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Fate of the false vacuum in a singlet-doublet fermion extension model with
RG-improved effective action

Yu Cheng” and Wei Liao®'

Institute of Modern Physics, School of Sciences, East China University of Science and Technology,
130 Meilong Road, Shanghai 200237, People’s Republic of China

® (Received 30 September 2019; accepted 13 March 2020; published 30 March 2020)

We study the effective potential and the renormalization group (RG) improvement to the effective
potential of a Higgs boson in a singlet-doublet fermion dark matter extension of the Standard Model (SM),
and in general singlet-doublet fermion extension models with several copies of doublet fermions or singlet
fermions. We study the stability of the electroweak vacuum with the RG-improved effective potential in
these models beyond the SM. We study the decay of the electroweak vacuum using the RG-improved
effective potential in these models beyond the SM. In this study we consider the quantum correction to the
kinetic term in the effective action and consider the RG improvement of the kinetic term. Combining all
these effects, we find that the decay rate of the false vacuum is slightly changed when calculated using the
RG-improved effective action in the singlet-doublet fermion dark matter model. In general singlet-
doublet fermion extension models, we find that the presence of several copies of doublet fermions can
make the electroweak vacuum stable if the new Yukawa couplings are not large. If the new Yukawa
couplings are large, the electroweak vacuum can be turned into metastable or unstable again by the

presence of extra fermions.
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I. INTRODUCTION

Quantum contribution to the effective potential is
important to understand the properties of the scalar field,
e.g., the property of the ground state and the behavior at
large energy scale. For example, radiative correction can
make a vacuum unstable and trigger spontaneous symmetry
breaking [1]. The RG-improved effective potential, which
resums contributions of large logarithms, is important to
understand the behavior of effective potential at a large
energy scale. For example, the RG-improved effective
potential is crucial in reducing the dependence on the
renormalization scale when calculating quantities related
with physical parameters [2—4].

It is well known that a false vacuum can decay via
tunneling [5—7] and become unstable. In the SM, the Higgs
quartic self-coupling can become negative at an energy
scale around 10'° GeV. This makes the electroweak (EW)
vacuum unstable. The decay rate of the EW vacuum can be
calculated using an approximate bounce solution of the
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Higgs potential with a negative Higgs quartic coupling [8—
10]. Calculation of vacuum decay using RG-improved
effective potential in the SM does not give much difference,
because the bounce solution is dominated by behavior at a
high energy scale and the RG-improved effective potential
in the SM at a high energy scale is accidentally close to the
Higgs potential with running quartic coupling [12].

In extension of the SM, the situation can be quite
different. The RG-improved effective potential is possible
to be very different from the potential using a running
Higgs quartic coupling. As an example, we consider a
singlet-doublet fermion dark matter (SDFDM) extension of
the SM. We show that the RG-improved effective potential
can be quite different from the tree-level potential aided
with running Higgs quartic coupling. Then we study the
vacuum stability in this extension of SM. We study the false
vacuum decay using RG-improved effective potential in
this SDFDM model. We also study the quantum contribu-
tion to the kinetic term in the effective action in this model
beyond the SM and consider the RG improvement of the
kinetic term. After taking all these effects into account we
find that the false vacuum decay rate is just slightly changed
using the RG-improved effective action in the SDFDM
model, although the RG effective potential is significantly
different from the tree-level form of the Higgs potential
with running quartic self-coupling. We also perform
these analyses in general singlet-doublet fermion extension
models in which several copies of singlet fermions or
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several copies of doublet fermions are considered. We find
that the presence of several extra doublet fermions can
make the EW vacuum stable if the new Yukawa couplings
are not large.

The article is organized as follows. In Sec. II, we first
briefly review the SDFDM model. We study the threshold
effect caused by the extra fermions in this model beyond
the SM and study the running of the Higgs quartic coupling
in this model. Then we study the effective potential and the
RG-improved effective potential in this model. In Sec. III
we study the vacuum stability in the SDFDM model. We
calculate the renormalization of the kinetic term in the
effective action in the SM and in the SDFDM model. We
study the RG improvement of the kinetic term and calculate
the decay rate of the false vacuum. In Sec. IV, we do the
analysis in the general singlet-doublet fermion extension
model. Details of calculation are summarized in the
Appendixes A—D. We summarize in the Conclusion.

II. EFFECTIVE POTENTIAL AND
RG-IMPROVED EFFECTIVE POTENTIAL
IN THE SDFDM MODEL

A. The SDFDM model

In addition to the SM fields, the SDFDM model has
SU(2) doublet fermions g = (w{ . wig)" with Y =
—1/2 and singlet fermions S; . Here, L (R) refers to the
left (right) chirality. As a singlet, S can be either a Dirac-
type or Majorana-type fermion [13,14]. In this model, the
neutral fermion can be a dark matter candidate. The vacuum
properties of the SDFDM model with a Majorana-type
mass have been discussed in [15]. In this article we work on
the Dirac-type mass [16].

The relevant terms of y and § in the Lagrangian are

Lsprom = Wiy + Si)S — Mpiy wg — MgS Sy
— y1w HSg — y2ugHS, +Hee., (1)

where M, g are the mass parameters, y; , the new Yukawa
couplings, H is the SM Higgs doublet with Y = 1/2, and
H = io,H*. We impose a Z, symmetry in the Lagrangian
with the new fermions y and S odd and SM fermions even
under the Z, operation. This guarantees the lightest of these
new fermions to be stable, and makes it a dark matter
candidate if it is neutral.

After the EW symmetry breaking, the mass matrix of
Sz and the neutral component of y g (l//g r) 18 given as

Mg 2L

M= (y S ) 2)
ueom
V2 D

where v = 246 GeV. Mixings between these two neutral
fermions are generated by this mass matrix. The mixing
angles 0, p appear in the diagonalization of the mass matrix
using two unitary mass matrices, that is

Mo 0
M? = < ! > = U MU, (3)
0 My
2
with
cosOp g sinfp g
Urr = : (4)
—sinf; p cosfOpp
and
2 ! 2 2
My = (TM /12, - 4DM>, (5)

1
m, ZE(TM—f— \/Tﬁ—4Dﬁ4), (6)

where Ty = M3+ 3yiv? + M3, +1y30%, Dy =1y y0°—
MsMp. x) and x9 are neutral fermion fermions in the
diagonalized base with masses M 2 and M 2 respectively.

The mixing angles 0; ; can be solved as

V20(Mgy, + Mpy,)

tan20; = 5
M} — M5+ % (y1 = »3)

(7)

V20(Msy, + Mpy,)
M} = M5 + 5 (v = 1)

tan 20y =

(8)

Writing H = (0, (v 4 h)/+/2)7, the interaction Lagrangian
of dark matter fields )((1),2 and the CP-even neutral Higgs
field & is obtained from Eq. (1) as

AL ==y 0 0h =y 23 5h
— e PriOh + ypxYPLy3h +Hel,  (9)

where Pr; = (1 £75)/2, ya = (—y,cos0; sinfr — y; X
sin@; cosOx)/vV2,  yp = (y,c0s0gsin@, + y, sinfg x
c0s0.)/V2,yc = (y, cos @, cos O — v, sin @, sin Og)/
V2 and yp = (—y,sin @, sin O + y, cos O, cos Og)/V/2.

B. Effective potential and RG-improved
effective potential

In the following, we will take ¢ to denote a neutral
external field. ¢/+/2 corresponds to the CP-even neutral

component of the Higgs doublet in the SM. The tree-level
potential of ¢ is

2
Vold) = -2 1 2 (10)

where 4 is the Higgs quartic self-coupling in the SM and m,,
the mass term. A Coleman-Weinberg—type quantum cor-
rection to the potential can be calculated using a vacuum
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diagram by considering the quantum fluctuations around
the external field ¢. The one-loop contribution of the extra
fermion in the SDFDM model to the effective potential is
calculated as

t ! M. (¢
4 :—64ﬂ2M3‘(1(¢) [m );L 2( )—3/2]
1 M
-t w2 sl

where Mfmm(gb) are obtained from Egs. (5) and (6) by
replacing v with ¢. u is the renormalization scale chosen in

this calculation. In the limit ¢ > v, we have approxi-

mately M2, (¢) = yi¢?*/2, 34 /2.

We arrive at a one-loop effective potential as follows:

Veff((b’j'ivﬂ) = V(S)M(¢’/1) + V§M<¢7/11’:u) + Vl]i'xt(¢’/1i”u)7
(12)

where 4; denotes various parameters in the model.
ViM(¢, 1) is given in Eq. (10). V$M(g, 4;, u) is the one-
loop contribution to the effective potential in the SM. The
effective potential in the SM is known up to two loop
[17,18]. VEX(¢h, 4;, u) is given in Eq. (11).

