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We study the effective potential and the renormalization group (RG) improvement to the effective
potential of a Higgs boson in a singlet-doublet fermion dark matter extension of the Standard Model (SM),
and in general singlet-doublet fermion extension models with several copies of doublet fermions or singlet
fermions. We study the stability of the electroweak vacuum with the RG-improved effective potential in
these models beyond the SM. We study the decay of the electroweak vacuum using the RG-improved
effective potential in these models beyond the SM. In this study we consider the quantum correction to the
kinetic term in the effective action and consider the RG improvement of the kinetic term. Combining all
these effects, we find that the decay rate of the false vacuum is slightly changed when calculated using the
RG-improved effective action in the singlet-doublet fermion dark matter model. In general singlet-
doublet fermion extension models, we find that the presence of several copies of doublet fermions can
make the electroweak vacuum stable if the new Yukawa couplings are not large. If the new Yukawa
couplings are large, the electroweak vacuum can be turned into metastable or unstable again by the
presence of extra fermions.
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I. INTRODUCTION

Quantum contribution to the effective potential is
important to understand the properties of the scalar field,
e.g., the property of the ground state and the behavior at
large energy scale. For example, radiative correction can
make a vacuum unstable and trigger spontaneous symmetry
breaking [1]. The RG-improved effective potential, which
resums contributions of large logarithms, is important to
understand the behavior of effective potential at a large
energy scale. For example, the RG-improved effective
potential is crucial in reducing the dependence on the
renormalization scale when calculating quantities related
with physical parameters [2–4].
It is well known that a false vacuum can decay via

tunneling [5–7] and become unstable. In the SM, the Higgs
quartic self-coupling can become negative at an energy
scale around 1010 GeV. This makes the electroweak (EW)
vacuum unstable. The decay rate of the EW vacuum can be
calculated using an approximate bounce solution of the

Higgs potential with a negative Higgs quartic coupling [8–
10]. Calculation of vacuum decay using RG-improved
effective potential in the SM does not give much difference,
because the bounce solution is dominated by behavior at a
high energy scale and the RG-improved effective potential
in the SM at a high energy scale is accidentally close to the
Higgs potential with running quartic coupling [12].
In extension of the SM, the situation can be quite

different. The RG-improved effective potential is possible
to be very different from the potential using a running
Higgs quartic coupling. As an example, we consider a
singlet-doublet fermion dark matter (SDFDM) extension of
the SM. We show that the RG-improved effective potential
can be quite different from the tree-level potential aided
with running Higgs quartic coupling. Then we study the
vacuum stability in this extension of SM.We study the false
vacuum decay using RG-improved effective potential in
this SDFDM model. We also study the quantum contribu-
tion to the kinetic term in the effective action in this model
beyond the SM and consider the RG improvement of the
kinetic term. After taking all these effects into account we
find that the false vacuum decay rate is just slightly changed
using the RG-improved effective action in the SDFDM
model, although the RG effective potential is significantly
different from the tree-level form of the Higgs potential
with running quartic self-coupling. We also perform
these analyses in general singlet-doublet fermion extension
models in which several copies of singlet fermions or
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several copies of doublet fermions are considered. We find
that the presence of several extra doublet fermions can
make the EW vacuum stable if the new Yukawa couplings
are not large.
The article is organized as follows. In Sec. II, we first

briefly review the SDFDM model. We study the threshold
effect caused by the extra fermions in this model beyond
the SM and study the running of the Higgs quartic coupling
in this model. Then we study the effective potential and the
RG-improved effective potential in this model. In Sec. III
we study the vacuum stability in the SDFDM model. We
calculate the renormalization of the kinetic term in the
effective action in the SM and in the SDFDM model. We
study the RG improvement of the kinetic term and calculate
the decay rate of the false vacuum. In Sec. IV, we do the
analysis in the general singlet-doublet fermion extension
model. Details of calculation are summarized in the
Appendixes A–D. We summarize in the Conclusion.

II. EFFECTIVE POTENTIAL AND
RG-IMPROVED EFFECTIVE POTENTIAL

IN THE SDFDM MODEL

A. The SDFDM model

In addition to the SM fields, the SDFDM model has
SU(2) doublet fermions ψL;R ¼ ðψ0

L;R;ψ
−
L;RÞT with Y ¼

−1=2 and singlet fermions SL;R. Here, L (R) refers to the
left (right) chirality. As a singlet, S can be either a Dirac-
type or Majorana-type fermion [13,14]. In this model, the
neutral fermion can be a dark matter candidate. The vacuum
properties of the SDFDM model with a Majorana-type
mass have been discussed in [15]. In this article we work on
the Dirac-type mass [16].
The relevant terms of ψ and S in the Lagrangian are

LSDFDM ¼ ψ̄i=Dψ þ S̄i=∂S −MDψ̄LψR −MSS̄LSR

− y1ψ̄LH̃SR − y2ψ̄RH̃SL þ H:c:; ð1Þ
where MD;S are the mass parameters, y1;2 the new Yukawa
couplings, H is the SM Higgs doublet with Y ¼ 1=2, and
H̃ ¼ iσ2H�. We impose a Z2 symmetry in the Lagrangian
with the new fermions ψ and S odd and SM fermions even
under the Z2 operation. This guarantees the lightest of these
new fermions to be stable, and makes it a dark matter
candidate if it is neutral.
After the EW symmetry breaking, the mass matrix of

SL;R and the neutral component of ψL;Rðψ0
L;RÞ is given as

M ¼
 
MS

y2vffiffi
2

p
y1vffiffi
2

p MD

!
; ð2Þ

where v ¼ 246 GeV. Mixings between these two neutral
fermions are generated by this mass matrix. The mixing
angles θL;R appear in the diagonalization of the mass matrix
using two unitary mass matrices, that is

Md ¼
�M χ0

1
0

0 M χ0
2

�
¼ U†

LMUR ð3Þ

with

UL;R ¼
�

cos θL;R sin θL;R
− sin θL;R cos θL;R

�
ð4Þ

and

M2
χ0
1

¼ 1

2

�
TM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
M − 4D2

M

q �
; ð5Þ

M2
χ0
2

¼ 1

2

�
TM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
M − 4D2

M

q �
; ð6Þ

where TM ¼M2
S þ 1

2
y21v

2 þM2
D þ 1

2
y22v

2, DM ¼ 1
2
y1y2v2−

MSMD. χ01 and χ02 are neutral fermion fermions in the
diagonalized base with masses M χ0

1
and M χ0

2
respectively.

The mixing angles θL;R can be solved as

tan 2θL ¼
ffiffiffi
2

p
vðMSy1 þMDy2Þ

M2
D −M2

S þ v2
2
ðy21 − y22Þ

ð7Þ

tan 2θR ¼
ffiffiffi
2

p
vðMSy2 þMDy1Þ

M2
D −M2

S þ v2
2
ðy22 − y21Þ

: ð8Þ

WritingH ¼ ð0; ðvþ hÞ= ffiffiffi
2

p ÞT , the interaction Lagrangian
of dark matter fields χ01;2 and the CP-even neutral Higgs
field h is obtained from Eq. (1) as

ΔL ¼ −yA χ01 χ01h − yB χ02 χ
0
2h

− ½yC χ01PR χ
0
2hþ yD χ01PL χ

0
2hþ H:c:�; ð9Þ

where PR;L ¼ ð1� γ5Þ=2, yA ¼ ð−y2 cos θL sin θR − y1 ×
sin θL cos θRÞ=

ffiffiffi
2

p
, yB ¼ ðy2 cos θR sin θL þ y1 sin θR ×

cos θLÞ=
ffiffiffi
2

p
, yC ¼ ðy2 cos θL cos θR − y1 sin θL sin θRÞ=ffiffiffi

2
p

and yD ¼ ð−y2 sin θL sin θR þ y1 cos θL cos θRÞ=
ffiffiffi
2

p
.

