the free-energy

density is negative (even for H ¼ 0). However, the positive
Fermi gas energy term for the polarized state is higher than
that for the nonpolarized state. For the fully polarized
matter hψ̄γ3γ5ψi ¼ n, where n is the fermion density.
Thus, the difference in the energy density for the fully
spin-polarized matter and the nonpolarized one for H ¼ 0,
T ¼ 0 becomes

E − Eðh ¼ 0Þ ¼ 35=3π4=3ð22=3 − 1Þn5=3
10m�

F
−
πη2n2

2
;

m�
F is the effective fermion mass resulting from interactions

not dependent on h. Thus, in this toy model, the ferro-
magnetic state becomes energetically favorable only for an

abnormally high density n > ncr ¼ 35πð22=3−1Þ3
125m�3

F η6
, that is not

realized for densities reachable in neutron stars. Only in an
extremely high external magnetic field, the neutron star
matter could be fully polarized. Reference [76] additionally
included the axial anomaly term, a contribution of the axial-
vector meson condensate and the neutral pion condensate.
With these additional contributions, the critical density,
above which the neutron star matter can be polarized, is
strongly diminished up to the values reachable in the most
massive neutron stars.
Note also that there exists a possibility of a ferromagnetic

transition in quark matter interacting with one-gluon-
exchange interaction [93], similarly to the ferromagnetism
in electron gas. Spontaneous spin polarization due to the
tensor self-energies in quark matter within the NJL model
was considered in Ref. [94].

III. COMPLEX VECTOR-BOSON FIELDS.
FERROMAGNETIC SUPERFLUIDITY AND

SUPERCONDUCTIVITY

A. Lagrangian, equations of motion,
Gibbs free energy

Let ϕðjÞ
ν ¼ ðϕð1Þ

ν ;ϕð2Þ
ν ;ϕð3Þ

ν Þ be the field of a massive
vector–isospin-vector boson, such as ρ meson, with

ϕð1Þ
ν ;ϕð2Þ

ν ;ϕð3Þ
ν as real quantities. Latin superscripts (1),

(2), and (3) describe isospin, whereas the Greek index is as

above the Lorentz index 0, 1, 2, 3. Instead of real fields ϕð1Þ
ν

and ϕð2Þ
ν , it is convenient to introduce complex fields,

ϕν ¼ ðϕð1Þ
ν − iϕð1Þ

ν Þ=
ffiffiffi
2

p
; ϕ�

ν ¼ ðϕð1Þ
ν þ iϕð1Þ

ν Þ=
ffiffiffi
2

p
:

In our toy model, we will for simplicity put ϕð3Þ
ν ¼ 0.

Then we deal with a simpler problem of the description
of the complex vector field ϕμ. The interaction of ϕμ with
the electromagnetic field is described with the help of the
long-derivative replacement ∂μϕν → Dμϕν, cf. (2), and the
Zeeman term. Then the Lagrangian density for the inter-
acting ϕ and the electromagnetic fields renders
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Lϕ;A ¼ −
FμνFμν

16π
−
ϕμνϕ

�μν

2
þm2

scϕνϕ
�ν

þ Lϕϕ þ iηFμνϕ
�μϕν; ð17Þ

ϕμν ¼ Dμϕν −Dνϕμ, as abovem2
sc is the squared bare mass

shifted by an attractive scalar potential.
The self-interaction term we take in the following form:

Lϕϕ ¼ −Λ½ðϕνϕ
�νÞ2 þ ξ1ðϕνϕ

νÞðϕ�
μϕ

�μÞ�; ð18Þ

where Λ is a positive coupling constant. Simplifying
consideration we shall employ ξ1 ¼ 0, if the other is not
mentioned. A non-Abelian form of the self-interaction
was used in [95,96] in the problem of the instability of
theW boson vacuum in a strong external magnetic field, in
[69–71] for the description of the charged ρ meson
condensation in the dense isospin-asymmetric baryon
matter, and in [72,73] for the description of the instability
of the ρ meson vacuum in a strong external magnetic field.

At the condition ϕð3Þ
ν ¼ 0, that we use, results of those

works and ours here coincide provided ξ1 ¼ −1.
The Zeeman coupling term, LZeeman ¼ iηFμνϕ

�μϕν,
describes the interaction of the spin of the complex vector
field with the electromagnetic field. In absence of the
anomalous magnetic moment, the magnetic moment of
the ρ− meson would be Mρ ¼ η=mρ ¼ e=mρ, e < 0. With
inclusion of a contribution of the anomalous magnetic
moment, Mρ ≠ 2e=ð2mρÞ. Reference [97] finds Mρ≃
2.2e=ð2mρÞ; other existing calculations give other values.
An important circumstance here is only that in general
case η ≠ e.
Note that in a realistic problem of the behavior of the ρ

meson in isospin-asymmetric nuclear matter one should

include ϕð3Þ
0 component, the electromagnetic interaction of

the charged ρ fields, and the ρ interaction with fermions and
other mesons, e.g., with the σ meson field, cf. [69–71].
Equations of motion for the fields ϕν render

DμDμϕ
ν −DνDμϕ

μ − iðeþ ηÞFμνϕμ

þm2
scϕ

ν − 2Λðϕ�
μϕ

μÞϕν ¼ 0; ð19Þ

where we used the identity

½Dμ; Dν�−ψ ¼ ieFμνψ ð20Þ

and

∂μFμν ¼ 4πJν; with

Jν ¼ ieDνϕμ · ϕ�μ − ieϕ�μDμϕ
ν þ c:c:

− iðeþ ηÞ∂μðϕ�μϕν − ϕ�νϕμÞ: ð21Þ

Now, the value m2
ef ¼ m2

sc − μ2ϕ has a sense of the squared
effective mass of the complex vector field.
From (19) for η ¼ e neglecting ∼ϕ3 terms, we recover

ordinary Proca equation for the Bose particle with the spin
one compatible with the condition

Dμϕ
μ ¼ 0; ð22Þ

which is fulfilled identically away from the sources of the
electromagnetic field. To show this, we apply the operator
Dν to the equation of motion (19) and make use of the
identity (20) and that away from the sources Jν ¼ 0.
Contrary, the condition (22) is not necessarily compatible
with the nonlinear equation of motion (19) and even with
the linear equation of motion at η ≠ e. Below [see dis-
cussion of Eq. (50)] we shall demonstrate a specific case,
when the condition (22) is compatible with the linear
equations of motion for the charged field at η ≠ e.
For static vector fields ϕν ¼ ð0;ϕiÞ and Aν ¼ ð0; AiÞ, the

Gibbs free-energy density renders (now in ordinary three-
dimensional notations)

G ¼ m2
ef jϕjj2 þ Λðϕjϕ

�
jÞ2 þ

ðh⃗ − H⃗Þ2
8π

þ jDiϕjj2

−DjϕiD�
iϕ

�
j þ iηϵjikhkϕ�

jϕi: ð23Þ

The Zeeman coupling term iηϵjikhkϕ�
jϕi describes the

interaction of the spin density, Sk ∝ iϵjikϕ�
jϕi, with the

static magnetic field h⃗ ¼ curlA⃗. The quantity M⃗ ¼ ηS⃗ is
the magnetic moment, ηS2 ¼ M3S3.
The identity (20) can be then written as

i½Di;Dj�− ¼ eϵijkhk; ð24Þ

whereDj ¼ ð∇ − ieA⃗Þj, ϵjkl is the Levi-Civita tensor. With
the identity (24) taken into account, equations of motion are
simplified as

−D2
iϕj þDjDiϕi þm2

efϕj þ 2Λjϕij2ϕj

þ iðeþ ηÞFjiϕi ¼ 0 ð25Þ

and

ΔA⃗ ¼ −4πJ⃗ at divA⃗ ¼ 0; with

Ji ¼ −ieϕ�
jDiϕj þ ieϕ�

jDjϕi þ c:c:

þ iðeþ ηÞ∇jðϕ�
jϕi − ϕ�

iϕjÞ: ð26Þ

The condition (22)

Djϕj ¼ 0; ð27Þ

cf. Eq. (14) in case of the scalar field.
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B. Charge-neutral complex vector field

Consider model describing a complex vector field
coupled with the electromagnetic field by the Zeeman
coupling (η ≠ 0) in the absence of minimal coupling (for
e ¼ 0). Equations (23) and (25) hold now for e ¼ 0.

1. Superfluidity in nonmagnetic phase A

The simplest choice is when only one Lorentz compo-
nent of the complex vector field is nonzero. Label such a
choice as the phase A. The spin in this state is zero. For
m2

sc > 0, there are no solutions in this case. One can
consider three subphases: A1 [ϕν ¼ ð0;ϕ1ðxÞ; 0; 0Þ], A2

[ϕν ¼ ð0; 0;ϕ2ðxÞ; 0Þ], and A3 [ϕν ¼ ð0; 0; 0;ϕ3ðxÞÞ].
In the case of the uniform matter placed in the external

static uniform magnetic field H⃗, all three subphases are
allowed. The magnetic field and the condensate decouple,

h⃗ ¼ H⃗, jϕj2 ¼ − m2
sc

2Λ θð−m2
scÞ. The Gibbs free-energy den-

sity is GA ¼ − m4
sc

4Λ θð−m2
scÞ.

Let now the medium fill half-space x < 0, where m2
sc ¼

m2
0 < 0 is a constant, placed in the external static uniform

magnetic field H⃗. We will assume the vector-boson field ϕ⃗

and the internal magnetic field h⃗ ¼ curlA⃗ to be functions
only of x (using the symmetry arguments), satisfying the
boundary conditions for x ¼ 0.
Subphase A1 is not allowed. Indeed, then the boundary

condition ϕ1ðx ¼ 0Þ ¼ 0 for the vector-boson field cannot
be satisfied due to the absence of ∝ ∂1 gradient term in
Eq. (25). Also, notice that the condition ∂iϕi ¼ 0 is not
fulfilled in this case, although the latter condition should be
satisfied at least in the single particle approximation, in
absence of the term ∝ η and for e ¼ 0.
Subphase A2.—Then the condition ∂iϕi ¼ 0 is fulfilled,

and ϕ2 and h satisfy equations of motion that follow
from the variation of (23) for e ¼ 0 in ϕ2 and h,
cf. Eqs. (25) and (26),

∂2
1ϕ2 −m2

scϕ2 − 2Λðϕ2ϕ
�
2Þϕ2 ¼ 0; h⃗ ¼ H⃗: ð28Þ

Appropriate solution for the condensate field gets the
form (8) for m2

sc ¼ m2
0 < 0, jm0j ≪ m, now with

λ ¼ 2Λ. Then, we find

GA2
¼ j∂1ϕ2j2 þm2

scjϕ2j2 þ Λðϕ2ϕ
�
2Þ2; ð29Þ

whereas the averaged Gibbs free energy is given by (9)
(with λ replaced by 2Λ), i.e.,

ḠA2
¼

R
d3xGR
d3x

¼ −
m4

0

4Λ

�
1 −

4
ffiffiffi
2

p

3

lϕ
dx

�
θð−m2

0Þ: ð30Þ

Subphase A3.—Similarly, we could employ the field
Ansatz ϕν ¼ ð0; 0; 0;ϕ3ðxÞÞwith the same results as for the
subphase A2, ḠA2

¼ ḠA3
.

2. Ferromagnetic superfluidity in phase B

Let

Λ̃ ¼ Λ − 2πη2

be positive. Consider the field Ansätze, which we name
the phase B: ϕν ¼ ð0; 0;ϕ1ðxÞ;ϕ2ðxÞÞ (subphase B1);
ϕν ¼ ð0;ϕ1ðxÞ; 0;ϕ2ðxÞÞ (subphase B2); and ϕν ¼
ð0;ϕ1ðxÞ;ϕ2ðxÞ; 0Þ (subphase B3) with ϕ2 ¼ −C0iϕ1,
where C0 is real coefficient. We further take C0 ¼ 1 for
η < 0 and C0 ¼ −1 for η > 0, as it follows from the
minimization of the Gibbs free energy. Also, for conven-
ience, we introduce the new variable ψ̃ ¼ ϕ1ðxÞ=

ffiffiffi
2

p
. We

will show that now classical solutions may exist not only
for m2

ef;0 < 0 but in some cases also for m2
ef;0 > 0.

Already for the uniform matter the free energy is
different for the cases when the mean spin S⃗ is parallel
to the external uniform static magnetic field H⃗ and
perpendicular to it. For instance, for the subphase B1 at
H⃗kx using (23) with A⃗ ¼ ð0; 0; Hy ∓ 4πηjψ̃ j2yÞ, we obtain

h1 ¼ H ∓ 4πηjψ̃ j2 ¼ const; h2 ¼ h3 ¼ 0;

jψ̃ j2 ¼ −m2
sc ∓ ηH

2Λ̃
θð−m2

sc ∓ ηHÞ;

GB1
ðH⃗kxÞ ¼ −

ð−m2
sc ∓ ηHÞ2
4Λ̃

θð−m2
sc ∓ ηHÞ:

The upper and lower signs here correspond to two
projections of the spin in the ground state for negative
and positive η, respectively. For H⃗kz, we have A⃗ ¼
ð0; Hx;∓ 4πηjψ̃ j2yÞ,

h1 ¼∓ 4πηjψ̃ j2 ¼ const; h2 ¼ 0; h3 ¼ H;

jψ̃ j2 ¼ −m2
sc

2Λ̃
θð−m2

scÞ; GB1
ðH⃗kzÞ ¼ −

m4
sc

4Λ̃
θ

�
−m2

sc

4Λ̃

�
:

Similarly, it can be obtained solutions for the B2 and B3

subphases. We used that Λ̃ > 0. It is the case, e.g., for
hadrons since then Λ ∼ 1 and η ∼ e. Otherwise, by the first-
order phase transition, there may appear a novel C phase;
see below.
Let now the medium fill half-space x < 0, where m2

sc ¼
m2

0 < 0 is a constant, placed in the external static uniform

magnetic field H⃗. Again, consider the vector-boson field ϕ⃗

and the internal magnetic field h⃗ ¼ curlA⃗ to be functions
only of x (using the symmetry arguments), satisfying the
boundary conditions for x ¼ 0. At least, at such
assumption, there are no appropriate solutions for the
vector-potential A⃗ in the case of the subphase B1.
Subphase B2.—Then the own magnetic field has the

component h2ðxÞ ≠ 0 due to the corresponding nonzero
Zeeman term. The condition ∂iϕi ¼ 0 is not fulfilled with
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this field Ansatz. From (23), for e ¼ 0, we have in the
given case

GB2
¼ 1

2
j∇xψ̃ j2 þm2

scjψ̃ j2 þ Λjψ̃ j4

þ ðh⃗ − H⃗Þ2
8π

� ηh2jψ̃ j2: ð31Þ

Following the minimization of the energy, for η < 0, we
should take the upper sign, and for η > 0, the lower sign,
that relates to the choice ϕ2 ¼∓ iϕ1, respectively.
Consider first H⃗kz. Minimizing GB2

in h, we obtain

h2 ¼∓ 4πηjψ̃ðxÞj2; h3 ¼ H; ð32Þ

h1 ¼ 0. As we see, the field h⃗ðxÞ satisfies the necessary
boundary condition h⃗ð0Þ¼H⃗, A⃗ ¼ ð0; Hx;�4πη

R
x jψ̃ j2dxÞ.

Equation of motion for the field ψ̃ is given by

1

2
∂2
1ψ̃ −m2

scψ̃ − 2Λjψ̃ j2ψ̃ ∓ ηh2ψ̃ ¼ 0: ð33Þ

Using (32), we find for x ≤ 0,

ψ̃ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffi
−m2

0

2Λ̃

s
θð−m2

0Þth
x − x0ffiffiffi
2

p
lB2

ϕ

; ð34Þ

lB2

ϕ ¼ lϕ=
ffiffiffi
2

p
, and assuming jmscj ≪ m, we put x0 ¼ 0 to

satisfy the boundary condition ψ̃ð0Þ ¼ 0. With these
solutions, we find

ḠB2
ðH⃗kzÞ ¼ −

m4
0

4Λ̃

�
1 −

4
ffiffiffi
2

p
lB2

ϕ

3dx

�
θð−m2

0Þ: ð35Þ

Thus, at η ≠ 0, comparing (30) and (35), we see that for any
value of H⃗kz the subphase B2 is energetically preferable
compared with the subphases A.
Let now Hkx. We get A⃗ ¼ ð0; Hy;�4πη

R
x jψ̃ j2dxÞ,

h1 ¼ H, h2 ¼∓ 4πηjψ̃ j2, h3 ¼ 0 and recover Eq. (34),
and (35) now for ḠB2

ðH⃗kxÞ.
Let now Hky. With A⃗ ¼ ð0; 0;−Hx� 4πη

R
x jψ̃ j2dxÞ,

we obtain

h1 ¼ 0; h2 ¼ H ∓ 4πηjψ̃ðxÞj2; h3 ¼ 0

and

ψ̃ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

0 ∓ ηH

2Λ̃

s
θð−m2

0 ∓ ηHÞth xffiffiffi
2

p
lB2

ϕ

; ð36Þ

for x ≤ 0, with

ḠB2
ðH⃗kyÞ ¼ −

ð−m2
0 ∓ ηHÞ2
4Λ̃

�
1 −

4
ffiffiffi
2

p
lB2

ϕ

3dx

�
× θð−m2

0 ∓ ηHÞ: ð37Þ

For H⃗ky at m2
0 < 0, the condensate amplitude grows

with increasing value H. Thus, for H⃗ky, the energy is
gained compared to the case H⃗kx and H⃗kz. The subphase
B2 is a ferromagnetic phase, since even for H ¼ 0, there
exists an own field h1 ≠ 0.
The classical vector field (36) is developed for

−m2
0 ∓ ηH > 0. Thus, in this case, the condensation occurs

not only for m2
0 < 0 (for arbitrary H) but also for

H > Hneut
cr ¼ jm2

0j=jηj; at m2
0 > 0: ð38Þ

For H ≠ 0, we found that ḠB2
ðH⃗kyÞ < ḠB2

ðH⃗kxÞ ¼
ḠB2

ðH⃗kzÞ.
Subphase B3.—The condition ∂iϕi ¼ 0 is not fulfilled

with this field Ansatz. The Gibbs free-energy density
renders

GB3
¼ 1

2
j∇xψ̃ j2 þm2

scjψ̃ j2 þ Λjψ̃ j4

þ ðh⃗ − H⃗Þ2
8π

� ηh3jψ̃ j2: ð39Þ

Equation of motion for ψ̃ is as follows:

1

2
∂2
1ψ̃ −m2

scψ̃ − 2Λðψ̃ ψ̃�Þψ̃ ∓ ηh3ψ̃ ¼ 0: ð40Þ

Let H⃗kz. With A⃗ ¼ ð0; Hx ∓ 4πη
R
x jψ̃ j2dxÞ, we get

h3 ¼ F12 ¼ H ∓ 4πηjψ̃ðxÞj2: ð41Þ

The appropriate solution of Eq. (40) with the boundary

conditions ψ̃ðxÞ → 0 for x → 0 and ψ̃ðxÞ → �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

0
−ηH

2Λ̃

q
for

x → −∞ coincides with Eq. (36) and

ḠB3
ðH⃗kzÞ ¼ ḠB2

ðH⃗kyÞ: ð42Þ

Moreover, for H ≠ 0, we have ḠB3
ðH⃗kzÞ < ḠB3

ðH⃗kxÞ ¼
ḠB3

ðH⃗kyÞ.
As in case of subphase B2 at H⃗ky, for the subphase B3

at H⃗kz, the classical vector field is developed for
−m2

0 ∓ ηH > 0. Thus, the condensation occurs not only
at m2

0 < 0 for arbitrary H but also at m2
0 > 0

for H > Hneut
cr ¼ jm2

0j=jηj.
Domains.—The difference in volume and surface ener-

gies of the subphases causes a possibility of existence of the
domains for H ≠ 0 and H ¼ 0 with different directions of
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the own magnetic field h⃗ in each domain, which may merge
in the presence of the external fields.
About choice of self-interaction.—With the self-inter-

action taken in the form (18) for ξ1 ¼ 0, that we have used,
for H⃗kz the subphase B3 proves to be energetically
preferable compared to the other allowed subphases A2,
A3, and B2. For ξ1 ≠ 0, the situation becomes more
complicated. For example, for ξ1 ¼ −1 in the A phase,
the repulsive self-interaction term vanishes, whereas in the
B phase the repulsive self-interaction term does not depend
on the value ξ1. Thereby, for ξ1 ¼ −1, the A phase becomes
energetically favorable compared to the B phase at least for
H ¼ 0. Similar problems will be considered in next section
on example of fermions with spin-triplet pairing.

