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We derive constraints on all possible general neutrino-electron interactions (scalar, vector, pseudo-scalar,
axial-vector and tensor) using the recent real time Borexino event rate measurements of pp, pep and
7Be solar neutrinos. Some of the limits improve from TEXONO and CHARM-II for incoming electron and
muon neutrinos while the rest remains weaker for Borexino and those for the tau flavor are the first ones.
Future improvements by next-generation solar neutrino experiments are also studied. The limits extend the
physics reach of solar neutrino measurements to TeV-scale physics. Finally, the different properties of the
new interactions for Dirac and Majorana neutrinos are discussed.
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I. INTRODUCTION

Precision studies in neutrino physics allow one to tighten
the parameters of the standard three neutrino paradigm [1].
Indeed, the precision on the parameters of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix approaches the
one of the corresponding Cabibo-Kobayashi-Maskawa
(CKM) parameters, see e.g., [2]. Moreover, effects of
new physics beyond the standard paradigm can be tested.
In this paper we will analyze the possible presence of

neutrino-electron interactions beyond the usual V − A
structure within the Standard Model. Since neutrinos are
often considered a primewindow to newphysics, it is natural
to assume such new interactions for neutrinos. Taking a
general parametrization originally studied in Refs. [3–5],
which considers all Lorentz-invariant possibilities (scalar,
vector, pseudoscalar, axialvector and tensor)1 in neutrino-
electron scattering, we exploit the Borexino solar neutrino
measurements [7–11] to set limits on the size of the new
interactions. While new vector interactions are quite often
studied, known as nonstandard interactions [12–15],

different Lorentz structures are largely unexplored (neutrino
interactionswith a structure different fromvector do not lead
to observable matter effects in neutrino oscillations
[16]). Some existing studies can be found in [6,17–29].
We will employ the Borexino measurements of low

energy pp, pep and 7Be solar neutrinos. As the originally
produced electron neutrinos oscillate to muon and tau
neutrinos, this allows one to set limits on general inter-
actions of all flavors. Previously, limits on general neutrino-
electron interactions were obtained in Ref. [6] using
TEXONO [30] and CHARM-II [31] data for electron
and muon neutrinos, respectively. We will improve several
of those limits, and set the very first ones on general tau
neutrino interactions. Possible future limits by upcoming
hypothetical solar neutrino measurements are also esti-
mated. If percent-level coupling strengths are measured,
and the new interactions are interpreted in terms of new
exchanged bosons, then new physics of weak and TeV
scales is tested by solar neutrino experiments.
The paper is structured as follows. In Sec. II we set up the

formalism of neutrino-electron scattering with general
interactions. Section III describes the data and fit procedure
that we follow, with the results being discussed in Sec. IV.
We also address the differences betweenDirac andMajorana
neutrinos in this framework in Sec. V, and conclusions are
drawn in Sec. VI.

II. NEUTRINO-ELECTRON SCATTERING
IN THE PRESENCE OF GENERAL

NEUTRINO INTERACTIONS

In this section we lay out the general formalism to
describe general neutrino interactions relevant for elastic
neutrino-electron scattering. Starting with the Standard
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1It is interesting to point out that since Majorana neutrinos do
not have flavor-diagonal vector and tensor interactions, a study of
electron-neutrino cross sections, in principle, allows one to
distinguish Dirac from Majorana neutrinos [3,5,6]. We will
expand more discussions on this issue in Sec. V.

PHYSICAL REVIEW D 101, 055047 (2020)

2470-0010=2020=101(5)=055047(11) 055047-1 Published by the American Physical Society

https://orcid.org/0000-0002-5300-3067
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.055047&domain=pdf&date_stamp=2020-03-31
https://doi.org/10.1103/PhysRevD.101.055047
https://doi.org/10.1103/PhysRevD.101.055047
https://doi.org/10.1103/PhysRevD.101.055047
https://doi.org/10.1103/PhysRevD.101.055047
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Model (SM), we have neutral current (NC) and charged
current (CC) interactions between the target electrons and
the three flavors of neutrinos. To be specific, in the SM,
νee-scattering involves the CC and NC interactions, while
νμ=τe-scattering depends only on NC interactions. The
effective SM Lagrangian for the NC interactions is given as

LSM
NC ¼ GFffiffiffi

2
p ½ν̄γμð1 − γ5Þν�½l̄γμðglV − glAγ

5Þl�; ð1Þ

where the vector and axial vector couplings are

glV ¼ −
1

2
þ 2sin2θW and glA ¼ −

1

2
: ð2Þ

For the CC interactions, after a Fierz transformation one
can write (flavor indices are suppressed)

LSM
CC ¼ GFffiffiffi

2
p ½ν̄γμð1 − γ5Þν�½l̄γμð1 − γ5ÞÞl�: ð3Þ

We are interested here in new neutrino physics that may
show up in the form of general neutrino interactions. With
this we denote new interactions for neutrino-electron
scattering, that can be scalar, pseudoscalar, vector, axial-
vector or tensor. The effective four-fermion interaction
Lagrangian is