B. Effective potential and RG-improved
effective potential

In the following, we will take ϕ to denote a neutral
external field. ϕ=

ffiffiffi
2

p
corresponds to the CP-even neutral

component of the Higgs doublet in the SM. The tree-level
potential of ϕ is

V0ðϕÞ ¼ −
m2

ϕ

2
ϕ2 þ λ

4
ϕ4; ð10Þ

where λ is the Higgs quartic self-coupling in the SM andmϕ

the mass term. A Coleman-Weinberg–type quantum cor-
rection to the potential can be calculated using a vacuum

YU CHENG and WEI LIAO PHYS. REV. D 101, 055038 (2020)

055038-2



diagram by considering the quantum fluctuations around
the external field ϕ. The one-loop contribution of the extra
fermion in the SDFDM model to the effective potential is
calculated as

VExt
1 ¼ −

1

64π2
M4

χ1ðϕÞ
�
ln
M2

χ1ðϕÞ
μ2

− 3=2

�

−
1

64π2
M4

χ2ðϕÞ
�
ln
M2

χ2ðϕÞ
μ2

− 3=2

�
; ð11Þ

where M2
χ1; χ2ðϕÞ are obtained from Eqs. (5) and (6) by

replacing v with ϕ. μ is the renormalization scale chosen in
this calculation. In the limit ϕ ≫ v, we have approxi-
mately M2

χ1; χ2ðϕÞ ≈ y21ϕ
2=2; y22ϕ

2=2.
We arrive at a one-loop effective potential as follows:

Veffðϕ;λi;μÞ¼VSM
0 ðϕ;λÞþVSM

1 ðϕ;λi;μÞþVExt
1 ðϕ;λi;μÞ;

ð12Þ

where λi denotes various parameters in the model.
VSM
0 ðϕ; λÞ is given in Eq. (10). VSM

1 ðϕ; λi; μÞ is the one-
loop contribution to the effective potential in the SM. The
effective potential in the SM is known up to two loop
[17,18]. VExt

1 ðϕ; λi; μÞ is given in Eq. (11).
In the vacuum stability analysis, we must consider the

behavior of the effective potential for the large external
field. That is to say, we must deal with potentially large
logarithms of the type logðϕ=μÞ for a neutral external field
ϕ. The standard way to solve the problem is by means of
the RG equation (RGE). Veff satisfies the RGE�

μ
∂
∂μþ βi

∂
∂λi − γϕ

∂
∂ϕ
�
Veff ¼ 0; ð13Þ

where βi is the β function of parameter λi, and γ the
anomalous dimension of the scalar field. Straightforward
application of this method leads to a solution [2]

Veffðμ; λi;ϕÞ ¼ VeffðμðtÞ; λiðtÞ;ϕðtÞÞ; ð14Þ

where

μðtÞ ¼ μet

ϕðtÞ ¼ eΓðtÞϕ ð15Þ

with

ΓðtÞ ¼ −
Z

t

0

γðλðt0ÞÞdt0 ð16Þ

and λiðtÞ the running coupling determined by the equation

dλiðtÞ
dt

¼ βiðλiðtÞÞ; ð17Þ

with the boundary condition λið0Þ ¼ λi. So the RG-
improved effective potential can be written by simply
substituting μ, λi, ϕ in the original effective potential with
μðtÞ, λiðtÞ, ϕðtÞ.
The RG-improved effective potential in the SDFDM

model is obtained by implementing the substitution men-
tioned above into Eq. (12). We have

Veffðϕ; tÞ ¼ VSM
0 ðϕ; tÞ þ VSM

1 ðϕ; tÞ þ VExt
1 ðϕ; tÞ; ð18Þ

with

VSM
0 ðϕ; tÞ ¼ −

m2
ϕðtÞ
2

ϕ2ðtÞ þ 1

4
λðtÞϕ4ðtÞ; ð19Þ

VSM
1 ðϕ; tÞ¼

X
i

ð−1Þini
64π2

M4
i ðϕ; tÞ

�
ln
M2

i ðϕ; tÞ
μ2ðtÞ −ci

�
; ð20Þ

VExt
1 ðϕ; tÞ¼

X
i

ð−1Þini
64π2

M4
χiðϕ; tÞ

�
ln
M2

χiðϕ; tÞ
μ2ðtÞ −3=2

�
:

ð21Þ

In Eq. (20) the index i ¼ H,G, f,W, Z runs over SM fields
in the loop, and cH;G;f ¼ 3=2; cW;Z ¼ 5=6. In Eq. (21) the
index i ¼ χ1; χ2 runs over extra neutral fermions in the
SDFDM model. ni is the number of degrees of freedom of
the fields. MiðϕÞ in Eq. (20) is given by

M2
i ðϕ; tÞ ¼ κiðtÞϕ2ðtÞ − κ0iðtÞ: ð22Þ

The values of ni, κi and κ0i in the SM can be found in
Eq. (4) in Ref. [4] in the Landau gauge and in Ref. [19] both
in the Fermi gauge and in the Rξ gauge. For new
contributions in the SDFDM model, we have ni ¼ 1,
and M2

χ1; χ2ðϕ; tÞ≈y21ðtÞϕ2ðtÞ=2;y22ðtÞϕ2ðtÞ=2. In Eqs. (20)
and (21), ð−1Þi equals �1. For gauge and scalar bosons
ð−1Þi takes a positive sign, while for fermion fields it takes
a negative sign.
In the limit ϕ ≫ v, Eq. (18) can bewritten approximately

as follows:

Veffðϕ; tÞ ≈
λeffðϕ; tÞ

4
ϕ4; ð23Þ

where λeff is an effective coupling. In vacuum stability
analysis, we generally take μðtÞ ¼ ϕ, so λeffðϕ; tÞ can be
written as [12]

λeffðϕ; tÞ

≈e4ΓðtÞ
	
λðtÞþ 1

ð4πÞ2
X
i

Niκ
2
i ðtÞðlogκiðtÞe2ΓðtÞ−ciÞ



:

ð24Þ
The values of coefficients Ni, κi, and ci appearing in
Eq. (24) are listed in Table I.
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We note that the two-loop contributions of strong
coupling and the top Yukawa to the effective potential
can be written in the λeff as

λ2−loopeff ðϕ; tÞ ≈ e4ΓðtÞ
y4t

ð4πÞ4
�
8g2sð3r2t − 8rt þ 9Þ

−
3

2
y2t

�
3r2t − 16rt þ 23þ π2

3

��
; ð25Þ

where rt ¼ ln y2t
2
þ 2Γ. We can see in Eq. (25) that the two-

loop contributions from top loops are of the order of
y6t =ð4πÞ4, while the one-loop terms are of the order of
y4t =ð4πÞ2 as can be seen in (24). The two-loop contributions
from the new fermions in the SDFDM model are similar.
We expect that these new two-loop contributions would be
much smaller than the one-loop contribution if the new
Yukawa couplings y1 and y2 are not much larger than the
top Yukawa. So in this work, we do not take into account
these two-loop contributions from the new particles in the
SDFDM model. For similar reasons, we do not consider
two-loop contributions of new fermions to the β function.
More detailed analysis on this aspect, in particular for the
case with very large Yukawa coupling, is outside the scope
of the present article.

