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We investigate the conformal window of four-dimensional gauge theories with fermionic matter fields
in multiple representations. Of particularly relevant examples are the ultraviolet complete models with
fermions in two distinct representations considered in the context of composite Higgs and top partial-
compositeness. We first discuss various analytical approaches to unveil the lower edge of the conformal
window and their extension to the multiple matter representations. In particular, we argue that the scheme-
independent series expansion for the anomalous dimension of a fermion bilinear at an infrared fixed point,
γχ̄χ;IR, combined with the conjectured critical condition, γχ̄χ;IR ¼ 1 or equivalently γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1,
can be used to determine the boundary of conformal phase transition on fully physical grounds. In
illustrative cases of SUð2Þ and SUð3Þ theories withNR Dirac fermions in various representations, we assess
our results by comparing to other analytical or lattice results.
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I. INTRODUCTION

The existence of a nonzero infrared (IR) fixed point in
the renormalization-group (RG) beta function of asymp-
totically free gauge theories in four dimensions with a
sufficient number of massless fermions Nf for a given
number of colors Nc has been of particular interests recent
years because of its potential application to phenomeno-
logical model buildings in the context of physics beyond
the standard model (BSM), as well as its distinctive feature
of conformal phase in contrast to the nonconformal phase
as in quantum chromodynamics (QCD). A perturbative
calculation at the two-loop order in the weak coupling
regime of such theories finds an interacting IR fixed point
[1], known as the Banks-Zaks (BZ) fixed point, named after
their work on the phase structure of vector-like gauge
theories with massless fermions at zero temperature [2].
As we vary the ratio of Nf=Nc, treated as a continuous
variable, the IR fixed point either approaches zero, at
which the theory loses the asymptotic freedom and
becomes trivial, or runs away into the strong coupling
regime where the perturbative expansion breaks down. For
sufficiently small values of the ratio we expect the theory is
in a chirally broken phase, that implies the presence of a

zero-temperature quantum phase transition between the
conformal and chirally broken phases at a critical value of
the ratio. A finite range of the number of flavors for which
the theory has a nonzero IR fixed point is called conformal
window, and the chirally-broken theories near the phase
transition are expected to have quite different IR dynamics,
compared to QCD-like theories.
Near-conformal dynamics is ubiquitous in BSM models

of which the underlying ultraviolet (UV) theory is a novel
strongly coupled gauge theory. One of its crucial features is
a large anomalous dimension of relevant composite oper-
ators. In walking technicolor which is supposed to have a
slowly evolving coupling and thus provides a large sepa-
ration in the scale between the chiral symmetry breakingΛχ

and the confinement ΛTC, a large anomalous dimension
of the chiral order-parameter is expected to achieve the
dynamical electroweak symmetry breaking while naturally
avoiding constraints from the flavor physics [3–6].
Similarly in the composite Higgs models, which realize
both the pseudo Nambu-Goldstone bosons (pNGB) Higgs
[7–9] and the partial compositeness for the top quark [10], a
large anomalous dimension of baryonic operators linearly
coupled to the standard model (SM) top quark is assumed
to explain the relatively large mass of top quark, compared
to other quarks. This idea was originally proposed in the
framework of warped extra dimensions [11,12], and the
corresponding minimal models have been extensively
studied in various phenomenological aspects at the level
of effective theories (see [13,14] for reviews, and references
therein). However, it is relatively recent to consider the
realistic candidates for the four-dimensional UV complete
models based on strongly coupled gauge theories, contain-
ing two different representations of fermionic matter
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fields [15–17].1 The anomalous dimension of the baryonic
operators for the top-partner was calculated at one-loop in
the perturbative expansion for some of these models [19]
and also for the relevant IR-conformal theories [20].
Furthermore, substantial efforts have been devoted to
investigate the low-energy dynamics of this kind of theories
from the first-principle Monte Carlo (MC) lattice calcu-
lations, in particular for SUð4Þ [21–26] and Spð4Þ [27–30]
gauge theories.
The other common nontrivial features of near-conformal

gauge theories are the emergence of a light scalar reso-
nance. Such a new degree of freedom at low energy may
be identified as a dilaton arising from the spontaneous
breaking of scale symmetry, and can be used to extend the
Higgs sector of the standard model of particle physics
[31–41]. Interestingly, recent lattice studies of SUð3Þ gauge
theories with 8 fundamental Dirac fermions [42–45], as
well as 2 two-index symmetric Dirac fermions [46–50],
performed with moderate sizes of the fermion mass found a
relatively light scalar in the spectrum. There have been
several attempts to analyze these results within a low-
energy effective field theory (EFT) [51–56]. The dilaton
potential also inherently possesses the possibility of a
strong first-order phase transition at a finite temperature,
needed for the electroweak baryogenesis [57,58] and the
supercooled universe [59–62] in the context of composite
Higgs scenarios.
While phenomenological model buildings could be

carried out under some working assumptions, utilizing
the qualitative features of near-conformal dynamics at low
energy, in order to explore its properties fully it is necessary
to perform quantitative studies from the underlying
strongly-coupled gauge theories. As mentioned above,
lattice MC calculations are highly desired in this respect,
where most of the modern technologies developed for the
lattice QCD can be applied without additional difficulties.
However, lattice calculations are expensive and thus practi-
cally not suitable to explore all the possibilities in the
theory space at arbitrary numbers of Nc and Nf. Therefore,
any analytical calculations that map out the conformal
window are greatly welcome to find the most promising
UV models of the near-conformal dynamics. While various
analytical proposals are made in the literature [63–65]
besides the traditional Schwinger-Dyson analysis, we
propose in this paper to use the critical condition on the
anomalous dimension of a fermion bilinear operator at an
IR fixed point, γIR ¼ 1 or equivalently γIRð2 − γIRÞ ¼ 1, for
the conformal phase transition to occur. We do not claim
the originality of this idea: in Ref. [66] the conformal
window of SUðNÞ gauge theory with Nf fundamental

fermions was described by using the critical condition,
calculating the anomalous dimension in the loop expan-
sion. We instead emphasize that it becomes an alternative
method to map out the conformal window in a scheme-
independent way if we adopt the series expansion of γIR
recently developed by Ryttov and Shrock [67–73]. We find
that this method is particularly useful to discuss the
sequential condensates of fermions in different representa-
tions, which are expected in the near-conformal theories.2

Although we restrict our attention to the case with fermions
in the two different representations, relevant to the
composite Higgs models as summarized in Ref. [74], the
methodology discussed in this work can be straightfor-
wardly extended to the case with fermions in any number of
representations.
The paper is organized as follows. In Sec. II we provide

some general remarks on the conformal window for a
generic non-Abelian gauge theory with fermions in multi-
ple representations. We then describe several analytical
methods, studied in the literature to determine the lower
bound of the conformal window. We also revisit the critical
condition of the anomalous dimension of the fermion
bilinear operators for chiral symmetry breaking. In
Sec. III we briefly review the scheme-independent calcu-
lation of γIR for gauge theories with fermions in one or two
different representations, and determine the lower bound
of the conformal window in the exemplified cases of SUð2Þ
and SUð3Þ gauge theories with NR Dirac fermions in
various representations. We assess our results by comparing
to several scheme-dependent calculations as well as other
analytical or lattice results. We also discuss the conver-
gence of the scheme-independent expansion for the critical
condition. In Sec. IV we present our main results on the
conformal window for the two-representation gauge theo-
ries, relevant to the composite Higgs models and the top
partial-compositeness. We present some results on the
group invariants used to compute the coefficients of the
scheme-independent series expansions in Appendix A, and
the lower-order results for the conformal window in
Appendix B. Finally, we conclude by summarizing our
findings in Sec. V.

II. CONFORMAL WINDOW:
ANALYTICAL APPROACHES

We start by providing a general remark on the conformal
window of four-dimensional gauge theories containing

1Even if they are not near conformal, the two-representation
composite Higgs models usually have additional light and non-
anomalous pseduoscalars that have interesting phenomenological
signatures at the colliders, as studied in [18].