In the vacuum stability analysis, we must consider the
behavior of the effective potential for the large external
field. That is to say, we must deal with potentially large
logarithms of the type log(¢p/u) for a neutral external field
¢. The standard way to solve the problem is by means of
the RG equation (RGE). V4 satisfies the RGE

0 0 0
<ﬂ8_ﬂ+ﬁi8_/1[_7¢%>veff_o’ (13)

where f5; is the f function of parameter 4;, and y the
anomalous dimension of the scalar field. Straightforward
application of this method leads to a solution [2]

Vst (is Ais @) = Vege (u(2), 4:(2), (1)), (14)

where
u(t) = pe'
W(1) = e (15)
with
r() == [ v (16)
and 4;(r) the running coupling determined by the equation
P _ i), (17)

with the boundary condition 4;(0) = 4;,. So the RG-
improved effective potential can be written by simply
substituting u, 4;, ¢ in the original effective potential with

p(1), A1), (1)

The RG-improved effective potential in the SDFDM
model is obtained by implementing the substitution men-
tioned above into Eq. (12). We have

Verr(h. 1) = ViM(g. 1) + ViM(g. 1) + Vi (g.1).  (18)

with

v = =280 )+ Lo )
g 5D, M.
v = im0

—1)in, 2 (¢,

(21)

In Eq. (20) the index i = H, G, f, W, Z runs over SM fields
in the loop, and ¢y 6 r = 3/2,cy z = 5/6. In Eq. (21) the
index i = y, y, runs over extra neutral fermions in the
SDFDM model. n; is the number of degrees of freedom of
the fields. M;(¢) in Eq. (20) is given by

M3 (. 1) = k(1) (1) — K (1). (22)

The values of n;, k; and « in the SM can be found in
Eq. (4) in Ref. [4] in the Landau gauge and in Ref. [19] both
in the Fermi gauge and in the R gauge. For new
contributions in the SDFDM model, we have n; =1,
and M2, (6h.1) 33 (1) (1)/2,33(1)*(1) /2. Tn Egs. (20)
and (21), (—1)" equals +1. For gauge and scalar bosons
(=1)' takes a positive sign, while for fermion fields it takes
a negative sign.

In the limit ¢ > v, Eq. (18) can be written approximately
as follows:

~ leff(‘p’ t)

Vet (eh, 1) NT¢4’ (23)

where A, is an effective coupling. In vacuum stability
analysis, we generally take u(t) = ¢, s0 Ae(¢h, 1) can be
written as [12]

et (. 1)
ar(s ! 2 21 (s
~e (){l(t)—l—WZNiki(t)(logki(t)e (>—c,~)}.

(24)

The values of coefficients N;, k;, and c; appearing in
Eq. (24) are listed in Table I.
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TABLEI The coefficients in Eq. (24) for the background R, gauge [19]. &, and &, are the gauge-fixing parameters in the background
R; gauge, G and G° the Goldstone bosons, C* and C the ghost fields, y; and y, are the dark matter particles in the SDFDM model.
For &y = &, = 0, Eq. (24) reproduces the one-loop result in the Landau gauge, and for &, = &, = 1, we get the result in the "t Hooft-

Feynman gauge.

14 t w z h G* Gy c* Cz X1 X2
N, -12 6 3 1 2 1 -2 -1 -1 -1
c; 3 3 3 3 3 3 3 3 3 3
! 2 6 6 2 2 2 2 2 2 2
Ki i z 2o 32 PR 2+ lerd) bu? Bl 4o i 2

We note that the two-loop contributions of strong
coupling and the top Yukawa to the effective potential
can be written in the A,y as

4
- y
ﬂ§f~f100p(¢7 1)~ () (47;)4 [Sgg (3r% -8r,+9)
3 2
-5 <3r,2 —16r, +23 +%ﬂ (25)

where r, = ln% + 2I". We can see in Eq. (25) that the two-
loop contributions from top loops are of the order of
y8/(4m)*, while the one-loop terms are of the order of
y#/(4m)? as can be seen in (24). The two-loop contributions
from the new fermions in the SDFDM model are similar.
We expect that these new two-loop contributions would be
much smaller than the one-loop contribution if the new
Yukawa couplings y; and y, are not much larger than the
top Yukawa. So in this work, we do not take into account
these two-loop contributions from the new particles in the
SDFDM model. For similar reasons, we do not consider
two-loop contributions of new fermions to the $ function.
More detailed analysis on this aspect, in particular for the
case with very large Yukawa coupling, is outside the scope
of the present article.

C. Running parameters in the MS scheme

To study the vacuum stability of a model at high energy
scale, we need to know the value of coupling constants at
low energy scale and then run them to the Plank scale
according to RGEs. To determine these parameters at low
energy scale, the threshold corrections must be taken into
account. In this article we work with the modified minimal
subtraction (MS) scheme and use the strategy in [17,20] to
evaluate one-loop threshold corrections and determine the
initial values for RGE. The details of the corrections are
summarized in Appendix A. Using these results, we find
coupling constants in the MS scheme at u = M, scale
which are different for the SM and for the SDFDM model.
We list some of the results in Table II. Both the change of
the Yukawa couplings y ; and the change of the mass term
have an effect on the corrections. We can see in Tables 11
and III that changing the mass scale of dark matter particles

does not give rise to change of the initial parameters as
significant as that of changing Yukawa couplings.
Therefore, we will always choose mass parameters as
given in Table IT and concentrate on the impact of different
Yukawa couplings y; , in the remaining part of the article.
With these initial values in Table II, we then run the
parameters all the way up to Mp, scale. For RGE running,
we use three-loop SM S functions [17]. We also include
one-loop contributions of new particles in the SDFDM
model to the § functions of these SM parameters. For new
parameters in the SDFDM model, we use one-loop f
functions which can be extracted using pyr@TE2 [21]. The
results are shown in Appendix B.

TABLE II.  All the parameters are renormalized at the top pole
mass (M,) scale in the MS scheme. BMP1: y, = y, = 0.25,
Mg = 1000 GeV, Mp = 1000 GeV; BMP2: y, =y, = 0.35,
Mg = 1000 GeV, Mp = 1000 GeV; BMP3: y, =y, =04,
Mg = 1000 GeV, Mp = 1000 GeV; BMP4: y, =y, =0.6,
Mg = 1000 GeV, Mp = 1000 GeV; The superscript * indicates
that the NNNLO pure QCD effects are also included. BMPs
means benchmark points.

Initial values in the MS scheme for RGE running

H=M, A Vi 9 gy

SM; o 0.12917 0.99561 0.65294  0.34972
SMxnLo 0.12604  0.93690°  0.64779  0.35830
SDFDMEME! 0.12549  0.93526°  0.64573  0.35752
SDFDMEME2 0.12554  0.93368°  0.64574  0.35630
SDFDMEME3 0.12586  0.93269°  0.64573  0.35553
SDFDMEMP4 0.13126  0.92744"  0.64573  0.35144
TABLE III. y; =y, = 0.35 for all three cases with different

masses of the new particles. The superscript " indicates that the
NNNLO pure QCD effects are also included.

Effects of different masses on initial values

u=M, 7 Vi 9 9y

Mg = Mp =800 GeV 0.12564 0.93402° 0.64599 0.35650
Mg =My =1000 GeV 0.12554 0.93368  0.64574 0.35630
Mg = Mp = 1200 GeV 0.12546 0.93340° 0.64552 0.35613
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FIG. 1.

scale for the SDFDM model.

We can see the evolution of A() both in the SM and in
the SDFDM model in Fig. 1(a). We see that the 4, in the
SDFDM model, the minimum of A(¢) in the RGE running,
is negative and is more negative than in the SM. This
indicates that in the SDFDM model the EW vacuum is
unstable and the lifetime of the EW vacuum could be much
shorter owing to new physics effects. The greater the
Yukawa couplings y; and y,, the greater the destabilization
effects of the SDFDM model.

As shown in Eq. (24), A differs from A. In the SM, the
difference A — 4 is always positive and negligible near
the Planck scale as shown in Ref. [12]. The situation is
different in the SDFDM model. As we can see in Fig. 1(b),
Aett — 4 18 not negligible in the SDFDM model. In fact, A
is suppressed by the ¢*(*) factor in Eq. (24) which comes
from the contribution of the anomalous dimension. As
we can see, the instability scale A;, the energy scale at
which A (2) or A(t) becomes zero, is larger when deter-
mined by A.(#). This is the case both in the SM and in the
SDFDM model.

III. VACUUM STABILITY AND LIFETIME
OF THE VACUUM

As we have seen in the last section, RG improvement to
the effective potential can be quite significant in the
SDFDM model. We need to consider the effects of RG-
improved effective potential in the calculation of the
vacuum decay rate. The decay rate of the false vacuum
can be computed by finding a bounce solution to the field
equations in Euclidean space [5-7]. For a potential U(¢),
the decay rate per unit time per unit volume, I';, can be
expressed as

[, =Ae5, (26)

0.15 1 Y1=Y2=0.4 —— A of SDFDM model
' —— A of SDFDM model
0.101 A\
n n‘\
o \
£
S 0.051 \
(o}
)
o
= N
=
S 0.00
o
—0.05 4 B -
-0.10 . . , . . . .
0.0 2.5 5.0 7.5 100 125 150  17.5
10g10(1/GeV)
(b)

(@) A(7) up to My, for the SM and for various Yukawa couplings in the SDFDM model. (b) Running A(#) and A () up to Mp

where S, is the Euclidean action of bounce solution and A,
is the quantum correction. For fluctuation of the ¢ field, A,
is given as

8% | det[-0? + U"(
" 4x?| det[-0% + U"(

I

)]

where 9? is operated on Euclidean space and det’ the
determinant omitting the zero mode contribution. ¢ is the
field value in the false vacuum which can be taken as zero
as an approximation. ¢p refers to the spherical symmetric
bounce solution to the Euclidean field equation. ¢p satisfies

j @)

_ 92 ! _
¢+ U'(¢p) a2 dr

+U'(¢p) =0, (28)

where U’ means derivative of U with respect to the field. In
the case under consideration, ¢/ /2 is the CP-even neutral
component of the Higgs doublet in the SM. If there are
other particles coupled to the bounce field, their contribu-
tions to the determinants should also be taken into account,
as happens in the SM and in the singlet-doublet fermion
extension models considered in this article.