C. Running parameters in the MS scheme

To study the vacuum stability of a model at high energy
scale, we need to know the value of coupling constants at
low energy scale and then run them to the Plank scale
according to RGEs. To determine these parameters at low
energy scale, the threshold corrections must be taken into
account. In this article we work with the modified minimal
subtraction (MS) scheme and use the strategy in [17,20] to
evaluate one-loop threshold corrections and determine the
initial values for RGE. The details of the corrections are
summarized in Appendix A. Using these results, we find
coupling constants in the MS scheme at μ ¼ Mt scale
which are different for the SM and for the SDFDM model.
We list some of the results in Table II. Both the change of
the Yukawa couplings y1;2 and the change of the mass term
have an effect on the corrections. We can see in Tables II
and III that changing the mass scale of dark matter particles

does not give rise to change of the initial parameters as
significant as that of changing Yukawa couplings.
Therefore, we will always choose mass parameters as
given in Table II and concentrate on the impact of different
Yukawa couplings y1;2 in the remaining part of the article.
With these initial values in Table II, we then run the
parameters all the way up to MPl scale. For RGE running,
we use three-loop SM β functions [17]. We also include
one-loop contributions of new particles in the SDFDM
model to the β functions of these SM parameters. For new
parameters in the SDFDM model, we use one-loop β
functions which can be extracted using PyR@TE2 [21]. The
results are shown in Appendix B.

TABLE I. The coefficients in Eq. (24) for the background Rξ gauge [19]. ξ̄W and ξ̄Z are the gauge-fixing parameters in the background
Rξ gauge, Gþ and G0 the Goldstone bosons, C� and CZ the ghost fields, χ1 and χ2 are the dark matter particles in the SDFDM model.
For ξ̄W ¼ ξ̄Z ¼ 0, Eq. (24) reproduces the one-loop result in the Landau gauge, and for ξ̄W ¼ ξ̄Z ¼ 1, we get the result in the ’t Hooft-
Feynman gauge.

p t W Z h Gþ G0 C� CZ χ1 χ2

Ni −12 6 3 1 2 1 −2 −1 −1 −1
ci 3

2
5
6

5
6

3
2

3
2

3
2

3
2

3
2

3
2

3
2

κi y2t
2

g2

4
g2þg02

4
3λ λþ ξ̄Wg2

4 λþ ξ̄Zðg2þg0Þ
4

ξ̄Wg2

4
ξ̄Wðg2þg0Þ

4

y2
1

2

y2
2

2

TABLE II. All the parameters are renormalized at the top pole
mass (Mt) scale in the MS scheme. BMP1: y1 ¼ y2 ¼ 0.25,
MS ¼ 1000 GeV, MD ¼ 1000 GeV; BMP2: y1 ¼ y2 ¼ 0.35,
MS ¼ 1000 GeV, MD ¼ 1000 GeV; BMP3: y1 ¼ y2 ¼ 0.4,
MS ¼ 1000 GeV, MD ¼ 1000 GeV; BMP4: y1 ¼ y2 ¼ 0.6,
MS ¼ 1000 GeV, MD ¼ 1000 GeV; The superscript � indicates
that the NNNLO pure QCD effects are also included. BMPs
means benchmark points.

Initial values in the MS scheme for RGE running

μ ¼ Mt λ yt g2 gY

SMLO 0.12917 0.99561 0.65294 0.34972
SMNNLO 0.12604 0.93690* 0.64779 0.35830

SDFDMBMP1
NLO 0.12549 0.93526* 0.64573 0.35752

SDFDMBMP2
NLO 0.12554 0.93368* 0.64574 0.35630

SDFDMBMP3
NLO 0.12586 0.93269* 0.64573 0.35553

SDFDMBMP4
NLO 0.13126 0.92744* 0.64573 0.35144

TABLE III. y1 ¼ y2 ¼ 0.35 for all three cases with different
masses of the new particles. The superscript * indicates that the
NNNLO pure QCD effects are also included.

Effects of different masses on initial values

μ ¼ Mt λ yt g2 gY

MS ¼ MD ¼ 800 GeV 0.12564 0.93402* 0.64599 0.35650
MS ¼ MD ¼ 1000 GeV 0.12554 0.93368* 0.64574 0.35630
MS ¼ MD ¼ 1200 GeV 0.12546 0.93340* 0.64552 0.35613
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We can see the evolution of λðtÞ both in the SM and in
the SDFDM model in Fig. 1(a). We see that the λmin in the
SDFDM model, the minimum of λðtÞ in the RGE running,
is negative and is more negative than in the SM. This
indicates that in the SDFDM model the EW vacuum is
unstable and the lifetime of the EW vacuum could be much
shorter owing to new physics effects. The greater the
Yukawa couplings y1 and y2, the greater the destabilization
effects of the SDFDM model.
As shown in Eq. (24), λeff differs from λ. In the SM, the

difference λeff − λ is always positive and negligible near
the Planck scale as shown in Ref. [12]. The situation is
different in the SDFDM model. As we can see in Fig. 1(b),
λeff − λ is not negligible in the SDFDM model. In fact, λeff
is suppressed by the e4ΓðtÞ factor in Eq. (24) which comes
from the contribution of the anomalous dimension. As
we can see, the instability scale ΛI, the energy scale at
which λeffðtÞ or λðtÞ becomes zero, is larger when deter-
mined by λeffðtÞ. This is the case both in the SM and in the
SDFDM model.

III. VACUUM STABILITY AND LIFETIME
OF THE VACUUM

As we have seen in the last section, RG improvement to
the effective potential can be quite significant in the
SDFDM model. We need to consider the effects of RG-
improved effective potential in the calculation of the
vacuum decay rate. The decay rate of the false vacuum
can be computed by finding a bounce solution to the field
equations in Euclidean space [5–7]. For a potential UðϕÞ,
the decay rate per unit time per unit volume, Γt, can be
expressed as

Γt ¼ Ate−Scl ; ð26Þ

where Scl is the Euclidean action of bounce solution and At
is the quantum correction. For fluctuation of the ϕ field, At
is given as

At ¼
S2cl
4π2

���� det0½−∂2 þ U00ðϕBÞ�
det½−∂2 þU00ðϕ0Þ�

����−1=2; ð27Þ

where ∂2 is operated on Euclidean space and det0 the
determinant omitting the zero mode contribution. ϕ0 is the
field value in the false vacuum which can be taken as zero
as an approximation. ϕB refers to the spherical symmetric
bounce solution to the Euclidean field equation. ϕB satisfies

−∂2ϕB þU0ðϕBÞ ¼ −
d2ϕB

dr2
−
3

r
dϕB

dr
þ U0ðϕBÞ ¼ 0; ð28Þ

where U0 means derivative of U with respect to the field. In
the case under consideration, ϕ=

ffiffiffi
2

p
is the CP-even neutral

component of the Higgs doublet in the SM. If there are
other particles coupled to the bounce field, their contribu-
tions to the determinants should also be taken into account,
as happens in the SM and in the singlet-doublet fermion
extension models considered in this article.
For a potential UðϕÞ ¼ λ

4
ϕ4 with a negative λ, the

calculation leads to [8]