3. Ferromagnetic superfluidity in phase C

For Λ̃ ¼ Λ − 2πη2 < 0, by the first-order phase transi-
tion, there may appear a novel C phase. Since the hadron-
hadron coupling Λ ≫ e2, at least for the ρ mesons, the C
phase is not realized. For the triplet pairing, the C phase is
possible; we shall return to this question in Sec. IV.

C. Charged complex vector field

Now, let the complex vector field be charged and
interacting with the electromagnetic field by the minimal
and the Zeeman couplings. Consider first the charged static
complex vector field with m2

ef;0 ¼ m2 − μ2ϕ in half-space
x < 0, placed in the external static uniform magnetic field
H⃗. In this case, fields h⃗ and ϕi depend only on x.

1. Nonmagnetic and superdiamagnetic responses of
various superfluid subphases A

Solutions exist only for m2
ef;0 ¼ m2 − μ2ϕ < 0.

Subphase A1 is not realized, as in case of the neutral
complex field considered in Sec. III B, since the appropriate
boundary conditions at x ¼ 0 cannot be fulfilled with the
Ansatz ϕi ¼ ðϕ1ðxÞ; 0; 0Þ. The condition ∂iϕi ¼ 0 is also
not satisfied, even for η ¼ e and for the linearized equation
of motion, when it must be fulfilled.
Subphase A2.—For ϕi ¼ ð0;ϕ2ðxÞ; 0Þ, taking H⃗kz,

A⃗ext ¼ ð0; Hx; 0Þ, A⃗ ¼ ð0; A2ðxÞ; 0Þ, from (23), we obtain

GA2
ðH⃗kzÞ ¼ j∂1ϕ2j2 þm2

ef jϕ2j2 þ Λjϕ2j4 þ
ðh⃗ − H⃗Þ2

8π
:

Minimizing ḠA2
in h we see that the magnetic field and the

condensate decouple and h⃗ ¼ H⃗. The resulting expression
for ḠA2

,

ḠA2
ðH⃗kzÞ ¼ −

m4
ef;0

4Λ

�
1 −

4
ffiffiffi
2

p
l̃ϕ

3dx

�
θð−m2

ef;0Þ; ð43Þ

coincides with (9) after the replacement λ → 2Λ,
m0 → mef;0, and lϕ ¼ 1=jm0j → l̃ϕ ¼ 1=jmef;0j. For H⃗kz,
the subphase A2 is a nonmagnetic phase.
For H⃗kx, the Gibbs free-energy density takes the form

GA2
ðH⃗kxÞ ¼ j∂1ϕ2j2 þ e2A2

3jϕ2j2 þm2
ef jϕ2j2

þ Λjϕ2j4 þ
ðh⃗ − H⃗Þ2

8π
: ð44Þ

Comparison with (7) demonstrates that after the replace-
ment λ → 2Λ the charged complex vector field is described
completely the same as the charged complex scalar field.
Thus, for low H (for H < Hcr1), the magnetic field h is
repelled from the condensate region and

ḠA2
ðH⃗kxÞ ≃H2

8π
−
m4

ef;0

4Λ

�
1 −

4
ffiffiffi
2

p
l̃ϕ

3dx

�
θð−m2

ef;0Þ: ð45Þ

Thus, the A2 superconducting subphase for H⃗kx demon-
strates a superdiamagnetic response on a weak external
magnetic field, h̄ ¼ 0. With an increase of H in the interval
Hcr1 < H < Hcr2, there appears the Abrikosov mixed state
of vortices alternating with the condensate, for H ¼ Hcr2
the condensate disappears, and for H > Hcr2 the conden-
sate does not exist.
Subphase A3.—For ϕi ¼ ð0; 0;ϕ3ðxÞÞ, choosing H⃗kz,

A⃗ext ¼ ð0; Hx; 0Þ, with A⃗ ¼ ð0; A2ðxÞ; 0Þ, i.e., with h⃗kz, we
are able to satisfy the boundary condition h⃗ðx ¼ 0Þ ¼ H⃗.
The Gibbs free-energy density takes the form

GA3
ðH⃗kzÞ ¼ j∂1ϕ3j2 þ e2A2

2jϕ3j2 þm2
ef jϕ3j2

þ Λjϕ3j4 þ
ðh⃗ − H⃗Þ2

8π
: ð46Þ

Comparison with (7) demonstrates that after the replace-
ment λ → 2Λ the charged complex vector field is described
completely the same as the charged complex scalar field.
Thus, for low H (for H < Hcr1), the magnetic field h is
repelled from the condensate region and

ḠA3
ðH⃗kzÞ ≃H2

8π
−
m4

ef;0

4Λ

�
1 −

4
ffiffiffi
2

p
l̃ϕ

3dx

�
θð−m2

ef;0Þ: ð47Þ

The subphase A3 for a weak external magnetic field H⃗kz is
superdiamagnetic, and ḠA3

ðH⃗kzÞ ¼ ḠA2
ðH⃗kxÞ.

With an increase of H in the interval Hcr1 < H < Hcr2,
there appears the Abrikosov mixed state of vortices alter-
nating with the condensate and for H > Hcr2 the conden-
sate disappears.
For H ≠ 0, we find that ḠA2

ðH⃗kzÞ < ḠA3
ðH⃗kzÞ. For

H → 0, both quantities coincide.
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With A⃗ext ¼ ð0; 0; HyÞ, we have h⃗ ¼ H⃗ and

GA3
ðH⃗kxÞ ¼ j∂1ϕ3j2 þm2

ef jϕ3j2 þ Λjϕ3j4: ð48Þ

Therefore, ḠA3
ðH⃗kxÞ ¼ ḠA2

ðH⃗kzÞ.
Thus most energetically preferable are the subphase A2

for H⃗kz and the subphase A3 for H⃗kx. In both cases,
the subphases are nonmagnetic and the condensate of the
charged vector field exists for arbitrary values of the
external magnetic field.

2. Superconductivity in phase B

Wewill show that, as in case of the charge-neutral vector
bosons, classical solutions may exist not only form2

ef;0 < 0,
when the response on a weak external magnetic field is
superdiamagnetic, but in the presence of an overcritical
external magnetic field also for m2

ef;0 > 0.

Subphase B3.—Let H⃗kz and employ A⃗ ¼ ðA1ðx; yÞ;
A2ðx; yÞ; 0Þ, i.e., h⃗kz.
Integrating by parts the gradient term in the Gibbs free

energy, using the identity (24) and retaining only the
volume part in the Gibbs free energy, we getZ

d3xGB3
ðH⃗kzÞ

¼
Z

d3x

�
−
1

2
ψ̃�ðD2

1þD2
2Þψ̃

�

þ
Z

d3x

�ðh3−HÞ2
8π

þ
�
m2

efþ
�
ηþe

2

�
h3

�
jψ̃ j2þΛjψ̃ j4

�
;

ð49Þ

for η < 0, e < 0. Varying the Gibbs free energy in ψ̃�, we
obtain equation of motion for the order parameter

−
1

2
ðD2

1 þD2
2Þψ̃ þ

�
m2

ef þ
�
ηþ e

2

�
h3

�
ψ̃ þ 2Λjψ̃ j2ψ̃ ¼ 0:

ð50Þ

Setting e ¼ 0, we recover Eq. (33). Choosing A1 ¼ 0 and
varying (49) in A2, we get

∂2
1A2 ¼ −4πJ2 ¼ 4πe2jψ̃ j2A2 − 4π

�
ηþ e

2

�
∂1jψ̃ j2; ð51Þ

cf. Eq. (26) for the scalar charged bosons. There are two
typical lengths characterizing solutions of these equations:
l̃h ¼

ffiffiffi
2

p
lh characterizing the field A2ðxÞ and l̃ϕ ¼

1=ð ffiffiffi
2

p jmef;0jÞ, characterizing the field ψ̃ðxÞ, cf. quantities
lh and lϕ introduced above. We will see that there are two
types of solutions of these equations. One solution
describes the Meissner screening effect, when the external
magnetic field decreases on the length l̃h near the system

boundary, whereas the condensate field reaches constant
value for −x > l̃ϕ. In ordinary superconductors of the
second kind, this solution is realized for H < Hcr1.
Another type of solution describes periodic structures for
Hcr1 < H < Hcr2. Consider first a specifics of the Meissner
effect in our case. For −x ∼ l̃h ≫ l̃ϕ, corresponding to the
case κ ≫ 1 that we consider, the term 4πðηþ e=2Þ∂1jψ̃ j2
can be dropped and the solution satisfying the boundary
condition h3ð0Þ ¼ H is A2ðxÞ ¼ Hl̃hex=l̃h . On the short
distances, −x ∼ 1=l̃ϕ from the surface the y component of
the vector potential, A2, is a constant and the term
4πe2jψ̃ j2A2 can be dropped for H ≪ 1=ðl̃ϕl̃hÞ ∼Hcr.
Then the solution (51), being valid for −x≳ l̃h, but
satisfying the appropriate boundary condition for x ¼ 0,
h3ð0Þ ¼ H, ψ̃ð0Þ ¼ 0, renders

h3≃−4π
�
e
2
þη

�
½jψ̃ðxÞj2− jψ̃ð−∞Þj2�ð1−ex=l̃hÞþHex=l̃h :

This solution describes the screening Meissner effect.
For H ≪ Hcr, using estimate done above for the scalar

charged field, we can replace D2
1 þD2

2 → ∂2
1 þ ∂2

2 → ∂2
1.

The solution of Eq. (50) then renders

ψ̃ðxÞ ≃�f0θð−m2
ef;0Þth

xffiffiffi
2

p
l̃ϕ
; f0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

ef;0

2Λ

s
:

For the space-averaged Gibbs free energy, we obtain the
expression

ḠB3
ðH⃗kzÞ ≃H2

8π
−
m4

ef;0

4Λ

�
1 −

4
ffiffiffi
2

p
l̃ϕ

3dx

�
θð−m2

ef;0Þ: ð52Þ

We see that for H ≠ 0,

ḠA2
ðH⃗kzÞ < ḠA3

ðH⃗kzÞ < ḠB3
ðH⃗kzÞ;

whereas for H → 0, due to a smaller surface energy
contribution, for the system of the finite size, we get
ḠB3

ðH⃗kzÞ < ḠA2
ðH⃗kzÞ.

With increasing H above the value Hcr1, there appears
the Abrikosov lattice of vortices. For the ordinary metallic
superconductors and similarly for the case of the charged
scalar field, with a subsequent increase of H, the con-
densate weakens and for H ¼ Hcr2 it disappears. Assume
that for H near the value Hcr2 the condensate is weak.
Then we drop the nonlinear term in Eq. (50) and put
A⃗ ¼ ð0; Hcr2x; 0Þ. Thus, as for the case of the complex
scalar field considered above at H ≃Hcr;2, we find the
solution satisfying periodic boundary conditions. After
dividing all terms in linearized Eq. (50) on an artificial
mass coefficient, the former equation acquires the form of
the Schrödinger equation for the nonrelativistic particle in
the uniform magnetic field h3 ¼ H. The quantity
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Emin ¼ −m2
ef;0 − ðηþ e=2ÞH ¼ jejH=2

is the minimal eigenvalue. However, as we see, for
m2

ef;0 < 0, η < 0 there is no solution of this equation and
there is no upper critical fieldHcr2, at which the condensate
vanishes with increasing H.
On the other hand, the solution exists for m2

ef > 0,
η < 0 at

H > Hcr2 ¼ −m2
ef=η > 0: ð53Þ

Note that we did not use the relation (27). Now, using
condition (27) and the identity (24), we recover Eq. (16),
which coincides with the linearized Eq. (50) at h3 ¼ Hcr2

for any η < 0 at m2
ef > 0. Let H be slightly above Hcr2.

Then, from (27), we find that ∂1jϕ1j2 ¼ 2eA2ðxÞjϕ1j2.
Setting this result in Eq. (51), we obtain

∂2
1A2 þ 8πηeA2jψ̃ j2 ¼ 0; ð54Þ

with the solution corresponding to the antiscreening effect,
being in accordance with our observation that the super-
conductivity of the charged vector bosons appears at
H > Hcr2 for m2

ef > 0, cf. statement of [74] that “new
superconductivity” may antiscreen magnetic field.
Below I will demonstrate similarities and differences in

the description of the complex vector meson fields and the
spin-triplet pairing of fermions.

IV. SPIN-TRIPLET PAIRING IN NEUTRAL
FERMION SYSTEM DESCRIBED BY COMPLEX

VECTOR ORDER PARAMETER

A. Phenomenological Gibbs free-energy density

A formalism for description of the spin-triplet pairing in
charged fermion systems, where the nonzero spin of the
Cooper pair might be considered as a conserved quantum
number, has been developed, cf. [20–22] and refs. therein.
In this section, we employ a similar formalism for the
description of the spin-triplet pairing in neutral fermion
systems, where the complex vector order parameter is
coupled to the magnetic field by the Zeeman term. Novel
phases will be found.
Consider pairing of identical fermions. Since the total

wave function of the system of identical fermions is
antisymmetric under their exchange, and the spin part in
the triplet state is symmetric, the angular part behaves
as ð−1ÞL with odd L. To be specific, let L ¼ 1. For the
description of the spin-triplet p-wave pairing of fermions,
the pairing gap is as follows [20], Δ̂ðk⃗Þ ¼ σ⃗ d⃗ðk⃗Þiσ2, where
d⃗ðk⃗Þ ¼ −d⃗ð−k⃗Þ is an odd vector function and σj are the
Pauli matrices, j ¼ 1, 2, 3. If we considered pairing of
nonidentical fermions, e.g., neutrons and protons, the
isospin quantum number should be taken into account,

Sþ Lþ T (spin plus orbital momentum plus isospin)
should be odd. The np 3S1 phase shift is the largest
among others at low nucleon-nucleon scattering energies.
Thus, the np pairing in the 3S1 channel is possible in the
isospin-symmetric nuclear matter, also described by the
complex vector order parameter.
We present Δ̂ðk⃗Þ ¼ ψ iΦiðk⃗Þ, where Φi are three basis

functions. Let us postpone consideration of the rotating
systems (external rotation) and also disregard a possibility
of an internal self-rotation. Thereby, we present the Gibbs
free-energy density associated with the charge-neutral
fermion pairs paired in the spin-triplet state in the form,
cf. [20–22],

G ¼ Gneut
grad þ Ghom;

Gneut
grad ¼ c1j∂iψ jj2 þ c2j∂iψ ij2 þ c3ð∂iψ jÞ�∂jψ i;

Ghom ¼ −ajψ ij2 þ b1ðψ iψ
�
i Þ2 þ b2ðψ iψ iÞðψ�

jψ
�
jÞ

þMhiiCϵijkψ�
jψk þ ðhi −HiÞ2=ð8πÞ

þ b3
X
j

jψ jj4 þ fγkψ ig6; ð55Þ

where ψ i is the complex vector order parameter with
indices i, j, k ¼ 1, 2, 3 transformed as a vector indices
under spin rotations, cf. Eq. (23) introduced above for the
complex vector-boson fields. The functional is symmetric
under the U(1) phase transformations. Coefficients a, b1,
b2, M, c1, c2, c3 are real quantities, and relations between
c1, c2, c3 should be such that the resulting surface term is
positive. As we see at least should be

c1; c2 ≥ 0: ð56Þ

In the quantum field theory of the vector field,
cf. [73,74,95,96] and Sec. III, the gradient term is
∝ ðDμϕν −DνϕμÞ�ðDμϕν −DνϕμÞ, that corresponds to
the choice c1 ¼ −c3 > 0, c2 ¼ 0. In the BCS theory of
clean materials, one employs [22] c1 ≃ c2 ≃ c3 > 0.
Reference [21] for the description of a new class of
Ru-based superconductors uses the simplest choice
c2 ¼ c3 ¼ 0, Ref. [2] employs also the choice c2 ¼ c3 ≪
c1 ∼ Nð0Þv2F=ðπ2T2

crÞ (E2 model), vF is the Fermi velocity.
Using the most general gradient contribution consistent
with the U(1) gauge symmetry and the rotational symmetry,
Ref. [15] calculated for the triplet superconductivity in 3D
Dirac semimetals c3 ¼ ½uL − uT �=4, c1 ¼ uT=4, c2 ¼ 0,

uL ¼ uT=32, uT ¼ 7ζð3ÞNð0Þv2F
15π2T2

cr
, i.e., c1 ≃ −c3, c2 ¼ 0.

Bearing in mind these different possibilities, we further
employ general expression not asking for any relations

between c1, c2, and c3. Reference [15] also derives b1 ¼
7ζð3ÞNð0Þ
640π2T2

cr
and b2 ¼ −b1=3. On the other hand, the heat
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capacity measurements performed for UPt3 by several
groups give b2=b1 ¼ ð0.2–0.5Þ, cf. [2,98].
The quantity hi ¼ ϵijk∂Ak=∂xj is the actual value of the

strength of the magnetic field; ϵijk, as above, is the Levi-

Civita symbol. As in previous sections, A⃗ is the vector
potential of the magnetic field and H⃗ is the strength of the
uniform external static magnetic field. Simplifying con-
sideration we neglect ψ2 corrections to the H2 magnetic
energy terms.
The term ∝ b3 appears only in case of anisotropic

systems. Thereby, and for simplicity, we further put
b3 ¼ 0, cf. [15,22]. The term fγkψ ig6 in (55) symbolically
means all possible combinations of the sixth order in the
order parameter. For the sake of simplicity, where it does
not lead to the generation of instabilities, we put γ ¼ 0.
Assuming that in the absence of external fields for γ ¼ 0,

we deal with the second-order phase transition; we take

a ¼ α0φðtÞ; t ¼ ðTcr − TÞ=Tcr; ð57Þ

where the function φðtÞ ¼ tþOðt2Þ for small t, Tcr has the
sense of the critical temperature of the pairing transition for
H ¼ 0, and all the parameters a0 > 0, b1 > 0, and b2, b3,
c1, c2, c3 can be considered as T-independent constants for
a small t. Also, simplifying consideration in this work, we
employ the mean-field theory. As is known, fluctuations of
the order parameter prove to be significant in the vicinity
of the critical point of the second-order phase transition,
for T near Tcr, cf. [82,83]. We will show that for certain
subphases placed in the external magnetic field the mean-
field solutions may exist not only for T < Tcr but also for T
above Tcr, i.e., below a higher value of the new critical
temperature TH

cr. Thus, for mentioned subphases, the
fluctuation region is shifted to the vicinity of the critical
temperature TH

cr. As pointed out in Ref. [82], expansion in
the order parameter is a primary feature in the Landau
theory of phase transitions, whereas an expansion in
powers of t is a secondary assumption valid for T near
Tcr. Therefore, at least for estimates, we may employ the
functional (55) for T outside the vicinity of Tcr using
φðTÞ ¼ t, φðT ¼ 0Þ ¼ 1, cf. [99]. Below, if not mentioned
another, to be specific, we suppose that the external
magnetic field H⃗ is aligned parallel to z, i.e., H⃗i ¼ δi3H,
although the behavior of the system described by the vector
order parameter is sensitive to the choice of the direction of
H relatively to the surface, as we have demonstrated in the
previous section.
The mean spin density is carried by the order parameter,

Si ¼ −iCϵijkψ�
jψk; ð58Þ

where C > 0 is a normalization constant. For ψ⃗ aligned
along one of the axis 1, 2, 3 (x, y, or z), one has S⃗ ¼ 0.