ΔL ¼ GFffiffiffi
2

p
X
a¼S;P;
V;A;T

ðναΓaνβÞ½l̄Γaðϵaαβ þ ϵ̃aαβi
aγ5Þl�; ð4Þ

where Γa ≡ fI; iγ5; γμ; γμγ5; σμν ≡ i
2
½γμ; γν�g are the five

fermion operators, corresponding to scalar (S), pseudosca-
lar (P), vector (V), axialvector (A) and tensor (T), respec-
tively. Furthermore, following the convention in Ref. [6],
we have ia ¼ i for a ¼ ðS; P; TÞ and ia ¼ 1 for a ¼ ðV; AÞ.
Including the factor i for the S, P, T interactions is
necessary to have ϵαα and ϵ̃αα real. We assume that ϵ
and ϵ̃ are Hermitian matrices, i.e., ϵαβ ¼ ϵ�βα and ϵ̃αβ ¼ ϵ̃�βα,
so that Eq. (4) is self-conjugate. Possible phases of the ϵ
and ϵ̃ matrices are ignored in what follows.
For Majorana neutrinos some of the interactions in

Eq. (4) cannot be written in terms of Majorana spinors.
More specifically, in this case, the vector and tensor
interactions with α ¼ β for each generation should vanish
(i.e., ϵVαα ¼ ϵ̃Vαα ¼ ϵTαα ¼ ϵ̃Tαα ¼ 0), which is a known prop-
erty of Majorana spinors [3,16,32]. However, considering
three generations of neutrinos, such interactions can still
exist for α ≠ β. Nevertheless, for Majorana neutrinos, the
parameter space of the general Lorentz-invariant inter-
actions is smaller than the one for Dirac neutrinos. Our
analyses will be focused on Dirac neutrinos; we will
address the difference to the Majorana case in Sec. V.
Furthermore, we focus on flavor diagonal interactions, i.e.,
we constrain ϵaαα and ϵ̃aαα.
The limits on the off-diagonal terms will be very similar

to the diagonal ones for scalar, pseudoscalar and tensor

interactions due to the absence of interference with the SM.
For vector or axial-vector interactions, this case has been
well studied in the context of the usual nonstandard
interactions (NSI) in Ref. [33] for the Borexino data.
In general the new interactions of Eq. (4) are added to the

SM interactions in Eqs. (1) and (3). The differential cross
section of neutrino-electron scattering is found to be [6]

dσ
dT

ðνα þ e− → νβ þ e−Þ ¼ G2
Fme

2π

�
Aαβ þ 2Bαβ

�
1 −

T
Eν

�

þ Cαβ

�
1 −

T
Eν

�
2

þDαβ
meT
4E2

ν

�
;

ð5Þ
whereme is the electron mass, Eν is the neutrino energy and
T is the electron recoil energy. The parameters Aαβ, Bαβ,
Cαβ and Dαβ are defined as (given here for complex
parameters and ignoring flavor indices for simplicity)

A ¼ 1

4
jϵA þ ϵV − ϵ̃A − ϵ̃V þ 2gLj2 þ 1

8
jϵS þ iϵ̃Pj2

þ 1

8
jϵP þ iϵ̃Sj2 þ jϵT − iϵ̃T j2

þ 1

2
Re½ðϵT − iϵ̃TÞ�ðϵP þ iϵ̃S − ϵS − iϵ̃PÞ�;

B ¼ −
1

8
jϵP þ iϵ̃Sj2 − 1

8
jϵS þ iϵ̃Pj2 þ jϵT − iϵ̃T j2;

C ¼ 1

4
jϵA þ ϵ̃A − ϵV − ϵ̃V − 2gRj2 þ 1

8
jϵS þ iϵ̃Pj2

þ 1

8
jϵP þ iϵ̃Sj2 þ jϵT − iϵ̃T j2

−
1

2
Re½ðϵT − iϵ̃TÞ�ðϵP þ iϵ̃S − ϵS − iϵ̃PÞ�;

D ¼ Re½ðϵA þ ϵV − ϵ̃A − ϵ̃V þ 2gLÞ
× ðϵA þ ϵ̃A − ϵV − ϵ̃V − 2gRÞ��
− 4jϵT − iϵ̃T j2 þ jϵS þ iϵ̃Pj2: ð6Þ

To recover the explicit flavor indices, one only needs to add
subscripts αβ to all quantities in Eq. (7); in addition one has

ðgLαβ; gRαβÞ ¼
8<
:

ð2sin2θW þ 1; 2sin2θWÞ ðα ¼ β ¼ eÞ;
ð2sin2θW − 1; 2sin2θWÞ ðα ¼ β ¼ μ; τÞ;
0 ðα ≠ βÞ:

ð7Þ
Note that the SM couplings appear only in A, C andD. The
term proportional to B is a pure new physics term that
contains no SM contribution.
We restrict our analysis to the total event rates. In this

case the total cross sections in terms of the maximum recoil
energy of electrons TmaxðEνÞ are the relevant observable.
We can obtain the total cross section from Eq. (5) as
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σðνeÞ ¼ G2
FmeTmax