Scl ¼
8π2

3jλj : ð29Þ

In the SM, there is a mass of the Higgs field. The Higgs
mass can be safely neglected in this calculation because the
bounce solution is dominated by the behavior at large field
values, so that the potential can be written approximately as
a ϕ4 form. In quantum theory, λ is a quantity running with
energy scale. To simplify calculation, λ can be taken at a

FIG. 1. (a) λðtÞ up to MPl for the SM and for various Yukawa couplings in the SDFDM model. (b) Running λðtÞ and λeffðtÞ up toMPl
scale for the SDFDM model.
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sufficiently large energy scale M so that λðMÞ is negative
and varies slowly with energy scale. So Scl ¼ 8π2=jλðMÞj
in this case. It has been shown that this scale dependence
of Scl in the false vacuum decay rate is canceled
when taking into account one-loop correction from the
determinant [8,9].
To fully take into account quantum corrections, we need

to consider the effective action. As long as the field varies
slowly with space and time, we can compute the effective
action using derivative expansion [1]. Neglecting terms
with a higher derivative, we can write the effective action in
Euclidean space for external field ϕ as

Seff ½ϕ� ¼
Z

d4x

�
1

2
ð∂μϕÞ2Z2ðϕÞ þ VeffðϕÞ

�
: ð30Þ

Z2 can be obtained from the p2 terms in the Feynman
diagrams as shown in Appendix C. It is renormalized to
make Z2ðϕ ¼ 0Þ ¼ 1 which makes the kinetic term going
back to the standard form when there is no external field.
The results in the ’t Hooft-Feynman gauge are summarized
in Table IX for the SM, and in Table X for new
contributions in the SDFDM model. In the large ϕ limit,
we can simplify the result. We obtain Z2 for the SM in
Eq. (C14), and Z2 for the SDFDM model in Eq. (C16). As
we can see, the explicit dependences on ϕ are canceled in
these results.
RG improvement of the kinetic term can be studied

similar to the effective potential. The kinetic term in the
effective action is the one-particle irreducible self-energy
Γ2. It satisfies the RG equation�

μ
∂
∂μþ βi

∂
∂λi − 2γ

�
Γ2ðϕÞ ¼ 0: ð31Þ

The equation can be solved in a way similar to solving
VeffðϕÞ. Solving this equation gives rise to Z2ðϕ; tÞwith all
parameters λi in Z2ðϕÞ substituted by λiðtÞ and with
an e2ΓðtÞ factor in the kinetic term. So we arrive at an
Euclidean action,

S ¼
Z

d4x

�
e2ΓðtÞZ2ðϕ; tÞ

1

2
ð∂μϕÞ2 þ e4ΓðtÞ

λ̃ðtÞ
4

ϕ4

�
; ð32Þ

where λ̃ is only different from Eq. (24) by a factor e4ΓðtÞ,
that is

λ̃ðtÞ ¼ λðtÞ þ 1

ð4πÞ2
X
i

Niκ
2
i ðtÞðlog κiðtÞe2ΓðtÞ − ciÞ: ð33Þ

The Euclidean equation of bounce solution becomes

−Z2∂2ϕ̃B þ λ̃ϕ̃3
Be

2ΓðtÞ ¼ 0: ð34Þ

From the bounce action in Eq. (29), one can immediately
deduce that the bounce action becomes

Scl ¼ e2ΓZ2 ×
8π2

3jλ̃je2Γ=Z2

¼ ðZ2Þ2
8π2

3jλ̃j : ð35Þ

Scl depends on Z2 but is independent of the eΓðtÞ factor.
Similar to the case of obtaining Eq. (29), running param-
eters in Eqs. (34) and (35) are understood to be at an
arbitrary large energy scale M. The leading dependence on
M in the decay rate would be canceled by including
quantum correction from the determinant, similar to analy-
sis in Refs. [8,9].
Similarly, one can find that the ðSclÞ2 factor in Eq. (27),

which comes from the zero mode contribution, becomes
½8π2=ð3jλ̃je2Γ=Z2Þ�2. The ratio of determinants in Eq. (27)
becomes jdet0½−e2ΓZ2∂2 þ 3λ̃e4Γϕ̃2

B�= det½−e2ΓZ2∂2�j−1=2
which equals to jdet0½−∂2þ3ðλ̃=Z2Þe2Γϕ̃2

B�=det½−∂2�j−1=2×
ðe2ΓZ2Þ2 when including effects omitting four zero modes.
It is easy to see that if taking ϕB ¼ eΓϕ̃B the nonzero
eigenvalues of operator −∂2 þ 3ðλ̃=Z2Þe2Γϕ̃2

B for ϕ̃B sat-
isfying Eq. (34) would be the same of the operator −∂2 þ
3ðλ̃=Z2Þϕ2

B for ϕB satisfying

−Z2∂2ϕB þ λ̃ϕ3
B ¼ 0: ð36Þ

So eventually we find that the decay rate is again expressed
by Eq. (26) but with Scl expressed by Eq. (35) and with

At ¼
S2cl
4π2

���� det0½−∂2 þ 3ðλ̃=Z2Þϕ2
B�

det½−∂2�
����−1=2; ð37Þ

in which ϕB satisfies Eq. (36). We see that the final result
depends on Z2 but does not depend on eΓðtÞ. The factor eΓðtÞ
comes from the wave function renormalization but can be
associated with an arbitrariness in relating ϕ with a
renormalization scale. So it is not surprising to see that
the physical result does not depend on it. One can actually
redefine, from the very beginning, the external field ϕ of the
Euclidean action in Eq. (32) in the path integral and arrive
at this conclusion.
Note that the idea that physical quantities should not

depend on eΓ has been expressed in [11]. In this article,
the authors redefine the field and introduce canonically
normalized field in effective action. In our convention, the
canonically normalized field ϕcan is related to ϕ with the
equation dϕcan=dϕ ¼ eΓ

ffiffiffiffiffi
Z2

p
. The solution of ϕcan can be

found approximately as ϕcan ¼ eΓ
ffiffiffiffiffi
Z2

p
ϕþ γeΓ

ffiffiffiffiffi
Z2

p
ϕ in

which the derivative with respect to
ffiffiffiffiffi
Z2

p
, which gives

the contribution of higher order, has been neglected. As can
be found numerically, the anomalous dimension γ is at most
a few of a thousand in high energy scale if the new Yukawa
couplings are not too large. Consequently, we can take
ϕcan ¼ eΓ

ffiffiffiffiffi
Z2

p
ϕ approximately in high energy scale, which

agrees with the result in [11] up to the factor
ffiffiffiffiffi
Z2

p
. The

coupling λcan, introduced in [11] using the canonically
normalized field, can be found approximately as λ̃=ðZ2Þ2 in
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our case. This agrees with the result in (35) which also
depends on λ̃=ðZ2Þ2. So the real quartic coupling which
controls physical quantities is λcan, not λeff , or just λ̃ if Z2 is
close to one. As will be shown in detail later, Z2 is indeed
close to one and the difference between λ̃ and λ in the SM is
also very small at high energy scale. In the SDFDM model,
λ̃ − λ could be smaller than λeff − λ shown in Fig. 1(b).
However, λ̃ − λ can still be significant in some cases, as will
be shown later. So a careful analysis of vacuum stability
and vacuum decay in extensions of the SM should use λ̃ and
take the relevant quantum corrections into account.
Z2 is a running parameter. As we can see in Fig. 2, Z2 has

a small deviation from unity at high energy scale, both in
the SM and in the SDFDMmodel. So the decay rate of false
vacuum is mainly controlled by the behavior of λ̃ðtÞ. In the
SDFDM model, the scale dependence appearing in Scl is
also canceled by a one-loop contribution from the deter-
minant. This energy scale can be taken conveniently at ΛB,
the scale of bounce, so that SclðΛBÞ takes care of the major
contribution in the exponential [8–10,12]. ΛB is determined
as the scale at which the vacuum decay rate is maximized.
In practice, this roughly corresponds to the scale at which
the negative λ̃ðΛBÞ is at the minimum. If ΛB > MPl, we can
only obtain a lower bound on the tunneling probability by
setting λðΛBÞ ¼ λðMPlÞ.
In this way, the vacuum decay probability P0 in our

universe up to the present time can be expressed as [12,22]

P0 ¼ 0.15
Λ4
B

H4
0

e−SðΛBÞ; ð38Þ

where H0 ¼ 67.4 km sec−1Mpc−1 is the Hubble constant
at the present time. SðΛBÞ is the action of the bounce of
size R ¼ Λ−1

B .