Note that in case b2 ¼ −b1 the self-interaction contri-
bution to the Gibbs free-energy density, b1ðψ iψ

�
i Þ2þ

b2ðψ iψ iÞðψ�
jψ

�
jÞ, is reduced to the spin-spin interaction

term bsSiSi with bs ¼ b1=C2 yielding the repulsion for
b1 > 0, as in the Ginzburg-Landau treatment of superfluids
described by a single order parameter, and the attraction for
b1 < 0. For b1 < 0 and b2 ¼ 0, the system is unstable.
In difference with description of magnetic superconduc-

tors performed in [20–22], when dealing with neutral
fermions we suppress minimal coupling with the magnetic
field but retain the Zeeman term assuming that neutral
fermions under consideration have magnetic moments.
The orientation of the averaged spin related to the order
parameter relatively the magnetic field depends on the sign
of the magnetic moment of the pair. The effective magnetic

moment of the pair is M⃗pair ¼ Mpairs⃗pair, s⃗pair is the spin of
the pair. Owing to the existence of the anomalous magnetic
moment, the neutron pair with parallel spins gets the
magnetic moment Mnn ≃ gnnMN , where MN > 0 is
the nucleon Bohr magneton, gnn ¼ −2 × 1.91 is the
effective Lande factor. The proton pair has the magnetic
moment Mpp ≃ gppMN with gpp ¼ 2 × 2.79, MN ≃
3.15 × 10−18 MeV=G. Note that the ratio of neutron to
proton magnetic moments Mnn=Mpp ≃ −0.68 is close to
the value−2=3 predicted by the valence quark model. In the
spin-orbit Fermi superfluids, the role of the Mhi coef-
ficient in the Zeeman term is played by the Rabi frequency
[100]. The volume-averaged Gibbs free-energy density

Ḡ ¼ F̄ − M⃗ H⃗, where F̄ is the averaged free-energy
density, M⃗ ¼ ðh⃗ − H⃗Þ=ð4πÞ is the induced magnetization,
¯h⃗ ¼ B⃗ is the vector of the magnetic induction.
SO(3) symmetry is partially broken to its SO(2).

Thereby, as in Ref. [21], we may present

ψ⃗ ¼ fðn⃗ cos θ þ im⃗ sin θÞ; ð59Þ

where f is real and n⃗ and m⃗ are arbitrary unit vectors. Let ϕ
be the angle between n⃗ and m⃗. Then, for a uniform matter
replacing (59) in (55), we find

Ghom ¼ −af2 þ ½b1 þ b2ðcos2ð2θÞ þ ðn⃗ m⃗Þ2sin2ð2θÞÞ�f4

− CMf2h⃗½n⃗ × m⃗� sinð2θÞ þ ðh⃗ − H⃗Þ2
8π

þOðf6Þ:
ð60Þ

Now, we focus on the consideration of various
phases in a system of fermions with the spin-triplet
pairing. First, consider the case when one can neglect
contribution ∝ f6 formally setting γ ¼ 0. Minimization in
h and f yields

h⃗ ¼ H⃗ þ 4πCMf2½n⃗ × m⃗� sinð2θÞ; ð61Þ
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f2 ¼ aþ CMH⃗½n⃗ × m⃗� sinð2θÞ
2Y

θðf2Þ; ð62Þ

Y ¼ b1 þ b2ðcos2ð2θÞ þ ðn⃗ m⃗Þ2 sin2ð2θÞÞ
− 2πC2M2½n⃗ × m⃗�2 sin2ð2θÞ: ð63Þ

Stable solution exists only for Y > 0. For H ¼ 0, the
solution exists for a > 0, Y > 0.
With the solution (61)–(63), we get the Gibbs free-

energy density,

Ghom ¼ −
½aþ CMH⃗½n⃗ × m⃗� sinð2θÞ�2θðf2Þ

4Y
: ð64Þ

B. Nonmagnetic superfluidity in phase A

1. Uniform matter

The phase A with zero mean spin density (58) corre-
sponds to the choice θ ¼ 0. Then ψ⃗ ¼ fn⃗, as it follows
from (59).
For θ ¼ ϕ ¼ 0 in the stable phase A, Eq. (60) simplifies

as

Ghom
A ¼ −af2 þ ðb1 þ b2Þf4: ð65Þ

Equations (61), (62), and (64) read

f2 ¼ f20 ¼
a

2ðb1 þ b2Þ
θðf20Þ; ð66Þ

h⃗ ¼ h⃗0 ¼ H; ð67Þ

Ghom
A ¼ −

a2

4ðb1 þ b2Þ
θðf20Þ; ð68Þ

for T < TA
cr ≡ Tcr (a > 0). For T > Tcr, we have f ¼ 0,

h⃗ ¼ 0, and Ghom
A ¼ 0. The gradient term (56) is zero for the

homogeneous solution. In the critical point Ghom
A ¼ 0,

∂Ghom
A =∂T ¼ 0 but ∂2Ghom

A =∂T2 ≠ 0 that corresponds to
the second-order phase transition at T ¼ Tcr.
Consider stability of the phase A, respectively, to the

formation of a small spin density in the system for H ¼ 0.
Taking jθj ¼ δθ ≪ 1 and allowing ϕ ≠ 0 in Eq. (63), we
obtain

Y ¼ b1 þ b2½1 − 4ðδθÞ2ð1 − ðn⃗ m⃗Þ2Þ�
− 8πC2M2½n⃗ × m⃗�2ðδθÞ2

¼ b1 þ b2 − 4ðδθÞ2sin2ϕ½b2 þ 2πC2M2� ð69Þ

that demonstrates stability of the phase A only provided

b1 þ b2 > 0 ð70Þ

(otherwise one should incorporate γ ≠ 0 terms) and for

b2 þ 2πC2M2 < 0 ð71Þ

(otherwise the A phase is unstable to the appearance of
θ ≠ 0 and ϕ ≠ 0 in the ground state). Thus, for H ¼ 0, the
phase A is stable to appearance of a nonzero spin density in
the system. Note that for b2 ¼ 0, that corresponds to ξ1 ¼ 0
in the vector-boson case considered in Sec. III, the con-
dition (71) is not fulfilled. In the vector-boson case, it was
reflected in the fact that for ξ1 ¼ 0 in the B phase the Gibbs
free energy is smaller than in the A phase.

2. Subphases A1, A2, A3. Gradient term. Domains

Subphases A1, A2, A3.—Since n⃗ is fully characterized
by its three projections, we may consider three specific
choices n⃗ ¼ ð1; 0; 0Þ, n⃗ ¼ ð0; 1; 0Þ, and n⃗ ¼ ð0; 0; 1Þ: the
A1 subphase ðψ1 ¼ ψ ≠ 0;ψ2 ¼ ψ3 ¼ 0Þ, A2 subphase
(ψ2 ¼ ψ ≠ 0, ψ1 ¼ ψ3 ¼ 0), and A3 subphase
(ψ3 ¼ ψ ≠ 0, ψ1 ¼ ψ2 ¼ 0), which we have introduced
in Sec. III. In the uniform neutral superfluid, these states are
degenerate and correspond to the same Gibbs free energies.
Gradient term. Stability of A subphases.—We focus

now on the role of the gradient contribution to the free
energy (55). Let the medium fill the half-space x < 0. Then
f ¼ fðxÞ and does not depend on y and z due to the
uniformity of the system in these directions. The gradient
contributions for subphases A1, A2, and A3 are different,

Ggrad
i ¼ Cið∂1fÞ2; i ¼ A1;A2;A3: ð72Þ

In the subphase A1, ψ1ðxÞ ≠ 0, ψ2 ¼ ψ3 ¼ 0, and
CA1

¼ c1 þ c2 þ c3. For such a solution, div ψ⃗ ≠ 0. In
the subphases A2 and A3, CA2

¼ CA3
¼ c1. Here only

ψ2ðxÞ ≠ 0 or ψ3ðxÞ ≠ 0, respectively, and the condition
div ψ⃗ ¼ 0 is fulfilled.
Thus, the stability conditions are

c1 þ c2 þ c3 ≥ 0; c1 ≥ 0: ð73Þ

Now, let us check the stability of the phase A in the
presence of the gradient contribution to the Gibbs free
energy relatively the appearance of a small θðxÞ. For m⃗kn⃗
in Eq. (72), there appear extra terms ðc1 þ c2 þ
c3Þf2ð∂1θÞ2 for n⃗ ¼ ð1; 0; 0Þ and c1f2ð∂1θÞ2 for n⃗ ¼
ð0; 1; 0Þ or n⃗ ¼ ð0; 0; 1Þ. For m⃗⊥n⃗, with n⃗ ¼ ð1; 0; 0Þ
and m⃗ ¼ ð0; 1; 0Þ or m⃗ ¼ ð0; 0; 1Þ in Eq. (72) appears
extra term c1f2ð∂1θÞ2. For n⃗ ¼ ð0; 1; 0Þ for m⃗ ¼ ð0; 0; 1Þ,
there appears the term c1f2ð∂1θÞ2 and for m⃗ ¼ ð1; 0; 0Þ, the
term ðc1 þ c2 þ c3Þf2ð∂1θÞ2. As we see, in all these cases,
an increase of θ is energetically not profitable. Thus, the
phase A is stable in respect to the growth of weak
perturbations both in the uniform and the nonuniform
matter.
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Variation of the Gibbs free energy (55) in the field f
yields equations of motion

Ci∂2
1f þ af − 2ðb1 þ b2Þf3 ¼ 0; ð74Þ

with the solutions satisfying the boundary condition
fðx ¼ 0Þ ¼ 0,

fðxÞ ¼ f0th
xffiffiffi
2

p
ξAi

; ξAi
¼

ffiffiffiffiffiffiffiffiffiffi
Ci=a

p
: ð75Þ

f0 is given by Eq. (66). Replacing (75) in the expression for
the Gibbs free energy,

R
d3xG ¼ Gvol þ Gsurf , we find that

the surface contribution is Gsurf
i ∝ ξiS, S is the square in y, z

plane. Gsurf
i gets minimum for the subphases A2 and A3, if

0 < c1 < c1 þ c2 þ c3, and for the subphase A1,
if c1 > c1 þ c2 þ c3 > 0.
Domains.— Depending on how the system was pre-

pared, it can consist of domains with different directions of
the order parameter ψ⃗ in each domain. Due to the difference
in the contributions to the surface energies in the longi-
tudinal and transversal directions relatively the surface, for
a domain of a fixed volume, it is profitable to become
oblate or prolate in dependence on the sign of c2 þ c3.
For a slab of the subphase A1 surrounded by the matter in

the subphase A2 due to the presence of the phase boundary,
there appears a contribution to the surface energy,
δGsurf

A1;A2
¼ Gsurf

A1
þ Gsurf

A2
> 0. However, as we have demon-

strated, the solution for the order parameter in the phase A
characterized by a direction n⃗ is stable. Thus, to melt the
domain should overcome the energy barrier δGsurf

A1;A2
.

Necessary energy to overcome the barrier can be extracted,
e.g., from thermal fluctuations, or from external magnetic
field, or for the system subjected to the external rotation
the required energy can be taken from the energy of the
rotation.
Notice that in difference with the case c1 ¼ −c3 ≠ 0,

c2 ¼ 0 considered in Sec. III, where the A1 phase was not
realized and the subphases A2 and A3 had the same volume
and surface energies, here for c1 þ c2 þ c3 ≠ 0, c1 ≠ 0 and
c1 ≠ c1 þ c2 þ c3 all three subphases can be realized and
the surface energy in the A1 subphase differs from those in
A2 and A3 subphases.

C. Instability of A phase in external
magnetic field, AH phase

Above we have demonstrated stability of the phase A (at
zero mean spin density) to formation of a nonzero spin state
in the absence of the external magnetic field. Let us study
stability of the ground state of the A phase (conditions (70)
and (71) are supposed to be fulfilled) relatively the growth
of θ and ϕ, i.e., to the formation of a mean spin density in
the system, for H ≠ 0. Further, we consider energetically

favorable cases, one corresponding to M⃗ H⃗ > 0 for M >

0 (for protons) and another for M⃗ aligned antiparallel z for
M < 0 (for neutrons). Rewrite (64) as

Ghom
AH ¼ −

½aþ CjMHζj�2θðaþ CjMHζjÞ
4½b1 þ b2 − ζ2ðb2 þ 2πC2M2Þ� ; ð76Þ

for MH > 0 with ζ ¼ sinϕ sinð2θÞ > 0 and for MH < 0
with ζ ¼ sinϕ sinð2θÞ < 0. The denominator is positive
provided conditions (70) and (71) are fulfilled. As we can
see, for H ≠ 0 the phase A proves to be unstable in respect
to production of a spin density, since it is energetically
profitable to have ζ ≠ 0. Accordingly, cf. (61), in the
presence of the external magnetic field, the strength of
the magnetic field becomes

h ¼ H þ 4πCMf2ζ:

1. Paramagnetic response of superfluid
in AH phase for T < Tcr

For a > 0, i.e., T < Tcr, minimizing the Gibbs free-
energy density in ζ ¼ sinϕ sinð2θÞ, we get at the extremum

ζm ¼ −
CMHðb1 þ b2Þ
aðb2 þ 2πC2M2Þ ; ð77Þ

valid for jζmj ≤ 1, with ζm → 0 for H → 0. Note that with
ζ ¼ ζm ≠ 1 we obtain f2 > 0 in (62) only for a > 0, i.e.,
for T < Tcr. Thus, forH ≠ 0, not all spins in the condensate
are aligned in one direction at T < Tcr. We deal with the
novel phase, which we name the AH phase when the
conditions (70) and (71) are fulfilled but not all spins of the
paired fermions are aligned in one direction. For b2 < 0

and jCMζmjH ≪ a, we find h ¼ H½1þ 2πC2M2=
ðjb2jðb1 − jb2jÞ�. Also, from (77), we find an additional
constraint,

H ≤ HAH
cr ðT < TcrÞ ¼

aðjb2j − 2πC2M2Þ
jCMjðb1 − jb2jÞ

ð78Þ

for a > 0.
The Gibbs free-energy density in the ground state for

T < Tcr (a > 0) can be presented as

Ghom
AH ≃ −

a2

4ðb1 þ b2Þ
þ C2M2H2

4ðb2 þ 2πC2M2Þ : ð79Þ

Although for H ≠ 0, the resulting magnetic field h ≠ 0, for
H → 0 we obtain h → 0.
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2. Instability of AH phase for T > Tcr. Transition
to a ferromagnetic superfluid phase

Now, consider the case a < 0, i.e., T > Tcr. The actual
critical temperature is determined from the condition
aþ CMHζ ¼ 0 for MH > 0 and ζ ¼ 1, and from
a − CMHζ ¼ 0 for MH < 0 and ζ ¼ −1. For favorably
aligned spins, we obtain

TAH
cr ¼ Tcrð1þ jCMHj=α0Þ > Tcr; for a < 0: ð80Þ

Thus, the AH phase may exist not only for T < Tcr but also
in the temperature interval Tcr < T < TAH

cr and the critical
temperature TAH

cr is increased with increasing H. In this
respect, the AH phase is similar to the A1 phase of the
3He, cf. [18].
The Gibbs free-energy density in the ground state for

Tcr < T < TAH
cr is as follows:

Ghom
AH ¼ −

½aþ jCMHj�2θðaþ jCMHjÞθð−aÞ
4ðb1 − 2πC2M2Þ : ð81Þ

As we see, for a < 0 still the condition b1 − 2πC2M2 > 0
should be satisfied for the stability of the phase. In next
Sec. IV D, such a phase will be named the B phase.
Thus, for Tcr < T < TAH

cr , the AH phase coincides
with the B phase, if besides the conditions (70) and (71)
also the condition b1 − 2πC2M2 > 0 is satisfied. For
Tcr < T < TAH

cr , (for a < 0) we put in Eq. (77) ζ ¼ 1 for
CM > 0 and ζ ¼ −1 for CM < 0, that corresponds to the
fact that all spins are aligned in one direction. We find that
the condensate exists now for

H > HAH
cr ðTcr < T < TAH

cr Þ ¼ jaj=jCMj: ð82Þ

D. Ferromagnetic superfluidity in phases B and C

1. Stability conditions

We name the phase B or C the choice θ ¼ π=4, n⃗⊥m⃗, H
is arbitrary. Setting θ ¼ π=4 − δθ in Eq. (63), we find

Y ¼ b1 þ b2½4ðδθÞ2ð1 − ðn⃗ m⃗Þ2Þ þ ðn⃗ m⃗Þ2�
−2πC2M2½n⃗ × m⃗�2ð1 − 4ðδθÞ2Þ: ð83Þ

We deal with the phase B, if

b1 − 2πM2C2 > 0 ð84Þ

and with the phase C, if

b1 − 2πM2C2 < 0: ð85Þ

These conditions together with condition

b2 þ 2πM2C2 > 0 ð86Þ

replace the stability conditions (70) and (71), being fulfilled
in case of the A phase. Favorable direction of H⃗ is parallel
to ½n⃗ × m⃗�, as follows from (62). This is in agreement with
our observation done in previous section that the subphase
B3 with H⃗kz corresponds to the lowest Gibbs free energy.
For the phase C (at b1 − 2πC2M2 < 0), one needs to

include at least the sixth-order term (γ ≠ 0) in the free
energy. In order not to complicate consideration, we further
choose the simplest form of the fγiψ ig6 term (γðψ�

iψ iÞ3)
assuming γ > 0. Note here that in the BCS weak-coupling
theory, one obtains γ < 0 and expansion of the Gibbs free
energy should be continued up to the eighth order [56].
For simplicity, we put TA

cr ¼ Tcr ¼ TB
cr; on the other

hand, TC
cr ≠ Tcr since the phase transition to the phase C

proves to be of the first order.