2The chiral symmetry breaking of fermions in one representa-
tion might induce the chiral symmetry breaking of other repre-
sentation through the gauge interactions. For the near conformal
dynamics, however, because the gauge coupling remains almost
constant for a wide range of scales between the chiral symmetry
breaking and the dynamical mass generation, such effect is
negligible. Only after the chirally broken fermions decouple, the
gauge coupling becomes strong enough to break the other chiral
symmetry.
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fermionic matter in the multiple representations with
fNRi

g, i ¼ 1; 2;…; k, denoting a set of the number of
flavors in the representation Ri. In a small coupling regime,
the perturbative beta function is given in powers of the
gauge coupling α ¼ g2=ð4πÞ as

βðαÞ≡ ∂αðμÞ
∂ ln μ ¼ −2α

X∞
l¼1

bl

�
α

4π

�
l
; ð1Þ

where bl is the l-loop coefficient and μ is the renormaliza-
tion scale. The coefficients of the lowest two terms, b1
[75,76] and b2 [1], are renormalization scheme-independent
and given as

b1 ¼
11

3
C2ðGÞ −

4

3

Xk
i¼1

NRi
TðRiÞ; ð2Þ

and

b2 ¼
34

3
C2ðGÞ2 −

4

3

Xk
i¼1

ð5C2ðGÞ þ 3C2ðRiÞÞNRi
TðRiÞ:

ð3Þ

The generators in the representation Ri of an arbitrary gauge
group G are denoted by Ta

Ri
, a ¼ 1;…; dðGÞ, where dðGÞ

is the dimension of the adjoint representation. The trace
normalization factor TðRiÞ and the quadratic CasimirC2ðRiÞ
are defined through Tr½Ta

Ri
Tb
Ri
� ¼ TðRiÞδab and Ta

Ri
Ta
Ri
¼

C2ðRiÞI, respectively. These two group-theoretical factors
are related by C2ðRiÞdðRiÞ ¼ TðRiÞdðGÞ. Note that bl with
l ≥ 3 are known to be scheme-dependent. For the general
discussions in this and the following section we use NRi

for
the number of Dirac flavors in the representation Ri.
As far as the UV completion is concerned, we require the

theory is asymptotically free or b1 > 0. (We do not consider
the scenarios of UV safety in this work.) This condition
leads to the maximum number of flavors above which we
lose the asymptotic freedom. For a single representation, it
is given by NR ¼ ½NAF

R �, a largest integer but smaller than
NAF

R with

NAF
R ¼ 11C2ðGÞ

4TðRÞ ; ð4Þ

while for the k number of representations they span the
points on the (k − 1)-dimensional surface in the space of
fNRi

g with i ¼ 1; 2;…; k, that satisfies b1 ¼ 0. Since most
of the discussion below is independent of whether the
representations are multiple or not, we simply consider a
single representation R unless multiple representations
are explicitly needed. For a sufficiently small and positive
value of b1, the theory develops a nonzero IR fixed point
(BZ fixed point), if the two-loop coefficient b2 is negative,

αBZ ≃ −4π
b1
b2

: ð5Þ

This perturbative analysis suggests the existence of the
conformal theory at small coupling α ¼ αBZ for NR

sufficiently large but still smaller than NAF
R so that b1 ≪ 1.

As we decrease NR, however, αBZ increases in general
and at some point the two-loop result is no longer
reliable. Higher order corrections should be then
included to extend the perturbative two-loop results,
but are largely limited due to its scheme dependence.
If αBZ ≳Oð1Þ, the perturbative expansion will break
down. Furthermore one has to take into account the non-
perturbative effects of the IR dynamics. Nevertheless, if
we keep decreasing NR, the (negative) slope of the beta
function at UV becomes large enough so that the theory
becomes strongly coupled at low energy and eventually
falls into the chirally broken phase. One of the extreme
case is pure Yang-Mills at NR ¼ 0, which is confining
therefore nonconformal. We therefore expect that there
is a finite range of the number of flavors NR, namely a
conformal window (CW), where the theory is conformal
in IR. While the upper bound of CW is identical to that
for losing the asymptotic freedom, ½NAF

R �, its lower
bound Nc

R is not easy to determine because of the
difficulties mentioned above. In the following sections,
we briefly discuss several analytical but approximate
approaches being used to determine the lower bound Nc

R
of CW. Of our particular interest is the one obtained
from the critical condition of the anomalous dimension
of fermion bilinear operators, discussed in Sec. II D.

A. 2-loop beta function

A naive estimation of the lower bound for CW comes
from the criterion that the coupling at the BZ fixed
point αBZ blows up to infinity. If we neglect the scheme-
dependent higher order corrections, from the 2-loop beta
function we find the condition b2 ¼ 0 for the lower bound.
Analogous to the upper bound of CW the solution lives on
the (k − 1)-dimensional surface for the multiple represen-
tations fR1; R2;…; Rkg. For a single representation, we
obtain a simple expression

Nc;2−loop
R ¼ 17C2ðGÞ2

TðRÞ½10C2ðGÞ þ 6C2ðRÞ�
: ð6Þ

B. (Traditional) Schwinger-Dyson approach
with the ladder approximation

It is well known that the Schwinger-Dyson (SD) gap
equation for the fermion propagator in the ladder (or
rainbow) approximation yields the critical coupling, a
minimal coupling strength required to trigger the chiral
symmetry breaking, given as
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αc ¼
π

3C2ðRÞ
: ð7Þ

The traditional way to determine the number of flavors for
the onset of chiral symmetry breaking is to equate the
2-loop IR fixed point, αBZ in Eq. (5), with αc, which gives
for the single representation R

Nc;SD
R ¼ C2ðGÞð17C2ðGÞ þ 66C2ðRÞÞ

TðRÞð10C2ðGÞ þ 30C2ðRÞÞ
: ð8Þ

Note that the critical coupling is inversely proportional to
C2ðRÞ. Furthermore, in near conformal theories with
fermions in the multiple representations, one expects the
fermions form chiral condensates sequentially, if they do:
the fermions in the representation having the largest value
of C2ðRÞ, denoted by R1, would first be integrated out from
the theory at some scale Λ1 when they develop a dynamical
mass. For μ < Λ1 the beta function will change to include
only the low-energy effective degrees of freedom except the
fermions in R1, and this procedure will sequentially occur
as we decrease the scale μ [77].3 In this case, therefore, the
theory will leave the conformal window when the IR
coupling αIR exceeds the critical coupling αR1;c for R1.

C. All-orders beta function

The coefficients of the lowest two terms in the perturba-
tive beta function do not depend on the renormalization
scheme, so does the lower bound, Nc

R, discussed in the
previous two sections. While this is no longer true if one
considers higher order terms in the beta function, it is
believed that there exists a certain scheme such that all higher
order terms (l ≥ 3) vanish or at least the beta function is
written in a closed form. Along the line of this idea all-orders
beta functions are suggested in Refs. [64,65], inspired by the
Novikov-Shifman-Vainshtein-Zakharov (NSVZ) beta func-
tion for supersymmetric theories [78]. The conjectured beta
function for generic gauge theories with Dirac fermions in
multiple representations, proposed in [64], is written in the
following form

βall‐ordersðαÞ ¼ −
α2

2π

b1 − 2
3

P
k
i¼1 TðRiÞNRi

γRi
ðαÞ

1 − α
2πC2ðGÞð1þ 2b0

1

b1
Þ

ð9Þ

where γRi
is the anomalous dimension of a fermion bilinear

for a given representation Ri, b01¼C2ðGÞ−
P

k
i¼1TðRiÞNRi

,
and b1 is defined in Eq. (2). For a single representation R,
using the leading-order expression for γRðαÞ, this beta
function reproduces the (universal) perturbative two-loop
results. Note that the IR fixed point is determined by taking
βall‐ordersðαÞ ¼ 0, which is physical in the sense that it only
involves scheme-independent quantities such as the anoma-
lous dimension γRi

.
In the case of the single representation R, the anomalous

dimension at the IR fixed point is given by

γIR ¼ 11C2ðGÞ
2TðRÞNR

− 2: ð10Þ

The lower bound of CW is typically determined by taking
γIR ¼ 2, implied from the unitarity [79]. Unfortunately, γIR
determined by Eq. (10) turns out to be inconsistent with the
perturbative result at the IR fixed point. A modified version
of the all-orders beta functions that resolves the incon-
sistency was later proposed in [65]. But now the unitarity
condition leads to too small values of Nc

R for the lower edge
of the conformal window, e.g., smaller than the value
obtained from Eq. (6), which shows the unitarity condition
is too weak.
In contrast to the case of a single representation, the all-

orders beta function provides no simple expressions for the
anomalous dimensions at the IR fixed point as in Eq. (10):
we rather have

2

11

Xk
i¼1

TðRiÞNRi
ð2þ γRi;IRÞ ¼ C2ðGÞ: ð11Þ

As for the single representation, the lower bound may be
obtained by applying the unitarity condition to all the
representations, γRi;IR ¼ 2 with i ¼ 1; 2;…; k. However,
this approach does not give any information on the
aforementioned sequential chiral symmetry breaking near
the lower edge of the conformal window. Note that in
general the anomalous dimensions of the fermion bilinears
in different representations are expected to have different
values at the IR fixed point.