In vacuum stability analysis, we call the vacuum stable if
the potential at large ϕ keeps positive. This requires λ̃ > 0

for an energy scale up to the Planck scale. If λ̃ < 0 at an
energy scale but with P0 < 1, it means that the lifetime of
the false vacuum is greater than the age of the Universe. In
this case we call the vacuum metastable. Other scenarios
can be similarly defined. In summary, we list them as
follows:

(i) stable: λ̃ > 0 for μ < MPl;
(ii) metastable: λ̃ðΛBÞ < 0 and P0 < 1;
(iii) unstable: λ̃ðΛBÞ < 0 and P0 > 1;
(iv) nonperturbative: jλj > 4π before the Planck scale.
Note that we classify states of EW vacuum in a way

different from Refs. [12,15], since λ̃ðtÞ differs from λðtÞ by
one-loop Coleman-Weinberg–type corrections. As will be
shown, λ̃ðtÞ can be different from λðtÞ significantly in the
SDFDM model. We further note that the effective action
we have used has an imaginary part. The present work
actually works on the real part of the effective action and
discusses the effect of the distortion of the bounce solution
in the presence of quantum correction to the effective
action. A discussion on the effect of the imaginary part of
the effective action would be interesting, e.g., as in
Ref. [23]. In the present article, we will not elaborate on
this topic.
Now we come to discuss the tunneling probability. As

shown in Eqs. (26), (35) and (37), the decay rate of a false
vacuum depends on Z2 and λ̃ðtÞ when including one-loop
correction to the effective action. As mentioned before, the
decay rate is mainly controlled by the behavior of λ̃ðtÞ. We
first compare λ̃ðtÞ and λðtÞ in the SM. In the SM, λ̃ðtÞ
and λðtÞ are very close at high energy scale, as shown in
Fig. 3(a). They both approach the minimum before the
Planck scale. Both values of their minima and the energy
scales of the minima are very close, as can be seen in

FIG. 2. (a) The behavior of Z2 at large energy scale in the SM; (b) The behavior of Z2 at large energy scale with y1 ¼ y2 ¼ 0.35 and
MS ¼ MD ¼ 1000 GeV in the SDFDM model.
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Table IV. This means that the one-loop corrections to
effective potential have little effects on the tunneling prob-
ability in the SM. In the SDFDMmodel, the situation can be
different. As can be seen in Fig. 3(b), λ̃ðtÞ and λðtÞ at high
energy scale are not as close as in theSM. In this plot, λ̃ðtÞ and
λðtÞ all approach their minima before the Planck scale. But
their values at the minima and the energy scales of the
minima are not as close as in the SM, as can be seen in
Table IV. In Fig 4,wegivemore plotswith larger y1 andy2. In
these cases, the difference between λ̃ðtÞ and λðtÞ is more
significant. The larger the Yukawa coupling y1 and y2, the
larger the difference.We can see that the difference between λ̃
and λ in Fig. 4(b) is not as significant as the difference
between λeff and λ in Fig. 1(b). However, λ̃ − λ is still
significant in this case. In these cases in Fig. 4, both λ̃ðtÞ and
λðtÞ have no minimum for energy scale below the Planck
scale. The energy scale of bounce,ΛB, is chosen as thePlanck
scale for these two cases. We note that the positive sign of
λ̃ − λ shown in Fig. 4means that the lifetime calculated using
λ̃ in these plots is longer than that computed by using λ.
In Table IV, we list more numerical results for the SM and

for some benchmark points in the SDFDM model. As a

comparison, we also list the results just using λðtÞ. We can
see that using λ̃ðtÞ and Z2 in the effective action leads to
some differences in the probability of false vacuum decay.
For the case of the SM,we can see that the lifetime of the EW
vacuum computed using effective action is slightly longer
than that computed just using λðtÞ although λ̃ðtÞ and λðtÞ are
very close at high energy scale. This is caused mainly by the
presence of Z2 in the effective action. In the SM, the ðZ2Þ2
term in Eq. (35) is about 1.02whichmakes Scl slightly larger
and leads to a smaller decay rate. In the SDFDMmodel, the
difference between λ̃ and λ is significant, and the Z2 factor
increases with the increase of the Yukawa couplings y1 and
y2. Therefore, both the Z2 factor and the increasing value of
λ̃ − λ makes the lifetime calculated using effective action
longer than that computed just using λ.
In Fig. 5, we compare the two ways of obtaining the

tunneling probability. The green (blue) region indicates that
the EW vacuum is metastable (unstable), and the red region
means that the EW vacuum is nonperturbative. We find that
the one-loop effect on effective action slightly enlarges the
parameter space for the vacuum to be metastable.
The parameter space of the singlet-doublet fermion

dark matter model is constrained by phenomenological

FIG. 3. (a) Comparison between λ and λ̃ in the SM. (b) Comparison between λ and λ̃with y1 ¼ y2 ¼ 0.25 andMS ¼ MD ¼ 1000 GeV
in the SDFDM model.

TABLE IV. The results computed by using λðtÞ and λ̃ðtÞ are presented. Three benchmark models are BPM1
(y1 ¼ y2 ¼ 0.25;MS ¼ MD ¼ 1000 GeV), BPM2(y1 ¼ y2 ¼ 0.35;MS ¼ MD ¼ 1000 GeV), BPM3(y1 ¼ y2 ¼ 0.4;MS ¼ MD ¼
1000 GeV). λmin is the minimal value of the running λ. λ̃min is the minimal value of the running λ̃. μmin is the energy scale when
minimal value of λ or λ̃ is achieved. P0 represents the EW vacuum decay probability.

Result with λðtÞ Result with λ̃ðtÞ in effective potential

λmin log10ðμmin=GeVÞ log10ðP0Þ λ̃min Z2ðΛBÞ log10ðμmin=GeVÞ log10ðP0Þ
SM −0.0148 17.46 −535.34 −0.0150 1.0116 18.07 −543.35
BMP1 −0.0176 17.60 −413.72 −0.0165 1.0152 18.23 −474.68
BMP2 −0.0406 MPl −38.98 −0.0346 1.0182 MPl −99.73
BMP3 −0.0661 MPl Unstable −0.0539 1.0231 MPl Unstable
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considerations of dark matter, such as the direct detection
and the constraint from the dark matter relic density. It is
found in [16] that the dark matter Yukawa couplings must
be very small, i.e., jy1j; jy2j≲ 4 × 10−3, and that the masses
of dark matter particle are constrained to beM χ1 ≲733GeV
and jM χ2 −M χ1 j=M χ1 ≲ 0.1. The vacuum stability analy-
sis of this model does not give a constraint on the parameter
space stronger than these phenomenological constraints.