2. Subphases B1, B2, B3, C1, C2, C3

In general, we may consider the following three choices:

ψ1 ¼ 0; ψ2 ¼∓ iψ3 ≡ 1ffiffiffi
2

p ψ̃ ;

ψ2 ¼ 0; ψ1 ¼∓ iψ3 ≡ 1ffiffiffi
2

p ψ̃ ;

ψ3 ¼ 0; ψ1 ¼∓ iψ2 ≡ 1ffiffiffi
2

p ψ̃ ; ð87Þ

for subphases B1 (or C1), B2 (or C2), and B3 (or C3),
respectively. In all these cases, ψ iψ i ¼ 0.
With the simplest γðψ�

iψ iÞ3 term taken into account, we
have

Ghom¼−ajψ̃ j2þb1jψ̃ j4−CM⃗ h⃗ jψ̃ j2þγjψ̃ j6þðh⃗−H⃗Þ2
8π

:

ð88Þ

The gradient contribution to the Gibbs free energy does
not depend on h. Thus, varying (88) in h, we obtain

h⃗ − H⃗ ¼ 4πjψ̃ j2CM⃗: ð89Þ

In the B3 and C3 subphases, the averaged spin density
and h⃗ are directed parallel or antiparallel z and for H⃗
directed in z, we get h3 ¼ H þ 4πjψ̃ j2CM.
In subphases B1 and C1, the averaged spin density is

directed parallel/antiparallel x, and H⃗ directed in z, we have

h1 ¼ 4πjψ̃ j2CM; h3 ¼ H: ð90Þ

Similarly, in subphases B2 and C2, the averaged spin
density is directed parallel/antiparallel y. Replacing (89)
in (88), we see that for H ≠ 0 in subphases B3, C3 the
energy density is gained compared to subphases B1, C1 and
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B2, C2. In the absence of H, the Gibbs free-energy density
is the same for all the subphases B1, B2, B3 and C1, C2, C3,
respectively. Thereby, since (90) does not depend onH, the
results for subphases B1, B2, and C1, C2, can be obtained
from those for subphases B3 and C3 by setting H ¼ 0.

3. Uniform solutions for phases B and C

For the uniform phases B and C, we find the solution

jψ̃ j2 ¼ ψ̃2
0 ¼ −

1

3γ
ðb1 − 2πC2M2Þ

� 1

3γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1 − 2πC2M2Þ2 þ 3γðaþ CM⃗ H⃗Þ

q
: ð91Þ

We need to retain the solution corresponding to jψ̃ j2 > 0. In
the case of phase B, it is the solution corresponding to the
upper sign in (91) and in the case of phase C, it is the
solution corresponding to the lower sign. From Eqs. (88),
(89), and (91), we obtain

Ghom
B;C ¼ −

ψ̃2
0

3
½2ðaþ CM⃗ H⃗Þ − ðb1 − 2πC2M2Þψ̃2

0�: ð92Þ

We see that the energetically preferable direction of the

spin is such that M⃗ H⃗ > 0. Thus, we may replace M⃗ H⃗

to jM⃗ H⃗ j.
Note that the Ansatz ψ1 ¼ �iψ2 has been exploited

previously in description of the unconventional super-
conductors, cf. [21,22,74], but a possibility of appearance
of an own magnetic field h ≠ 0 was not considered.
Therefore, phases B and C are novel magnetic phases:
already in the absence of the external magnetic field the
matter in these phases represents a ferromagnetic
superfluid.
Uniform solutions for phase B.—Setting γ → 0 in (91)

with the plus-sign solution, we find

ψ̃2
0 ¼

aþ jCM⃗ H⃗ j
2ðb1 − 2πC2M2Þ θ

�
aþ jCM⃗ H⃗ j
b1 − 2πC2M2

�
; ð93Þ

for aþ CM⃗ H⃗ > 0 provided the condition (84) is fulfilled.
Using (93), we obtain the own magnetic field h⃗,

h⃗ ¼ H⃗ þ 2πCM⃗
ðaþ jCM⃗ H⃗ jÞ
b1 − 2πC2M2

: ð94Þ

Choosing “−” sign solution of Eq. (91) would lead to the
positive value of G.
Replacing (93) in (92), we find the expression for the

Gibbs free-energy density,

Ghom
B ¼ −

ðaþ jCM⃗ H⃗ jÞ2
4ðb1 − 2πC2M2Þ θ

�
aþ jCM⃗ H⃗ j
b1 − 2πC2M2

�
; ð95Þ

cf. Eq. (37) for the B1 subphase for vector bosons and
Eq. (42) for B3 subphase. For the B1 subphase here,

M⃗ H⃗ ¼ 0 and for B3 subphase M⃗ H⃗ ¼ �MH. Setting
H ¼ 0 in (95), we recover the Gibbs free energies for the
B1 and B2 subphases,

Ghom
B1;B2

¼ Ghom
B3

ðH ¼ 0Þ;

cf. Eq. (35) for neutral vector bosons. For H ¼ 0, in all
three subphases Bi, there appears an internal magnetic
field,

h⃗ðH ¼ 0Þ ¼ 2πaCM⃗
b1 − 2πC2M2

: ð96Þ

Thus, we found that in subphases Bi, superfluidity (ψ̃ ≠ 0)
coexists with ferromagnetism (hðH ¼ 0Þ ≠ 0). With
increasing H, the amplitude of the condensate grows.
We see that in the presence of an external magnetic field

the subphase B3, where M⃗kz (for M > 0), becomes
energetically preferable compared to subphases B1 and
B2. For M > 0, the preferable orientation of the averaged
spin density S⃗ is parallel to H⃗. For M < 0, the preferable
orientation of the averaged spin density S⃗ is antiparallel
to H⃗. Note that superfluidity may arise even in the state,

where M⃗ is antiparallel to H⃗ (for M > 0) provided
a − jMHj > 0; however, this state corresponds to a higher

Gibbs free energy than the state with M⃗ parallel to H⃗.
In the external magnetic field, H ≠ 0, the actual value of

the critical temperature for the subphase B3 is

TB3H
cr ¼ Tcrð1þ jCMHj=α0Þ; ð97Þ

where Tcr is the critical temperature for H ¼ 0, provided
one may use the parametrization a ¼ α0t with
t ¼ ðTcr − TÞ=Tcr. Thus, for H ≠ 0 (H⃗kz), the subphase
B3 continues to exist above Tcr up to T ¼ TB3H

cr . For
T > TB3H

cr , we have ψ̃ ¼ 0. Notice that Eq. (95) coincides
with Eq. (81), which we have derived considering AH
phase. However, Eq. (95) is valid for all T < TB3H

cr provided
condition (86) is fulfilled, whereas Eq. (81) is valid for
Tcr < T < TAH

cr and at the condition (71) satisfied. For
TB
cr ¼ TA

cr ¼ Tcr, that we for simplicity postulated, Eq. (97)
coincides with Eq. (80). We find that in the temperature
interval Tcr < T < TB3H

cr the condensate exists now for

H > HBH
cr ¼ jaj=jCMj: ð98Þ

For H ≳ α0=jMj, the parametrization a ¼ α0t might
become invalid. Using another popular parametrization
φ ¼ lnðT=TcrÞ in Eq. (57), we find
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TB3H
cr ¼ TcreCjMHj=α0 : ð99Þ

Here we should notice that although expression (99) allows
for TB3H

cr ≫ Tcr, the Ginzburg-Landau mean-field approach
itself becomes invalid for such temperatures.
At the critical point Ghom

B3
¼ 0, ∂Ghom

B3
=∂T ¼ 0 but

∂2Ghom
B3

=∂T2 ≠ 0 that, as in case of the phase A, corre-
sponds to the second-order phase transition.
Note that the quantity b1 − 2πC2M2 should not be too

small. Otherwise, terms ∝ γψ6 must be taken into account.
Also note that above we considered only contributions

to the Gibbs free energy, which depend on the pairing
order parameter. However, the total Gibbs free energy
contains also a normal contribution of unpaired fermions.
Owing to the normal term, there appears a small para-
magnetic contribution proportional to h2. Simplifying
consideration, we disregarded this small correction term
in our calculations.
Uniform solutions for phase C.—Now we assume that

conditions (85) and (86) are fulfilled. The ψ̃4 term in the
Gibbs free energy proves to be negative, and the problem
should be reconsidered with taking into account fγiψ ig6
term, which provides stability (for γ > 0).
Let us perform expansion of (91) in a small γ. The

minimum of the Gibbs free-energy density is realized for
the choice of “þ” sign solution in Eq. (91). Then, from
Eqs. (92)–(107), we find

ψ̃2
0 ≃

2

3γ
ð2πC2M2 − b1Þ þ

ðaþ CM⃗ H⃗Þ
2ð2πC2M2 − b1Þ

> 0; ð100Þ

h ≃H þ 8πCM
3γ

ð2πC2M2 − b1Þ þ
2πCMðaþ CM⃗ H⃗Þ
ð2πC2M2 − b1Þ

;

ð101Þ

Ghom
C ≃ −

4

27γ2
ð2πC2M2 − b1Þ3; ð102Þ

again with the energetically preferable direction of M⃗

corresponding to M⃗ H⃗ > 0. Expansion is valid for

0 < γ ≪ ð2πC2M2 − b1Þ2=ðaþ jCMHjÞ: ð103Þ

The condensate amplitude grows with increasingH. For the
case H ≠ 0 parallel z, which we consider, the subphase C3

proves to be the most energetically profitable. The results
for C1 and C2 follow, if one puts H ¼ 0.
The value of the new critical temperature is determined

by the condition of the vanishing of the square root in
Eq. (91),

TC3H
cr ¼ Tcr

�
1þ ð2πC2M2 − b1Þ2

3γα0
þ jCMHj

α0

�
; ð104Þ

that holds provided the validity of the relation a ¼ α0t,
t ¼ ðTcr − TÞ=Tcr. Thus, TCH

cr ≥ TC
cr, where

TC
cr ¼ Tcr

�
1þ ð2πC2M2 − b1Þ2

3γα0

�
> Tcr: ð105Þ

For the subphases C1 and C2, we have TC2
cr ðH ¼ 0Þ ¼

TC1
cr ðH ¼ 0Þ ¼ TC3

cr ðH ¼ 0Þ ¼ TC
cr.

At the critical point, GC changes discontinuously,
that corresponds to the first-order phase transition.
Ferromagnetic superfluid solution (100)–(102) holds pro-
vided conditions (85), (86), and (103) are fulfilled.

4. Gradient term. Domains

For the system of a large but finite size already atH ¼ 0,
the degeneracy of the subphases is removed because of a
difference in the gradient contributions in the Gibbs free-
energy density of various subphases. As in case of the
phase A studied above, to be specific, let us consider
sample filling the half-space x < 0. Then,

Ggrad
i ¼ Cij∂1ψ̃ j2; i ¼ B1ðC1Þ;B2ðC2Þ;B3ðC3Þ:

ð106Þ

For the subphases B3 ðC3Þ and B2 ðC2Þ, the coefficient
Ci ¼ c1 þ ðc2 þ c3Þ=2, and divψ⃗ ≠ 0. For subphases B1

and C1, Ci ¼ c1 and divψ⃗ ¼ 0. The stability conditions
render

c1 þ c2=2þ c3=2 > 0; c1 > 0: ð107Þ

Consider the phase B and put γ ¼ 0. Variation of the
Gibbs free energy in fields, cf. (55), yields the equation of
motion,

Ci∂2
1ψ̃ þ ðaþ jCM⃗ H⃗ jÞψ̃ − 2ðb1 − 2πC2M2Þjψ̃ j2ψ̃ ¼ 0;

ð108Þ

with the solution satisfying the boundary condition
ψ̃ðx ¼ 0Þ ¼ 0,

ψ̃ðxÞ ¼ ψ̃0th
xffiffiffi
2

p
ξBi

; ξBi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci

aþ jCM⃗ H⃗ j

s
; ð109Þ

instead of Eq. (75) for the A phase. The value ψ̃0 is
determined by Eq. (93). At the fulfilled condition (84), the

solution exists provided aþ jCM⃗ H⃗ j > 0.
Replacing (109) in the expression for the Gibbs free

energy,
R
d3xG ¼ Gvol þ Gsurf , we find that the surface
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contribution is Gsurf
i ∝ ξiS, S is the square in y, z plane.

Gsurf
i gets minimum for the subphases B3 and B2, if

0 < c1 þ c2=2þ c3=2 < c1, and for the subphase B1, if
0 < c1 < c1 þ c2=2þ c3=2. Gradient terms do not con-
tribute to the minimization of G in h and Eq. (89) continues
to hold, from where using the boundary condition ψ̃ð0Þ ¼ 0
we find that hðx → 0Þ → H.
The coordinate dependence of the field ψ̃ in the phase C

is more involved, since one needs to include at least ψ̃5 term
in the equation of motion to provide stability.
Domains.—At the phase transition to phase B or C, there

can be formed domains with different directions of h⃗kM⃗
and ψ⃗ in each domain. As we have argued, when have
considered the subphase A, an extra energy is needed to
merge the domains. For finite T, the required energy can be
taken from thermal fluctuations. In the presence of the
external magnetic field or the external rotation, the extra
energy can be taken from the energy of the magnetic and
rotation fields, respectively.

V. SPIN-TRIPLET PAIRING IN CHARGED
FERMION SYSTEM DESCRIBED BY COMPLEX

VECTOR ORDER PARAMETER

The spin-triplet pairing in the condensed matter, e.g., in
systems with heavy fermions, is described by the vector
order parameter at the effective charge of the pair
e� ¼ 2e < 0, e.g., cf. [20–22]. In the nuclear systems,
the np pairing in the 3S1 channel is allowed for the case of
the isospin-symmetric nuclear matter. The 3S1 np phase
shift is the largest among others at low energies, cf. [31].
The np pairing in the 3S1 channel in the absence of the
spin-orbital interaction is described by the vector order
parameter at e� ¼ −e > 0.

A. Gibbs free-energy density

For the description of the charged superconductors, we
may use Eq. (55) for the Gibbs free-energy density
[21,22,74] with Gneut

grad replaced by Gch
grad,

Gch
grad ¼ c1jDiψ jj2 þ c2jDiψ ij2 þ c3ðDiψ jÞ�Djψ i; ð110Þ

where Di ¼ ∂i − ie�Ai, Ai ¼ ðAx; Ay; AzÞ, e� is the charge
of the fermion pair. The Di operators fulfill the relation for
the commutator i½Di;Dj�− ¼ e�ϵijkhk, cf. Eq. (24) above.
In case when h⃗ ¼ hn⃗3 with n⃗3 ¼ ð0; 0; 1Þ, we have

i½D1; D2�− ¼ e�h; h ¼ F12 ¼ ∂1A2 − ∂2A1: ð111Þ

B. Nonmagnetic phase A in the medium filling half
of space placed in uniform magnetic field

We deal with the phase A provided conditions (70) and
(71) are fulfilled. For this case, a difference with the

standard description of the superconductivity of spin-zero
pairs is only in the specificity of the gradient terms. In the
absence of the external magnetic field, the description of
the charged uniform system within the A phase remains the
same as for the neutral system performed above. In the
presence of the external magnetic field, the properties of
the subphase A of a neutral spin-triplet superfluid and
the charged one are different similarly to that we have
demonstrated in previous section on example of the vector-
boson field.
Further consider a superconductor filling half of space

x < 0, placed in a homogeneous external magnetic field H⃗
parallel z, for H > 0. We may choose the gauge, where A⃗
has only one nonzero component A2ðxÞ for x < 0. We
choose A⃗ext ¼ ð0; Hx; 0Þ, satisfying the gauge condition
divA⃗ext ¼ 0 and yielding rotA⃗ext ¼ H⃗.
Consider the phases A1, A2, and A3, which are now not

degenerate.

1. Subphase A1 for b2 > 0

Consider first phase A1, where ψ1 ¼ ψðxÞ is real,

ψ1ðx → −∞Þ → ψ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
2ðb1þb2Þ

q
for T < TA

cr (to be spe-

cific we choose þ sign solution), and allow for small
perturbations of the fields ψ2 ¼ −if2ðxÞ, ψ3 ¼ −if3ðxÞ,
and A2 ¼ A2ðxÞ, where f2 and f3 are real quantities. The
field f2 is introduced to check stability of the A phase in
the presence of the external field H. Without loss of the
generality, one may put f3 ¼ 0. For simplicity, assume that
A2 and f2 are weak fields.
The gradient part of the Gibbs free-energy density can be

presented as

Gch
grad ¼ ðc1 þ c2 þ c3Þð∂1ψÞ2 þ c1e2�A2

2ðxÞψ2

þ 2c3e�A2ðxÞψ∂1f2 þ c1ð∂1f2Þ2; ð112Þ

written in quadratic approximation over the perturbative
fields A2 and f2 and the derivatives ∂1. Stability conditions
imply that c1 þ c2 þ c3 > 0, c1 > 0.
Variation of the Gibbs free energy in the fields ψ , A2, and

f2 yields equations of motion,

ðc1 þ c2 þ c3Þ∂2
1ψ þ aψ − 2ðb1 þ b2Þψ3 ¼ 0; ð113Þ

∂2
1A2ðxÞ − 8πc1e2�ψ2A2ðxÞ þ 8πðCM3 − e�c3Þψ∂1f2 ¼ 0;

ð114Þ

c1∂2
1f2 þ ðc3e� − CM3Þψ∂1A2 þ c3e�A2∂1ψ

þ ða − 2ψ2ðb1 − b2ÞÞf2 ¼ 0; ð115Þ

written in linear approximation over perturbative fields.
The solution of Eq. (113) for a > 0 is given by
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ψ ¼ ψ0thðx=
ffiffiffi
2

p
ξA1

Þ with the coherence length

ξA1
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc1 þ c2 þ c3Þ=a

p
, cf. Eq. (75).