For a potential U(¢) =%¢* with a negative 4, the
calculation leads to [8]

872

Su =2
cl 3|/1|

(29)

In the SM, there is a mass of the Higgs field. The Higgs
mass can be safely neglected in this calculation because the
bounce solution is dominated by the behavior at large field
values, so that the potential can be written approximately as
a ¢* form. In quantum theory, 4 is a quantity running with
energy scale. To simplify calculation, 4 can be taken at a
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sufficiently large energy scale M so that A(M) is negative
and varies slowly with energy scale. So S,; = 87%/|A(M))|
in this case. It has been shown that this scale dependence
of S, in the false vacuum decay rate is canceled
when taking into account one-loop correction from the
determinant [8,9].

To fully take into account quantum corrections, we need
to consider the effective action. As long as the field varies
slowly with space and time, we can compute the effective
action using derivative expansion [I]. Neglecting terms
with a higher derivative, we can write the effective action in
Euclidean space for external field ¢ as

Sld) = [ @5 L 0.0 2:0) + V9] 30)

Z, can be obtained from the p? terms in the Feynman
diagrams as shown in Appendix C. It is renormalized to
make Z,(¢ = 0) = 1 which makes the kinetic term going
back to the standard form when there is no external field.
The results in the 't Hooft-Feynman gauge are summarized
in Table IX for the SM, and in Table X for new
contributions in the SDFDM model. In the large ¢ limit,
we can simplify the result. We obtain Z, for the SM in
Eq. (C14), and Z, for the SDFDM model in Eq. (C16). As
we can see, the explicit dependences on ¢ are canceled in
these results.

RG improvement of the kinetic term can be studied
similar to the effective potential. The kinetic term in the
effective action is the one-particle irreducible self-energy
I',. It satisfies the RG equation

0 0
(u@+ﬂi%—zy)rz<¢>=o. (31)

The equation can be solved in a way similar to solving
Veir (). Solving this equation gives rise to Z, (¢, ¢) with all
parameters 4; in Z,(¢) substituted by 4;(z) and with
an ¢ factor in the kinetic term. So we arrive at an
Euclidean action,

s= [ ax|e0z, .0 50,02+ 0] @

where 1 is only different from Eq. (24) by a factor ¢*'(*),
that is

Z() ZZNK

The Euclidean equation of bounce solution becomes

Y(logk;(1)e®™ ™ —¢;). (33)

—Z,Pp + Adpe* ) = 0. (34)

From the bounce action in Eq. (29), one can immediately
deduce that the bounce action becomes

812 872
A (22) 317] (35)

S =e7Z, x

S.; depends on Z, but is independent of the ") factor.
Similar to the case of obtaining Eq. (29), running param-
eters in Eqs. (34) and (35) are understood to be at an
arbitrary large energy scale M. The leading dependence on
M in the decay rate would be canceled by including
quantum correction from the determinant, similar to analy-
sis in Refs. [8,9].

Similarly, one can find that the (S,;)? factor in Eq. (27),
which comes from the zero mode contribution, becomes
[872/(3|2|e*/Z,)]?. The ratio of determinants in Eq. (27)
becomes |det'[—e?' Z,0% + 31e* 3]/ det[—e*" Z,0%]|71/2
which equals to |det' [-0?+3(1/Z, ) e $3]/ det[-0?]|7/% x
(e’ Z,)? when including effects omitting four zero modes.
It is easy to see that if taking ¢z = e'¢p the nonzero
eigenvalues of operator —9% 4 3(1/Z,)e* ¢% for ¢y sat-
isfying Eq. (34) would be the same of the operator —9? +
3(1/Z,)¢% for ¢y satisfying

~Z, g + Iy, = 0. (36)

So eventually we find that the decay rate is again expressed
by Eq. (26) but with S, expressed by Eq. (35) and with

§2, | det[=0% + 3(2/Z,)p3]|~1/2
4n? det[-0?] '

A= (37)

in which ¢jp satisfies Eq. (36). We see that the final result
depends on Z, but does not depend on e"(*). The factor ')
comes from the wave function renormalization but can be
associated with an arbitrariness in relating ¢ with a
renormalization scale. So it is not surprising to see that
the physical result does not depend on it. One can actually
redefine, from the very beginning, the external field ¢ of the
Euclidean action in Eq. (32) in the path integral and arrive
at this conclusion.

Note that the idea that physical quantities should not
depend on e' has been expressed in [11]. In this article,
the authors redefine the field and introduce canonically
normalized field in effective action. In our convention, the
canonically normalized field ¢,,, is related to ¢ with the
equation d¢,,/d¢p = e''/Z,. The solution of ¢,, can be
found approximately as ¢, = €' \/Z>¢p + ye' \/Z,¢ in
which the derivative with respect to /Z,, which gives
the contribution of higher order, has been neglected. As can
be found numerically, the anomalous dimension y is at most
a few of a thousand in high energy scale if the new Yukawa
couplings are not too large. Consequently, we can take
Gean = €' \/Z,¢ approximately in high energy scale, which
agrees with the result in [11] up to the factor \/Z,. The
coupling A.,,, introduced in [11] using the canonically
normalized field, can be found approximately as 1/(Z,)? in
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FIG. 2.

Mg = Mp = 1000 GeV in the SDFDM model.

our case. This agrees with the result in (35) which also
depends on 1/(Z,)%. So the real quartic coupling which
controls physical quantities is A.y, N0t A, or just 4 if Z, is
close to one. As will be shown in detail later, Z, is indeed
close to one and the difference between [ and 1 in the SM is
also very small at high energy scale. In the SDFDM model,
4 — A could be smaller than A — A shown in Fig. 1(b).
However, 4 — A can still be significant in some cases, as will
be shown later. So a careful analysis of vacuum stability
and vacuum decay in extensions of the SM should use 4 and
take the relevant quantum corrections into account.

Z, is arunning parameter. As we can see in Fig. 2, Z, has
a small deviation from unity at high energy scale, both in
the SM and in the SDFDM model. So the decay rate of false
vacuum is mainly controlled by the behavior of A(z). In the
SDFDM model, the scale dependence appearing in S, is
also canceled by a one-loop contribution from the deter-
minant. This energy scale can be taken conveniently at Ap,
the scale of bounce, so that S.;(Ap) takes care of the major
contribution in the exponential [8—10,12]. Ay is determined
as the scale at which the vacuum decay rate is maximized.
In practice, this roughly corresponds to the scale at which
the negative 1(Ag) is at the minimum. If Ay > Myp,, we can
only obtain a lower bound on the tunneling probability by
setting A(Ag) = A(Mp)).

In this way, the vacuum decay probability P, in our
universe up to the present time can be expressed as [12,22]

A4
Py = 0.15H—lje-5<AB>, (38)
0

where Hj = 67.4 kmsec™' Mpc™' is the Hubble constant
at the present time. S(Ag) is the action of the bounce of
size R = Agl.

Z, factor
—— of SDFDM model
fory:=y>,=0.35

1.022 A

1.021 A

Z3

1.020 4

1.019 A

1.018 -

2.5 5.0 7.5 10.0 12.5 15.0 17.5
log1o(u/GeV)

(b)

(a) The behavior of Z, at large energy scale in the SM; (b) The behavior of Z, at large energy scale with y; = y, = 0.35 and

In vacuum stability analysis, we call the vacuum stable if
the potential at large ¢ keeps positive. This requires 1 > 0
for an energy scale up to the Planck scale. If 1 < 0 at an
energy scale but with P, < 1, it means that the lifetime of
the false vacuum is greater than the age of the Universe. In
this case we call the vacuum metastable. Other scenarios
can be similarly defined. In summary, we list them as
follows:

(i) stable: 1> 0 for y < Mpy;

(ii) metastable: 1(Ag) < 0 and Py < 1;

(iii) unstable: 1(Ag) < 0 and Py > 1;

(iv) nonperturbative: |A| > 4z before the Planck scale.

Note that we classify states of EW vacuum in a way
different from Refs. [12,15], since A(¢) differs from () by
one-loop Coleman-Weinberg—type corrections. As will be
shown, A(#) can be different from A(7) significantly in the
SDFDM model. We further note that the effective action
we have used has an imaginary part. The present work
actually works on the real part of the effective action and
discusses the effect of the distortion of the bounce solution
in the presence of quantum correction to the effective
action. A discussion on the effect of the imaginary part of
the effective action would be interesting, e.g., as in
Ref. [23]. In the present article, we will not elaborate on
this topic.