D. Critical condition for the anomalous dimension
of a fermion bilinear

The critical coupling in Eq. (7) being equal to αBZ has
been widely used to estimate the phase boundary of the
conformal window. However, the essence of the critical
condition is actually hidden in the anomalous dimension of
the fermion bilinear at the IR fixed point γIR [66,80,81]. To
see this, let us recall the Schwinger-Dyson equation for the
massless fermions, where the full inverse propagator in the
momentum space is given as

3The sequential IR evolution of fermion condensates should
be understood as a conjecture, since no rigorous proof such as
lattice simulations for this kind of theories are performed yet.
Recently the SUð4Þ lattice gauge theory with 2 fundamental and 2
two-index antisymmetric Dirac fermions is studied at finite
temperature [24] to find that chiral symmetry breaking and color
confinement occur at the same critical temperature for the
fermions considered. As we will see in Sec. IV, however, this
theory is expected to be located deep inside the chirally broken
phase, far away from the conformal window.
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iS−1ðpÞ ¼ ZðpÞ=p − ΣðpÞ; ð12Þ

with ZðpÞ and ΣðpÞ being the wave-function renormaliza-
tion constant and the self-energy function, respectively. In
the Euclidean space the SD equation in the ladder approxi-
mation leads to the integral gap equation

ΣðpÞ ¼ 3C2ðRÞ
Z

d4k
ð2πÞ4

αððk − pÞ2Þ
ðk − pÞ2

Σðk2Þ
Zðk2Þk2 þ Σ2ðk2Þ :

ð13Þ
In the Landau gauge, Zðk2Þ ¼ 1, this equation can be
linearized by neglecting Σ2ðk2Þ in the regime of sufficiently
large momenta. The slowly varying coupling αðμÞ ≈ αIR,
which is the key assumption of near-conformal dynamics,
further simplifies Eq. (13) and one obtains two scale-
invariant solutions for Σðp2Þ of the form, ðp2Þ−γIR=2, in the
deep UV with [80]

γIRð2 − γIRÞ ¼
αIR
αc

; ð14Þ

where αc is given in Eq. (7). For αIR < αc the two solutions
can be understood as the RG running of a renormalized
massmðμÞ and a fermion bilinear operator χ̄χðμÞ within the
operator product expansion (OPE) at large Euclidean
momentum. In this case no solution is found for non-
vanishing chiral condensate with a vanishing mass term,
indicating that no spontaneous chiral symmetry breaking
occurs [81].
For αIR ≥ αc both solutions show the same p depend-

ence up to a phase difference (at αIR ¼ αc, ΣðpÞ∼
ð1=p2Þ−1=2), and the OPE identification becomes obscure.
As discussed in details in Ref. [81], in fact, this situation
can be described by a underdamped anharmonic oscillator
that corresponds to spontaneous symmetry breaking. In the
same paper, the authors showed that the generic feature of
the transition between conformal and chirally broken
phases imposed by the critical condition, αIR ¼ αc or
equivalently γIR ¼ 1, persists beyond the ladder approxi-
mation, though the details such as the value of αc may
change. Utilizing the critical condition on the anomalous
dimension instead of the gauge coupling makes more sense
to determine the phase boundary between conformal and
nonconformal phases since it is physical and thus free from
the renormalization scheme-dependency.
Interestingly, the critical condition derived from the

truncated SD analysis is in agreement with the conjectured
mechanism responsible for the zero-temperature conformal
phase transition, featured by an annihilation of IR and
UV fixed points [82]. As we approach the lower edge of
the conformal window from above, in particular, the mass
dimension of the operator χ̄χ at IR fixed point Δþ
decreases, while that of the counterpart at UV fixed
point Δ− increases, and becomes identical to each
other at the transition point to give Δþ ¼ Δ− ¼ 2 in the

four-dimensional spacetime. In a simplified holographic
model [83] the loss of conformality occurs when the mass
squared of a bulk scalar in a higher dimensional theory
violates the Breitenlohner-Freedman (BF) bound, and the
AdS=CFT correspondence implies that the dimension of
the fermion bilinear operator is equal to 2 at the conformal
phase transition. As we discussed above if we cross the
phase boundary from inside of the conformal window, the
truncated SD equations no longer have the valid scale-
invariant solutions. Analogously, the solutions to the beta
function describing the fixed point merger become complex
and give arise to a mass gap m ∼ ΛUV exp ð−c= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αIR − αc
p Þ

with c > 0 [82]. Recently, it is argued that such IR
dynamics (walking dynamics), slightly below the con-
formal window, could be analyzed by using conformal
perturbation theory in the vicinity of a complex pair of fixed
points [84].
At the onset of chiral symmetry breaking, αIR ¼ αc, the

solution to Eq. (14) is equivalent to the condition γIR ¼ 1,
which results in the nonperturbative, gauge invariant and
scheme-independent definition for the critical condition.
In this work, we attempt to calculate γIR in a perturbative
but scheme-independent manner. Note that, although both
conditions of γIRð2 − γIRÞ ¼ 1 in [80] and γIR ¼ 1 are not
distinguishable in full theory, they provide two different
definitions when the perturbative expansion is truncated at
a finite order. Practically the former condition has been
adopted since the leading-order expression of γIR leads to
the critical coupling αc in Eq. (7), and the higher order
estimates in the modified minimal subtraction scheme (MS)
were studied in Ref. [66]. In general, this perturbative
approach suffers from the scheme-dependency when
higher-order terms (l ≥ 3) are concerned. As we will
discuss in Sec. III, however, it turns out that we are able
to circumvent this problem by adopting the scheme-
independent series expansions for γIR at the IR fixed-point.
We will also discuss the convergence of the perturbative
expansions for both definitions of the critical condition.
We have so far restricted our attention to gauge theories

with fermions in a single representation. In order to account
for the two-representation theories relevant to composite
Higgs models with partial compositeness, we should
extend the critical condition discussed above to the case
of fermions in multiple representations. Analogous to the
critical couplings considered in the traditional SD approach
in Sec. II B, the anomalous dimensions of fermions in the
different representations give rise to different values at the
IR fixed point [77]. The fermion representation, say R1,
whose anomalous dimension reaches unity first, develops a
nonvanishing fermion condensate first and thus provides
the critical condition for the whole theory, unless the
effective theory after integrating out the fermions in the
representation R1 does have an IR fixed-point. Keeping
an eye on the sequence of critical conditions in the case
of multiple representations, we impose the following
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conditions to determine the lower edge of conformal
window,

Max½fγRi;IRg�≡ 1; or Max½fγRi;IRð2 − γRi;IRÞg�≡ 1:

ð15Þ

Again, we note that these two conditions are equivalent if
all orders are considered in the perturbative expansion, but
they could in general result in two different sets of fNc

Ri
g if

the expansion is truncated at a finite order in the perturba-
tive expansion.

E. Comparison between various analytical approaches

We conclude this section by comparing the analytical
approaches to determine the lower edge of the conformal
window. For convenience let us use the abbreviations
2-loop, SD, BF, and γCC to denote the methods discussed
in Secs. II A, II B, II C and II D, respectively. Both the
2-loop and SD methods use the gauge coupling at the BZ
fixed-point, taken to be αBZ ¼ ∞ and αBZ ¼ αc, respec-
tively. One could extend these methods to higher-loops,
but one then immediately encounters the complication of
scheme dependence. On the other hands, the BF and γCC
methods rely on the anomalous dimension of a fermion
bilinear at an IR fixed point γIR to determine the conformal
window on physical grounds. If we restrict ourselves to the
case of a single representation, BF provides the exact value
of γIR at the IR fixed point in a scheme-independent way.
For the onset of chiral symmetry breaking one typically
chooses γIR ¼ 2 inspired by supersymmetric theories. To
use γCC one needs the value of γIR, which could be
obtained perturbatively. As we will discuss in details in
the following sections, one can still maintain the scheme
independence of γCC beyond the 2-loop orders by incor-
porating the scheme-independent series expansions, pro-
posed in Ref. [67].
We now turn our attention to the multiple representa-

tions. The 2-loop method can be easily extended to the case
of multiple representations by taking b2 in Eq. (3) to be
zero. In contrast to the case of a single representation, BF
provides neither the values of γRi;IR nor the sequence of
chiral symmetry breaking near the conformal window.
However, one might still estimate the lower bound of
CW by taking γRi;IR ¼ 2 for all the representations. In the
cases of SD and γCC one can use the dynamical results of
αRi;c and γRi;IR as they have different values for different
representations. Assuming the theory falls into the chirally
broken phase away from the conformal window, the
representation having the maximum values of γRi;IR and
α−1Ri;c

determines the lower edge of the conformal window.
We note here that all of the above discussions are limited in
principle since the nonperturbative effects of the strong
dynamics in IR are not considered.