2π

�
Aþ 2B

�
1 −

Tmax

2Eν

�

þ C

�
1þ T2

max

3E2
ν
−
Tmax

Eν

�
þD

meTmax

8E2
ν

�
; ð8Þ

where TmaxðEνÞ≡ Eν=ð1þme=2EνÞ. Here we have Eν <
0.420 MeV for the continuous pp spectrum, and Eν ¼
0.862 MeV (1.44 MeV) for neutrinos from 7Be (pep)
reactions, respectively. For each spectrum we have repro-
duced with good agreement the expected event numbers
quoted by Borexino in [9]. More details will be discussed in
Sec. III B. It is important to note that the term proportional
to C in Eqs. (5) and (8) is suppressed by the kinematic
factor proportional T

Eν
with respect to A. This naturally leads

to relatively tighter constraints on the parameters related
toC. For antineutrinos A andC are replaced with each other
in the cross sections.
As stated earlier, the cross sections in principle contain

contributions both from flavor conserving and flavor
violating processes. For simplicity, we will restrict our-
selves to the flavor conserving case at the neutrino vertex,
i.e., νee → νee and νμ;τe → νμ;τe scattering. As a conse-
quence there are interference terms for the SM and new
physics terms in the cross sections in Eqs. (5) and (8).
Regarding those interference terms, note that there is no
interference of the vector/axial terms with the scalar/
pseudoscalar/tensor-type interaction terms. All such terms
cancel out in the cross amplitude terms due to the products
of the odd number of gamma matrices for vector/axial
currents with the even number of gamma matrices in the
scalar/pseudoscalar/tensor current. Thus, the scalar, pseu-
doscalar and tensor interactions are independent of the
vector and axial-vector currents and in particular do not
interfere with the SM interactions. We will discuss this
point in more detail in Sec. V.

III. SEARCHING FOR EXOTIC INTERACTIONS
IN SOLAR NEUTRINO EXPERIMENTS

In this section we give details of the solar oscillation
probabilities, event rate calculations and the statistical
model used for our analysis.

A. Solar neutrino oscillation probabilities

As solar neutrinos change their flavor from production to
detection, we need to consider the survival probabilities for
the pp, 7Be and pep neutrinos that we will use for our
model to fit with the data. We follow the notation from [33].
If there were no matter effects, the oscillation amplitude
would be Aαβ ¼ UαiXiU

†
iβ, where i are mass indices while

α and β are the flavor indices. Summation over the
mass indices is implied. Here U is the neutrino mixing
matrix and X is the diagonal phase matrix X ¼
diagð1; expð−i2πL=Losc

21 Þ; expð−i2πL=Losc
31 ÞÞ, where the

oscillation length is defined as Losc
ij ¼ 4πEν=ðm2

i −m2
jÞ.

Thus, the solar neutrinos oscillation probability would read

Pαβ ¼ jAαβj2 ¼ jUαiXiU�
iβj2: ð9Þ

Due to the very large distance between Sun and Earth we
can take the averaged oscillation probability as

hPiαβ ¼ UαiU�
βiU

�
αiUiβ ¼ jUαij2jUβij2: ð10Þ

Expressed in terms ofmixing angles, the averaged probability
for solar neutrinos is hPiee ¼ s413 þ ðc12c13Þ4 þ ðs12c13Þ4,
where sij ≡ sin θij and cij ≡ cos θij in the commonly used
notation [1].
Matter effects are important for precision studies, and

depend on energy. Solar neutrinos from the low energy pp
reaction, which has a continuous spectrum with energy
Eν ≤ 0.420 MeV, witness very little matter effects. The
probability Pee has less than a percent difference from
the path-averaged expression in Eq. (10). However, for the
somewhat higher energy discrete spectra of 7Be and pep
neutrinos (Eν ¼ 0.862 and Eν ¼ 1.44 MeV, respectively),
the matter effects are still small, up to 4%–5%, but not
entirely negligible. Therefore, we include the small mod-
ifications due to matter effects according to

hPmiee ¼ s413 þ
1

2
c413ð1þ cos 2θm12 cos 2θ12Þ; ð11Þ

where

cos 2θm12 ¼
1 − Ne=Nres

effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Ne=Nres

e Þ2 þ tan22θ12
p ð12Þ

is the effective mixing angle inside the Sun, Ne is the
electron number density at the center of the Sun, Nres

e ¼
Δm2

12 cos 2θ12=ð2Eν

ffiffiffi
2

p
GFÞ is the electron density in the

resonance region, Δm2
12 is the solar mass-squared differ-

ence, θ12 is the solar mixing angle and GF is the Fermi
constant. For the continuous pp spectrum, we use the
electron density at an average pp production point in the
above expressions and assume an exponential decrease of
the density outward from the core in the analytic approx-
imations as discussed in detail in Ref. [34]. This is an
excellent approximation for r > 0.1Rsolar [35].
Taking the current best-fit values of the oscillation

parameters [1], we find the vacuum value hPvaciee ¼
0.558, which is modified to hPppiee ¼ 0.554 for pp,
hP7Beiee ¼ 0.536 for 7Be and hPpepiee ¼ 0.529 for pep
neutrinos in the case of matter effects.