IV. GENERAL SINGLET-DOUBLET FERMION
EXTENSION MODEL

A more general singlet-doublet fermion extension of the
SM can be considered. In general, we can add N copies of
SU(2) doublet fermions ψLn;Rnðn ¼ 1;…; NÞ and Q copies
of singlet fermions SLq;Rqðq ¼ 1;…; QÞ. The relevant
Lagrangian can be written as

Lgeneral¼
XN
n¼1

ψ̄ni=Dψnþ
XQ
q¼1

S̄qi=∂Sq−
XN
n¼1

ψ̄LnðM̃DÞnnψRn

−
XQ
q¼1

S̄LqðM̃SÞqqSRq

−
XN
n¼1

XQ
q¼1

ðYRnqψ̄LnH̃SRqþYLnqψ̄RnH̃SLqÞþH:c:;

ð39Þ

where we have chosen to work in the base that the mass
matrices M̃D and M̃S are diagonal and real.
After the EW symmetry breaking, the mass matrix of the

charged components of ψLn;Rnðψ−
Ln;RnÞ are not changed.

We simply denote ψ−
Ln;Rn as χ

−
Ln;Rn. The N copies of neutral

FIG. 4. Comparison between λðtÞ and λ̃ðtÞ in the SDFDM model. (a) y1 ¼ y2 ¼ 0.35 andMS ¼ MD ¼ 1000 GeV. (b) y1 ¼ y2 ¼ 0.4
and MS ¼ MD ¼ 1000 GeV.

FIG. 5. Status of the EW vacuum in the y1 − y2 plane with MS ¼ MD ¼ 1000 GeV. The left panel is given by using the ϕ4 potential
and the running λðtÞ, and the right panel is computed by using effective action and λ̃ðtÞ. The green, blue, and red regions indicate that the
EW vacuum is metastable, unstable and nonperturbative.
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component of ψLn;Rnðψ0
Ln;RnÞ and Q copies of SLq;Rq

get a mass term. Introducing SL;R ¼ ðSL1;R1;…; SLQ;RQÞT
and ψL;R ¼ ðψL1;R1;…;ψLN;RNÞT , we can write the mass
term as

ð S̄L ψ̄0
L ÞM

�
SR
ψ0
R

�
þ H:c: ð40Þ

with the mass matrix M given as

M ¼
 

M̃S
vffiffi
2

p Yþ
L

vffiffi
2

p YR M̃D

!
: ð41Þ

Here YL and YR are the N ×Q matrices of Yukawa
coupling given in (39).
Performing a field transformation

� SL;R
ψ0
L;R

�
¼ UL;R χ

0
L;R ð42Þ

using two unitary matrices UL and UR with χ0 ¼
ðχ01; χ02;…; χ0NþQÞT , the mass matrix M can be diagonal-
ized and becomes

Md ¼ diagfM χ0
1
;M χ0

2
;…;M χ0NþQ

g ¼ U†
LMUR; ð43Þ

where M χ0i
is the mass of the χ0i field. The interaction

Lagrangian of χ0i and the CP-even neutral Higgs field h is
obtained as

ΔLh ¼ −χ0YPR χ
0h − χ0Y†PL χ

0h; ð44Þ

where Y is the matrix of Yukawa coupling

Y ¼ 1ffiffiffi
2

p Uþ
L

�
0 Yþ

L

YR 0

�
UR: ð45Þ

The interaction Lagrangians of χ0i , χ−n and the gauge
bosons become

ΔLW;Z ¼
XN
n¼1

�
g2ffiffiffi
2

p ðUþ
L Þi;nþQ χ

0
i γ

μPL χ
−
nWþ

μ þ g2ffiffiffi
2

p ðULÞnþQ;i χ
−
n γ

μPL χ
0
i W

−
μ

þ g2
2 cos θw

ðUþ
L Þi;nþQðULÞnþQ;j χ

0
i γ

μPL χ
0
jZμ þ ðL → RÞ

�
þ
XN
n¼1

χ−n

�
−g2 sin θw=Aμ −

g2 cos 2θw
2 cos θw

=Zμ

�
χ−n : ð46Þ

Here θw is the Weinberg angle.
In numerical analysis we consider three typical models.

A. Model I

This model includes N copies of SU(2) doublet fermions
and N copies of singlet fermions. We assume the mass
matrix matrices M̃S and M̃D are proportional to the unit
matrix. We also assume the Yukawa couplings YL and YR
are diagonal and are proportional to the unit matrix. The
relevant Lagrangian is

Lmodel I ¼
XN
n¼1

ðψ̄ni=Dψn þ S̄ni=∂Sn −MDψ̄nψn −MSS̄nSnÞ

−
XN
n¼1

ðy1ψ̄LnH̃SRn þ y2ψ̄RnH̃SLnÞ þ H:c: ð47Þ

This model basically introduces N generations of singlet-
doublet fermions and there are no couplings between
generations. So the mass matrix can be diagonalized in
the same way as in Eq. (2) for each generation and there are
N copies of neutral fermions χ1 and χ2 in the diagonalized
base with masses given in (5) and (6).

B. Model II

In this model we add N copies of SU(2) doublet fermions
ψL;R ¼ ðψ0

L;R;ψ
−
L;RÞT and only one copy of singlet fermion

SL;R. The doublet fermions are all coupled with the only
singlet. We assume that M̃D are proportional to the unit
matrix and all generations of doublet fermions couple with
the singlet fermion with the same strength:

Lmodel II ¼
XN
n¼1

ðψ̄ni=Dψn þ S̄i=∂S −MDψ̄nψn −MSS̄SÞ

−
XN
n¼1

ðy1ψ̄LnH̃SR þ y2ψ̄RnH̃SLÞ þ H:c: ð48Þ

After EW symmetry breaking, the mass matrix M is
obtained as

M ¼

0
BBBBBB@

MS
y2vffiffi
2

p � � � y2vffiffi
2

p
y1vffiffi
2

p MD � � � 0

..

. ..
. . .

. ..
.

y1vffiffi
2

p 0 � � � MD

1
CCCCCCA
: ð49Þ
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In a suitable base, the singlet S can be considered
coupled only to one of the linear combinations of ψn,
i.e., Ψ ¼ 1ffiffiffi

N
p
P

N
n¼1 ψn, with effective couplings

ffiffiffiffi
N

p
y1 andffiffiffiffi

N
p

y2 in the new base. Other orthogonal linear combina-
tions of ψn do not couple to the singlet fermion. So the
mass matrix can be diagonalized to a form

Md ¼ diagfM χ0
1
;M χ0

2
;MD;…;MDg; ð50Þ

where the M χ0
1
and M χ0

2
are the masses of the two neutral

fields, χ01 and χ02, which couple to the neutral Higgs field.
We can obtain

M2
χ0
1

¼ 1

2

�
TN −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
N − 4D2

N

q �
; ð51Þ

M2
χ0
2

¼ 1

2

�
TN þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
N − 4D2

N

q �
; ð52Þ

where TN ¼M2
SþN

2
y21v

2þM2
DþN

2
y22v

2, DN ¼ N
2
y1y2v2−

MSMD.