III. SCHEME-INDEPENDENT DETERMINATION
OF CONFORMAL WINDOW USING γCC

In this section we briefly review the scheme-independent
(SI) series expansion of physical quantities at an IR fixed-
point in asymptotically free gauge theories with fermions in
a single representation, and its extension to multiple repre-
sentations. We present only the essential ingredients, focus-
ing mainly on the calculation of the anomalous dimensions
of fermion bilinear operators, needed for our discussions.
The great details, including how to calculate other physical
quantities, can be found in a series of works done in
[67–73,85]. We then describe how to determine the con-
formal window from the critical condition for the anomalous
dimension γCC, using this new technique. In the illustrative
examples of SUð2Þ and SUð3Þ gauge theories withNR Dirac
fermions in various representations, we discuss the conse-
quence of the critical condition, written in two different
forms in Eq. (15), truncated at a finite order in the SI
expansion, and compare our results to the various scheme-
dependent expansions and other analytical (but approximate)
approaches together with nonperturbative lattice results.

A. Scheme independent series expansion of γIR
A series expansion of the anomalous dimension of a

fermion bilinear, made of fermions in the representation R,
at an IR fixed-point, in terms of the scheme-independent
variable ΔR ≡ ðNAF

R − NRÞ has been proposed by Ryttov
[67] to write

γIRðΔRÞ ¼
X∞
i¼1

ciðΔRÞi: ð16Þ

The coefficients of each term are clearly scheme-
independent because the anomalous dimension in the
left-handed side is physical, scheme-independent, and
NAF

R is defined from the scheme-independent one-loop
beta function as in Eq. (4). Furthermore it has been shown
that the ith order coefficient ci depends only on the
coefficients of the beta function and the anomalous
dimension at the (iþ 1)th and ith loops, evaluated at
ΔR ¼ 0, respectively. Namely, there are no higher-loop
corrections to the coefficient ci, though the coefficient is
scheme-independent.
To determine the coefficients ci in Eq. (16) we first note

that the coupling at the IR fixed-point may be expanded as

αIR
4π

¼
X∞
j¼1

ajðΔRÞj: ð17Þ

We then expand the anomalous dimension γIR as

γIRðΔRÞ ¼
X∞
i¼1

ki

�
αIR
4π

�
i
¼

X∞
i¼1

ki

�X∞
j¼1

ajΔ
j
R

�i

: ð18Þ
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Similarly, the beta function, which vanishes at the IR fixed-point, is expanded as

βIRðΔRÞ ¼ −8π
X∞
i¼1

bi

�
αIR
4π

�
iþ1

¼ −8π
X∞
i¼1

bi

�X∞
j¼1

ajΔ
j
R

�iþ1

¼
X∞
i¼2

diΔi
R ¼ 0: ð19Þ

Since the coefficients of the beta function bi depend on NR, we need to expand them in powers of ΔR to find di’s:

biðΔRÞ ¼
X∞
n¼0

1

n!
ð−1Þn∂

nbi
∂Nn

R

����
NR¼NAF

R

Δn
R: ð20Þ

As ΔR is an arbitrary positive number less than NAF
R , the coefficients di’s can be read off to find

d2 ¼ 0;

d3 ¼ −8π
�
−a21

∂b1
∂NR

þ a31b2

�����
NR¼NAF

R

;

d4 ¼ −8π
�
−2a1a2

∂b1
∂NR

− a31
∂b2
∂NR

þ 3a21a2b2 þ a41b3

�����
NR¼NAF

R

;

d5 ¼ −8π
�
−ð2a1a3 þ a22Þ

∂b1
∂NR

þ 3ða1a22 þ a21a3Þb2 − 3a21a2
∂b2
∂NR

− a41
∂b3
∂NR

þ 4a31a2b3 þ a51b4

�����
NR¼NAF

R

;

� � � ; ð21Þ

where we use the properties that b1 and b2 have the terms proportional to a constant and NR only [see Eqs. (2) and (3)], and
the one-loop coefficient b1 is zero at NR ¼ NAF

R . Now, since the beta function at the IR fixed-point vanishes for any ΔR, all
di’s are identically zero to give the coefficients ai’s of αIR as following:

a1 ¼
1

b2

∂b1
∂NR

����
NR¼NAF

R

;

a2 ¼
1

b32

� ∂b1
∂NR

��
b2

∂b2
∂NR

−
∂b1
∂NR

b3

�����
NR¼NAF

R

;

a3 ¼
1

b52

∂b1
∂NR

�
b22

� ∂b2
∂NR

�
2

þ 2b23

� ∂b1
∂NR

�
2

− 3b2b3
∂b1
∂NR

∂b2
∂NR

þ b22
∂b1
∂NR

∂b3
∂NR

− b2b4

� ∂b1
∂NR

�
2
�����

NR¼NAF
R

;

� � � : ð22Þ

Once ai’s are given, we readily determine from Eq. (18) the
coefficients ci’s in the scheme-independent expansion of
the anomalous dimension to find

c1 ¼ a1k1jNR¼NAF
R
;

c2 ¼ ½a2k1 þ a21k2�jNR¼NAF
R
;

c3 ¼
�
a3k1 þ 2a1a2k2 − a21

∂k2
∂NR

þ a31k3

�����
NR¼NAF

R

;

� � � ; ð23Þ

where we used the fact that k1 is a constant or ∂k1∂NR
¼ 0.

B. Scheme (in)dependence of the critical condition γCC

As discussed in Sec. II D, two different forms of the
critical condition, γIR ¼ 1 and γIRð2 − γIRÞ ¼ 1, should
agree with each other in full theory. However, they may
differ and give different conformal windows, if truncated at
a finite order in the perturbative expansion. Furthermore, if
the anomalous dimension is evaluated in the expansion of
the gauge coupling, it does depend on the renormalization
scheme in general and so does the truncated critical
condition. However, by using the scheme-independent
series expansion of γIR discussed in the previous section,
we could avoid the scheme-dependency to obtain more
physical critical conditions. Below, we discuss these issues
in an exemplified case of SUð3Þ gauge theory with NR
Dirac fermions in the fundamental representation.
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To see this we first consider the scheme-dependent loop-
expansion of the anomalous dimension up to the 4-loop,

γðlÞIR ðαðlÞIR Þ ¼
Xl
i¼1

ki

�
αðlÞIR

4π

�i

; ð24Þ

where l ¼ 1, 2, 3 and 4. The coefficient at one-loop order,
k1 ¼ 6C2ðRÞ, is scheme independent. The coefficient ki, as
well as bi in Eq. (19), have been computed in several
different schemes such as the modified minimal subtraction
(MS) scheme [86,87], the modified regularization invariant
(RI0) scheme [88], and the minimal momentum subtraction
(mMOM) scheme [89]. (See also [90].) Note that we take
the same order in the loop expansion for both the beta

function and the anomalous dimension, where αðlÞIR is
obtained by equating the l-loop beta function to be
zero. We then define the first critical condition at a given

loop-order l as γðlÞIR ¼ 1 for 2 ≤ l ≤ 4. Accordingly, the
critical condition γIRð2 − γIRÞ ¼ 1 defines at each order as
following:

2k1

�
αð2ÞIR

4π

�
þ ð2k2 − k21Þ

�
αð2ÞIR

4π

�2

¼ 1; ð25Þ

for the 2-loop,

2k1

�
αð3ÞIR

4π

�
þ ð2k2 − k21Þ

�
αð3ÞIR

4π

�2

þ ð2k3 − 2k1k2Þ
�
αð3ÞIR

4π

�3

¼ 1; ð26Þ

for the 3-loop, and

2k1

�
αð4ÞIR

4π

�
þ ð2k2 − k21Þ

�
αð4ÞIR

4π

�2

þ ð2k3 − 2k1k2Þ
�
αð4ÞIR

4π

�3

þ ð2k4 − 2k1k3 − k22Þ
�
αð4ÞIR

4π

�4

¼ 1; ð27Þ

for the 4-loop.
Using these critical conditions, we obtain the lower

boundaries of the conformal window in the above three
different schemes, MS, RI0, and mMOM, for the SUð3Þ
gauge theory with NR Dirac fermions in the fundamental
representation at 2-loop, 3-loop and 4-loop orders, sepa-
rately. The results are shown in Fig. 1. As seen in the figure,
the two different critical conditions give different results on
the conformal window for each scheme. For comparison
we also present the result obtained by the 2-loop method in
Eq. (8) by green dashed line. Note that in certain schemes
we could not find reasonable values of Nc