B. Borexino, event rate calculations
and the χ 2 model

We will consider five measurements made by the
Borexino experiment since 2007 both in phase-I [7,8]
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and phase-II [9–11] runs. The pp spectrum was measured
in phase-II only, 7Be and pep spectra were measured in
both phase-I and phase-II with an extensively purified
scintillator in phase-II between December 2011 and May
2016 for a total of 1291.51 days. The data obtained from
the experiment is given in Table I.
For all five measurements we take the number of

target electrons per 100 tons, Ntarget
e ¼ 3.307 × 1031, as

quoted in Ref. [11], while taking the pp reaction flux from
Ref. [35].2 Since the 7Be and pep fluxes have discrete
spectra, we treat them as delta functions in our analysis to
evaluate the rate in Eq. (13), see below. In addition, as
discovered by all BOREXINO experiments that the data
mostly favor the high-metallicity SSM, we use only the
high-metallicity fluxes for our analysis to constrain our
parameters. The high-metallicity SSM flux values we use
are ϕ7Be ¼ 4.48 × 109 cm−2 s−1 at 0.862 MeV and ϕpep ¼
1.44 × 108 cm−2 s−1 at 1.44 MeV in our calculations.
Nevertheless, to investigate the discrepancy between the
low-metallicity SSM and the data in the context of a
specific model beyond the SM would be more interesting.
In order to calculate the expected number of events in the
Borexino detector, we can write down the expression for
total rates as

Ri
ν ¼ Ntarget

e

Z
Emax

0

dEνϕ
iðEνÞðσeðEνÞhPiiee

þ σμ;τðEνÞ½1 − hPiiee�Þ; ð13Þ

where hPiiee is given in Eq. (11), with the index i indicating
whether pp, 7Be or pep neutrinos are considered. The
cross sections σeðEνÞ and σμ;τðEνÞ are given in Eq. (8).
Using the updated values of Higgs and the top quark
masses from PDG we have used the results on the radiative
corrections of Ref. [35]. We find 1.9% decreasing and 1.1%
increasing quantum corrections for νee → νee and νμ;τe →
νμ;τe scattering, respectively. We have normalized our SM
predicted total cross sections accordingly. Note that we
assume in Eq. (13) equal fluxes of muon and tau neutrinos,

which corresponds to maximal θ23. This will imply
identical limits for the muon- and tau-flavor ϵ parameters.
For nonmaximal θ23 there will in reality be slightly
different limits. For data fitting, we use the following
χ2-estimator to constrain the parameters λ⃗≡ ðϵa; ϵ̃aÞ:

χ2ðλ⃗Þ ¼
X
i

ðRi
exp − Ri

preð1þ αiÞÞ2
ðσistatÞ2

þ
�
αi

σiα

�
2

; ð14Þ

where i runs over the solar neutrino sources pp, 7Be and
pep. In Eq. (14), Rexp are the experimental event rates
observed at Borexino in phase-I and phase-II with σstat the
statistical uncertainties for each of the five measurements,
while Rpre is the predicted event rate corresponding to each
experiment, calculated using Eq. (13). The predicted and
measured event rates are quoted in Table I, as well as our
calculated values for comparison. We take the neutrino
energy window of 100–420 keV for calculating the pp-
neutrino event rate. The obtained results for the SM case are
given in Table I.
In Eq. (14), we also add a penalty term corresponding to

each measurement to account for the theoretical uncertain-
ities in the solar flux model for the three solar spectra and
from the oscillation parameters, mostly from θ12 since θ13
and Δm2

12 are known very well. In Table I we quote
the percentage uncertainties for each spectrum using
Borexino’s predicted event rates. We use the predicted
percentage uncertainties as the constraints (σα) on the pull
parameters (αi). Since the five measured event rate values
given in Table I are already background subtracted we do
not include any background terms in our χ2 model.
Additionally, since we are working with the event rates
we are less affected by details of the detector energy
resolutions or detector response, etc.
As stated earlier, since we are using a simple χ2 model

that is based on the total event rate analysis corresponding
to each low energy component of the solar spectrum, we
consider only the statistical uncertainties and do not take
into account the experimental correlated or uncorrelated
systematic errors. The statistical analysis we have imple-
mented here has already been used for phenomenological
new physics studies in Refs. [33,36] and others. The
validity of the χ2 model used here has been cross-checked
for estimating the neutrino magnetic moments for the same
data in Ref. [37]. The results of that work are in good
agreement with those obtained by Borexino in Ref. [11] for
phase-II data. As an explicit comparison, the analysis from
Ref. [33] applied to phase-II data without carbon-nitrogen-
oxygen (CNO) cycle data gives for the weak mixing angle
sin2 θW ¼ 0.229� 0.038, to be compared to Borexino’s
result [38] of sin2 θW ¼ 0.229� 0.026. The limits we will
present in what follows are therefore conservative.
We emphasize that full agreement between our results

and Borexino’s result of the vector and axial vector

TABLE I. The measured event rates in Borexino with statistical
uncertainties (1σ) and the predicted event rates from the standard
solar model (SSM). Our calculated event rates are given in the last
column.