In the absence of the external magnetic field (H ¼ 0),
minimization in fields leads us to solutions (66) and (68)
and h ¼ 0 for T < Tcr in the region x < 0 everywhere
except a surface layer. In the presence of a weak external
magnetic field, there exists complete Meissner effect. We
assume dA1

=ξA1
≫ 1, where dA1

> 0 is the penetration
depth for the magnetic field determined by Eq. (114). Then,
we may put ψ ¼ ψ0 in Eqs. (114) and (115). In the theory
of ordinary superconductors and for the case of the charged
scalar bosons considered in Sec. II for H⃗kz, the quantity
dA1

=ξA1
is called the Ginzburg-Landau parameter, which

value determines the behavior of the system. In the case
under consideration, situation is a more involved. Explicit
solution of Eq. (114) matched with that valid for x ≥ 0 at
the boundary x ¼ 0 is given by

A2ðxÞ ¼ HdA1
ex=dA1 : ð116Þ

We search f2 as

f2ðxÞ ¼ Dex=dA1 ; ð117Þ

with a constant D. Since D ≠ 0, to fulfill Eq. (115) for
A2ðxÞ ≠ 0, in case of the subphase A1 there appears a spin
density in a surface layer. Dependence on ψðxÞ allows to
fulfill the condition f2ðx ¼ 0Þ ¼ 0. Since ψ is dropping to
zero on a scale ξA1

≪ dA1
, for −x ∼ dA1

≫ ξA1
we may put

ψ ¼ ψ0 in equation for f2. Substituting (116) and (117) in
(114) and (115), we find two solutions for d�A1

,

1=d2A1
¼ ψ2

0

h
λA1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2A1

þ 32πe2�b2
q i

;

λA1
¼ 4πc1e2� − 2½b2 þ 2πðCM3 − c3e�Þ2�=c1: ð118Þ

We should retain þ sign square root. Solution with other
sign does not satisfy boundary condition A0

2ðx ¼ 0Þ ¼ H.
The roots of Eq. (118) are positive (in accordance with the
Meissner effect) for

b2 < 0 at − b2 − 2πðCM3 − e�c3Þ2 þ 2πc21e
2� > 0;

cf. condition (71) for neutral systems. For c1 ¼ �c3, the
latter inequality is simplified as −b2 − 2πC2M2−
4πc1e�CM > 0. If the term ∝ e� is small compared to
the term ∝ ð−b2 − 2πC2M2Þ, for b2 þ 2πC2M2 < 0,
the minimal among two lengths, d�A1

, becomes

dþA1
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1=ð4ð−b2 − 2πC2M2Þψ2

0Þ
p

. A larger length then

is d−A1
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2πC2M2=b2Þ=ð8πe2�c1ψ2

0Þ
p

.
To be specific, let us further use that d−A1

>þ
A1
. Then we

may introduce the Ginzburg-Landau parameter as the ratio
of the maximum among the lengths d−A1

and dþA1
to ξA1

, i.e.,

κ1;A1
¼ d−A1

ξA1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2πC2M2=b2Þðb1 þ b2Þ

4πe2�c1ðc1 þ c2 þ c3Þ

s
: ð119Þ

Also, we further suppose that parameters are such that
κ1;A1

≫ 1, cf. estimates performed below in Sec. VII in the

BCS approximation. For κ > 1=
ffiffiffi
2

p
, the superconductor

proves to be of the second kind, cf. [87,99], and with
increasing H in the interval HA1

c1 < H < HA1

c2 there appears
a triangular Abrikosov lattice of vortices. The value HA1

c1 ∼
Hcr
κ1;A1

is the lower critical field, such that for H > HA1

c1

appearance of filament vortices is energetically profitable,

HA1

c1 ¼ Hcrffiffiffi
2

p
κ1;A1

; Hcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πa2

b1 þ b2

s
;

whereHcr has a sense of the thermodynamical critical field,
at which the Gibbs free energy of the phase with h̄ ¼ 0,
ψ ¼ ψ0 coincides with that for h̄ ¼ H, ψ ¼ 0. The over-
line, as above, means averaging over the volume.
To find the upper critical magnetic field, one assumes ψ

to be tiny and A2 ≃HxþOðψ2Þ. As follows from
Eq. (115), for fields nearby HA1

c2 , the field f2 is of the
second-order smallness and can be dropped in equation for
ψ . Then, equation of motion for ψ becomes

ðc1 þ c2 þ c3Þ∂2
1ψ þ c1D̃2

2ψ þ aψ ¼ 0; ð120Þ

with D̃2 ¼ ∂2 − ie�Hx, f2 ¼ 0. From here, we find

HA1

c2 ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðc1 þ c2 þ c3Þe2�

p ≡Hcr

ffiffiffi
2

p
κ2;A1

; ð121Þ

for a > 0, being the upper critical field, at which the pairing
is completely destroyed. Here we introduced the quantity

κ2;A1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b2

4πc1ðc1 þ c2 þ c3Þe2�

s
: ð122Þ

We see that κ2;A1
≠ κ1;A1

. For b2 < 0 with above simplified
estimate for d−A1

, we find that κ2;A1
> κ1;A1

.
Recall that for c1 þ c2 þ c3 ¼ 0 Eq. (113) has no

solution satisfying appropriate boundary condition for
x ¼ 0 and subphase A1 is not realized, cf. discussion in
Sec. III.

2. Instability of subphase A1 for b2 > 0

For b2 > 0, one of the roots, ðdþA1
Þ2 or ðd−A1

Þ2, is negative
that means existence of the oscillating solution correspond-
ing to the penetration of the external magnetic field in the
interior of the system. Also, even in the absence of the
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external magnetic field, an own magnetic field h is
produced, as we will show.
Let us first put H ¼ 0 and search the fields in the form

A2ðxÞ ¼ h0k−10 sinðk0xþ χÞ; f2 ¼ D cosðk0xþ χÞ;

with h0 and D being small constants and χ is a constant
phase. Also, assume that 1=k0 ≫ ξA1

. Then, in Eqs. (114)
and (115), we may put ψ ¼ ψ0. The spatially averaged
Gibbs free energy becomes

Ḡtot
A1

¼ −
a2

4ðb1 þ b2Þ
þ c1e2�ψ2

0h
2
0

2k20
þ c1k20D

2

2
þ h20
16π

þ ðCM3 − e�c3Þψ0h0D −
aD2

2
þ ðb1 − b2Þψ2

0D
2:

ð123Þ

This expression can be rewritten as

Ḡtot
A1

¼ −
a2

4ðb1 þ b2Þ

−
�
4πðCM3 − e�c3Þ2ψ2

0

1þ 8πc1e2�ψ2
0=k

2
0

þ 2b2ψ2
0 −

c1k20
2

�
D2

þ 1þ 8πc1e2�ψ2
0=k

2
0

16π

�
h0 þ

8πðCμ3 − e�c3Þψ0D
1þ 8πc1e2�ψ2

0=k
2
0

�
2

:

ð124Þ

Minimum of Ḡtot
A1

corresponds to

h0 ¼ −
8πðCM3 − e�c3Þψ0D
1þ 8πc1e2�ψ2

0=k
2
0

: ð125Þ

The occurrence of the oscillating fields is energetically
profitable provided

4πðCM3 − e�c3Þ2ψ2
0

1þ 8πc1e2�ψ2
0=k

2
0

þ 2b2ψ2
0 −

c1k20
2

> 0: ð126Þ

This is so for k0 varying in the range,

ν∓ < k20 < ν�; ð127Þ

the upper sign solution is here for ν ¼ −λA1
> 0 and lower

sign one, for ν ¼ −λA1
< 0,

ν� ¼
�
ν�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 þ 32πe2�b2

q �
ψ2
0: ð128Þ

Thus, we have shown that for b2 > 0, there exists an
interval of values k0 corresponding to the growing fields h
and f2. Thereby, the linear approximation that we used

becomes invalid. As we show below, stable solutions then
correspond to the phase B or C.

3. Subphase A2

Consider the subphase A2, where ψ2 ¼ ψðxÞ ≠ 0 is real.
Assume that fields A2ðxÞ and ψ1 ¼ −if1ðxÞ are small real
quantities, and we assume dA2

≫ ξA2
. Without loss of the

generality, one may put f3 ¼ 0. Then the gradient part of
the Gibbs free-energy density in the quadratic approxima-
tion in perturbative fields can be presented as

Gch
grad ¼ c1ð∂1ψÞ2 þ ðc1 þ c2 þ c3Þ½ð∂1f1Þ2 þ e2�A2

2ðxÞψ2�
þ 2c3e�A2ðxÞψ∂1f1: ð129Þ

As in case of the subphase A1, the stability conditions
imply that c1 þ c2 þ c3 > 0, c1 > 0. Equations of motion
for the perturbative fields in the linear approximation
become

c1∂2
1ψ þ aψ − 2ðb1 þ b2Þψ3 ¼ 0; ð130Þ

∂2
1A2ðxÞ − 8πðc1 þ c2 þ c3Þe2�ψ2A2ðxÞ
þ 8πðCM3 − e�c3Þψ∂1f1 ¼ 0; ð131Þ

ðc1 þ c2 þ c3Þ∂2
1f1 þ ðc3e� − CM3Þψ∂1A2

þ c3e�A2∂1ψ þ ða − 2ψ2ðb1 − b2ÞÞf1 ¼ 0: ð132Þ

We may put ψ ¼ ψ0 in Eq. (132). Solution of Eq. (130)
reads ψ ¼ ψ0th½x=ð

ffiffiffi
2

p
ξA2

Þ� for a > 0, and the coherence

length ξA2
¼ ffiffiffiffiffiffiffiffiffiffi

c1=a
p

. Equation (118) for the spectrum
holds after the replacement c1 ↔ c1 þ c2 þ c3,

1=d2A2
¼ ψ2

0

h
λA2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2A2

þ 32πe2�b2
q i

;

λA2
¼ 4πðc1 þ c2 þ c3Þe2� −

2½b2 þ 2πðCM3 − c3e�Þ2�
ðc1 þ c2 þ c3Þ

:

ð133Þ

We deal with the superconductor of the second kind
for dA2

≫ ξA2
. The value of the critical field HA2

c1 ¼Hcr=

ð ffiffiffi
2

p
κ1;A2

Þ, κ1;A2
¼ dA2

=ξA2
, with dA2

corresponding to
the maximum length among dþA2

and d−A2
. Assume

c1 < c1 þ c2 þ c3. Then, ξA2
< ξA1

. For b2 < 0, assuming
that the terms ∝ e2� in (133) are small, we find
dþA2

≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ c2 þ c3Þ=ð4ð−b2 − 2πC2M2Þψ2

0Þ
p

> dþA1
≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c1=ð4ð−b2 − 2πC2M2Þψ2
0Þ

p
. For d−A2

, we get

d−A2
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ2πC2M2=b2Þ=ð8πe2�ðc1þc2þc3Þψ2
0Þ

p
<d−A1

.
Assuming that d−A2

> dþA2
, we find that the Ginzburg-

Landau parameter related to the maximum among d lengths
is κA2

¼ κA1
. Also, κ2;A2

¼ κ2;A1
and HA2

c2 ¼ HA1

c2 .
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As the subphase A1, the subphase A2 proves to be
unstable for b2 > 0 in respect to the growing of the
oscillating fields h and f1. Equations (123)–(128) continue
to hold after the replacement c1 ↔ c1 þ c2 þ c3.
In the particular case c1 þ c2 þ c3 ¼ 0, the subphase A2

for Hkz is nonmagnetic, cf. discussion in Sec. III.

4. Subphase A3

Now, consider the subphase A3, where ψ3 ¼ ψðxÞ. In
this case,

Gch
grad ¼ c1j∂1ψ j2 þ c1e2�A2

2ðxÞjψ j2: ð134Þ

In the quadratic order in the perturbative fields ψ1ðxÞ,
ψ2ðxÞ, their contribution to the Gibbs free energy decouples
with that for the fields ψ3 ¼ ψðxÞ and A2. The stability
conditions imply that c1 > 0. In this subphase, we have

ξA3
¼

ffiffiffiffiffiffiffiffiffiffi
c1=a

p
; dA3

¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πc1ψ2

0e
2�

q
; κ1;A3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1þb2
4πc21e

2�

s
;

ð135Þ

from where it follows that κ1;A3
¼ κ2;A3

. As above, we
suppose that κA3

≫ 1 (although it is sufficient to have

κA3
> 1=

ffiffiffi
2

p
).

Equations of motion for the fields ψ1 ¼ if1 and ψ2 ¼
if2 decouple in the linear approximation, e.g., we have

ðc1 þ c2 þ c3Þ∂2
1f1 þ 4b2ψ2

0f1 ¼ 0: ð136Þ

Equation for f2 appears after the replacement
c1 þ c2 þ c3 → c1. For b2 < 0, the energetically profitable
solutions correspond to f1, f2 ¼ 0.
For b2 > 0, there are oscillating solutions indicating on

instability of the subphase A3.

5. Which A subphase is energetically
most preferable? Domains

If 0 < c1 < c1 þ c2 þ c3, then ξA3
¼ ξA2

< ξA1
. Using

above done estimates for dA2
, dA1

, we have (for b2 < 0)
dA3

> d−A1
> d−A2

, and the subphase A3 proves to be
energetically favorable compared to the subphases A1

and A2 for all H at T < TA
cr under consideration. Since

κ2;A3
> κ2;A1

¼ κ2;A2
,

HA3

c2 ¼ Hcr

ffiffiffi
2

p
κ2;A3

¼ a
c1je�j

ð137Þ

is higher than HA1

c2 ¼ HA2

c2 and the subphases A1 and A2 are
thus destroyed at a smaller value of the external magnetic
field compared to that for the subphase A3.
If 0 < c1 þ c2 þ c3 < c1, then ξA1

< ξA3
¼ ξA2

, for
b2 < 0 we have d−A1

< dA3
< d−A2

, and the subphase A1

is energetically favorable for low H, then with increase
of H above the value Hc1, the subphase A2 might become
preferable one, and for H near the value HA1

c2 , the subphase
A1 again becomes most favorable.
Assume that a domain is in a certain subphase Ai, with

i ¼ 1, either 2 or 3. Since for b2 < 0, each subphase Ai is
stable to weak perturbations, in the absence of an external
force the domain remains in the same subphase. In the
presence of the magnetic field or the rotation of the
system as the whole, or due to a temperature fluctuation
the domain, being in one of subphases, after a while may
undergo transition to another subphase.
Thus, we demonstrated that even, being in the mean

spin-zero phase A, the spin-triplet superconductor has
unconventional properties in the presence of the external
magnetic field.

C. Ferromagnetic superconductive phases B and C
for b2 > 0 in the medium filling half of space

1. Subphases B3 and C3. General consideration

Above on example of the subphase A1 we demonstrated
that for b2 > 0 the phases Ai are unstable. Let b2 > 0, the
superconductor fills half-space x < 0 and as above assume
H⃗ to be directed parallel z. To be specific, let us focus on
the consideration of the subphase B3 (or C3), then h⃗ is
directed parallel or antiparallel z.
The gradient contribution to the Gibbs free-energy

density (110) can be rewritten as

Gch
grad ¼ c1jDiψ jj2 þ

c2 þ c3
2

½jDiψ ij2 þ ðDiψ jÞ�Djψ i�

−
c3 − c2

2
½jDiψ ij2 − ðDiψ jÞ�Djψ i�; ð138Þ

cf. Ref. [22]. Integrating by parts the gradient term in
the Gibbs free energy, using the commutator (111), and
retaining only the volume part of the free energy, we getZ

d3xðGch
gradþGch

homÞ

¼
Z

d3x

�
−
2c1þc2þc3

2
ψ̃�ðD2

1þD2
2Þψ̃

�

þ
Z

d3x

�
e�
c3−c2

2
n⃗3h⃗jψ̃ j2

�

þ
Z

d3x

�ðh⃗− H⃗Þ2
8π

− ðaþCM⃗ h⃗Þjψ̃ j2þb1jψ̃ j4þ γjψ̃ j6
�
;

ð139Þ

where as above we have chosen simplest form of the sixth-
order term and used that ψ̃ does not depend on z. To be
specific, we took ψ1 ¼ −ψ2 for the B3 and C3 subphases in
(87). The gradient term is positive due to the stability
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conditions (107). The presence of the term ∝ i½D1; D2�− in
the gradient contribution to the Gibbs free energy resulted
in appearance of the contribution,Z

d3xδGintr;1 ¼ −
Z

d3xM⃗intr;1h⃗jψ̃ j2; ð140Þ

with the quantity M⃗intr;1 ¼ −n⃗3 1
2
e�ðc3 − c2Þ associated in

[22,23] with an intrinsic magnetic moment of the fermion
pair in the spin-triplet superconductor, n⃗3 is the unit vector
aligned in the z direction. In [22], this contribution was
considered as the total contribution to the intrinsic magnetic
moment density. However, an extra contribution to the
effective magnetic moment of the pair may still appear due
to the presence of the terms ∝ ðD2

1 þD2
2Þ in the Gibbs free

energy.
Varying the Gibbs free energy in ψ̃ , we obtain equation

of motion for the order parameter,

−
�
c1 þ

c2 þ c3
2

�
ðD2

1 þD2
2Þψ̃

− ½aþ M⃗ h⃗�ψ̃ þ 2b1jψ̃ j2ψ̃ þ 3γjψ̃ j4ψ̃ ¼ 0; ð141Þ

where we introduced the quantity

M⃗ ¼ CM⃗ − n⃗3e�ðc3 − c2Þ=2: ð142Þ

n⃗3 is the unit vector aligned in the z direction. If we used
ψ1 ¼ þψ2, we would get expression with −M⃗ instead
of M⃗. The direction of M⃗ (the direction of the spin) is
selected to minimize the energy, cf. Eq. (50).
We note that, if we artificially suppressed the gradient

term ∝ ðD2
1 þD2

2Þ in (139) and performed variation of the
resulting Gibbs free energy in h and ψ̃ , we would recover
(in dependence of the sign of the term b1 − 2πM2) either
Eqs. (93), (94), and (95) or Eqs. (100), (101), and (102),

now with M⃗ instead of CM⃗.
Equation (141) is supplemented by the Maxwell equa-

tion determining the Ai, hi fields,

∂iFik ¼ −4πJk; ð143Þ

where J⃗ is the corresponding current density, cf. Eq. (26)
for the case of the charged vector field.
Multiplying (141) by ψ̃� and replacing result back to the

expression for the Gibbs free energy, we obtain

Z
Gchd3x ¼

Z
d3x

�
−b1jψ̃ j4 − 2γjψ̃ j6 þ ðh⃗ − H⃗Þ2

8π

�
:

ð144Þ

From (141), we can immediately recover the value of the
upper critical field Hc2 taking ψ̃ → 0. This is valid for the

consideration of the B phase where the phase transition is of
the second order. Neglecting Oðjψ̃ j2Þ terms in (141) and
setting h⃗ ¼ H⃗, we get

−
�
c1 þ

c2 þ c3
2

�
ðD2

1 þD2
2Þψ̃ ¼ Eψ̃ ; ð145Þ

with E ¼ aþM3H, cf. Eq. (142). Directions of the fields
should be chosen such that the value Hc2 be maximum.
Equation (145) can be interpreted as the nonrelativistic
Schrödinger equation in the homogeneous magnetic field
H for the particle with the mass m¼1=ð2c1þc2þc3Þ>0
and the energy E. The maximum/minimum magnetic field,
when there still exists/appears the solution, corresponds to
E ¼ Eðn ¼ 0; pz ¼ 0Þ ¼ je�jHB

c2=ð2mÞ. Thus, we find

HB
c2 ¼ −a=M�: ð146Þ

Here Mþ ¼ CM3 − e�ðc1 þ c3Þ corresponds to e� > 0,
and M− ¼ CM3 − je�jðc1 þ c2Þ relates to e� < 0. For
M� < 0, solution with ψ ≠ 0 exists for H<HB

c2 at a>0

(i.e., for T < Tcr). For M� > 0, solution with ψ ≠ 0 exists
for H > HB

c2 at a < 0 (i.e., for TBH;CH
cr > T > Tcr), and for

any H at a > 0 (i.e., for T < Tcr).
Inverting Eq. (146) we may find the critical temperature

TBH
cr as a function ofH. We see that the value of this critical

temperature coincides with that follows from Eq. (97)
[or (99)], but withM� instead of jCMj, providedM� > 0.
For e� > 0 and c1 ¼ −c3, the mentioned values of the
critical temperatures coincide completely.