R at the 3- and
4-loop orders: either the resulting values are below the
2-loop value (green dashed line) or the solutions do not
even exist. In the mMOM scheme we find the lower bound
Nc

R up to the 4-loop order, but we note the results from two
different critical conditions do not converge to each other
even if we increase the loop order.
Now, we consider the scheme-independent expression

for the anomalous dimension and we truncate it at the l-th
order in ΔR. From the critical condition of γIR ¼ 1, we take

Xl
i¼1

ciðΔRÞi ¼ 1: ð28Þ

2 3 4
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12

13

2 3 4
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9
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11

12
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FIG. 1. The lower-bound of the conformal window in SUð3Þ gauge theory with NR fermions in the fundamental representation using
the critical condition γCC evaluated at l-th loop order. The green dashed line in both panels denotes the lower-bound from the 2-loop
beta function in Eq. (8). In the left panel we present the lower bounds of the conformal window obtained from the critical condition

γðlÞIR ¼ 1, and the right panel we present the results from the condition γðlÞIR ð2 − γðlÞIR Þ ¼ 1 with 2 ≤ l ≤ 4. The blue circle is for MS, the
red triangle for RI0, and the black square for mMOM schemes.
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For the condition of γIRð2 − γIRÞ ¼ 1, we find

2c1ΔR ¼ 1 ð29Þ

at the first order,

2c1ΔR þ ð2c2 − c21ÞðΔRÞ2 ¼ 1 ð30Þ

at the second order,

2c1ΔRþð2c2−c21ÞðΔRÞ2þð2c3−2c1c2ÞðΔRÞ3¼1 ð31Þ

at the third order,

2c1ΔR þ ð2c2 − c21ÞðΔRÞ2 þ ð2c3 − 2c1c2ÞðΔRÞ3
þ ð2c4 − 2c1c3 − c22ÞðΔRÞ4 ¼ 1 ð32Þ

at the fourth order, etc. These conditions are clearly
scheme-independent at each order, since the coefficients
ci’s and ΔR are invariant under the change of schemes.
Therefore, we can determine the physical and scheme-
independent lower edge of the conformal window in the

perturbation theory by expanding γIR and γIRð2 − γIRÞ in
powers of ΔR.
Using the values of the coefficient ci up to i ¼ 4,

computed in Ref. [71], we determine the lower boundaries
of the conformal window for SUð3Þ gauge theory with NR
fundamental fermions at each order in ΔR up to the fourth

order. As seen in Fig. 2, the γðlÞIR ð2 − γðlÞIR Þ ¼ 1 condition
(red squares) yields much better convergence, compared to

the γðlÞIR ¼ 1 condition (green circles), and the resulting
values are largely consistent with those evaluated from
the scheme-dependent calculations at 3rd and 4th loop
orders in Fig. 1. We find that such a behavior persists
in all the other theories considered in this work. We
therefore use the scheme-independent critical condition

γðlÞÞIR ð2 − γðlÞIR Þ ¼ 1 for the definition of γCC for the rest
of this work.
Of course these results should be taken with caution

since the expansion parameter ΔR becomes much bigger
than unity near the lower edge of the conformal window
and thus the convergence of the series expansion is not
guaranteed in general. Nevertheless, compared to the
results of the scheme-dependent expansions discussed
above, the result in Fig. 2 is promising, since it shows
some evidence for the convergence: the resulting values
of Nc

R using two different critical conditions are getting
closer to each other as we include the higher-order terms.
Furthermore, the result obtained from the condition
γIRð2 − γIRÞ ¼ 1 receives very small higher-order correc-

tions. Note that Nc
R determined by γðlÞIR ¼ 1 monotonically

increases as we increases the loop order l, which reflects

the fact that the anomalous dimension γðlÞIR for a fixed NR
monotonically increases with l [71].
We note that our results for Nc

R computed at ðΔRÞl for
l ¼ 2, 3, 4 are placed below the value from SD but above
those from the 2-loop and BF methods. We present the
resulting values in Table I. We also report in the table the
results for three other theories, corresponding to two-index
symmetric (sextet) SUð3Þ, fundamental SUð2Þ, and adjoint
SUð2Þ. We find all of them show the similar trend. (We
recall that NR denotes here the number of Dirac flavors.)

2 3 4

5

6

7

8

9

10

11

FIG. 2. Scheme-independent lower conformal-boundaries of
SUð3Þ gauge theory with NR fundamental fermions calculated
from the series expansion inΔR truncated at the order of l ¼ 2, 3,

4. The red square is from the condition γðlÞIR ð2 − γðlÞIR Þ ¼ 1, while

the green circle is from the γðlÞIR ¼ 1 condition.

TABLE I. Comparison of the lower bounds of conformal window on the number of Dirac flavors, determined
from various analytical approaches for SUð2Þ and SUð3Þ gauge groups: 2-loop denotes the two-loop beta function
analysis, SD denotes the (traditional) Schwiner-Dyson analysis, BF denotes the unitarity bound on the all-orders
beta function, and γCC (Δl

R) denotes the scheme-independent analysis of the critical anomalous dimension,
expanded up to lth order in perturbation theory. The fundamental, adjoint and two-index symmetric representations
are denoted by F, A and S2, respectively.

G R 2-loopðb1 ¼ 0Þ SD BFðγIR ¼ 2Þ γCCðΔ2
RÞ γCCðΔ3

RÞ γCCðΔ4
RÞ

SUð2Þ F 5.55 8 5.5 5.69 5.82 6.22
SUð3Þ F 8.05 11.2 8.25 9.2 9.4 9.8
SUð2Þ A 1.06 2.08 1.38 1.86 1.87 1.92
SUð3Þ S2 1.22 2.45 1.65 2.27 2.29 2.31
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Nonperturbative lattice results on the conformal window
for the fundamental SUð2Þ and SUð3Þ theories are not
conclusive yet. In the case of SUð2Þ, the lattice results
indicate that NR ¼ 6 is likely at the boundary of conformal
window (e.g., see [91] and references therein). For SUð3Þ,
NR ¼ 12 is likely to be inside the conformal window,
though still controversial. NR ¼ 8 is below the conformal
window, but close enough to the conformal window so that
it exhibits very different IR behaviors compared to QCD,
and NR ¼ 10 is largely unknown. (See [45,92] and refer-
ences therein.) These lattice results are more or less
consistent with various analytical approaches except the
SD method as shown in Table I. In particular, the γCC
method predicts that NR ¼ 9 or 10 are likely near the
boundary of the conformal window for the fundamental
SUð3Þ gauge theory and similarly NR ¼ 6 for the funda-
mental SUð2Þ gauge theory.
In the cases of the adjoint SUð2Þ and two-index

symmetric SUð3Þ gauge theories, the conformal window
has also been estimated from several lattice calculations.
The most recent results for the adjoint SUð2Þ are summa-
rized in Ref. [93], which shows that NR ¼ 1=2 (super-
symmetric Yang Mills) is confining, NR ¼ 2 is IR
conformal, and NR ¼ 3=2 and 1 are likely to be inside
the conformal window. While various analytical estimates
in Table I are largely consistent with the lattice results,
the γCC results suggest that the critical Nc

R is ∼2 and
thus NR ¼ 3=2 and 1 are rather in the broken phase
(potentially near conformal). For the sextet SUð3Þ theories
NR ¼ 2 has been extensively investigated by the means of
lattice simulations with different types of discretization:
with Wilson-type fermions the results are consistent with
the theory being IR conformal, while with staggered
fermions the results show near-conformal behaviors, see
Refs. [50,94] and references therein. As shown in Table I,
2-loop and BF results support that NR ¼ 2 sextet SUð3Þ is
IR conformal, but SD and γCC results support that it is
near-conformal.