Now we come to discuss the tunneling probability. As
shown in Egs. (26), (35) and (37), the decay rate of a false
vacuum depends on Z, and A(7) when including one-loop
correction to the effective action. As mentioned before, the
decay rate is mainly controlled by the behavior of A(). We
first compare A(7) and A(¢) in the SM. In the SM, A(t)
and A(r) are very close at high energy scale, as shown in
Fig. 3(a). They both approach the minimum before the
Planck scale. Both values of their minima and the energy
scales of the minima are very close, as can be seen in
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FIG.3. (a) Comparison between A and 7 in the SM. (b) Comparison between 4 and Awithy, = y, = 0.25and M s = Mp = 1000 GeV

in the SDFDM model.

Table IV. This means that the one-loop corrections to
effective potential have little effects on the tunneling prob-
ability in the SM. In the SDFDM model, the situation can be
different. As can be seen in Fig. 3(b), A(¢) and A(z) at high
energy scale are not as close as in the SM. In this plot, A(#) and
A(t) all approach their minima before the Planck scale. But
their values at the minima and the energy scales of the
minima are not as close as in the SM, as can be seen in
Table IV. In Fig 4, we give more plots with larger y; and y,. In
these cases, the difference between A(z) and A(¢) is more
significant. The larger the Yukawa coupling y; and y,, the
larger the difference. We can see that the difference between 1
and A in Fig. 4(b) is not as significant as the difference
between A and A in Fig. 1(b). However, 1— 4 is still
significant in this case. In these cases in Fig. 4, both A(¢) and
A(#) have no minimum for energy scale below the Planck
scale. The energy scale of bounce, A, is chosen as the Planck
scale for these two cases. We note that the positive sign of
. — A shown in Fig. 4 means that the lifetime calculated using
J in these plots is longer than that computed by using 4.
In Table IV, we list more numerical results for the SM and
for some benchmark points in the SDFDM model. As a

TABLE 1IV. The results computed by using A(7)
1 =y, =025,Mg = Mp = 1000 GeV),

and

BPM2(y, = y, = 0.35, M5 = Mp, = 1000 GeV),

comparison, we also list the results just using A(z). We can
see that using A(¢) and Z, in the effective action leads to
some differences in the probability of false vacuum decay.
For the case of the SM, we can see that the lifetime of the EW
vacuum computed using effective action is slightly longer
than that computed just using A(7) although A(7) and A(z) are
very close at high energy scale. This is caused mainly by the
presence of Z, in the effective action. In the SM, the (Z,)?
term in Eq. (35) is about 1.02 which makes S, slightly larger
and leads to a smaller decay rate. In the SDFDM model, the
difference between A and A is significant, and the Z, factor
increases with the increase of the Yukawa couplings y; and
v,. Therefore, both the Z, factor and the increasing value of
J — 2 makes the lifetime calculated using effective action
longer than that computed just using A.

In Fig. 5, we compare the two ways of obtaining the
tunneling probability. The green (blue) region indicates that
the EW vacuum is metastable (unstable), and the red region
means that the EW vacuum is nonperturbative. We find that
the one-loop effect on effective action slightly enlarges the
parameter space for the vacuum to be metastable.

The parameter space of the singlet-doublet fermion
dark matter model is constrained by phenomenological

(1)

are presented. Three benchmark models are BPMI
BPM3(y; =y, =04, Mg =Mp =

1000 GeV). A, is the minimal value of the running A. Ji is the minimal value of the running Ao oy is the energy scale when
minimal value of A or / is achieved. P, represents the EW vacuum decay probability.

Result with A(z)

Result with A(7) in effective potential

Amin lOglO(ﬂmin/GeV) 10g10(P0) /Tmin ZZ (AB) loglo(/’lmin/GeV) lOglO(PO)
SM —-0.0148 17.46 —535.34 —-0.0150 1.0116 18.07 —543.35
BMP1 —-0.0176 17.60 —413.72 —0.0165 1.0152 18.23 —474.68
BMP2 —0.0406 Mp, —38.98 —0.0346 1.0182 Mp, —-99.73
BMP3 —0.0661 Mp, Unstable —0.0539 1.0231 Mp, Unstable
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FIG. 4. Comparison between A(f) and A(¢) in the SDFDM model. (a) y; = y, =

and MS = MD = 1000 GeV.
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FIG. 5. Status of the EW vacuum in the y,
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0.35and Mg = M, = 1000 GeV. (b) y, =y, = 0.4

1.0

0.8

0.6

y2

0.4

0.2

Metastable

(b)

— y, plane with Mg = M, = 1000 GeV. The left panel is given by using the ¢* potential

and the running A(¢), and the right panel is computed by using effective action and A(¢). The green, blue, and red regions indicate that the

EW vacuum is metastable, unstable and nonperturbative.

considerations of dark matter, such as the direct detection
and the constraint from the dark matter relic density. It is
found in [16] that the dark matter Yukawa couplings must
be very small, i.e., |y;], [y2| <4 x 1073, and that the masses
of dark matter particle are constrained to be M, <733 GeV
and M, —M, |/M, <0.1. The vacuum stablhty analy-
sis of this model does not give a constraint on the parameter
space stronger than these phenomenological constraints.

IV. GENERAL SINGLET-DOUBLET FERMION
EXTENSION MODEL

A more general singlet-doublet fermion extension of the
SM can be considered. In general, we can add N copies of
SU(2) doublet fermions y; , g,(n = 1, ..., N) and Q copies
of singlet fermions S;,g,(¢ =1,...,0Q). The relevant
Lagrangian can be written as

N 0 N
general Z Bl//n + Z Sqiﬁsq - Zl/_/Ln (MD)rml//Rn
n=1 n=1

q=1

Mm

S‘Lq (MS)quRq
1

q

[¢]
z Y RugWinHSpg + Y 1nqWrnHS 1) +H.oc.,
g=1

Mz

Il
-

n

(39)

where we have chosen to work in the base that the mass
matrices M, and Mg are diagonal and real.

After the EW symmetry breaking, the mass matrix of the
charged components of vy, g,(W7, ,) are not changed.
We simply denote w7, r, @ x7, r,- The N copies of neutral
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component of yy, g, (W, x,) and Q copies of S;, g,
get a mass term. Introducing S; g = (Spy &1, ---

and wp g = (Wit ---
term as

) SLQ,RQ)T
Jwingen) T, we can write the mass

(5, W)M<5,) FHe (40)

with the mass matrix M given as

Mg LY/
M= V2R (41)
Yo My

Here Y; and Yp are the N x Q matrices of Yukawa
coupling given in (39).
Performing a field transformation

SLRr
( 0 )Z UL.R)((Z,R (42)
YLR

using two unitary matrices U, and Uy with y° =
(0. 25 4% p)7 the mass matrix M can be diagonal-
ized and becomes

J— 1 pr— -‘-
—dlag{M;(?’M)(g""’Mﬂfow}_ULMUR’ (43)

where M ,0 is the mass of the 2 field. The interaction

Lagrangian of y? and the CP-even neutral Higgs field & is
obtained as

AL, = —OYPry°h — Y TP, 4°h, (44)

where Y is the matrix of Yukawa coupling

1 0 Y/
R

The interaction Lagrangians of x?, y, and the gauge
bosons become

N
92 ) - 92 — _
ALy z = Z [E(Uz)i,n+gl?7”PLZn W:f +7§(UL>H+Q,i)(nyMPL)(?Wy

n=1

9
2cos 6,

Here 6,, is the Weinberg angle.
In numerical analysis we consider three typical models.

A. Model 1

This model includes N copies of SU(2) doublet fermions
and N copies of singlet fermions. We assume the mass
matrix matrices Mg and M/, are proportional to the unit
matrix. We also assume the Yukawa couplings Y; and Yp
are diagonal and are proportional to the unit matrix. The
relevant Lagrangian is

N
‘Cmodell = Z (l/_/nlDl//n + Snlasn - MDI/_/nl//n - MSSnSn)
n=1
N ~ ~
W LnHSry + Y2WraHS ) +Hee. (47)

n=1

This model basically introduces N generations of singlet-
doublet fermions and there are no couplings between
generations. So the mass matrix can be diagonalized in
the same way as in Eq. (2) for each generation and there are
N copies of neutral fermions y; and y, in the diagonalized
base with masses given in (5) and (6).