Flux
Event rate
(phase-I)

Event rate
(phase-II)

Our
prediction

% age error
(theoretical)

pp − 134� 10þ6
−10 133.5� 1.4 1.1%

7Be 46� 1.5þ1.5
−1.6 48.3� 1.1þ0.4

−0.7 48.1� 2.8 5.8%
pep 3.1� 0.6� 0.3 2.43� 0.36þ0.15

−0.22 2.9� 0.04 1.5%

2The details of the pp flux calculation have been summarized
in the appendix of Ref. [33].

KHAN, RODEJOHANN, and XU PHYS. REV. D 101, 055047 (2020)

055047-4



parameters [38] cannot be anticipated since we are not
including the CNO data in our analysis as the direct rate
measurement by Borexino is not available. We rather use
data from phase I and phase II while Borexino uses only
phase II data. Also, since the β spectrum of 210Bi and 85Kr
as backgrounds coincide with the 7Be spectrum that might
lead to these mild modifications. Spectral analysis of all the
general parameters using the full set of the Borexino’s data
is beyond the scope of this work. In the analysis we use the
values of masses and mixing angles from PDG [1].

IV. RESULTS

Having described our fitting procedure, we present here
the results. As the produced electron neutrinos oscillate
also to muon and tau neutrinos, we study two scenarios:
(i) new interactions appear only for νe, and (ii) new
interactions appear only for νμ=τ (recall that we do not
distinguish both flavors).
Figure 1 shows the result of our χ2 fit for the general

interactions of electron neutrinos. The constraints are
compared to previous constraints obtained in Ref. [6] using
the TEXONO reactor antineutrino data. Borexino improves
the limits on ϵVee, ϵ̃Vee, ϵAee, ϵTee and ϵ̃Tee. Figure 2 shows the fit
result for new physics acting only on muon/tau neutrinos.
The constraints are compared to a previous constraint
obtained in Ref. [6] using CHARM-II data. Borexino
improves the limit on ϵ̃Vμμ. For ϵaττ and ϵ̃aττ these are the
very first limits. The numerical values of the constraints in
Figs. 1 and 2 are given in Tables II and III.
It is also useful to give constraints on the parameters A,

B,C andD that appear in the total cross section Eq. (8). The
result is given in Fig. 3 and Table IV for electron and muon/
tau neutrinos. We have performed here two-parameter fits
setting the other two parameters to their SM values. The
SM values of these parameters are given in the last two
columns of Table IV, which in particular is B ¼ 0. For
future experiments (see Sec. IV B) we assumed the SM
values of A, B, C and D.

A. Comparison with the conventional
NSI and other studies

We note that recently the BOREXINO Collaboration
published constraints on nonstandard interactions ϵL;Rαα

using phase-II data only [38]. Using the general relation
ϵV;Aαα ¼ ϵRαα � ϵLαα, we translate their bounds in our notation
and present them in the third and fourth columns of
Tables II and III for comparison. The difference between
the two results can be understood as follows. We use rates
of five BOREXINO experiments from both phase I and II
while Ref. [38] uses only the phase II data. We use a
different statistical model for parameter fitting than them.
They divide the pull term in their statistical function by a
factor of 2. We have assumed the maximal mixing
assumption for θ23 while Ref. [38] has taken the opposite.

An exact comparison would be difficult; however, given the
above differences in approaches and datasets, the agree-
ment is reasonable.
We note that the comparison to previous limits from

reactor antineutrinos can be partly understood from the
form of the cross section in Eq. (5). The term proportional
to C is suppressed by about a factor of 3 in the total cross
section with respect to A in the energy regime of
BOREXINO measurements considered in this work. For
anti-neutrinos A and C are interchanged in the cross
section, which means that the solar data is more sensitive
to the left-handed neutral currents (V − A), that is, to
parameters in the definition of A here, while the reactor
data is more sensitive to the right-handed parameters
(V þ A), occurring here in the definition of C in Eq. (6).
This argument is valid only for νee scattering. For the νμ=τe
scatterings, the bounds here are comparable to those from
CHARM-II which is sensitive to both left-handed and
right-handed couplings. However, as we can see from
Tables II and III, solar data give better constraints on
tensor interactions while weaker or comparable constraints
on scalar and pseudoscalar interactions.
We note that a recent work [26] introduced scalar NSI,

similar to a ¼ S in our Eq. (4), to study the matter effect in
neutrino oscillation. The strength considered in Ref. [26]
corresponds to ϵS ∼ 106 to 109. Such strong interactions are
not compatible with most neutrino scattering data unless
they are mediated by very light bosons. The scenario of
light mediators has been further investigated in Ref. [42],
which concludes that scalar NSI cannot cause significant
effects in current experiments. In our work, we do not
consider light mediators and always focus on four-fermion
effective operators. Therefore, for scalar interactions not
much stronger than the SM interactions [i.e., ϵS ≤ Oð1Þ],
the matter effect is negligible.