C. Scheme-independent critical conditions
for multiple representations

As explained in Sec. II, the upper-bound of the con-
formal window in multiple representations spans a hyper-
surface of co-dimension one in the space of flavor numbers.
For a two-representation case, widely used in the composite
Higgs model, the pairs of flavor numbers (Nψ , Nχ) of its
conformal window are bounded from above by (NAF

ψ , NAF
χ )

of fermions in the two different representations of Rψ and
Rχ . By the condition that the coefficient of the one-loop
beta function, Eq. (2), vanishes for the upper boundary of
the conformal window the pair of numbers (NAF

ψ , NAF
χ )

should satisfy

4NAF
ψ TðRψÞ þ 4NAF

χ TðRχÞ ¼ 11C2ðGÞ; ð33Þ

which defines a set of points on a line in the space of
representations ðRψ ; RχÞ. To obtain the lower boundary of
the conformal window for theories with two representations
from the scheme-independent critical condition, we first
assume that at the IR fixed point the anomalous dimension
of the bilinear operator of fermions in the representation Rχ ,
γχ̄χ;IR, is larger than the one in the representation Rψ , γψ̄ψ ;IR,
so that the lower boundary of the conformal window is
determined by γχ̄χ;IR ¼ 1 or γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1.
Since C2ðGÞ is positive but finite, there exists a maxi-

mum value for NAF
ψ ≤ Nmax

ψ . It is then convenient to define
NAF

χ for a fixed value of Nψ < Nmax
ψ

NAF
χ ¼ 11C2ðGÞ − 4NψTðψÞ

4TðχÞ : ð34Þ

Analogous to the case of a single representation, we also
define Δχ ≡ NAF

χ − Nχ and expand the anomalous dimen-
sion γχ̄χ;IR in powers of Δχ

γχ̄χ;IRðΔχÞ ¼
X∞
i¼1

Ciðχ;ψÞðΔχÞi: ð35Þ

The coefficients Ciðχ;ψÞ have been computed to the 3rd
order in Ref. [73] using the known perturbative results
of the beta function and the anomalous dimension for
the multiple representations, calculated up to the four-
loop order in MS scheme [95]. At the finite order of

the anomalous dimension, γðlÞχ̄χ;IR, we reuse the scheme-
independent critical conditions in Eqs. (28)–(31) by
replacing the coefficients ci by Ciðχ;ψÞ and ΔR by Δχ,
respectively, to determine the lower boundary of the
conformal window. Note that both Ci and Δχ are functions
of Nχ as well as Nψ , and the critical conditions would yield
the critical line of ðNc

ψ ; Nc
χÞ.

IV. APPLICATIONS TO TWO-REPRESENTATION
COMPOSITE HIGGS MODELS

We now turn our attention to the determination of
conformal windows in 4-dimensional gauge theories with
fermion matter fields in the two distinct representations
relevant to composite Higgs and partial compositeness. The
wish list of the underlying gauge models was first proposed
in [16] and further refined in [17,74], resulting in the
most promising 12 models. Some of these models share
the same gauge group and the same representations, but the
details of the symmetry breaking patterns and/or the charge
assignment under the nonanomalous Uð1Þ symmetry are
different. Since we are interested in the possible extension of
these models toward the conformal window, we rather
classify them according to the gauge group: SOð7Þ, SOð9Þ
with fermions in the real fundamental and spinorial repre-
sentations, SOð11Þ with fermions in the real fundamental
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and pseudoreal spinorial representations, SOð10Þ with fer-
mions in the real fundamental and complex (chiral) spinorial
representations, Spð4Þ with fermions in the pseudoreal
fundamental and real two-index antisymmetric representa-
tions, SUð4Þ with fermions in the complex fundamental and
real two-index antisymmetric representations, and SUð5Þ
with fermions in the complex fundamental and two-index
antisymmetric representations. In Ref. [96] another type of
UV complete composite Higgs models with fermion partial
compositeness based on Spð4Þ gauge theories with 6 anti-
symmetric and12 fundamentalWeyl flavorswere considered,
which will be denoted by CVZ in this work. Note that
throughout this section and Appendix B we denote NR for
the number of Weyl spinors if the representation is real or
pseudoreal, and for the number of Dirac flavors if the
representation is complex.
In phenomenological two-representation composite

Higgs models the global symmetries are spontaneously
broken by the fermion condensates at the scale ofΛχ , where
part of pNGBs are identified as SM-like complex Higgs
doublets. However, a partial compositeness prefers the
gauge theories to be either conformal or near-conformal
such that the baryonic operators and the SM quarks are
linearly coupled for a wide range of energy scale, between
the chiral symmetry breaking scale Λχ and the electroweak
scale, Λew. This situation can simply be realized by
introducing additional fermions which decouple just above
Λχ , and the extended gauge models eventually fall into the
chirally broken phase with the expected symmetry break-
ings of the original models. Although in principle the
scaling dimension of the baryonic operators can take any
value between the classical dimension of 9=2 and the
unitary bound of 3=2, the phenomenologically desired
value for the top-partner is ∼5=2 so that the size of the
linear coupling is the order of unity, Oð1Þ. Note that in this
work we do not discuss the phenomenological aspects
of near conformal dynamics for the composite Higgs and
partial compositeness, but instead we map out the phase
boundary of the conformal window which would be useful
to provide a guidance for more dedicated nonperturbative
studies on the IR dynamics.

In Table II, we summarize our findings on the pairs of
minimal (integer) numbers ðNmin

ψ ; Nmin
χ Þ for which the

aforementioned two-representation gauge theories are in
the conformal window. In other words, the theory falls into
the chirally broken phase if we decrease any of Nψ or Nχ by
at least one from the values listed in the table. In the first
column we also present the corresponding names of the
models introduced in Ref. [74]. Following the discussion
in Sec. II D, we determine the phase boundary of the
conformal transition when any of the representations reaches
the critical condition. Let us denote by Rχ the representation
that determines the conformal transition in accord with our
notations in Sec. III C, and the other representation by Rψ.
Note that the higher representation typically yields the larger
value for the anomalous dimension, where some exceptions
will be found for the small number of colors such as the case
of SOð7Þ. We will come back to this issue later in this
section. As we discussed in the previous section, our choice
for γCC is γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1, which provides better
convergence than γχ̄χ;IR ¼ 1 for all the considered cases
of two representations. Since we only consider an extension
of the partial composite Higgs models, we exclude the cases
of which either of Nψ and Nχ is smaller than any of the
values considered in the original models. We found that with
these restrictions on ðNψ ; NχÞ the effective theories below
which Nχ fermions are integrated out always develop a non-
zero fermion condensate of ψ , i.e., γψ̄ψ ;IRð2 − γψ̄ψ ;IRÞ > 1,
and thus no question arises to use the γCC on γχ̄χ;IR for the
determination of the conformal window. A similar conclu-
sion is obtained for the traditional Schwinger-Dyson
approach in Sec. II B, where we use the critical coupling
αc for Rχ which is smaller than that for Rψ.
In gauge th eories with two different representations the

scheme-independent calculations of the anomalous dimen-
sion of fermion bilinears at a conformal IR fixed point are
known to the cubic order inΔχ ¼ NAF

χ − Nχ withNAF
χ given

in Eq. (34) [73]. The coefficients in the scheme-independent
series expansions are functions of group invariants as well
as the numbers of flavors in both the representations, Nχ

and Nψ . In Appendix A we present some relevant group

TABLE II. Pairs of minimum integer values for the numbers of flavors in two distinct representations for a given gauge group G
considered in the pNGB composite Higgs models to be in the conformal window. Note that F, A2, and Sp denote for the fundamental,
the two-index antisymmetric and the spinorial irreducible representations, respectively, where a bar notation stands for the complex
conjugate. In the first column we present the relevant models found in Refs. [74,96].