(UDZHQ(UL)HQ,)(,Y P, + (L —R) ] + Z}(,, < gasinO, A,

g, c0s 20, _
) 49

B. Model 11

In this model we add N copies of SU(2) doublet fermions
YLR = (l//%, RVL z)! and only one copy of singlet fermion
S; r- The doublet fermions are all coupled with the only
singlet. We assume that M, are proportional to the unit
matrix and all generations of doublet fermions couple with
the singlet fermion with the same strength:

N
'CmodelH = Z (l/_/niBl//n + Si@S - MDl/_/nl//n - MSSS)

n=1

N
- Z (yllI/LnHSR + yZI/_/R;zHSL) + H.c. (48)

After EW symmetry breaking, the mass matrix M is
obtained as

NG
5
<

YU

S

v v
L\/g My - 0
M = . o . (49)

S
]
< ...
>}
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In a suitable base, the singlet S can be considered
coupled only to one of the linear combinations of ,,

ie,¥= \/— SN | w,, with effective couplings /Ny, and

V/Ny, in the new base. Other orthogonal linear combina-

tions of y, do not couple to the singlet fermion. So the

mass matrix can be diagonalized to a form
:diag{MX?’M)(g’MD""’MD}’ (50)

where the M 2 and M A are the masses of the two neutral

fields, x{ and x9, which couple to the neutral Higgs field.
We can obtain

1

My = (TN T2 - 4D12V) : (51)
2 1 2 2

My == (TN /T3 - 4DN), (52)

where Ty =M3+5yiv? + M3+
MM,

N.2,2 _N 2
V307, Dy =5y 1y,0°—

C. Model III

In the third model, we consider extending the SM by
adding N copies of singlet fermions S; z with only one
copy of SU(2) doublet fermion. The singlet fermions are
all coupled with the only doublet. We assume that M are
proportional to the unit matrix and all generations of singlet
fermions couple with the doublet fermion with the same
strength.

The mass matrix is given as

My 0
Y2 U
M= v2 (53)
0 - Mg :
% % My

Similar to the case in model II, the doublet w can be
considered coupled only to one of the linear combinations

of §,, e, ﬁ Zg’zl S,» with effective couplings v/Ny, and
V/Ny, in a suitable base. Other orthogonal linear combi-

nations of S, do not couple to the doublet fermion. So the
mass matrix can be diagonalized to a form

:diag{M)((l),MZg,Ms,...,Ms}. (54)

The M 2 and M L are the masses of the two neutral fields,

2Y and x9, which couple to the neutral Higgs field. The
expressions of M 2 and M 4 are the same as in (51)

and (52).

TABLE V. Threshold corrections to couplings when y; = y, =
0.25 for model I, Mp = My = 1000 GeV. The superscript :
indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model I

u=M, A Vi ) gy

N=2 0.12495 0.93361 0.64367 0.35859
N=5 0.12330 0.92868" 0.63750 0.35902
N=7 0.12221 0.92539" 0.63338 0.35932

D. Vacuum stability in general singlet-doublet
fermion extension models

In this section, we study the vacuum stability in the three
models just introduced using RG-improved effective
action. For model I, we can write down immediately the
contribution to the RG-improved effective potential follow-
ing Eq. (21). We get
VEx[ NZ ' M%(z (¢’ t)

64 = M (1)

(¢.1)|In —3/2|.

(55)

For models II and III, the RG-improved effective potential
can be obtained by simply substituting the neutral fermions
masses (51) and (52) into Eq. (21).

Threshold corrections to couplings in the general singlet-
doublet fermion extension model are given in Appendix D.
In Tables V-VII, we show some numerical results of
couplings in the MS scheme for the three models shown
above. New contributions to the Z, factor in three models
are shown Appendix D. The one-loop f functions in the
three models are given in Appendix D 1, D2, D 3.

TABLE VI. Threshold corrections to couplings when y, =
y, = 0.2 for modelll, M;, = Mg = 1000 GeV. The superscript ~
indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model II

H=M, A Vi 9 gy
N=2 0.12545 0.93480" 0.64367 0.35686
N=5 0.12644 0.93164" 0.63750 0.35340
N=17 0.12835 0.92954" 0.63714 0.34576
TABLE VII. Threshold corrections to couplings when y; =

v, = 0.2 for model I, M, =Mg¢=1000GeV. The superscrlpt
indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model III

=M, A Vi P 9y

N=2 0.12545 0.93479" 0.64573 0.35809
N=5 0.12644 0.93164" 0.64573 0.35563
N=7 0.12835 0.92954" 0.64573 0.35400
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FIG. 6.

(1) up to My scale for N =2, 5, 7 in model 1.

We can see the evolution of A(¢) in three models in
Figs. 6(a), 7(a) and 8(a). Here we choose y; = y, = 0.25 in
model I and y; = y, = 0.2 in models II and III. We can
see that the minimum of A(#) decreases as N is increased
for these parameters in all these cases. In Figs. 6(b), 7(b)
and 8(b), we compare the evolution of A(¢) and 1 in
all models. The 1 is bigger than A due to the one-loop
Coleman-Weinberg—type corrections. The difference
between 1 and 1 increases with the increase of N.

We study the status of EW vacuum in the y;-y, plane
for different N in the three models. Note that in Figs. 9(a)
and 9(b), there are two types of lines for N = 2, i.e., the
solid line for the metastable bound, the dotted line for the
unstable bound. For N = 5 and 7, there are three types of
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FIG. 7.

(1) up to My scale for N =2, 5, 7 in model II.
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(a) A(7) up to Mp, for different values of N in model I. The value of Yukawa couplings y, and y, are 0.25. (b) Running A(#) and

lines, i.e., and for N = 5, 7, the dashed line for the stable
bound, the solid line in the middle for the metastable bound
and the dotted line for the unstable bound. In Fig. 10(a),
there are two types of lines for all cases of N =2, 5 and 7,
i.e., the solid line for the metastable bound and the dotted
line for the unstable bound.

We can see that in both models I and II the vacuum
becomes stable when y; and y, are small and N is large.
This is quite different from the result when N is small. In
comparison, we can also see that in model III, there are no
such regions in the parameter space for which the EW
vacuum becomes stable when N is large. This happens
because the extra copies of fermion doublets in models I
and II give positive contributions to the # functions of g,

0.15 \ Model Il — AN=2
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(a) A(t) up to My, for different values of N in model II. The value of Yukawa couplings y; and y, are 0.2. (b) Running A(#) and
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A(f) up to My scale for N =2, 5, 7 in model IIL.
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(a) Status of the EW vacuum in the y,-y, plane for N = 2, 5, 7 in model 1. (b) Status of the EW vacuum in the y;-y, plane for

N = 2,5, 7 in model II. In both cases, the dashed line is the stable bound, the solid line the metastable bound, and the dotted line is the

unstable bound.

and g5, as can be seen in (D5), (D6), (D14) and (D15). For
larger N, this effect drives g, and g, running to larger values
with faster rate. When y; and y, are small, the contribution
of larger ¢g; and ¢, can even make the f function of A
turning into a positive value, as can be seen in Fig. 10(b). If
increasing the value of Yukawa coupling, the f function can
be turned into negative again, as can be seen in Fig. 10(b).

The impact of these running effects can be seen clearly in
Figs. 11(a) and 11(b). In Fig. 11(a), we can see that 1;, >
O0fory, =y, =0.1 and N =5, 7. This means that the EW
vacuum becomes stable for these parameters in model 1. On
the contrary, A, < 0 when y; =y, = 0.25 even for N =
5 and 7. We can also see in Fig. 11(b) that 4,;, > 0 when
v =y, = 0.05 and for both N =35 and 7. This means

that the EW vacuum becomes stable for these parameters
in model II. On the other hand, 4., < 0 when y; =y, =
0.2 in model II. The results here are consistent with the
results indicated in Fig. 9. When Yukawa couplings
become bigger, 4,,;, < 0 and the vacuum become unstable
in both models.

We note that in Figs. 9(a), 9(b) and 10(a), we can also
find that the metastable region and unstable region become
smaller with the increase of N. This occurs because when
y; and y, are bigger, the new physics effects of extra
fermions would dominate the running of 1. More copies of
extra fermions would make A running faster to a negative
value. We can similarly compare two ways of obtaining the
tunneling probability, as done for the SDFDM model in
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line the unstable bound. (b) # function of A in model I. The solid line is for y; = y, = 0.1, the dashed line for y; =y, = 0.25.
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(a) A(t) up to My, for different values of Yukawa couplings in model I, The solid lines are for y; = y, = 0.1 and the dashed

lines for y; = y, = 0.25. (b) A(#) up to Mp, for different values of Yukawa couplings in model II. The solid lines are for y; = y, = 0.05

and the dashed lines are for y; =y, = 0.2

Fig. 5. The one-loop effective action again slightly modifies
the parameter space presented in Figs. 9(a), 9(b) and 10(a).

V. CONCLUSION

In summary, we have studied the one-loop Coleman-
Weinberg—type effective potential of the Higgs boson in a
single-doublet fermion dark matter extension of the SM. We
have calculated the threshold effect of these fermions in this
model beyond the SM and have studied the RG running of
parameters in the MS scheme. We have studied the RG
improvement to the effective potential. We have studied the
vacuum stability using the RG-improved effective potential.