C. Model III

In the third model, we consider extending the SM by
adding N copies of singlet fermions SL;R with only one
copy of SU(2) doublet fermion. The singlet fermions are
all coupled with the only doublet. We assume that M̃S are
proportional to the unit matrix and all generations of singlet
fermions couple with the doublet fermion with the same
strength.
The mass matrix is given as

M ¼

0
BBBBBBBB@

MS � � � 0 y2vffiffi
2

p

..

. . .
. ..

. y2vffiffi
2

p

0 � � � MS
..
.

y1vffiffi
2

p y1vffiffi
2

p � � � MD

1
CCCCCCCCA
: ð53Þ

Similar to the case in model II, the doublet ψ can be
considered coupled only to one of the linear combinations
of Sq, i.e., 1ffiffiffi

N
p
P

N
q¼1 Sq, with effective couplings

ffiffiffiffi
N

p
y1 andffiffiffiffi

N
p

y2 in a suitable base. Other orthogonal linear combi-
nations of Sn do not couple to the doublet fermion. So the
mass matrix can be diagonalized to a form

Md ¼ diagfM χ0
1
;M χ0

2
;MS;…;MSg: ð54Þ

The M χ0
1
and M χ0

2
are the masses of the two neutral fields,

χ01 and χ02, which couple to the neutral Higgs field. The
expressions of M χ0

1
and M χ0

2
are the same as in (51)

and (52).

D. Vacuum stability in general singlet-doublet
fermion extension models

In this section, we study the vacuum stability in the three
models just introduced using RG-improved effective
action. For model I, we can write down immediately the
contribution to the RG-improved effective potential follow-
ing Eq. (21). We get

VExt
1 ðϕ; tÞ ¼ N

X
i

ð−1Þini
64π2

M4
χiðϕ; tÞ

�
ln
M2

χiðϕ; tÞ
μ2ðtÞ − 3=2

�
:

ð55Þ
For models II and III, the RG-improved effective potential
can be obtained by simply substituting the neutral fermions
masses (51) and (52) into Eq. (21).
Threshold corrections to couplings in the general singlet-

doublet fermion extension model are given in Appendix D.
In Tables V–VII, we show some numerical results of
couplings in the MS scheme for the three models shown
above. New contributions to the Z2 factor in three models
are shown Appendix D. The one-loop β functions in the
three models are given in Appendix D 1, D 2, D 3.

TABLE V. Threshold corrections to couplings when y1 ¼ y2 ¼
0.25 for model I, MD ¼ MS ¼ 1000 GeV. The superscript *

indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model I

μ ¼ Mt λ yt g2 gY

N ¼ 2 0.12495 0.93361* 0.64367 0.35859
N ¼ 5 0.12330 0.92868* 0.63750 0.35902
N ¼ 7 0.12221 0.92539* 0.63338 0.35932

TABLE VI. Threshold corrections to couplings when y1 ¼
y2 ¼ 0.2 for modelII, MD ¼ MS ¼ 1000 GeV. The superscript *

indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model II

μ ¼ Mt λ yt g2 gY

N ¼ 2 0.12545 0.93480* 0.64367 0.35686
N ¼ 5 0.12644 0.93164* 0.63750 0.35340
N ¼ 7 0.12835 0.92954* 0.63714 0.34576

TABLE VII. Threshold corrections to couplings when y1 ¼
y2 ¼ 0.2 for model III, MD¼MS¼1000GeV. The superscript *

indicates that the NNNLO QCD effects are included.

Threshold effects for different N in model III

μ ¼ Mt λ yt g2 gY

N ¼ 2 0.12545 0.93479* 0.64573 0.35809
N ¼ 5 0.12644 0.93164* 0.64573 0.35563
N ¼ 7 0.12835 0.92954* 0.64573 0.35400
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We can see the evolution of λðtÞ in three models in
Figs. 6(a), 7(a) and 8(a). Here we choose y1 ¼ y2 ¼ 0.25 in
model I and y1 ¼ y2 ¼ 0.2 in models II and III. We can
see that the minimum of λðtÞ decreases as N is increased
for these parameters in all these cases. In Figs. 6(b), 7(b)
and 8(b), we compare the evolution of λðtÞ and λ̃ in
all models. The λ̃ is bigger than λ due to the one-loop
Coleman-Weinberg–type corrections. The difference
between λ̃ and λ increases with the increase of N.
We study the status of EW vacuum in the y1-y2 plane

for different N in the three models. Note that in Figs. 9(a)
and 9(b), there are two types of lines for N ¼ 2, i.e., the
solid line for the metastable bound, the dotted line for the
unstable bound. For N ¼ 5 and 7, there are three types of

lines, i.e., and for N ¼ 5, 7, the dashed line for the stable
bound, the solid line in the middle for the metastable bound
and the dotted line for the unstable bound. In Fig. 10(a),
there are two types of lines for all cases of N ¼ 2, 5 and 7,
i.e., the solid line for the metastable bound and the dotted
line for the unstable bound.
We can see that in both models I and II the vacuum

becomes stable when y1 and y2 are small and N is large.
This is quite different from the result when N is small. In
comparison, we can also see that in model III, there are no
such regions in the parameter space for which the EW
vacuum becomes stable when N is large. This happens
because the extra copies of fermion doublets in models I
and II give positive contributions to the β functions of g1

FIG. 6. (a) λðtÞ up toMPl for different values of N in model I. The value of Yukawa couplings y1 and y2 are 0.25. (b) Running λðtÞ and
λ̃ðtÞ up to MPl scale for N ¼ 2, 5, 7 in model I.

FIG. 7. (a) λðtÞ up toMPl for different values of N in model II. The value of Yukawa couplings y1 and y2 are 0.2. (b) Running λðtÞ and
λ̃ðtÞ up to MPl scale for N ¼ 2, 5, 7 in model II.
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and g2, as can be seen in (D5), (D6), (D14) and (D15). For
largerN, this effect drives g1 and g2 running to larger values
with faster rate. When y1 and y2 are small, the contribution
of larger g1 and g2 can even make the β function of λ
turning into a positive value, as can be seen in Fig. 10(b). If
increasing the value of Yukawa coupling, the β function can
be turned into negative again, as can be seen in Fig. 10(b).
The impact of these running effects can be seen clearly in

Figs. 11(a) and 11(b). In Fig. 11(a), we can see that λmin >
0 for y1 ¼ y2 ¼ 0.1 and N ¼ 5, 7. This means that the EW
vacuum becomes stable for these parameters in model I. On
the contrary, λmin < 0 when y1 ¼ y2 ¼ 0.25 even for N ¼
5 and 7. We can also see in Fig. 11(b) that λmin > 0 when
y1 ¼ y2 ¼ 0.05 and for both N ¼ 5 and 7. This means

that the EW vacuum becomes stable for these parameters
in model II. On the other hand, λmin < 0 when y1 ¼ y2 ¼
0.2 in model II. The results here are consistent with the
results indicated in Fig. 9. When Yukawa couplings
become bigger, λmin < 0 and the vacuum become unstable
in both models.
We note that in Figs. 9(a), 9(b) and 10(a), we can also

find that the metastable region and unstable region become
smaller with the increase of N. This occurs because when
y1 and y2 are bigger, the new physics effects of extra
fermions would dominate the running of λ. More copies of
extra fermions would make λ running faster to a negative
value. We can similarly compare two ways of obtaining the
tunneling probability, as done for the SDFDM model in

FIG. 8. (a) λðtÞ up toMPl for different values of N in model III. The value of Yukawa couplings y1 and y2 are 0.2. (b) Running λðtÞ and
λ̃ðtÞ up to MPl scale for N ¼ 2, 5, 7 in model III.