2. Subphases B3 and C3. Abrikosov Ansatz

We did not succeed to solve a general problem.
Therefore, let us consider the matter far from the boundary
and employ the variational approach. Let the probe func-
tions satisfy the so-called Abrikosov Ansatz, cf. [73,74],

Diψ i ¼ 0: ð147Þ

As we have seen in Sec. III in the problem of the
description of the complex vector-boson fields, the con-
dition (147), cf. (22) and (27), was required to recover
correct interpretation of the single-particle problem for
η ¼ e. Also in Sec. III, we have shown that the condition
(147) is fulfilled for arbitrary η at the consideration of the
behavior of the vector field interacting with the static
uniform magnetic field at h ≃Hcr2. Here, in the problem
of the spin-triplet pairing of charged fermions, the fulfil-
ment of the condition (147) is not necessary even for
η ¼ CM ¼ e�, but making use of this condition allows to
develop a variational treatment of the problem. Besides
that, below we show that solution of Eq. (147) coincides
with exact solution of the problem for the value of the
external magnetic field H ¼ Hcr2.
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From Eq. (147) in the gauge A⃗ ¼ ðA1ðyÞ; A2ðxÞ; 0Þ, we
obtain

e�ðA2 − iA1Þ ¼ −ð∂1 þ i∂2Þ lnψ1: ð148Þ

We find

ψ̃ ¼ e−e�
R

x A2ðx0Þdx0þe�
R

y A1ðx0Þdx0Fðxþ iyÞ; ð149Þ

where F is an arbitrary analytical function. On the other
hand, from (148), we find

1

2
ϵki∂ijψ̃ j2 þ jψ̃ j2∂kχ ¼ e�Akjψ̃ j2; i; k ¼ 1; 2; ð150Þ

ϵ12 ¼ 1, ϵ21 ¼ −1, ϵ11 ¼ ϵ22 ¼ 0, ψ̃ ¼ jψ̃ jeiχ , and for
simplicity choosing χ ¼ 0, we get

−ð∂2
x þ ∂2

yÞ ln jψ̃ j ¼ e�h⃗n⃗3: ð151Þ

Using Eqs. (111) and (147), we derive a helpful relation

−ðD2
1 þD2

2Þψ̃ ¼ e�h⃗n⃗3ψ̃ ; ð152Þ

cf. Eq. (50) in Sec. III.
For the current from (139) and (143) using (147), we

obtain

Jk ¼ −M̃3ϵki∂ijψ̃ j2: ð153Þ

Here we introduced the effective magnetic moment of the
Cooper pair,

⃗M̃ ¼ CM⃗þ M⃗intr; ð154Þ

where M⃗intr ¼ −n⃗3e�ðc1 þ c3Þ is an intrinsic magnetic
moment of the fermion pair, which however differs from
the contribution M⃗intr;1, cf. (140).
Replacing (152) in (141), we find

⃗M̃ h⃗ ¼ −aþ 2b1jψ̃ j2 þ 3γjψ̃ j4: ð155Þ

Setting (152) in the gradient term in (139), we get

Z
d3xGch

grad ¼
Z

d3xe�h⃗n⃗3ðc1 þ c3Þjψ̃ j2 ð156Þ

and

Z
d3xGch

¼
Z

d3x

�
−ðaþ ⃗̃Mh⃗Þjψ̃ j2þb1jψ̃ j4þ

ðh⃗−H⃗Þ2
8π

þγjψ̃ j6
�
:

ð157Þ

Since the gradient contribution to the Gibbs free energy
should be non-negative, our result is valid only provided
the stability condition ðc1 þ c3Þe�h3 ≥ 0 is fulfilled.
Minimizing (157) in h, we find the solution

h⃗ ¼ H⃗ þ 4π ⃗M̃jψ̃ j2: ð158Þ

Note that in general (for H ≠ Hcr2) the Ansatz (147) is
incompatible with one of the equations of motion, which
follow from the minimization of (157) in the order parameter
and the electromagnetic field. Indeed, setting in (157)
solution (141), where we substitute Eq. (152), in the limit
γ → 0 in dependence of the sign of b1 − 2πM̃2 we recover
either Eqs. (93), (94), and (95) or Eqs. (100), (101), and
(102), however now with M̃ from (154) instead of CM.
Only for H ≃Hc2 Ansatz (147) is compatible with

the solution (141). An analogy of Eq. (152) with the
Schrödinger equation in a uniform magnetic field (at h⃗ ≃ H⃗
for ψ̃ → 0) demonstrates that the solutions with appropriate
boundary condition jψ̃ðx; y → ∞Þj < ∞ exist provided
e�h⃗n⃗3 ¼ je�jHcr2 > 0, i.e., for e� > 0. Otherwise
Abrikosov Ansatz cannot be exploited.
Let us employ the variational procedure. After substi-

tution of h⃗ from (158) into (151), the equation for ψ̃ gets
the form

−ð∂2
x þ ∂2

yÞ ln jψ̃ j ¼ e�H⃗n⃗3 þ e�4π
⃗M̃n⃗3jψ̃ j2: ð159Þ

For example, in case H ¼ 0, the solution of this equation
with periodic boundary conditions is given by the
Weierstrass doubly periodic function ζ, cf. [74],

jψ̃ j ¼ jζ0ðxþ iyÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πjM̃e�jðe2 − e3Þðe3 − e1Þ

p
×

ðe3 − e1Þðe2 − e3Þ
ðe3 − e1Þðe2 − e3Þ þ jζðxþ iyÞ − e3j2

; ð160Þ

ei are the roots of equation

4t3 − g2t − g3 ¼ 0; ð161Þ

where the quantities g2 and g3 are defined in the standard
presentations of the Weierstrass p function. We assume
that these roots are real (that requires g32 − 27g23 > 0) and
e2 > e3 > e1. Other forms of the solution can be found in
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[101,102]. If in Eq. (160) periods of ζ are 2a, 2ib, then jψ̃ j
is periodic function with periods a, ib.
Now, we substitute solution (158) in (157). With the

solution of Eq. (151) presented in the form ψ̃ ¼ ψ0νðr⃗Þ,
we get

Gch ¼ −ðaþ ⃗M̃ H⃗Þν2jψ0j2

þ ðb1ν4 − 2πM̃2ðν2Þ2Þjψ0j4 þ γν6jψ0j6: ð162Þ

Here spatial averaging, Gch ¼ R
d3xGch=

R
d3x, is per-

formed with the probed function satisfying Eq. (151).
For H ¼ 0, we may use solution (160). Variational param-
eter ψ0 is found by minimization of (162). We obtain

jψ2
0j ¼

ð2πM̃2ðν2Þ2 − b1ν4Þ
3γν6

� 1

3γν6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πM̃2ðν2Þ2 − b1ν4Þ2 þ 3γν6ðaþ ⃗M̃ H⃗Þν2

q
:

ð163Þ

For the probed function describing the periodic triangular
lattice at ordinary spin zero pairing, one has [87] β̃ ¼
ν4=ðν2Þ2 ≃ 1.16.
In the absence of the external magnetic field, the system

of a large size may exist in a metastable state, being
constructed of domains with different directions of h⃗ and ψ⃗
in each domain. Since the ground state of the uniform
system corresponds to h⃗ aligned in one fixed direction, the
systemmay undergo transitions with the flip of the domains
until it will reach the state with the minimal surface energy.
Note that the process of the alignment of domains should be
compatible with the conservation of the magnetic flux. As
we have argued, when considered the Bi and Ci phases in
neutral superfluids, the spin and the h⃗ flips require an
energy. In the presence of the external magnetic field or
for the rotating system, a required extra energy can be
taken from the energy of the external magnetic and rotation
fields. Also flips of the domains are possible via thermal
fluctuations.

3. Subphase B3. Averaged Gibbs free energy

Let us focus on the subphase B3. In case H ¼ 0, results
are valid also for subphases B1;2. Within the variational
problem, the B phase arises provided

b1β̃ − 2πM̃2 > 0; ð164Þ

where as above β̃ ¼ ν4=ðν2Þ2. We may for simplicity
put γ ¼ 0.

Assume ðaþ ⃗M̃ H⃗Þ > 0. From (163), we find

jψ0j2 ¼
aþ ⃗M̃ H⃗

2ν2ðb1β̃ − 2πM̃2Þ
θðaþ ⃗M̃ H⃗Þ; ð165Þ

Ḡch
B3H

¼ −
ðaþ ⃗M̃ H⃗Þ2

4ðb1β̃ − 2πM̃2Þ < 0; ð166Þ

with h from (158). Energetically favorable is the direction

of the vector ⃗M̃ parallel H⃗. Thereby, we may replace ⃗M̃ H⃗

to j ⃗M̃ H⃗ j. The subphase B3 appears for H ¼ 0 by the
second-order phase transition at T ¼ Tcr and continues to
exist in a certain interval of temperatures above Tcr for
H ≠ 0. The value of the new critical temperature TB3H

cr is
found from Eqs. (97) (99), however with M̃ from (154)
instead of CM. For example, with the parametrization
a ¼ α0t, we get

TB3H
cr ¼ Tcrð1þ jM̃Hj=α0Þ: ð167Þ

4. Subphase C3. Averaged Gibbs free energy

Consider subphase C3. For H ¼ 0, results are also valid
for subphases C1;2. Now, we set

b1β̃ − 2πM̃2 < 0: ð168Þ

To get stable solutions, we should retain γ ≠ 0 term in
(162). As above, simplifying consideration, we assume γ to
be positive and small. Then from (163) in analogy with
(100) and (102), we obtain

ψ2
0 ≃

2ð2πM̃2 − b1β̃Þ
3γβ̃1

þ ðaþ ⃗M̃ H⃗Þβ̃2
2β̃1ð2πM̃2 − b1β̃Þ

> 0; ð169Þ

Ḡch
C3H

≃ −
4

27γ2β̃22
ð2πM̃2 − b1β̃Þ3: ð170Þ

Here β̃1 ¼ ν6=ðν2Þ2, β̃2 ¼ ν6=ðν2Þ3. Expansion in the
parameter γ is valid for

0 < γ ≪
ð2πM̃2 − b1β̃Þ2
β̃2ðaþ jM̃HjÞ : ð171Þ

The own magnetic field is found with the help of Eqs. (158)
and (169). The new phase appears by the first-order phase
transition.
The new critical temperature is determined (for a ¼ α0t)

by setting zero the square root in (163),

VECTOR-BOSON CONDENSATES, SPIN-TRIPLET … PHYS. REV. D 101, 056011 (2020)

056011-25



TC3H
cr ¼ Tcr

�
1þ ð2πM̃2 − b1β̃Þ2

3γβ̃2α0
þ jM̃Hj

α0

�
; ð172Þ

with TC3H
cr > TC3

cr > Tcr, where now

TC3
cr ¼ Tcr

�
1þ ð2πM̃2 − b1β̃Þ2

3γβ̃2α0

�
:

VI. 3P2 nn AND pp PAIRINGS IN NEUTRON
STAR INTERIORS

A. Gibbs free-energy density

So far, we considered the spin-triplet paring in
systems with negligible spin-orbital interactions, so that
both orbital momentum and spin were assumed to be
appropriate quantum numbers and we assumed that
orbital momentum and spin can rotate independently. In
nuclear matter, the spin-orbital interaction is strong and
the state of a Cooper pair is described by the total
angular momentum J and its projections mJ. The 3P2
phase shift for identical nucleons (nn and pp) is the
largest among others for the momenta p > 1.3 fm−1.
Thereby, cf. [25], for n ≳ n0 neutrons in the neutron
matter as well as in the beta-equilibrium matter prove to
be paired in the 3P2 state with J ¼ 2. Protons might be
paired in this channel at a higher density, if their
fraction becomes rather high.
The pairing gap of the 3P2 state can be written as

Δ̂ ¼ iσiσ2Aijnj, where σ1;2;3 are the Pauli spin matrices, n⃗
is the unity vector in the direction of the pairing momen-
tum. The matrix Â is symmetric and traceless for this type
of paring and is determined by the expression [54] (here
presented in another normalization, a more convenient one
to compare with results of previous sections)

Â ¼

2
6664

a−2
2
− a0ffiffi

6
p þ a2

2
i
2
ða2 − a−2Þ 1

2
ða−1 − a1Þ

i
2
ða2 − a−2Þ − a−2

2
− a0ffiffi

6
p − a2

2
− i

2
ða−1 þ a1Þ

1
2
ða−1 − a1Þ − i

2
ða−1 þ a1Þ

ffiffi
2
3

q
a0

3
7775:

ð173Þ

The Ginzburg-Landau free-energy density functional for
the uniform matter has the form

F½Â� ¼ −ᾱTrðÂÂ�Þ þ β̄1TrðÂ ÂÞTrðÂ�Â�Þ
þ β̄2TrðÂÂ�ÞTrðÂÂ�Þ þ β̄3TrðÂ Â Â�Â�Þ þ fγ̄Â6g:

ð174Þ

The last term, fγ̄Â6g, represents symbolically all terms
of the sixth order in A. Below we put γ̄ ¼ 0, when it

does not contradict to the stability condition of the phase.
Values ᾱ, β̄i are phenomenological parameters of the
model. Assuming (for γ ¼ 0) a second-order phase tran-
sition to the paired state, in the absence of the external
fields, one may use ᾱ ¼ ᾱ0t for jtj≲ 1, cf. Eq. (57). As we
have mentioned, being computed in BCS approximation,
the γ6Â

6 term proves to be negative [54] that implies
necessity to continue the Ginzburg-Landau expansion up to
γ8Â

8 positive contribution [56]. Simplifying consideration,
as in previous sections, we will employ the simplest form of
the fγ̄Â6g interaction with γ > 0.
To consider systems of a finite size, we should add

the gradient contribution to the free-energy density.
The generalization to the hypothetical 3P2 pp pairing,
which may be possible for n ≫ n0 in neutron star matter, is
performed with the help of the replacement of the ordinary
derivatives by the long derivatives, i.e., ∂i → Di ¼∂i þ ie�Ai þm�vi, Ai ¼ ðAx; Ay; AzÞ, e� is the charge of
the fermion pair, for moving systems v⃗ is the velocity of the
system, m� is the effective mass of the pair. Therefore, to
include the effects associated with the spatial nonuniform-
ity, one should add the gradient terms,

Fgrad ¼ c1DiAνkD�
i A

�
νk þ c2DiAνiD�

jA
�
νj þ c3DiAνjD�

jA
�
νi:

ð175Þ

To include interaction of spins of the Cooper pair with
the own magnetic field h⃗, we add to Eq. (174) the Zeeman
term [18,22], FZeeman ¼ −η⃗ h⃗ ¼ −iηhiϵijkAljA�

lk. Also, the
proper magnetic free-energy density contribution should be
added. To be specific, we further assume h⃗ ¼ ð0; 0; hÞ,
h⃗kH⃗, h⃗kη⃗ (for η > 0) or h⃗k − η⃗ (for η < 0). Other pos-
sibilities can be considered similarly to that we did in
Sec. III. Thus, the resulting expression for the Gibbs free-
energy density becomes

G ¼ Fgrad½Aij; h;ω� þ F½Aij� þGH;

GH ¼ −iηhiϵijkAljA�
lk þ

1

8π
ðh −HÞ2

¼ 1

2
ηhð2ja−2j2 þ ja−1j2 − ja1j2 − 2ja2j2Þ

þ 1

8π
ðh −HÞ2: ð176Þ

As above, we for simplicity disregard small polarization
terms ∝ h2, cf. [103].
If we retain only one mJ component among possible

combinations mJ ¼ 0, −1, −2, þ1 or þ2 in matrix (173),
the Gibbs free-energy densities for these states become (for
mJ ¼ 0;�1;�2)
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G0 ¼ −ᾱja0j2 þ
�
β̄1 þ β̄2 þ

1

2
β̄3

�
ja0j4

þ 1

8π
ðh −HÞ2 þ Fgrad

0 ;

G�1 ¼ −ᾱja�1j2 þ
�
β̄2 þ

1

4
β̄3

�
ja�1j4 ∓ 1

2
ηhja�1j2

þ 1

8π
ðh −HÞ2 þ Fgrad

�1 ;

G�2 ¼ −ᾱja�2j2 þ β̄2ja�2j4 ∓ ηhja�2j2

þ 1

8π
ðh −HÞ2 þ Fgrad

�2 : ð177Þ

If one assumes the symmetry among all am and a−m
amplitudes and takes into account the relations a�2 ¼
�ã2e�iχ2 and a�1 ¼ �ã1e�iχ1 with real amplitudes ã2 and
ã1, the Gibbs functional G in such a symmetric subphase
simplifies as

Gsym ¼ −ᾱ½ã20 þ 2ðã21 þ ã22Þ� ð178Þ

þ
�
β̄1 þ β̄2 þ

1

2
β̄3

�
½ã20 þ 2ðã21 þ ã22Þ�2

þ 1

8π
ðh −HÞ2 þ Fgrad

sym ; ð179Þ

yielding in the case of the uniform matter the same value in
the minimum as for the G0, cf. Eq. (185) below.
Note that the critical temperatures for the symmetric

subphase and the subphases mJ ¼ 0, mJ ¼ �1, and
mJ ¼ �2, respectively, might be different. However,
according to [35], the difference proves to be very small.
Thereby, simplifying consideration, we suppose, as we
have used it in previous sections, that values Tcr are the
same for all the subphases.
Assume

β̄1þ β̄2þ
1

2
β̄3>0; β̄2þ

1

4
β̄3>0; β̄2>0; ð180Þ

that is required for the stability of the symmetric and
mJ ¼ 0 subphases, the subphases with mJ ¼ �1 and the
subphases with mJ ¼ �2, respectively. If we put H ¼ 0
and disregard h-dependent terms for a moment, then for the
uniform matter we find that for β̄1 þ 1

2
β̄3 < 0 the sym-

metric subphase (and the subphase with mJ ¼ 0) is
energetically preferable compared to the subphases with
mJ ¼ �2. For β̄1 þ 1

4
β̄3 < 0, the former subphases are

favorable compared to the subphase with mJ ¼ �1. For
β̄1 þ 1

2
β̄3 > 0, the subphase with mJ ¼ �2 is energetically

preferable compared to the symmetric and mJ ¼ 0 sub-
phases and compared to the mJ ¼ �1 subphases provided
simultaneously β̄3 > 0, whereas for β̄3 < 0 the mJ ¼ �1
subphases are favorable. In the BCS weak-coupling

approximation [54,104], one has β̄1 ¼ 0, β̄2 ¼ −β̄3 > 0.
In this case, the symmetric and mJ ¼ 0 subphases prove to
be energetically favorable.
To consider finite systems, we should include contribu-

tions Fgrad. With taking into account these terms, degen-
eracy of the subphases 3P2ð0Þ and 3P2ðsymÞ disappears.
For the matter filling the semi-infinite space x < 0 in the
gauge where h3 ¼ ∂1A2, h1 ¼ h2 ¼ 0, for the 3P2ð0Þ
subphase, we obtain

Fgrad
0 ¼

�
c1 þ

c2 þ c3
6

�
½j∂1a0j2 þ e2�A2

2ja0j2�; ð181Þ

cf. (112), (129), and (134),

Fgrad
�1 ¼

�
c1 þ

c2 þ c3
4

�
½j∂1a�1j2 þ e2�A2

2ja�1j2�

� c2 − c3
2

e�A2∂1ja�1j2; ð182Þ

Fgrad
�2 ¼

�
c1 þ

c2 þ c3
2

�
½j∂1a�2j2 þ e2�A2

2ja�2j2�

� c2 − c3
2

e�A2∂1ja�2j2; ð183Þ

cf. (139).
Difference in the volume and surface energies for various

subphases leads to a possibility of domains; see in Sec. III.