Using the method of derivative expansion, we have
studied the quantum correction to the effective action. We
have calculated the renormalization on the kinetic term in
the effective action in the case with external field. We have
studied the RG improvement of the kinetic term. Using the
RG-improved kinetic term and the RG-improved effective
potential, we calculate the decay rate of the false vacuum.
We find that the factor arising from the anomalous
dimension which appears in the kinetic term and the
effective potential cancels in the decay rate. Taking all
these considerations into account, we find that the decay
rate of the false vacuum is slightly changed by the effective
action.
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We have also done all these studies in general singlet-
doublet fermion extension models. We perform a numerical
analysis in three typical extension models with N copies of
single-doublet fermions, N copies of doublet fermions and
N copies of singlet fermions separately. We find that several
copies of fermion doublet can make the f function of 1
become positive in some regions of parameter space when
Yukawa couplings of these extra fermions are small.
Consequently, in models with a small value of Yukawa
couplings and large number of copies of fermion doublet,
the EW vacuum can become stable. For a large value of the
Yukawa coupling, the EW vacuum can again be turned
into metastable or unstable. We also find that the difference
between Higgs self-coupling A and /, the effective self-
coupling after including Coleman-Weinberg type correc-
tion, becomes larger when the number of copies of
singlet fermions or doublet fermions is increased. In the
general singlet-doublet fermion extension models, the
decay rate of the false vacuum is also slightly changed
by the effective action.
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APPENDIX A: THRESHOLD EFFECT AND
PARAMETERS IN THE MS SCHEME

1. General strategy for one-loop matching

To study the vacuum stability of a model at high energy
scale, we need to know the value of coupling constants at
low energy scale and then run them to the Plank scale
according to RGEs. To determine these parameters at low
energy scale, the threshold corrections must be taken into
account. In this article we use the strategy in [17,20] to
evaluate one-loop corrections. All the loop calculations are
performed in the MS scheme in which all the parameters
are gauge invariant and have gauge-invariant renormaliza-
tion group equations [24].

A parameter in the MS scheme, e.g., 6(j), can be
obtained from renormalized parameter € in the physical
scheme which is directly related to physical observables.
The connection between 0 and 6(fz) to one-loop order can
be found by noting that the unrenormalized 6, is related to
the renormalized couplings by

0y =0—60=0(i) — 50ys, (A1)
where 66 and 60y are the corresponding counterterms. By
definition 60yg subtracts only the divergent part propor-
tional to 1/e¢ +y —In(4x) in dimensional regularization
with d = 4 — 2¢ being the space-time dimension. Since the
divergent parts in the 66 and 5055 counterterms are of the
same form, @(j1) can be rewritten as

TABLE VIII. Input values of physical observables used to fix
the SM fundamental parameters A, m, y,, g,, and gy. My, M,
M,,, and M, are the pole masses of the W boson, of the Z boson,
of the Higgs boson, and of the top quark, respectively. G, is the
Fermi constant for y decay, and a3 is the SU(3), gauge coupling
at the scale 4 = M, in the MS scheme.

Input values of SM observables

Observables Values

My 80.384 + 0.014 GeV
M, 91.1876 & 0.0021 GeV
M, 125.15 4+ 0.24 GeV
M, 173.34 4+ 0.76 GeV
v=(V2G,)""? 246.21971 + 0.00006 GeV
a3(Myz) 0.1184 4 0.0007

0(i1) = 0 — 56y, (A2)
where the subscript fin denotes the finite part of the
quantity 66, obtained after subtracting the terms propor-
tional to 1/¢ + y — In(4x). Difference at two-loop order has
been neglected in this expression.

The physical parameters which would be used in
Eq. (A2), such as p? and 1, the quadratic and quartic
couplings in the Higgs potential, the vacuum expect-
ation value v, the top Yukawa coupling y,, the gauge
couplings ¢, and gy of SU(2); x U(1)y group, can be
determined from physical observables, such as the pole
mass of the Higgs boson (M},), the pole mass of the top
quark (M,), the pole mass of the Z boson (M), the
pole mass of the W boson (My), and the Fermi
constant (G,). These physical observables are listed
in Table VIII. If knowing the corresponding counter-
terms in the physical scheme, the MS couplings are
then obtained using (A2). For example, if knowing 44,
we then obtain A(f) in the MS scheme. More details are
explained as follows.

We follow Ref. [20] to fix the notation. We write the
classical Higgs potential in bare quantities as

V = —20® + 1o (D' D)> (A3)

with

¢+
=1 . (Ad)
\ﬁ(dn + i + vo)

Setting Ay = A — 684, v9 = v — v, uj = u> — 5u®, where
A, v and u are regarded as renormalized quantities,
we write

V=V, -8V (AS)
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with
1
Vi =2 {d»*c/f(d)*qﬁ‘ + ¢ + ¢3) + i (3 + d)%)z}

FAp [+ 3207 2 (AG)

and

1
SV = 684 {(¢+¢-)(¢+¢- + ¢+ ¢3) + 1 (47 + ¢%)2]
+ [260 + 08 (B3 + 3+ 2t 7]

+ 6t {qfrqﬁ_ + %tﬁ%} + (5Mﬁ%¢% + v, (A7)

where

M2 = 30260 + 6Av5v — 52, (A8)

5t = 1284 + 2Av6v — Su. (A9)
v is determined at tree level by G, as shown in Table VIIL
In order to determine &4, dv and Su> we need three
constraints. The strategy is to adjust 67 so that the vdz¢h,
term in Eq. (A7) cancels the tadpole diagrams. Calling iT
the sum of the tadpole diagrams with the external legs
extracted, we have the condition
ot =-T/v. (A10)
A second constraint is conveniently obtained by demanding
that the coefficient of the term proportional to %c/)% inV,be
the physical mass of the Higgs boson. So we have
M; =2 (A11)
and SM: is fixed by condition of on-shell renormaliza-
tion, i.e.,
where TI,(M?) is the Higgs boson self-energy evaluated
on shell. A third constraint is provided by Eq. (9b) of
Ref. [25]:

M3, = Rell,,,,(M3,), (A13)
where I1,,,,(M3%,) is the W boson self-energy evaluated
on shell. Recalling that the W-mass counterterm is
given by [25]

M3, =

(129289, + g3vdv), (A14)

N[ =

ov is obtained using this expression with 6g, known from
other conditions which can be found in Eq. (28a) of [25].
Putting ov, Egs. (A12) and (A14) into (A8) and (A9), one
can then obtain 64 and &u®. They are as follows:

1

Sy = 3 [Relly, (M2) + 3T /v), (A15)

84/2 = [Relly,(M7) + T/v]/ My — Relly (M5y) / My
+ 2592/ 92 (Al6)

57}/1} = Rewa(M%V)/(zM%V) - 692/92- (A17)
We can get the expressions of the counterterms of the other
parameters in a similar way.

Ignoring the contribution of higher order, we list the one-
loop results of counterterms as follows:

G 1 [T
6<l>,1:7%M%l{Arél)+W {7+R6Hhh(M%l)} } (A18)
h

(1)
sy, =2 ﬂM? '/ (Rell, (M7) +Ar0
NG M, 2

). ()

Rell,,, (M)
My

§Wgy = (V2G,)"*\[M% - M5,

2y 2
x <RCHZZ(MZ)2 RCFWW<MW) +A7‘(()1)>,
MZ _MW

sWg, = (\/EGﬂ)l/zMW( + Ar(()l)>, (A20)

(A21)

where superscripts 1 in these equations indicate that they

are results at one-loop order. Ar(()]) in the above equations

can be written as a sum of several terms [17],

1
(;)_A(w)ijQB%)ngm
M3, G,

A =v (A22)

where Ay is the W boson self-energy at zero momentum,
Vw the vertex contribution in the muon decay process, By
the box contribution, and £ a term due to the renormaliza-
tion of external legs. They are all computed at zero external
momentum. Thus we eventually get the MS parameter to
one-loop order as follows [15,17]:

. G
M) = 7’%1&4% — 62 e (A23)

G 1/2
nim =2(Sat) oty ()
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FIG. 12. Contributions of extra fermions to the self-energy for (a) the Higgs boson, (b) Z boson, and (d) and (e) W bosons, as well as to

(c) the tadpole of the Higgs boson. y(; ) are dark sector fermions.

% (@) = 2(\/§G;4)1/2Mw -5Wg,

L (a29)

gv(i) = 2(V2G,) "\ /M = M3, = 50y | . (A26)

2. MS parameters in the SDFDM model

To determine the initial values of running couplings, we
use the equations given in the last section. Since the
threshold corrections have been done to NNLO in the
SM, we only need to calculate the contribution of extra
fermions in the SDFDM model. All the relevant Feynman
diagrams for computing 6|, with extra fermions are
listed in Fig. 12.

2

M
Ao(M) = Mz(l —lnﬁ—2>,Bo(M1,M2’p) =

The one-loop result is

G

/11 xM? + (1 = x)M3 = x(1 — x)p?
-/ In
0

As singlet-doublet fermions in the SDFDM model
do not couple to SM leptons, Eq. (A22) can be further
simplified as

A
Arg= -2V, (A27)

Summing over all the loop contributions and using the
matching conditions, we get coupling constants in the MS
scheme at M, = 173 GeV energy scale and for the SDFDM
model respectively.