B. Future prospects from solar data

There are several ideas floating around to further
improve the precision on solar neutrino measurements
with a precision of 1% or better. The main motivations
behind these projects are the determination of the correct
metallicity (low or high) solar model and photon fluxes
from the Sun, a more stringent test of the LMA-MSW
solution of the neutrinos propagating through the solar
matter and to explore exotic properties related to the solar
neutrinos. One such project is the Jinping experiment [43].
In addition, future large scale dark matter direct detection
experiments can provide precise solar neutrino measure-
ments [44–46], ideas to use future long-baseline neutrino
oscillation far detectors as solar neutrino experiments are
also present [47].
As for different types of potential future experiments the

precision of the individual solar neutrino sources is differ-
ent; we conservatively adopt for simplicity that all three low
energy solar neutrino fluxes (pp, pep and 7Be) will have
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FIG. 1. Constraints on general neutrino interactions, see Eq. (4), for electron neutrinos. The black line is the limit obtained from
Borexino event rates, the red line for hypothetical future measurements with event rate precision of 1%, see Sec. IV B. Indicated are the
1σ and 90% C.L. projections. The thick horizontal magenta line is the limit obtained from TEXONO data, taken from [6]. The green
horizontal lines at 90% C.L. projections in the top two left figures are bounds from Ref. [38].
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FIG. 2. Constraints on general neutrino interactions, see Eq. (4), for muon/tau neutrinos. The black line is the limit obtained from
Borexino event rates, the red line for hypothetical future measurements with event rate precision of 1%, see Sec. IV B. Indicated are the 1σ
and 90%C.L. projections. The thick horizontal magenta line is the limit on muon neutrino general interactions obtained from CHARM-II
data, taken from [6]. The green horizontal lines at 90%C.L. projections in the top two left figures are bounds fromRef. [38]. The dots on the
left of the green line in the second graph shows that the lower bound goes up to −0.72which is beyond the chosen scale of our analysis.
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been measured with a 1% precision and assume the SM
values of the various ϵ, ϵ̃ or A, B, C, D. With this projected
precision we simulate our data for the same type and size of
the Borexino detector and then fit all the parameters in a
similar fashion as was done for the real data. The results of
this analysis are displayed with red color distributions in
Figs. 1 and 2 and with green color ellipses in Fig. 3.
As is clear from Figs. 1 and 2, and can be read off from

Tables II and III, the future solar data with 1% precision
will improve the current bounds on nonstandard vector,
axial-vector and tensor interactions by more than one order
of magnitude while for the scalar and pseudoscalar ones
they will improve by a factor of 3 to 5, in general. The
future constraints at 90% C.L. on the parameters A, B, C
and D are also shown with green color ellipses overlaid on
the current constraints for comparison in Fig. 3.

V. THE DIFFERENCE BETWEEN DIRAC
AND MAJORANA NEUTRINOS

Throughout this paper, our analyses assumed Dirac neu-
trinos. As we have previously mentioned, for Majorana

neutrinos some interactions are absent because they have
fewer degrees of freedom than Dirac neutrinos. More
explicitly, aDirac neutrino spinor consists of both left-handed
and right-handed components (νL and νR):

νD ¼ νL þ νR; ð15Þ
where νL and νR are two independent fermionic degrees
of freedom. A Majorana neutrino spinor is conventionally
defined as

νM ¼ νL þ νcL; ð16Þ
so that νM ¼ νcM. Here νcL is the charge conjugate of νL,
containing essentially the sameWeyl spinor as νL. Expanding
ν̄Γν in terms of the chiral components, one can immediately
see that some interactions cannot exist for νM. For instance,

νDγ
μνD ¼ νLγ

μνL þ νRγ
μνR; ð17Þ

νMγ
μνM ¼ νLγ

μνL þ νcLγ
μνcL ¼ νLγ

μνL − νLγ
μνL ¼ 0;

ð18Þ

TABLE III. 90% C.L. constraints on general neutrino interactions for muon/tau neutrinos, see Eq. (4), obtained from Borexino data,
displayed in Fig. 2. Given also are previous limits (on muon neutrinos) and hypothetical future constraints. In the fourth and fifth
columns the bounds were translated from the corresponding references by the relation ϵV;Aαα ¼ ϵRαα � ϵLαα.

Parameter This study (solar) Ref. [38] Ref. [39] Ref. [6,40,41] Future (solar)

εVμμ=εVττ ½−1.5; 0.5� ½−0.94; 1.03� ½−1.21; 0.42� ½−0.22; 0.08� ½−0.1; 0.1�
εAμμ=εAττ ½−0.14; 0.23� ½−0.72;−0.31� ½−0.89; 0.20� ½−0.08; 0.08� ½−0.03; 0.03�
εSμμ=εSττ ½−1.5; 1.5� � � � � � � ½−0.83; 0.83� ½−0.5; 0.5�
εPμμ=εPττ ½−3; 3� � � � � � � ½−0.83; 0.83� ½−1.22; 1.22�
εTμμ=εTττ ½−0.271; 0.271� � � � � � � ½−0.15; 0.15� ½−0.1; 0.1�
ε̃Vμμ=ε̃Vττ ½−0.4; 0.8� � � � � � � ½−0.09; 0.08� ½−0.04; 0.04�
ε̃Aμμ=ε̃Aττ ½−1.2; 0.9� � � � � � � ½−0.09; 0.22� ½−0.1; 0.1�
ε̃Sμμ=ε̃Sττ ½−3; 3� � � � � � � ½−0.83; 0.83� ½−1.2; 1.2�
ε̃Pμμ=ε̃Pττ ½−1.54; 1.54� � � � � � � ½−0.83; 0.83� ½−0.54; 0.54�
ε̃Tμμ=ε̃Tττ ½−0.3; 0.3� � � � � � � ½−0.15; 0.15� ½−0.1; 0.1�

TABLE II. 90% C.L. constraints on general neutrino interactions for electron neutrinos, see Eq. (4), obtained from Borexino data,
displayed in Fig. 1. Given also are previous limits and hypothetical future constraints. In the fourth and fifth columns the bounds were
translated from the corresponding references by the relation ϵV;Aαα ¼ ϵRαα � ϵLαα.

Parameter This study (solar) Ref. [38] Ref. [39] Ref. [6,40,41] Future (solar)

εVee ½−0.12; 0.08� ½−0.18; 0.14� ½−0.31; 0.65� ½−0.13; 0.20� ½−0.016; 0.016�
εAee ½−0.13; 0.07� ½−0.11; 0.08� ½−0.23; 0.53� ½−0.32; 0.22� ½−0.016; 0.016�
εSee ½−1.4; 1.4� � � � � � � ½−1.1; 1.1� ½−0.49; 0.49�
εPee ½−2.7; 2.7� � � � � � � ½−1.3; 1.3� ½−0.98; 0.98�
εTee ½−0.27; 0.27� � � � � � � ½−0.31; 0.30� ½−0.09; 0.09�
ε̃Vee ½−0.07; 0.13� � � � � � � ½−0.23; 0.29� ½−0.016; 0.016�
ε̃Aee ½−0.08; 0.13� � � � � � � ½−0.21; 0.11� ½−0.016; 0.016�
ε̃See ½−2.7; 2.7� � � � � � � ½−1.3; 1.3� ½−0.98; 0.98�
ε̃Pee ½−1.4; 1.4� � � � � � � ½−1.1; 1.1� ½−0.48; 0.48�
ε̃Tee ½−0.27; 0.27� � � � � � � ½−0.31; 0.29� ½−0.09; 0.09�
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which implies that flavor-diagonal vector interactions cannot
exist forMajorana neutrinos. Likewise, one can check that for
the tensor interactions

νDσ
μννD ¼ νRσ

μννL þ νLσ
μννR; ð19Þ

νMσ
μννM ¼ νcLσ

μννL þ νLσ
μννcL ¼ 0: ð20Þ

However, off-diagonal vector and tensor interactions are
possible for Majorana neutrinos. This is in analogy to the
well-known fact that Majorana neutrinos cannot have flavor
diagonal magnetic moments (which couple photons to
neutrinos via σμν) but can have flavor transition magnetic
moments; see, e.g., [48]. In Table V, we list the chiral
expansion for all possible products with flavor indices

FIG. 3. 90% C.L. constraints on cross section parameters A, B, C and D that appear in the total cross section Eq. (8). The Standard
Model values are indicated as black dots, our best-fit values are the black stars. The yellow region assumes a hypothetical future
measurement with 1% precision, see Sec. IV B.

TABLE IV. 90% C.L. constraints on the cross section parameters A, B, C and D that appear in the total cross section Eq. (8)
corresponding to Fig. 3. Dirac neutrinos are assumed, and the Standard Model values for the parameters are also given.

Parameter Bounds ðνeeÞ Bounds (νμ=τeÞ Best-fit (νeeÞ Best-fit ðνμ=τeÞ SM ðνeeÞ SM ðνμ=τeÞ
Aαe [2, 2.3] [0.15, 0.45] 2.2 0.31 2.12 0.29
Bαe ½−0.05; 0.07� ½−0.05; 0.07� 0.01 0.01 0 0
Cαe [0.11, 0.41] [0.11, 0.41] 0.24 0.24 0.21 0.21
Dαe ½−3.5;−0.2� ½−0.2; 3.5� −2.3 1.5 −2.7 0.99

TABLE V. Neutrino spinor products (ναΓνβ) written explicitly in terms of the chiral components (second and fourth columns), or in
terms of the Weyl spinors (third and fifth columns). Here σμ ¼ ð1; σ⃗Þ and σμ ¼ ð1;−σ⃗Þ are the Lorentz-covariant Pauli matrices, σμν2×2
and σμν2×2 are defined as σμν2×2 ≡ i

2
ðσμσν − σνσμÞ and σμν2×2 ≡ i

2
ðσμσν − σνσμÞ.