B. Subphases 3P2ð0Þ and 3P2ðsymÞ of nn pairing in
external uniform static magnetic field

Expressions for the Gibbs free-energy densities for the
symmetric subphase and the mJ ¼ 0 subphase are similar
to those for the phase A at the pairing of the neutral
fermions considered above in Sec. IV B.
Let T < Tcr and β̄1 þ β̄2 þ 1

2
β̄3 > 0. The order param-

eter in subphases 3P2ð0Þ and 3P2ðsymÞ of nn pairing
decouples with the magnetic field. Thereby, we get h⃗ ¼ H⃗.
The order parameters ã20 þ 2ðã21 þ ã22Þ and ja0j2 are found
by the minimization ofGsym andG0, respectively. In case of
the infinite matter in the minimum, we get

ja0j2 ¼ ã20 þ 2ðã21 þ ã22Þ ¼
ᾱθðtÞ

2ðβ̄1 þ β̄2 þ 1
2
β̄3Þ

ð184Þ

and

Ghom
0 ¼ Ghom

sym ¼ −
ᾱ2θðtÞ

4ðβ̄1 þ β̄2 þ 1
2
β̄3Þ

: ð185Þ

Thus, for the uniform matter, these subphases prove to be
degenerate. With a decreasing temperature, they appear at
T ¼ Tcr by the second-order phase transition and exist for
T < Tcr. The order parameter and external magnetic field
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decouple. The subphases are stable relatively transitions to
mJ ¼ �2 subphases provided β̄1 þ 1

2
β̄3 < 0 and to mJ ¼

�1 subphases for β̄1 þ 1
4
β̄3 < 0.

C. Subphases 3P2 (�2)-B and 3P2 (�2)-C of nn pairing
in external uniform magnetic field

The problem is reduced to that considered above in
Sec. IV B on example of the phases B and C for the vector
order parameter, provided one puts now ψ̃ ¼ aþ2 or
ψ̃ ¼ a−2. We label the phase “B” provided β̄2−2πη2>0

and “C”, if β̄2 − 2πη2 < 0.

1. Subphases 3P2 (�2)-B3

Let us focus on the 3P2 (�2)-B subphases. For h⃗ and η⃗

directed parallel or antiparallel to H⃗, we deal with the
subphase B3. Consider the case of the infinite matter.
Minimization of Eq. (177) yields in case of the phase
3P2ð�2Þ-B3,

h ¼ H ∓ 4πηja�2j2; ð186Þ

cf. (94), and

jaB3H
�2 j2 ¼ ðᾱ� ηHÞθðᾱ� ηHÞ

2ðβ̄2 − 2πη2Þ ; ð187Þ

GB3H
�2 ¼ −

ðᾱ� ηHÞ2θðᾱ� ηHÞ
4ðβ̄2 − 2πη2Þ ; ð188Þ

for ᾱ� ηH > 0, and for γ̄ → 0, cf. (93), (95). Thus, even
for H ¼ 0 in this subphase, there appears the internal
magnetic field hðH ¼ 0Þ.
The critical temperature found from the condition ᾱ�

ηH ¼ 0 is shifted up in the presence of the external field H
and the new critical temperature equals to

TB3H
cr ¼ Tcrð1� ηH=ᾱ0Þ; ð189Þ

provided ᾱ ¼ ᾱ0t, cf. Eq. (97). For η > 0, the state
mJ ¼ þ2 is profitable and for η < 0 the state mJ ¼ −2.
At T < Tcr for η > 0, solutions exist at arbitrary H for

the state mJ ¼ þ2 and at H < Hcr2 ¼ −ᾱ=η they exist
provided η < 0. For η < 0, solutions exist at arbitraryH for
mJ ¼ −2 and they exist for H < Hcr2 ¼ ᾱ=η provided
η > 0.
For TB3H

cr > T > Tcr, solutions exist for η > 0 at H >
Hcr2 ¼ −ᾱ=η > 0 for the state mJ ¼ 2 and at H > Hcr2 ¼
ᾱ=η > 0 for η < 0 for the state mJ ¼ −2.

2. Subphases 3P2 (�2)-C3

In the subphase 3P2ð�2Þ-C3 for small γ̄ > 0, we find

jaC3H
�2 j2 ≃ 2ð2πη2 − β̄2Þ

3γ̄
þ ᾱ� ηH

2ð2πη2 − β̄2Þ
; ð190Þ

GC3H
�2 ≃ −

4ð2πη2 − β̄2Þ3
27γ̄2

; ð191Þ

cf. Eq. (102). The critical temperature is increased in the
presence of the external magnetic field H and the new
critical temperature is as follows:

TC3H
cr ¼ Tcr

�
1þ ð2πη2 − β̄2Þ2

3γ̄ᾱ0
þ jηjH

ᾱ0

�
; ð192Þ

provided ᾱ ¼ ᾱ0t, cf. Eq. (104).

3. Subphases 3P2ð�1Þ-B and 3P2ð�1Þ-C
of nn pairing

Expressions for mJ ¼ �1 can be found from those for
mJ ¼ �2with the help of the replacements β̄2 → β̄2 þ 1

4
β̄3,

η → 1
2
η, cf. Eqs. (177).

D. Subphases of 3P2 pp pairing

As above, consider medium filling half-space x < 0
under the action of the external uniform magnetic field
H⃗kz. Our consideration is completely similar to that
performed in Sec. V.

1. Subphases 3P2ð0Þ and 3P2ðsymÞ
Penetration of the external static magnetic field in case of

the 3P2ð0Þ and 3P2ðsymÞ subphases is described similar
to that for the A phase in the superconducting matter
described by the vector order parameter in Sec. V B. Using
(177) and (181) for simplicity at γ̄ → 0, we obtain�

c1 þ
c2 þ c3

6

�
½∂2

1a0 − e2�A2
2a0� þ ᾱa0

− 2

�
β̄1 þ β̄2 þ

1

2
β̄3

�
ja0j2a0 ¼ 0; ð193Þ

∂2
1A2 − 8πe2�

�
c1 þ

c2 þ c3
6

�
A2ja0j2 ¼ 0: ð194Þ

Thus, for mJ ¼ 0 subphase at low H, there appears

Meissner effect and for κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̄1þβ̄2þ1

2
β̄3

4πe2�

q
> 1=

ffiffiffi
2

p
with

increasing H for Hcr1 < H < Hcr2 there exists the
Abrikosov mixed state. The question about stability of
the subphase and a coupling between various subphases
can be considered, as it has been done in Sec. V.
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2. B and C phases of pp pairing.
The m� 1;� 2 subphases

Using (177) and (181), we obtain

�
c1þ

c2þc3
4

�
½∂2

1a�1−e2�A2
2a�1��

�
c2−c3

2
e�þ

η

2

�
ha�1

þ ᾱa�1−
�
β̄2þ

1

4
β̄3

�
ja�1j2a�1¼0; ð195Þ

∂2
1A2 − 8πe28

�
c1 þ

c2 þ c3
4

�
ja�1j2A2

∓ 4π

�
ηþ e�

c2 − c3
2

�
∂1ja�1j2 ¼ 0 ð196Þ

and

�
c1þ

c2þc3
2

�
½∂2

1a�2−e2�A2
2a�2��

�
c2−c3

2
e�þη

�
ha�2

þ ᾱa�2−2β̄2ja�2j2a�2¼0; ð197Þ

∂2
1A2 − 8πe28

�
c1 þ

c2 þ c3
2

�
ja�2j2A2

∓ 4π

�
ηþ e�

c2 − c3
2

�
∂1ja�2j2 ¼ 0; ð198Þ

cf. (141).
Instead of solving exact equations of motion, let us

consider the variational problem. For that, we employ the
Abrikosov Ansatz (147), which for our case of the 3P2
pairing reads as

ð∂i þ ie�AiÞAνi ¼ 0: ð199Þ

Expressions for the averaged Gibbs free-energy densities
for the mJ ¼ �1 and mJ ¼ �2 subphases are similar to
those for the subphase B3, cf. Sec. V. We deal with 3P2
(�1)-B3 subphases provided

�
β̄2 þ

1

4
β̄3

�
β̃ − 2πη̃2�1 > 0;

cf. (164), where now

η̃þ1 ¼
η

2
− e�ðc1 þ c2Þ; η̃−1 ¼

η

2
− e�ðc1 þ c3Þ;

and with 3P2 (�2)-B3 subphases, if

β̄2β̃ − 2πη̃2�2 > 0; ð200Þ

where

η̃þ2 ¼ η − e�ðc1 þ c2Þ; η̃−2 ¼ η − e�ðc1 þ c3Þ: ð201Þ

If opposite inequalities are fulfilled, we deal with the
corresponding C3 subphases.
Subphases 3P2ð�2Þ-B3.—We employ Eq. (152) in the

gauge A⃗ ¼ ð0; A2ðxÞ; 0Þ. The minimization of the Gibbs
free-energy G ¼ R

d3xG, cf. Eq. (177), yields for γ̄ → 0,

ja�2;B3Hj2 ¼
ᾱ� η̃�2H

2ν2ðβ̄2β̃ − 2πη̃2Þ
; ð202Þ

Ḡ�2;B3H ¼ −
ðᾱ� η̃�2HÞ2
4ðβ̄2β̃ − 2πη̃2Þ : ð203Þ

For T < Tcr at e� ¼ 0 and η > 0, the phase mJ ¼ þ2 is
energetically preferable, whereas for e� ¼ 0 and η < 0
wins the phase mJ ¼ −2. Equality

ᾱ� η̃�2H⃗ ¼ 0

determines the critical point for the second-order phase
transition,

h⃗ ¼ H⃗ � 4πη̃�2ja�2;B3Hj2: ð204Þ

Even for H ¼ 0 in this phase, there exists an own magnetic
field hðH ¼ 0Þ.
The critical temperature is shifted up in the presence

of the external magnetic field H and the new critical
temperature becomes (for ᾱ ¼ ᾱ0t)

TB3H
cr ¼ Tcrð1� η̃�2H=ᾱ0Þ: ð205Þ

Upper sign is for mJ ¼ 2 and η̃2 > 0 and lower sign is for
mJ ¼ −2 and η̃2 < 0.
Subphases 3P2ð�2Þ-C3.—We deal with 3P2ð�2Þ-C3

subphase provided

β̄2β̃ − 2πη̃2�2 < 0:

For γ̄ ≤ 0, the ground state is unstable. For γ̄ > 0, we deal
with the first-order phase transition. For a small γ̄ > 0,
we find

ja�2;C3Hj2 ≃
2ð2πη̃2�2 − β̄2β̃Þ

3γ̄β̃1
þ ðᾱ� η̃�2HÞβ̃2
2β̃1ð2πη̃2�2 − β̄2β̃Þ

; ð206Þ

Ḡ�2;C3H ≃ −
4ð2πη̃2�2 − β̄2β̃Þ3

27γ̄2β̃22
; ð207Þ

and the own magnetic field is determined by Eq. (186).
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The critical temperature is shifted up in the presence
of the external magnetic field H, and the new critical
temperature is given by

TC3H
cr

Tcr
¼ 1þ ð2πη̃2�2 − β̄2β̃Þ2

3γ̄ᾱ0β̃2
� η̃�2H

ᾱ0
: ð208Þ

VII. NUMERICAL EVALUATIONS: BCS
APPROXIMATION AND BEYOND

As we have mentioned, existing in the literature, esti-
mates of the typical value of Tcr for the 3P2 nn pairing in a
dense neutron star matter are controversial. Following BCS
estimates [25], typical value of Tcr for the 3P2 nn pairing is
TBCS
cr ∼ 0.1–1 MeV, cf. [28]. Contrary, Ref. [32] with

taking into account of the polarization effects estimated
Tcr ≲ 10 keV for the 3P2 nn pairing. Values of the Fermi
liquid parameters for the isospin-asymmetric nuclear matter
in the pairing channel at n ≠ n0, as well as their density
dependence, are poorly known. Only rough estimates were
performed, cf. [57]. Bearing this in mind, in our estimates
we consider Tcr as a free parameter, which we vary in the
range TBCS

cr ∼ ð0.01–1Þ MeV.
Values of the parameters used in Eq. (174) were

calculated in the weak-coupling limit (BCS) [54,104,105],

ᾱBCS0 ¼ Nð0Þ=3; β̄BCS1 ¼ 0;

β̄BCS2 ¼ −β̄BCS3 ¼ 4jβj ¼ 7ζð3ÞNð0Þ
60π2T2

cr
: ð209Þ

Here Nð0Þ ¼ m�
FpF=ð2π2Þ is the density of states with

m�
F standing for the effective fermion mass and pF is the

Fermi momentum, ζðxÞ is the Riemann function, and
ζð3Þ ≈ 1.202. In the approximation of a symmetry of the
particles and holes on the Fermi surface, the coefficients c1,
c2, and c3 approximately coincide [23]

cBCS1 ≃ cBCS2 ≃ cBCS3 ≃
7ζð3ÞNð0Þ
120π2

ϵF
m�

FT
2
cr
≡ c; ð210Þ

where ϵF is the Fermi energy, ϵF ¼ p2
F=2m

�
F. Exploiting the

presence of a slight asymmetry of the particles and holes
near the Fermi surface (jc2 − c3j=c2 ≪ 1), Refs. [23,106]
estimated

c2 − c3 ≃ cðTcr=ϵFÞ2 lnðϵF=TcrÞ: ð211Þ

As for T in the vicinity of Tcr as for T ≪ Tcr, with a
logarithmic accuracy [18,22], we obtain

ηBCS�2 ¼ 1

3
μpairN0ð0Þ ln ϵF

Tcr
: ð212Þ

We used that Δ2 ¼ 2ja�2j2=3 for the pairing in mJ ¼ �2
states, Δ is the pairing gap. The quantity N0ð0Þ is the
derivative of the density of states with respect to the energy,
N0ð0Þ ¼ Nð0Þ=2ϵF, μpair is the magnetic moment of the
Cooper pair.
Following an estimate [54], in the BCS theory γ̄BCS < 0

for the mJ ¼ 0 phase. The coefficients in the fA6g
contribution to the Gibbs free energy are δG6ðmJ ¼ 0Þ ¼
γ̄1ðTrA2Þ3 þ γ̄2TrðA6Þ, and

γ̄BCS2 ¼ 4

5
γ̄BCS1 ¼ −

31

16

ζð5Þ
35

Nð0Þ
π4T4

cr
; ð213Þ

where ζð5Þ ≈ 1.0369, that forces to keep A8 term in
expansion of G. Reference [56] uses a more complicated
structure of the A6 term and keeps A8 term in expansion
of G. To avoid these complications in our rough numerical
estimates, e.g., for mJ ¼ −1 and −2, we take δG6ðmJ ¼
−1Þ ¼ γ̄BCSðmJ ¼ −1Þja−1j6, δG6ðmJ¼−2Þ¼ γ̄BCSðmJ¼
−2Þja−2j6 with γ̄BCSi ¼ jγ̄BCS2 j taken in modulus. Certainly,
within such a simplified analysis, we disregard a
possibility of existence of some other phases, which
may appear in a sequence of the first-order phase tran-
sitions. Using (171), we find that jγ̄BCSj ≪ 1 for jtj ≪ 1.
Then, dealing with the phase B, we may use expressions
for jγ̄BCSj → 0.
With the BCS parameters (209), stability conditions

(180) are fulfilled in a case of a weak external
magnetic field H for all the subphases 3P2ð0Þ,
3P2ðsymÞ, 3P2ð�1Þ, and 3P2ð�2Þ considered above.
Also, in the BCS approximation, the value Tcr is the same
for all these phases.
Actual values of the parameters of the Ginzburg-Landau

functional in the strong coupling theory are poorly known.
Only rough estimations have been performed [57]. Existing
estimates of the gradient terms are controversial.
Reference [15] calculated for the triplet superconductivity
in 3D Dirac semimetals c3 ¼ ½uL − uT �=4, c1 ¼ uT=4,

c2¼0, uL¼uT=32, uT ¼ 7ζð3ÞNð0Þv2F
15π2T2

cr
, i.e., c1≃−c3, c2 ¼ 0,

and derived values b1 ¼ 7ζð3ÞNð0Þ
640π2T2

cr
and b2 ¼ −b1=3,

Δi ¼ ψ i=2, vF is the Fermi velocity. As one of the
choices (E2 model), Ref. [2] employs c2 ¼ c3 ≪
c1 ∼ Nð0Þv2F=ðπ2T2

crÞ that does not contain a small numeri-
cal prefactor appeared in estimate [23,106]. On the other
hand, the heat capacity measurements performed for UPt3
by several groups give b2=b1 ¼ ð0.2–0.5Þ, cf. [2,98]. We
remind that neglecting uL contribution one recovers the
relation c1 ¼ −c3, as follows from the microscopical
consideration of the W boson fields [74].
If there were β̄3 > 0, with the same BSC estimates for

other parameters the phase B would be preferable even for
H ¼ 0 and for T < Tcr.
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A. 3P2 nn pairing in neutron stars

For the nn pairing in the subphase 3P2ð0Þ-A following
(184) and (185) with values of the parameters estimated
within the BCS approximation (209), we find

jaBCS0 j2 ¼ 20π2

7ζð3ÞT
2
crt; GBCS

0 ¼ −
10π2Nð0Þ
21ζð3Þ T2

crt2:

ð214Þ

For the nn pairing in the subphase 3P2ð0Þ-B using
μpair¼μnn¼−3.83μN , μN ≈ 4.5 × 10−5=MeV, for n∼n0
and Tcr∼ð0.01–1ÞMeV following (212), we estimate ηBCS∼
∓ ð10−2–10−1Þ, ∓ηBCS�2 H=ᾱ∼�3×ð10−2–10−1ÞH=m2

π ,
and we obtain ðTB3H

cr − TcrÞ=Tcr ≲ 3 × 10−1 for H ≲m2
π

for all relevant values Tcr. From Eqs. (187) and (188), we
obtain (for β̄2 > 2πη̃2 which is indeed fulfilled)

jaB3H
−2;BCSj2 ¼

1
2
jaBCS0 j2ν−2
1 − T2

cr
T2
μ;−2

; ð215Þ

GB3H−2;BCS ¼
1
2
GBCS

0 ν2−2

1 − T2
cr

T2
μ;−2

; ð216Þ

cf. also Eqs. (202) and (203) at e� ¼ 0. We used that

ν−2 ¼ 1 − ηH=ᾱ ð217Þ

is positive for relevant values H ≲m2
π and that

Tμ;−2 ¼
�
21ζð3Þ
20π

�
1=2 v3=2F

jμnnj ln ϵF
Tcr

; ð218Þ

vF ¼ pF=m�
n. We estimate Tμ;−2≃2×103ðv3=2F = ln ϵF

Tcr
ÞMeV.