We summarize here the one-loop corrections to A from
new particles in the SDFDM model by using Eq. (A18). We
write 6 Aspppy in terms of finite parts of the Passarino-
Veltman functions,

= dx. (A28)
7

S{valdAo(M ) = 2(M}, - 4Mj?)Bo<M;(?»MI?’Mh)]

+ y23[4A0(M;(g) - 2(M}, - 4Mig)Bo(ngleg7Mh>]

+ 2y%‘[AO(M)(?) +A0(M;(‘2]) - (M%, _Mi? -M )BO(M)(?’M)((Z)’M}!)}

2
bel

+ zyzD[AO(M;(?) +A0(M)(g) - (M%l - Mi(]) - Mi(z))BO(M)(?’ M;(g’Mh)]+8yCyDM)(?M)(gBO(M)(?’M;((z)’Mh)}

. G

V2(4r)%v

G 1
[~4yaM o Ag(M ) — AypM Ag(M )] +—2 M3 AR |

N (A29)

055038-17



YU CHENG and WEI LIAO

PHYS. REV. D 101, 055038 (2020)

where y, g ¢ p has been given in the text following Eq. (9) and

M2
(l) 2 ){0
Ty

sin’@; + sin’0) {

o

+ 8sin 6, sin Oy {

M2 e
TN
M ;(?M -

M2 —M?,
X Ve

+ (cos?0; + cos?0y) { 2 Ag(M

X

. AO(M)(?) -

2 2
M- — M=, X
X

2
2M>-

- — M?,
X1

7 Ao(M ) + M- + Mf(?]

(Ao(M,-) - Ay <M),g)>>}

2M3-

X 2 2

7Mi— —MZO AO(M[) +M)(7 + M){g]
e

M oM -
+8C059L COSGR [M(AO(MI_)_AO(MZ;)))]} (A30)
Ve Ve
[
Plugging Eq. (A29) into Eq. (A23) we obtain /4 at one-loop . o [3vF N, o, 9% 4
order in the SDFDM model. Contributions of extra fer- 7 (0b) = (4n)? |2 Ty Y= 893 - 4 4|
mions to 6y, |s., 81 gy s, and 8V gy |, can be similarly BG
obtained. Plugging them into Eqgs. (A24), (A25) and (A26) (B6)
we obtain relevant parameters at one-loop order in the 52 92 9
SDFDM model. Using these parameters in the M—S scheme, — pSM(y ) = 4y T [3);,2 +3y2 + % - Tz - %} . (B7)
we then carry out the calculation of the effective action in (47)
the MS scheme. 92 902
M(2) = 22 1224 62 + 6y2 + 292 — 22 291
V() (4ﬂ)2[ ( +6y7 + 6y, + 2y = —= =5
APPENDIX B: ONE-LOOP g AND y FUNCTION 9¢¢ 27¢% 945
IN THE SDFDM MODEL = 6yf — 6y = 297 + 2+ ST+
8 200 20
The p function and the anomalous dimension can be (B8)

decomposed into two parts:

ﬂtotal — ﬁSM + ﬂSDFDM’ },total — 7/SM + },SDFDM7 (B])

where M and yM are the § function and the anoma-
lous dimension in the SM, while pSPFPM apd ySPFDM
are the contributions from new particles in the
SDFDM model.

The f functions in the SM are known to three-loop [17].
We list the one-loop results as follows:

P = o (1g) (B2
PM(g2) = ( 4:[)2 (— %) % (B3)
P (a) = s (TN (B4)
PO = Gy [¥+3—;I2’+y3—8 %—979%—%’%}
(B)

In this article we focus on the SDFDM model with
Dirac-type mass. Here we show one-loop contributions
of new particles in the SDFDM model to the f functions
of the SM parameters and the one-loop f functions of new
parameters in the SDFDM model. They can be extracted
using the Python tool pyr@TE2 [21]. They are as follows.

The p functions of the SM parameters receive one-loop
contributions of new particles in the SDFDM model as
follows:

) = () 9)
SDFDM ] 2 3

p () = ngzv (B10)

pIPIOM(y,) = ( 4711)2 1 +Y3)Ye (B11)

PNy, ) (4%) 2y (B12)

SSPFPM(y,) = ) O +y3)ves (B13)
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I
(47)?

ﬁSDFDM ( /1) —

The one-loop f functions of new parameters in the SDFDM model are as follows:

ﬁSDFDM (

5
FSDFDM(

1[5 9 9
) = Gy [EY? + Y133 =55 910 — 7931 + 3vEn £ 3y + yiyl} :

)_ 1 e 3+ 2 _2

[2y1 =23 + 42057 + 3)]- (B14)
(B15)

2 9 2 2 2 2
91Y2 = 79292+ 3Yi¥2 +3Ypy2 +yeva |- (B16)

Note here that g, (g7 = % g%), 9>, g3 are the gauge couplings, y,, 5, V:» ¥1, and y, are the Yukawa couplings, and 4 is the
Higgs quartic coupling. The one-loop anomalous dimension of the Higgs field is

total __ ,SM | . SDFDM
= + =
Y /4 Y I

APPENDIX C: RENORMALIZATION OF
KINETIC TERM IN EFFECTIVE ACTION

We compute effective action of an external field
using derivative expansion. As long as the field varies
slowly with respect to space and time, this is a valid
approximation. Keeping derivatives up to second order,
the Euclidean effective action for a neutral scalar ¢ is
written as

Saldl = [ 3| Valo) + 5009200 (1)

where V. is the effective potential. The one-loop
result of V. in the SM in the background R, gauge
is given in [19]. Z, can be obtained from the p? terms in
self-energy Feynman diagrams. We renormalize Z, to
make Z,(¢=0)=1 which means that the kinetic term
goes back to the standard form when there is no
external field.

1. Feynman rules in background R, gauge

The Feynman rules with external field ¢) in the SM and in
the SDFDM model are given in Figs. 13 and 14. Here, we
only list the vertices that we need in the Z, calculation. We
have introduced

ms = —mi + A2,

myy = —m}, + 3%, (C2)

where mi is the mass term in the Higgs potential given in
(10). The other ¢-dependent masses can be obtained by
substituting the vacuum expectation value v with ¢.

We define the field-dependent masses of Goldstone
bosons and ghost particles as

1 9, 9 1
(4n)? {g% +5g91 =3 =3 - y%} Ty (=2 —)2). (B17)
|
mk. = Ewimiy, (C3)
g = &zmy, (C4)
g = g + &y, (C5)
mk, = mg + E;m%. (C6)

=

AVAVAVAVAVAVAVE

" kuk —i
o= (1-bw) oo | 5=
k? —Eymyy+ie ) k* —my+He
Zu ’\/\/\/\/\/\/\/ Zu

Gt

) kb, i
g — (1€ -
( o= (1) K —E Y rie ) K —mi+ie
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k? —mg—Eymy +ie
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FIG. 13. Propagators for SM fields with external field ¢ in

background R gauge. i3, in%;, my, my, in; are the ¢-dependent
masses, which can be defined as /g =—mj+A¢?, my = —mj+
3097, iy =594, mz =3\ G + g2, g =5¢. my is the
mass term in the Higgs potential, y, is the Yukawa coupling for

the alternative SM fermion. Note here that G* and G, are the
Goldstone bosons, C, and C* are the ghost fields.

055038-19



YU CHENG and WEI LIAO

PHYS. REV. D 101, 055038 (2020)
H H H
—6iAp —2iAp —2i\g
VRN VRN
v N s N
7/ AN Ve AN
H H Gt G~ Go Go
H H H
P 9 — Y5
igmwg" G o mzg" _E
w w z¢ z f f
H H H
9 i i
t 2cos0,, mzéz 2 Im wéw 2 gmwéw
c ol ct ol c ¢
Wt W z+
i ig " __ 9
— S K) 5 (¥ = H;) G
ki N ky k2 k2 NI
AN AN AN
H \G H \NGT H \Go

FIG. 14.  Vertices with external field ¢ for the SM in background R; gauge. iy and i  are the ¢-dependent masses as given in Fig. 13.

&y and &, are the gauge fixing parameters in background R: gauge.

2. Z, factor in the SM

Higgs self-energy diagram in Fig. 15. Notations in [26] are

For simplicity, we calculate Z, in the ’t Hooft-Feynman used for the integrals calculated in the modified minimal

gauge with &, = &, = 1. Z, comes from the p? term in the subtraction scheme:

H H H {/ G \ {/ G'o\ \
" N \
G/ Go
() (b) (©
W+

|
Fé

T« S G \«/G+
® () ®
\ /I
N - Go
) (9]

FIG. 15.
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Lo 2B0(m1,m2,p2)
. [ dk 1
= | G ek )
16i 230<m1’m2 p )
. dk 1
=i | G
Bo(ml,mwpz) = Bg(mlymz) + B(l)<ml’m2> 'P2
+0(p*) +---, (C9)

where BY(my, m,) and B}(m,, m,) can be expressed as

m

15

)

. m%lnﬂ—j—m%ln”
By(my,my) =1+ 2, (C10)

my — nmy

m2m2In"
lm1+m __L2m o e
2(mi =m3)*  (mi—m3)*

B(l)(ml,mz) =

When m; = my = m, BY(m, m,) and B}(m,,m,) can
be written as B)(m) and B}(m). They are expressed as

TABLE IX. p? terms from the self-energy diagram in the SM
which contribute to Z,. Note that in these results we only list the
fermion loop contribution from the top quark.