Model G (Rψ , Rχ) (Nmin
ψ , Nmin

χ )

M1, M3 SOð7Þ ðSp;FÞ (5,13), (6,12), (7, 11), (8,10), (9,9), (10,8), (11,7), (12,6), (13,5)
M2, M4 SOð9Þ ðF;SpÞ (5,10), (7,9), (9,8), (11,7), (13,6), (15,5)
M5, M8, CVZ Spð4Þ ðF;A2Þ (4,9), (6,8), (8,7), (10,6), (12,5)
M6, M11 SUð4Þ ððF; F̄Þ;A2Þ (3,12), (4,11), (5,10), (6,9), (7,8), (8,7), (9,6), (10,5)
M7, M10 SOð10Þ ðF; ðSp; SpÞÞ (5,6), (9,5), (13,4), (18,3)
M9 SOð11Þ ðF; SpÞ (6,7), (10,6), (14,5), (18,4)
M12 SUð5Þ ððF; F̄Þ; ðA2; Ā2ÞÞ (4,5), (7,4), (10,3)
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theoretical quantities. Here, we show the results of the
critical numbers of flavors obtained by applying γCC to the
highest order of ðΔχÞ3. The results obtained at lower orders
of Δχ and ðΔχÞ2 are shown in Appendix B.
In Figs. 3–5 we present the map of the conformal

window in the two-representation gauge theories of our
interest. The upper and lower bounds of the shaded region
are obtained by using Eq. (33) and the critical condition

γCC, respectively. For comparison we also show the lower
bounds estimated from the other analytical approaches,
where green, red, and black dashed lines are for 2-loop, BF,
and SD methods, respectively. In the case of Spð4Þ gauge
theories containing NF fundamental and NA2 two-index
antisymmetric fermions the results are shown in Fig. 3,
where M5, M8, and CVZ models are denoted by circle,
diamond, and square shapes. The first two models are
outside the conformal window, while the CZV model is
slightly inside the conformal window. The model M8 has
particularly received much attention since the correspond-
ing lattice models are under investigation [27,28,30].
In the left and right panels of Fig. 4, we present the

results for SUð4Þ and SUð5Þ gauge theories containing NF
fundamental and NA2 two-index antisymmetric fermions,
respectively. Blue circles are for the models M6 and M12,
while the red diamond is for the model M11 and the
black square for the lattice SUð4Þ model considered in
Refs. [21–26]. As seen in the figure, all the models are
outside the conformal window. In particular, the lattice
SUð4Þ model which contains NF ¼ 2 Dirac fundamental
and NA2 ¼ 4 Weyl antisymmetric fermions is deep inside
the chirally broken phase, which is consistent with the
fact that numerical results showed the nonperturbative
features of confinement and (spontaneous) global sym-
metry breaking [21,23].
In Fig. 5, from left-top to right-bottom panels, we show

the estimated conformal window for SOð7Þ, SOð9Þ, SOð10Þ,
and SOð11Þ gauge theories containing NF fundamental
and NSp spinorial representations. Note that, in contrast to
other models, for SOð7Þ we found that the dimension
of the spinorial representation is larger than that of the
fundamental, but the anomalous dimension is smaller.
Although we only learn this fact a posteriori since full

FIG. 4. The estimated conformal window in SUð4Þ (left) and SUð5Þ (right) gauge theories containing NF fundamental and NA2
antisymmetric flavors. The upper bound of the shaded region is associated with the lost of asymptotic freedom, while the lower bound is
determined by the critical condition γCC. For comparison we also present the lower bounds of the conformal window estimated by other
analytical methods: black, red, and green dashed lines are for SD, BF, and 2-loop results, respectively. M6 and M12 models are denoted
by blue circles, M11 by red diamond, and the lattice SUð4Þ model by black square.

FIG. 3. The estimated conformal window for Spð4Þ gauge
theories with NF fundamental and NA2 antisymmetric fermions.
The upper bound of the shaded region is associated with the lost
of asymptotic freedom, while the lower bound is determined
by the critical condition γCC. For comparison we also present
the lower bounds of the conformal window estimated by other
analytical methods: black, red, and green dashed lines are for SD,
BF, and 2-loop results, respectively. M5, M8, and CVZ models
are denoted by blue circle, red diamond, and black square,
respectively.
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IR dynamics is encoded in γψ̄ψ ;IR and γχ̄χ;IR in a compli-
cated way, we can obtain some clues from the ladder
approximation for multiple representations. As discussed in
Sec. II B, if we depart from the conformal window the IR
coupling αIR first reaches the critical coupling αχ;c for the
representation having the largest value of the quadratic
Casimir operator. In the case of SOð7Þ we find that
C2ðSpÞ < C2ðFÞ so that the fundamental representation
meets the critical condition first, while in the other cases
C2ðFÞ < C2ðSpÞ. In Fig. 5, blue circles denote the models
M1, M2, M7, M9, and red diamonds denote the models
M3, M4, and M10. All the models are outside the
conformal window.

V. CONCLUSION

We have proposed an analytical method to determine
the lower edge of the conformal window in a scheme-
independent way by combining the conjectured critical

condition on the anomalous dimension of a fermion
bilinear, γIR ¼ 1, which is responsible for the chiral phase
transition, and the scheme-independent series expansion
of γIR at a conformal IR fixed point with respect to
ΔR ¼ ðNAF

R − NRÞ. If all orders in the perturbative expan-
sion are considered, this critical condition is identical to
γIRð2 − γIRÞ ¼ 1, which is obtained from the Schwinger-
Dyson analysis in the ladder approximation along with
some working assumptions. However, at the finite order
they yield different values for the critical number of
flavors Nc

R on the boundary of conformal and chirally
broken phases. And it turns out that the latter condition
shows much better convergence in the series expansion,
while the resulting values obtained from both critical
conditions approach to each other as we include higher
order terms.
In the illustrative examples of SUð2Þ and SUð3Þ gauge

theories with Dirac fermions in various representations, we
have determined Nc

R using the scheme-independent critical

FIG. 5. The estimated conformal window in SOð7Þ (top-left), SOð9Þ (top-right), SOð10Þ (bottom-left), SOð11Þ (bottom-right) gauge
theories containing NF fundamental and NSp spinorial flavors. The upper bound of the shaded region is associated with the lost of
asymptotic freedom, while the lower bound is determined by the critical condition γCC. For comparison we also present the lower
bounds of the conformal window estimated by other analytical methods: black, red and green dashed lines are for SD, BF, and 2-loop
results, respectively. M1, M2, M7, M9 models are denoted by blue circles, while M3, M4, M10 are denoted by red diamonds.
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condition on γIR up to OðΔ4
RÞ, and compared to other

analytical calculations. We find that the resulting values are
larger than those estimated from the vanishing 2-loop
coefficients and the all-order beta function with γIR ¼ 2,
but smaller than those from the traditional Schwinger-
Dyson analysis in the ladder approximation. We also find
that our values are largely consistent with the lattice results
in the literature.
We have extended the method of γCC to the case of

fermions in the k different representations, where the
critical (k − 1)-dimensional surface is shown to be deter-
mined by the representation Rχ that reaches γχ̄χ;IR ¼ 1 first.
Here, we assume that all the fermions in the representations
other than Rχ eventually develop nonzero fermion con-
densates once the fermions in Rχ decouple. We have
applied this method to the gauge theories containing
fermionic matter fields in the two distinct representations
relevant to the models of composite Higgs and partial
compositeness, and estimated the critical numbers of
flavors (Nc

ψ , Nc
χ) in the two dimensional space of Nψ

and Nχ from the critical condition using γχ̄χ;IR at the 3rd
order in Δχ . We find that all the partial composite Higgs
models considered in Ref. [74] are in the chirally broken
phase, while the CVZ model resides slightly inside the
conformal window so that it is highly expected to have a
large anomalous dimension of composite operators. While
some of them are deep inside the broken phase (even below
the 2-loop estimation), models relatively close to the
conformal window are such as M5, M8, M9, M10, and
M12 models.
In recent nonperturbative lattice studies the SUð3Þ gauge

theory with NR ¼ 8 fundamental fermions is shown to
exhibit very different IR dynamics, having light scalar
resonances, in contrast with QCD-like theories. Such
findings may reflect the near-conformal dynamics. Note
that, according to the analytical results presented in Table I,
the 8-flavor SUð3Þmodel is slightly below all the estimates.
Although we cannot simply generalize this specific case
to generic multirepresentation gauge theories, some of the
partial composite Higgs models mentioned above can be
good candidates for near-conformal theories. Hence, it
would be encouraging to investigate such models in further
details by means of nonperturbative lattice calculations.
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APPENDIX A: GROUP INVARIANTS

In this appendix, we summarize the group invariants
needed to calculate the coefficients ClðR;R0Þ in Eq. (35)
for the scheme-independent series expansions of γIRðΔRÞ
to l ¼ 3 in the cases of two different representations. As
the coefficients for l ≥ 3 involve four-loop results of the
RG beta function, we need the group-invariant products
of four-index quantities such as dabcdR dabcdR0 =dA in addition
to the trace normalization factor TðRÞ (TðR0Þ) and the
eigenvalues of the quadratic Casimir operator C2ðRÞ
(C2ðR0Þ). Here, we denote A for the adjoint representation
of gauge group G and dA for its dimension. For the details
of our discussion we refer the reader to Refs. [72,73] and
references therein.
For a given representation R the totally symmetric four-

index quantity is defined as

dabcdR ¼ 1

3!
Tr½TaðTbTcTd þ TbTdTc þ TcTbTd þ TcTdTb

þ TdTbTc þ TdTcTbÞ�; ðA1Þ

where Ta is the generators in R. In terms of group invariants
this can be rewritten as

dabcdR ¼ I4;Rdabcd þ
�

TðRÞ
dA þ 2

��
C2ðRÞ −

1

6
C2ðAÞ

�

× ðδabδcd þ δacδbd þ δadδbcÞ: ðA2Þ

Here, dabcd is a traceless tensor, satisfying δabdabcd ¼ 0,
etc., which only depends on the group G. I4;R is a quartic
group invariant. We list the values of the group invariants
dA, TðRÞ, C2ðRÞ, I4;R for the relevant representations in
Tables III, IV, and V for SOðNÞ, SUðNÞ, and SpðNÞ,
respectively.