At n ∼ n0 ≃ 0.16=fm3, we have vF ∼ 0.4 and Tμ;−2 ≃
500= ln ϵF

Tcr
MeV ≫ Tcr. Thereby, β̄2 > 2πη̃2, as we have

used deriving (215) and (216) and we indeed deal with the B
phase rather than with the C phase.
We see that GBCS−2;B3

≃ 1
2
G0. Similarly, GBCS−1;B ≃ 2

3
G0.

Therefore, if the BCS estimates (209) were correct, the
subphases 3P2ð−2Þ-B and 3P2ð−1Þ-B of the nn pairing
would not be realized in the neutron stars for T < Tcr

till ν−2 > 1=
ffiffiffi
2

p
and ν−1 >

ffiffiffiffiffiffiffiffi
2=3

p
. However, in the temper-

ature interval, Tcr < T < TB3H
cr , where the A phase is

impossible, the 3P2ð−1Þ-B3 subphase is realized in
any case.
Using the relation b2 ¼ −b1=3 derived in [15] for the

description of the superconductivity in 3D semimetals, that
corresponds to the relation β̄3 ¼ −β̄2=3 in the functional
(176), with β̄1 ¼ 0, we evaluateGBCS−1;B ≃ 11

12
G0, i.e.,GBCS−1;B is

only slightly larger than G0.

On the other hand, with β̄3=β̄2 > 0, as follows from
experiments on UPt3, for T < Tcr and in the temperature
interval Tcr < T < TB3H

cr , the 3P2ð−1;−2Þ-B3 subphases
are energetically favorable compared to the A phase.
As we have mentioned, the heat capacity measurements

performed for UPt3 by several groups give b2=b1 ¼
ð0.2–0.5Þ, cf. [2,98]. Choosing estimate of b2 ¼ b1=2, that
corresponds to β̄3 ¼ þβ̄2=2, we find that GBCS−2;B3

≃ 5
4
G0

and GBCS−1;B ≃ 9
8
G0. With these estimates, the subphase

3P2ð−2Þ-B of the nn pairing would be realized in the
neutron stars for 0 < T < TB3H

cr .
With the help of Eqs. (186) and (188) and making use of

the estimate (215), we find

hB3

−2 ¼
ϵF
jμnnj

2jtj T2
cr

T2
μ;−2 ln

ϵF
Tcr

ð1 − T2
cr

T2
μ;−2

Þ
: ð219Þ

We have put ν−2≃1, ϵF=jμnnj≈5.7×103½ϵF=MeV�MeV2≈
8.3×1016½ϵF=MeV�Gs. Thus, for T2

cr=T2
μ;−2 ≪ 1, we

estimate hB3

−2 ∼ 1011jtjð Tcr
MeVÞ2 ϵF

MeV Gs for n ¼ n0. For
Tcr ∼ 1 MeV, we estimate h ∼ 1013 Gs. Note that, as we
have shown, hðH ¼ 0Þ ∝ jaB3

−2ðxÞj2 and thereby it vanishes
at the superfluid—normal matter boundary. If by some
reason the field h had a magnetic-dipole component
outside the superfluid star interior, the neutron star
would substantially diminish its rotation during first
∼ð103–104Þ years of its evolution. At least millisecond
pulsars should not have such a strong magnetic-dipole
fields. For Tcr ≲ 10 keV, cf. [32], we estimate h≲ 109 Gs,
which value in any case does not contradict to the data on
millisecond pulsars.

B. Estimates for hypothetical 3P2 pp pairing
in neutron stars

Since e�ðc1 þ c3Þ ∼ 4 × 10−5ðmπ=TcrÞ2 for n ∼ n0,
for Tcr ∼ ð0.01–1Þ MeV using (201), we estimate
η̃�1 ∼ η̃�2 ∼ −ð1–104Þ, being valid for the 3P2ð2Þ-B and
3P2ð1Þ-B subphases of the pp pairing. Making use of this
estimate and (209), we see that the condition (200) is
fulfilled for all values Tcr of our interest. Thus, C phase is
not realized. The value TB3H

cr proves to be significantly
shifted up for Tcr ∼ 0.01 MeV already for H ≳ 1014 Gs.
For a higher value H, the B3 subphase becomes energeti-
cally profitable compared to the A phase, as it follows from
Eqs. (203) and (185). With the help of (202) and (204), we
roughly estimate the value of the own magnetic field as
h ∼ 1016 Gs. Recall that at the surfaces of the magnetars the
strength of the magnetic field reaches values h ≲ 1016 Gs.
For Tcr ∼ 1 MeV, the value TB3H

cr is significantly shifted up,
respectively, Tcr only for H ≳ 1018 Gs.
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Reference [42] expressed an idea about a possibility of
the triplet 3PF2 pp pairing in the hyperon enriched dense
region. Then one should study a coexistence of the
considered above phases of the nn pairing and those
available for the pp pairing.

C. Estimates for 3S1 np pairing
in isospin-symmetrical systems

The 3S1 channel provides the largest attractive inter-
action for the triplet np pairing in the isospin-symmetrical
matter for n ≲ n0. With increasing density, the 3D2 channel
becomes most attractive, cf. [31]. The BCS calculations for
the symmetric matter with polarization effects included
[66] predict the np pairing gaps ∼ðseveral − 10Þ MeV. As
for the 3P2 pp pairing, the own magnetic field in the B3

subphase is estimated as h ∼ 1016 Gs. In this phase, the
nucleon matter is spin polarized that might be checked
experimentally. For example, in peripheral heavy-ion
collisions of approximately isospin-symmetric nuclei,
where the temperature is rather low, the spin-triplet np
pairing in the 3S1 channel can be formed. Moreover, in
peripheral heavy-ion collisions, the external magnetic field
reaches values 1017–1019 Gs, cf. [60,61]. In such strong
fields, the value TB3

cr might be significantly larger than Tcr,
favoring np pairing in the 3S1 channel. Also, the np pairing
in the 3SD1 state is possible in the nuclei [65,66].

VIII. CONCLUSION

This paper studies effects of the vector-boson conden-
sation and spin-triplet superfluidity and superconductivity,
such as ferromagnetic superfluidity, as well as the effects of
the 3P2 nn and pp pairing in the neutron-star matter and the
3S1 np pairing in the isospin-symmetrical matter in the
absence and in the presence of the external static uniform
magnetic field. Possible effects of the self-rotation and
response of the system on “external” rotation were for
simplicity disregarded and will be considered elsewhere.
We started in Sec. II with the description of the

condensation of the complex scalar field characterized
by a negative squared effective mass inside a half-space
medium x < 0, placed in an external static uniform
magnetic field. Next, we considered a role of the
Zeeman coupling for neutral fermions and discussed a
possibility of the existence of the ferromagnetic state in the
fermion matter (e.g., in the neutron star matter).
In Sec. III, focus was made on the study of the complex

neutral and charged vector-boson fields with negative and
positive squared effective mass. A possibility of existence
of the A, B, and C phases was found. In the phase A, the
mean spin density is zero and in the phase B spins are
aligned in one direction. The simplest choice to describe
the phase A is to chose only one Lorentz component
of the complex vector field to be nonzero. The C phase is

not realized provided the hadron-hadron coupling con-
stant Λ ≫ e2.
The behavior of the charge-neutral complex vector-

boson field inside the half-space medium x < 0was studied
in the presence of the uniform static external magnetic field.
Two A subphases are then permitted for m2

sc < 0: A2

provided the y component of the vector-boson field is
nonzero and A3, provided z component is nonzero. The
vector-boson field and the magnetic field decouple and
the Gibbs free energies in the subphases are the same. Thus,
the A phase of the neutral vector bosons is nonmagnetic.
For m2

sc > 0, there is no condensate.
In the phase B, which is described by two nonzero

complex components of the neutral vector-boson field, the
system behaves as a ferromagnetic superfluid. In the
condensate region, there appears an own static magnetic
field. We considered the matter filling half-space x < 0 in
the presence of the external uniform static magnetic field
either directed parallel to the system boundary or
perpendicular to it.
In the subphase B2 for H⃗ky (i.e., parallel to the system

boundary and to the direction of the spin) and in the
subphase B3 for H⃗kz and spin parallel z, the condensate
amplitude grows with H. At H > Hneut

cr , cf. Eq. (38), the
superfluid condensate exists not only for m2

sc < 0 but also
for m2

sc > 0. Which phase A or B is energetically favorable
depends on the form of the self-interaction term in the
Lagrangian. For the very same values m2

sc, with the self-
interaction in the form (18) for ξ1 ¼ 0, the phase B proves
to be energetically preferable in comparison with the
phase A.
We demonstrated that the difference in the volume and

surface energies for the subphases motivates a possibility of
the existence of domains with different directions of the
magnetic moment in each domain. Domains may merge in
the presence of the external fields.
Then we studied the behavior of the charged complex

vector field interacting with the electromagnetic field by the
minimal and the Zeeman couplings. As for neutral vector
bosons, we first considered charged complex vector field
with the negative squared effective mass, m2

ef < 0, in the
half-space x < 0 under the action of the external static
uniform magnetic field H⃗.
For the state with zero spin density (A phase) for H⃗

perpendicular to the system boundary (H⃗kx), the subphase
A2 demonstrates superdiamagnetic response on a weak
external magnetic field, as at H⃗kz for the charged scalar
boson field, and for H⃗ parallel to the system boundary
(H⃗kz) the subphase A2 is nonmagnetic, as for a neutral
complex vector-boson field. The phase A3 demonstrates
superdiamagnetic response for a weak external magnetic
field H⃗kz and it is nonmagnetic for H⃗kx. The Gibbs free
energies for the subphase A2 at H⃗kz and for the subphase
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A3 at H⃗kx are equal, and they are lower than those for the
subphase A2 at H⃗kx and for the subphase A3 at H⃗kz. There
are no solutions in case of the charged complex vector field
in the phase A at m2

ef > 0.
Then we found solution for the subphase B3 at H⃗kz. In

this case for H < Hcr1, there exists ordinary Meissner
effect. However, for increasing H, we did not find a
solution with H ¼ Hcr2, such that the condensate vanishes
for H → Hcr2 from below. For m2

ef > 0, the superconduc-
tive condensate appears for H > Hcr2. For H ≠ 0, the
nonmagnetic A2 subphase for H⃗kz and A3 subphase for
H⃗kx are more energetically preferable compared to the B3

subphase for H⃗kz, whereas for H → 0 the subphase B3

wins due to a smaller surface energy, if the system occupies
a finite size layer.
In Secs. IV–VI, the focus is made on the description of

the spin-triplet pairing of neutral and charged fermions
coupled with the magnetic field by the Zeeman coupling.
First, in Secs. IV and V, we considered the case, when the
spin of the pair can be treated as a conserved quantity. This
is the case for a negligibly small spin-orbit interaction (as
for 3S1 np pairing in isospin-symmetrical nuclear matter).
Then the order parameter is a vector with complex
components and the description is similar to that for the
spin 1 vector bosons considered in Sec. III: the vector order
parameter is characterized by the two complex vectors of
different amplitudes.
In Sec. IV, we consider triplet pairing of neutral

fermions. In the p-wave triplet phase with zero projection
of the spin of the pair on a quantization axis (the phase A),
the two unit vectors n⃗ and m⃗ characterizing the vector
order parameter are collinear. The A phase appears for
b1 þ b2 > 0 by the second-order phase transition for the
temperature T < Tcr [b1 and b2 are coefficients at the ψ4

terms in the free energy, cf. Eq. (55)]. In the absence of
the external magnetic field [for b2 þ 2πC2M2 < 0, where
CM is the appropriately normalized effective magnetic
moment of the fermion pair, cf. Eq. (55)], the A phase
proves to be stable. In difference with the case of the vector
bosons considered in Sec. III, where the A1 subphase is not
realized, for the triplet pairing of fermions all three
subphases can be realized, with the same volume contri-
bution to the energy. The surface energies in subphases A2

and A3 are the same, whereas the surface energy in the A1

subphase is another. The vector n⃗km⃗ may change the
direction depending on the spatial point, since the surface
contributions to the Gibbs free energy depend on the
direction of the vector order parameter relatively to the
surface boundary. Owing to this property, there may appear
domains with different directions of n⃗ in each domain.
In the presence of the domains, the system remains for a
while in a metastable state. The system may transform to
the uniform state under the action of the external magnetic
field and in the presence of the external rotation, or the

energetic barrier can be overcame by a heating of the
system.
We have shown that with an increase of the external

magnetic field the system from the phase A transforms to
another phase (labeled as AH), such that there appears an
angle between vectors n⃗ and m⃗ growing with increase ofH.
The critical temperature of the phase transition also is
increased with the growth of H. For T < Tcr, not all spins
of Cooper pairs are aligned in the direction parallel H⃗,
and in the temperature interval Tcr < T < TAH

cr all spins
prove to be aligned in the direction parallel H⃗. The AH
phase exists at H ≤ HAH

cr for T < Tcr, cf. Eq. (78), and at
H ≥ HAH

cr for Tcr < T < TAH
cr , cf. Eq. (82).

Besides the A phase, we found a possibility of the
ferromagnetic superfluid phases B and C in neutral super-
fluids characterized even for H ¼ 0 by the þ1 or −1
projections of the spin of the Cooper pair on the quantiza-
tion axis. Here, the vector order parameter is the sum of two
perpendicular vectors, i.e., here n⃗⊥m⃗. The phase B appears,
if b2 > 2πC2M2 and b1 > 2πC2M2, cf. Eq. (84), and the
C phase occurs, if b2 > 2πC2M2 but b1 < 2πC2M2,
cf. Eq. (85). The A and B phases arise by the second-
order phase transitions, whereas the C phase appears by
the first-order phase transition. For simplicity, we put
TA
cr ¼ TB

cr ¼ Tcr, whereas TC
cr ≠ Tcr, since the phase tran-

sition to the phase C proves to be of the first order. The B
and C phases of neutral superfluids are characterized by
an own uniform magnetic field. For some values of
parameters at T < Tcr, the B or C phase wins a competition
with the phase A; for other values of parameters, the A
phase wins. For T < Tcr, the condensate amplitude
grows with increasing H. The subphases B and C may
exist for Tcr < T < TB3H

cr ; TC3H
cr , where TB3H

cr ; TC3H
cr > Tcr,

cf. Eqs. (97) and (104) provided H > HBH
cr2 , cf. Eq. (98).

Then, in Sec. V, we studied the spin-triplet pairing of
charged fermions. Here, as in case of neutral superfluids,
there may exist the A, B, and C phases. In the A3 subphase,
the spin-triplet superconductor, occupying half-space
x < 0, placed in uniform external magnetic field parallel
z behaves as an ordinary second-order superconductor
characterized by the Ginzburg-Landau parameter κA3

(we
considered the case κA3

≫ 1). The subphases A1 and A2

have some peculiarities. The critical values of the magnetic
field, HA1

cr1, H
A2

cr1 and HA1

cr2, H
A2

cr2, are characterized by the
two Ginzburg-Landau parameters κ1;A1

≫ 1, κ1;A2
≫ 1 and

κ2;A1
, κ2;A2

in each case.
Then focus was made on the description of the B3

subphase. We solved the variational problem using the
Abrikosov Ansatz (147) for the probe functions. It was

demonstrated that the value ⃗M̃ ¼ CM⃗ − n⃗3e�ðc1 þ c3Þ,
cf. (154), gets sense of the effective magnetic moment, e� is
the effective charge of the fermion pair, c1 and c3 are the
coefficients at the gradient contributions to the free energy,
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n⃗3 is the unit vector parallel z. For T < Tcr and M̃ > 0, the
condensate exists for any value of H and for Tcr < T <
TBH
cr the condensate exists also for H > HB

cr2, cf. Eq. (146)
and (154). For M̃ < 0, the condensate exists only for
T < Tcr and H < HB

cr2. Similarly, the subphase C3 may
exist in a certain temperature interval above Tcr.
Then, in Sec. VI, we studied the 3P2 pairing in nuclear

systems. Due to a strong spin-orbit nn interaction, 3P2
phase of the nn pairing is supposed to exist in the baryon
density interval 0.8n0 ≲ n≲ ð3 ÷ 4Þn0 in the neutron star
interiors. We focused on cases when the projection of the
total angular momentum on quantization axis is fixed as
mJ ¼ 2; 1; 0;−1, or −2, and also we considered a sym-
metric phase. It was demonstrated that the subphase
mJ ¼ 0 and symmetric subphase (labeled 3P2ð0Þ-A and
3P2ðsymÞ-A) are described similarly to the subphases of the
phase A. The subphases mJ ¼ 1 and 2 (and −1 and −2) are
described similarly to the subphase B3, and then we label
them as 3P2ð�1Þ-B3, 3P2ð�2Þ-B3, or to the subphase C3.
For the nn pairing in the mentioned subphases, the
description is similar to that for the neutral complex
vector-boson field and for the pp pairing it is similar to
the case of the charged complex vector-boson field.
The values of the parameters of the Gibbs free-energy

functional for strongly interacting systems are unknown
because of the absence of sound microscopic calculations
with inclusion of the polarization effects. However, these
parameters can be easily evaluated in the BCS weak-
coupling approximation exploiting the bare pairing poten-
tials. In Sec. VII, within the BCS approximation and
beyond it we performed some estimates relevant for the
3P2 nn and pp pairings in the neutron star matter and for
the 3S1 np pairing in the isospin-symmetric nuclear matter.
We found at which conditions the ferromagnetic superfluid
phases characterized by own magnetic field prove to be
energetically favorable.
A lot of work remains to be done. Let me list some

problems related to the spin-triplet superfluidity in nuclear
systems. In the paper body, only simplest available phases
of the 3P2 nn pairing were studied, whereas some other
phases may also exist. Calculations of parameters of the
Ginzburg-Landau functional are very desirable. A possibil-
ity of the ferromagnetic color superconductivity in hybrid
stars should be studied. Gluons become massive in the
hot quark-gluon plasma and may form vector field con-
densates at some conditions. Question about a possibility of

a self-rotation in ferromagnetic superfluids was not con-
sidered, as well as the response of the spin-triplet superfluid
sub-system on the rotation of the normal component.
Another interesting issue is the problem of the neutron
star cooling with taking into account a possibility of the
ferromagnetic superfluidity and superconductivity includ-
ing effects on the cooling of millisecond pulsars, cf. [107],
and strong magnetic fields for magnetars. If the 3P2 nn
pairing were realized in the mJ ≠ 0 state, the neutron
specific heat and the neutrino emissivity of the nucleon
involved processes would decrease with decrease of the
temperature as a power of the temperature rather than
exponentially, since the gap vanishes at the Fermi sphere
poles. This was noticed in [108] and in [53], and then
considered in a more detail in [109]. However, all presently
existing neutron star cooling scenarios explored 3P2 nn
pairing in mJ ¼ 0 state, since mechanisms for the for-
mation of the nn pairs in the mJ ≠ 0 states were not yet
explored, cf. [40,41,53,109]. Possibilities of the 3P2 pp,
hyperon-hyperon and Δ isobar—Δ isobar pairings in
interiors of sufficiently massive neutron stars should be
additionally investigated. Triplet pairing in nonequilibrium
systems should be studied. Spin-polarization effects owing
to the possibility of a feasible 3S1 np pairing in peripheral
heavy-ion collisions were not yet considered. The presence
of magnetic fields of the order of ð1017–1019Þ Gs,
cf. [60,61], and of high angular momenta in peripheral
heavy-ion collisions may act in favor of the spin-triplet
pairing. Novel spin-triplet subphases can be formed during
very low energy collisions of normal and superfluid nuclei
and in the rotating nuclei. Energetically, favorable transitions
from one phase to another one may result in an increase of
the duration of the process of the collision of nuclei. In
neutron star interiors, the magnetic field may reach values
∼1018 Gs. At such conditions, the charged ρ meson con-
densates may appear, may be forming a ferromagnetic
superfluid. A further more detailed quantitative study is
welcome to answer these and other intriguing questions.
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