(a) 6#(18/12(;523( 1)

®) & (1))

(©) 1617(2124»235(%0))

@ T (49, B (myy))

© i (s B (72))

2 Tz (- 400522(9w) g, By (imc,))

@ o (=G 2 B ()

B (D2 By, ) =2BY g,
) (=) (=2 - ) BY (g i) =2BY (g iy )]
D L (AL (<2, + i) BY (g, . inz) — 2BY (i, 7))
(k) 1o (=) [-BY(m,) + 4m? B} (m,)]

1

6m?’

Bi(m) = (€13)

We list the p? terms of each self-diagram in Table IX.
Summing over all the p2 term contributions, we obtain the
Z, factor in the SM. Since the RG equation for the kinetic
term in the effective action can be solved in a way similar to
the solution to V (¢p), we can obtain the RG-improved
kinetic term by replacing ¢, u, A; with ¢(7), p(t) and A(z).
Their expressions or equations are shown in Egs. (15) and

2
BY(m) = —lnm—z, (c12)  (17). Taking u(t) = ¢ as mentioned above, we get the RG-
H improved Z, factor in the SM for large ¢ field:
|
1 842 4)? 2 (24> + ¢?)
ZSM =1 y Z(2 2 12\ _
2 +16ﬂ2[ T g ) T3 ) 24 ]
2
L ~(44g7 + V() 244+ P8I+ (48 + ¢1)In(2e +1P2e) — gin(L e s
8x° 164 4)? 16 84 2
2 2 2 242Y 7, (44t +g?
1 —(44(g" +97) + (9" + 97)7) In(=F5") N 20+ ¢* + ¢ 8A(¢* + ¢°) + (¢* + ¢*)?
1672 1643 4% 16
_ g+ 9) + (¢ +4°))n(Ae +3(g +g%)e) = (& + §*PInG (g +9%)e") o +g°
84 2
3 yi 2
- 1 2r Cl4
oz [m(Zer )i+ (C14)
with
t
() = - [ o)) (c15)
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FIG. 16.  Self-energy diagrams contributing to Z, factor by extra fermions in the SDFDM model. y? and y3 are the new extra fermions

in the SDFDM model.

TABLE X. p? terms from the self-energy diagram contributed
by extra fermions in the SDFDM model. Here we define
A = (=y,co80; sinOr — y; sinf; cosO), B=1y,cosOgsin€; +
yisinfgcos@;, C = y, cos O, cos Op — y; sin @, sin Oy, D =
—Vy, sin @, sinfy + y, cos 6 cos O. o, My are the masses of
new particles under the external field ¢. They are obtained by
substituting v in Eqgs. (5) and (6) with ¢.

0 for? (—A7) (4 Bo (7 0) = By )
(b) o (_32)(4;1'1?{33(1)(1?112) — BY(im )
(© Torr (= D)@ i 0 By (0. 71 0)
@ i (= R) (2 g By g )
© mlnl (_DTZ)[(’;@? + ”_1?(3)3(1)(’711? ﬁ’xg) - Bg(ﬁg{?, rhxg)]
v o (—%2)[(11'1?(? + rhig)Bé(th?, M) = Bg(m}(‘,” M)l

3. Z, factor in the SDFDM model

The Feynman diagrams in the SDFDM model contrib-
uting to the Higgs self-energy are shown in Fig. 16. p? term
contributions to Z, in these diagrams are summarized in
Table X. Summing over all the p? term contributions in
Tables IX and X, we obtain the Z, factor in the SDFDM
model. In the large ¢ limit, the Z, factor in the SDFDM
model can be expressed as

ZSM 1232 [In<§e2r>—l—ﬂ
JT
2
y1 Y1 or 2
In( 2L =
T 1622 [n<2e >+3}’

where Z5M is given in Eq. (C14).

ZS DFDM _

(C16)

APPENDIX D: THRESHOLD EFFECT, Z, AND  FUNCTION IN THE GENERAL
SINGLET-DOUBLET FERMION EXTENSION MODEL

We summarize here the one-loop corrections to A from new particles in the general singlet-doublet extension model

using Eq. (A18).
The one-loop result is

O+N O+N
5(1)/‘L|fin =

ijo i ij*tji

+2(Y;;Y + Y+Y+)MXQM}{QB()(MZQ,MIQ,Mh)} +
i J 1 J

i 7’0 ‘fln’

SL

NP Z Z{zy,, A p) + Ag(M ) — (M = M,

- M?{?)BO(MX?,MZ?,M;,)]

G N0
u
V2(47)% Z; [(=2Y5 = 2Y()M pAo(M )]

(D1)

where Y has been given in Eq. (45) and the new contribution to Arf)l)|ﬁn is
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1

Ar(()l)

fin  (47v)? £

N N+Q

N
_ {42 (Ui 0Undisoi + (Ub)ikroUson)

MM Aot ) - Ag(M
{m< o(M,) = Ao(M )

+ Z Z ((UZ)i,k+Q<UL)k+Q,i + (U;Q>i,k+Q(UR)k+Q,i>

ZM?((.’ 2M2-
=, M) <
2

Plugging Eq. (D1) into Eq. (A23) we obtain A at one-
loop order in the general singlet-doublet extension model.
Contributions of extra fermions to 6"y, |z, 6V g,|s, and
8 gyls, can be similarly obtained. Plugging them into
Eqgs. (A24)-(A26) we obtain relevant parameters at one-
loop order in the general model. Using these parameters in
the MS scheme, we then carry out the calculation of the

effective action in the MS scheme.
In the large ¢ limit, the Z, factor in model I can be
expressed as

Ny3 v3 2
dell __ SM 2 2,01
3ot = 73 " 1642 {m(ze +§

Nyt [, (¥ 2
_ 1 21,2 .
1622 {n<2 ) T3

The Z, factor in models II and III can be expressed as

Ny} Ny3 2
gmodel ILIITL _ 2 2
2 ;M 1677 [ln( 2 et 3

Nyi [, (Nyi 2
_ 1 1 er -,
1672 {n< N
The one-loop S functions and the anomalous dimension

of the three singlet-doublet extension models are as
follows.

(D3)

(D4)

1. Model 1
) = s (3¥)a 09
proll(gy) = @%Ngz, (D6)
prott(y,) = ( 471T)2 N(T +¥3)yes (D7)
() = G NOt . (09
presi(y) = —LNGE Sy, (D9)

(47)

Ao(M o) + My + Mi?} }

ﬂmodell(l) —

()’ [=N(2yt + 2y3) + 4NA(yT + y3)].

(D10)

ﬁmodell(yl) —

3 9
[Ey? + Ny} + Ny,y; — %g%yl

1
(47)?

9
- Zgﬁyl +3y?y, +3y3y1 + yiyl] ., (DI11)

1 3 9
model _ 3 3 2 2
pretti(y,) = @’ [5)’2 + Ny + Nyiy2 = 559192

9
- Zg%yz + 3y?y, 4+ 3yiy, + yﬁyz] . (D12)

The one-loop contribution of new particles to the anoma-
lous dimension is

1
ymodell = WN(—))% — y%) (D13)
2. Model 11
model IT _ 1 %N 3 D14
16 (gl>_(47[)2 5 gl’ ( )
model I1 _ 1 %N 3 D15
ﬂ (92) - (471_)2 3 92’ ( )
1
pretetii(y,) = Y (1 +y3)y..  (DI6)
1
Bttt (yy,) = an) Ni+»)ys,  (DI17)
ﬂmOde]H(yt) = (4”)2N(y%+y%)yt’ (DIS)
1
pretetl(2) = ——5 [=N*(2y1 +23) + 4NA(y] +3)].
(4)
(D19)

1[5 9 9
model _ 3 2 2 2
prettii(y,) = ()’ [ENyl +NYIY3 = 559101 = 7 901

+ 3y?y; 4+ 3yiy; + yZyl] , (D20)
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1[5 0 2
presy) = o [5 NY; + Nytys = 559102 = 7950
+3y7y2 + 3y5y + yiva |- (b21)

The one-loop contribution of new particles to the anoma-
lous dimension is

ymodelH = (4]_[)2 N(—y% - y%) (D22)
3. Model IIT
ﬂmodel III( ) _ 1 % 3 (D23)
W = an \5)7
ﬂmodellll( ) — 1 g 3 (D24)
%)= 23
1
prectii(y,) = @ O} +¥3)y, (D25
1
prettii(yy) = ——5 N +y3)y,,  (D26)

(4m)?

1
prodetiil(y,) = Gn)? N(y} + ¥3)yr. (D27)
1
prodetiti(2) = @ 2251 +2y3) +4NAGT +y3)]-
(D28)
. 1[5 9 9
prodetiii(y,) = W {ENY? + Ny, y3 —2—09%% - ZQ%)H
+ 3y?y; + 3yiy; + yZyl] , (D29)

e 9 9
protetii(y,) = —— |5 NY3 + Nyiva = S g1va = 7 537
(4n) [2 2 4

+ 3y7y, 4+ 3yiys + yiyz] - (D30)

The one-loop contribution of new particles to the anoma-
lous dimension is

model Il _ 1
(47)?

v (D31)
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