TABLE III. Group invariants for various representations in
SOðNÞ gauge group.

SO(N) dR TðRÞ C2ðRÞ I4ðRÞ
Fundamental N 1 N−1

2
1

Chiral spinor (even N) 2
N−2
2 2

N−8
2

NðN−1Þ
16

−2N−10
2

Real spinor (odd N) 2
N−1
2 2

N−7
2

NðN−1Þ
16

−2N−9
2

Adjoint NðN−1Þ
2

N − 2 N − 2 N − 8

Rank-2 symmetric ðN−1ÞðNþ2Þ
2

N þ 2 N N þ 8
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Using the expression for dabcdR in Eq. (A2), one can
obtain

dabcdR dabcdR0

dA
¼ I4;RI4;R0

dabcddabcd

dA
þ
�

3

dA þ 2

�
TðRÞTðR0Þ

×

�
C2ðRÞ −

1

6
C2ðAÞ

��
C2ðR0Þ − 1

6
C2ðAÞ

�
:

ðA3Þ

The gauge invariant products of dabcd in the first term
are independent on the representation. In Table VI we
present the results for SOðNÞ, SUðNÞ, and SpðNÞ gauge
groups [97]. Finally, we present the resulting values of
dabcdR dabcdR0 =dA for SOðNÞ, SUðNÞ, and SpðNÞ gauge
groups in Tables VII and VIII. Note that in the tables
we only present the results of the two different representa-
tions relevant to the models for composite Higgs and partial
compositeness. It is straightforward to obtain the results of
other possibilities by using Eq. (A3) and the group
invariants presented in Tables III, IV, V, and VI. Part of
the results are found in Ref. [72].

TABLE IV. Group invariants for various representations in
SUðNÞ gauge group.

SU(N) dR TðRÞ C2ðRÞ I4ðRÞ
Fundamental N 1

2
N2−1
2N 1

Adjoint N2 − 1 N N 2N

Rank-2 symmetric NðNþ1Þ
2

Nþ2
2

ðN−1ÞðNþ2Þ
N N þ 8

Rank-2 antisymmetric NðN−1Þ
2

N−2
2

ðNþ1ÞðN−2Þ
N N − 8

TABLE V. Group invariants for various representations in
SpðNÞ gauge group.

Sp(N) dR TðRÞ C2ðRÞ I4ðRÞ
Fundamental N 1

2
Nþ1
4

1

Adjoint NðNþ1Þ
2

Nþ2
2

Nþ2
2

N þ 8

Rank-2 antisymmetric ðNþ1ÞðN−2Þ
2

N−2
2

N
2

N − 8

TABLE VI. Values of dabcddabcd=dA for SOðNÞ, SUðNÞ, and
SpðNÞ gauge groups.

SO(N) SU(N) Sp(N)

dabcddabcd=dA
ðdA−1ÞðdA−3Þ
12ðdAþ2Þ

ðdA−3ÞðdA−8Þ
96ðdAþ2Þ

ðdA−1ÞðdA−3Þ
192ðdAþ2Þ

TABLE VII. Values of dabcdR dabcdR0 =dA in SOðNÞ gauge groups with N ≥ 3. We denote F, Sp, and A for
fundamental, spinor, adjoint representations.

SO(N) (even N) SO(N) (odd N)

dabcdF dabcdF =dA
1
24
ðN2 − N þ 4Þ 1

24
ðN2 − N þ 4Þ

dabcdSp dabcdSp =dA 1
3
2N−15ð13N2 − 61N þ 76Þ 1

3
2N−14ð13N2 − 61N þ 76Þ

dabcdF dabcdSp =dA − 1
3
2

N
2
−8ðN2 − 7N þ 7Þ − 1

3
2

N−15
2 ðN2 − 7N þ 7Þ

dabcdA dabcdA =dA 1
24
ðN − 2ÞðN3 − 15N2 þ 138N − 296Þ 1

24
ðN − 2ÞðN3 − 15N2 þ 138N − 296Þ

dabcdF dabcdA =dA
1
24
ðN − 2ÞðN2 − 7N þ 22Þ 1

24
ðN − 2ÞðN2 − 7N þ 22Þ

dabcdSp dabcdA =dA − 1
3
2

N
2
−8ðN3 − 24N2 þ 96N − 104Þ − 1

3
2

N−15
2 ðN3 − 24N2 þ 96N − 104Þ

TABLE VIII. Values of dabcdR dabcdR0 =dA in SUðNÞ and SpðNÞ gauge groups with N ≥ 2. We denote F, A, and A2
for fundamental, adjoint, and rank-2 antisymmetric representations.

SU(N) Sp(N)

dabcdF dabcdF =dA
N4−6N2þ18

96N2
1

384
ðN2 þ N þ 4Þ

dabcdA2 dabcdA2 =dA
ðN−2ÞðN5−14N4þ72N3þ48N2−288N−576Þ

96N2
1

384
ðN − 2ÞðN3 − 13N2 þ 110N − 104Þ

dabcdF dabcdA2 =dA N5−8N4þ6N3þ48N2−144
96N2

1
384

ð−20þ 20N − 7N2 þ N3Þ
dabcdA dabcdA =dA 1

24
N2ðN2 þ 36Þ 1

384
ðN þ 2ÞðN3 þ 15N2 þ 138N þ 296Þ

dabcdF dabcdA =dA
1
48
NðN2 þ 6Þ 1

384
ðN þ 2ÞðN2 þ 7N þ 22Þ

dabcdA2 dabcdA =dA
1
48
Nðn − 2ÞðN2 − 6N þ 24Þ 1

384
ðN þ 2ÞðN − 2ÞðN2 þ N þ 28Þ
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APPENDIX B: RESULTS ON γCC FROM LOWER ORDERS IN THE
SCHEME-INDEPENDENT SERIES EXPANSIONS

In Figs. 6, 7, and 8, we present the critical values ðNc
ψ ; Nc

χÞ, by treating them as continuous variables, corresponding to
the lower edge of the conformal window estimated by applying the scheme-independent critical condition γCC to
two-representation gauge groups discussed in Sec. IV. In the figures, green, yellow, and blue solid lines denote for the
results obtained from the scheme-independent series expansions truncated atΔχ , ðΔχÞ2 and ðΔχÞ3 orders, respectively. Note
that in Spð4Þ, SUð4Þ and SUð5Þ theories we identify Rψ ¼ F and Rχ ¼ A2, in SOð7Þ theory Rψ ¼ Sp and Rχ ¼ F, and in
SOð9Þ, SOð10Þ and SOð11Þ theories Rψ ¼ F and Rχ ¼ Sp.

2 4 6 8 10 12

2

4

6

8

10

12

4 6 8 10

3

4

5

FIG. 7. Estimation of the lower edge of the conformal window in SUð4Þ (left) and SUð5Þ (right) gauge theories containing NF
fundamental andNA2 antisymmetric flavors. We use the critical condition γCC for the anomalous dimension of the representation χ at an
IR fixed point, γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1, and its scheme-independent series expansions truncated at Δχ (green), ðΔχÞ2 (yellow) and ðΔχÞ3
(blue) orders, where we identify Rχ ¼ A2.

4 6 8 10 12

5

6

7

8

9

FIG. 6. Estimation of the lower edge of the conformal window in Spð4Þ gauge theories containing NF fundamental and NA2
antisymmetric flavors. We use the critical condition γCC for the anomalous dimension of the representation χ at an IR fixed point,
γχ̄χ;IRð2 − γχ̄χ;IRÞ ¼ 1, and its scheme-independent series expansions truncated at Δχ (green), ðΔχÞ2 (yellow) and ðΔχÞ3 (blue) orders,
where we identify Rχ ¼ A2.
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