ναΓνβ Dirac: νD ¼ νL þ νR Dirac: νD ¼ ðχξ̄Þ Majorana: νM ¼ νL þ νcL
Majorana: νM ¼ ð χ

χ̄ Þ

νανβ ναRνβL þ ναLνβR ξαχβ þ χα ξβ νcαLνβL þ ναLν
c
βL

χαχβ þ χα χβ
ναiγ5νβ −iναRνβL þ iναLνβR −iξαχβ þ iχα ξβ −iνcαLνβL þ iναLνcβL −iχαχβ þ iχα χβ
ναγ

μνβ ναLγ
μνβL þ ναRγ

μνβR χα σ
μ χβ þ ξασ

μξβ ναLγ
μνβL − νβLγ

μναL χα σ
μ χβ þ χασ

μχβ
ναγ

μγ5νβ −ναLγμνβL þ ναRγ
μνβR −χα σμ χβ þ ξασ

μξβ −ναLγμνβL − νβLγ
μναL −χα σμ χβ þ χασ

μχβ
νασ

μννβ ναRσ
μννβL þ ναLσ

μννβR ξασ
μν
2×2χβ þ χα σ

μν
2×2 ξβ νcαLσ

μννβL þ ναLσ
μννcβL χασ

μν
2×2χβ þ χα σ

μν
2×2 χβ
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included. The results for Majorana neutrinos can be simply
obtained by replacing νR in the Dirac column with νcL.
Let us inspect the symmetry of these products when the

flavor indices α and β are interchanged. For any two
general spinors ψα and ψβ (applicable to both Dirac and
Majorana), it can be verified that ψc

αΓψβ is symmetric with
respect to α ↔ β for Γ ¼ ð1; iγ5; γμγ5Þ, and becomes
antisymmetric for Γ ¼ ðγμ; σμν; σμνγ5Þ, e.g., ψc

αψβ ¼
ψc
βψα, ψc

αγ
μψβ ¼ −ψc

βγ
μψα and ψc

ασ
μνψβ ¼ −ψc

βσ
μνψα.

Now for Majorana neutrinos, due to their self-conjugate
property (νM ¼ νcM), we have

νMαΓνMβ ¼ νcMαΓνMβ ¼ −νcMβΓνMα ¼ −νMβΓνMα

for Γ ¼ ðγμ; σμν; σμνγ5Þ; ð21Þ

and likewise

νMαΓνMβ ¼ νMβΓνMα for Γ ¼ ð1; iγ5; γμγ5Þ: ð22Þ

This implies that for Majorana neutrinos, the vector and
tensor interactions are flavor antisymmetric; the scalar,
pseudoscalar and axialvector interactions are flavor sym-
metric. Therefore,

Majorana∶
� ϵaαβ ¼ −ϵaβα; ϵ̃aαβ ¼ −ϵ̃aβα; ðfor a ¼ V; TÞ
ϵaαβ ¼ ϵaβα; ϵ̃

a
αβ ¼ ϵ̃aβα ðfor a ¼ S; P; AÞ :

ð23Þ

Note that these ϵ and ϵ̃ matrices should also be Hermitian,
see footnote,3 so Eq. (23) is equivalent to

Majorana∶
�Reϵaαβ ¼ Reϵ̃aαβ ¼ 0; ðfor a ¼ V; TÞ
Imϵaαβ ¼ Imϵ̃aαβ ¼ 0 ðfor a ¼ S; P; AÞ ;

ð24Þ

which means ϵaαβ and ϵ̃aαβ are real symmetric matrices for
a ¼ S, P, and A, and imaginary antisymmetric matrices for
a ¼ V, and T. In particular, the diagonal parts of the vector
and tensor coupling matrices should vanish, ϵVαα ¼ ϵ̃Vαα ¼
ϵTαα ¼ ϵ̃Tαα ¼ 0.
In summary, the difference between Dirac and Majorana

neutrinos in the framework of this paper is that the ϵ and ϵ̃
matrices for Majorana neutrinos are further constrained by
Eq. (23), or equivalently, Eq. (24). Thus our results based on
Dirac neutrinos are readily applicable toMajorana neutrinos
except that some of the couplings, namely flavor-diagonal
ϵV and ϵT , as well as ϵ̃V and ϵ̃T , should be absent.

VI. SUMMARY AND CONCLUSIONS

We have discussed here the sensitivity of Borexino to
general neutrino interactions. Assuming the presence of
additional scalar, pseudoscalar, vector, axialvector or
tensor interactions we have investigated how Borexino’s
measurements of pp, pep and 7Be neutrino event rates
constrain the dimensionless (i.e., normalized to the Fermi
constant) interaction strength of the new interactions.
Several previous limits from TEXONO and CHARM-II
are improved for the electron and muon sector, while first
limits on the tau sector interactions were set. Our limits are
summarized in Figs. 1 and 2 as well as Tables II and III. We
focused on Dirac neutrinos, and detailed the difference to
Majorana neutrinos. Future prospects on the limits were
also considered. Interpreting the interaction strengths as
due to some new exchanged boson with coupling gX and
mass MX implies that ϵ or ϵ̃ is given approximately by
ðg2X=M2

XÞ=GF. This means that current (future) solar
neutrino experiments are sensitive to new physics of weak
(TeV) scale and beyond.
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