FIG. 9. (a) Status of the EW vacuum in the y1-y2 plane for N ¼ 2, 5, 7 in model I. (b) Status of the EW vacuum in the y1-y2 plane for
N ¼ 2, 5, 7 in model II. In both cases, the dashed line is the stable bound, the solid line the metastable bound, and the dotted line is the
unstable bound.
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Fig. 5. The one-loop effective action again slightly modifies
the parameter space presented in Figs. 9(a), 9(b) and 10(a).

V. CONCLUSION

In summary, we have studied the one-loop Coleman-
Weinberg–type effective potential of the Higgs boson in a
single-doublet fermion dark matter extension of the SM.We
have calculated the threshold effect of these fermions in this
model beyond the SM and have studied the RG running of
parameters in the MS scheme. We have studied the RG
improvement to the effective potential. We have studied the
vacuum stability using the RG-improved effective potential.

Using the method of derivative expansion, we have
studied the quantum correction to the effective action. We
have calculated the renormalization on the kinetic term in
the effective action in the case with external field. We have
studied the RG improvement of the kinetic term. Using the
RG-improved kinetic term and the RG-improved effective
potential, we calculate the decay rate of the false vacuum.
We find that the factor arising from the anomalous
dimension which appears in the kinetic term and the
effective potential cancels in the decay rate. Taking all
these considerations into account, we find that the decay
rate of the false vacuum is slightly changed by the effective
action.

FIG. 10. (a) Status of the EW vacuum in the y1-y2 plane for N ¼ 2, 5, 7 in model III. The solid line is the metastable bound, the dotted
line the unstable bound. (b) β function of λ in model I. The solid line is for y1 ¼ y2 ¼ 0.1, the dashed line for y1 ¼ y2 ¼ 0.25.

FIG. 11. (a) λðtÞ up to MPl for different values of Yukawa couplings in model I, The solid lines are for y1 ¼ y2 ¼ 0.1 and the dashed
lines for y1 ¼ y2 ¼ 0.25. (b) λðtÞ up toMPl for different values of Yukawa couplings in model II. The solid lines are for y1 ¼ y2 ¼ 0.05
and the dashed lines are for y1 ¼ y2 ¼ 0.2.
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We have also done all these studies in general singlet-
doublet fermion extension models. We perform a numerical
analysis in three typical extension models with N copies of
single-doublet fermions, N copies of doublet fermions and
N copies of singlet fermions separately. We find that several
copies of fermion doublet can make the β function of λ
become positive in some regions of parameter space when
Yukawa couplings of these extra fermions are small.
Consequently, in models with a small value of Yukawa
couplings and large number of copies of fermion doublet,
the EW vacuum can become stable. For a large value of the
Yukawa coupling, the EW vacuum can again be turned
into metastable or unstable. We also find that the difference
between Higgs self-coupling λ and λ̃, the effective self-
coupling after including Coleman-Weinberg type correc-
tion, becomes larger when the number of copies of
singlet fermions or doublet fermions is increased. In the
general singlet-doublet fermion extension models, the
decay rate of the false vacuum is also slightly changed
by the effective action.
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APPENDIX A: THRESHOLD EFFECT AND
PARAMETERS IN THE MS SCHEME

1. General strategy for one-loop matching

To study the vacuum stability of a model at high energy
scale, we need to know the value of coupling constants at
low energy scale and then run them to the Plank scale
according to RGEs. To determine these parameters at low
energy scale, the threshold corrections must be taken into
account. In this article we use the strategy in [17,20] to
evaluate one-loop corrections. All the loop calculations are
performed in the MS scheme in which all the parameters
are gauge invariant and have gauge-invariant renormaliza-
tion group equations [24].
A parameter in the MS scheme, e.g., θðμ̄Þ, can be

obtained from renormalized parameter θ in the physical
scheme which is directly related to physical observables.
The connection between θ and θðμ̄Þ to one-loop order can
be found by noting that the unrenormalized θ0 is related to
the renormalized couplings by

θ0 ¼ θ − δθ ¼ θðμ̄Þ − δθMS; ðA1Þ

where δθ and δθMS are the corresponding counterterms. By
definition δθMS subtracts only the divergent part propor-
tional to 1=ϵþ γ − lnð4πÞ in dimensional regularization
with d ¼ 4 − 2ϵ being the space-time dimension. Since the
divergent parts in the δθ and δθMS counterterms are of the
same form, θðμ̄Þ can be rewritten as

θðμ̄Þ ¼ θ − δθjfin; ðA2Þ

where the subscript fin denotes the finite part of the
quantity δθ, obtained after subtracting the terms propor-
tional to 1=ϵþ γ − lnð4πÞ. Difference at two-loop order has
been neglected in this expression.
The physical parameters which would be used in

Eq. (A2), such as μ2 and λ, the quadratic and quartic
couplings in the Higgs potential, the vacuum expect-
ation value v, the top Yukawa coupling yt, the gauge
couplings g2 and gY of SUð2ÞL × Uð1ÞY group, can be
determined from physical observables, such as the pole
mass of the Higgs boson ðMhÞ, the pole mass of the top
quark ðMtÞ, the pole mass of the Z boson ðMZÞ, the
pole mass of the W boson ðMWÞ, and the Fermi
constant ðGμÞ. These physical observables are listed
in Table VIII. If knowing the corresponding counter-
terms in the physical scheme, the MS couplings are
then obtained using (A2). For example, if knowing δλ,
we then obtain λðμ̄Þ in the MS scheme. More details are
explained as follows.
We follow Ref. [20] to fix the notation. We write the

classical Higgs potential in bare quantities as

V ¼ −μ20Φ†Φþ λ0ðΦ†ΦÞ2 ðA3Þ

with

Φ ¼

0
B@ ϕþffiffi

1
2

q
ðϕ1 þ iϕ2 þ v0Þ

1
CA: ðA4Þ

Setting λ0 ¼ λ − δλ; v0 ¼ v − δv; μ20 ¼ μ2 − δμ2, where
λ, v and μ are regarded as renormalized quantities,
we write

V ¼ VðrÞ − δV ðA5Þ

TABLE VIII. Input values of physical observables used to fix
the SM fundamental parameters λ, m, yt, g2, and gY . MW , MZ,
Mh, and Mt are the pole masses of the W boson, of the Z boson,
of the Higgs boson, and of the top quark, respectively. Gμ is the
Fermi constant for μ decay, and α3 is the SUð3Þc gauge coupling
at the scale μ ¼ MZ in the MS scheme.

Input values of SM observables

Observables Values

MW 80.384� 0.014 GeV
MZ 91.1876� 0.0021 GeV
Mh 125.15� 0.24 GeV
Mt 173.34� 0.76 GeV
v ¼ ð ffiffiffi

2
p

GμÞ−1=2 246.21971� 0.00006 GeV

α3ðMZÞ 0.1184� 0.0007
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with

VðrÞ ¼ λ

�
ϕþϕ−ðϕþϕ− þ ϕ2

1 þ ϕ2
2Þ þ

1

4
ðϕ2

1 þ ϕ2
2Þ2
�

þ λvϕ1½ϕ2
1 þ ϕ2

2 þ 2ϕþϕ−� þ 2λv2
1

2
ϕ2
1 ðA6Þ

and

δV ¼ δλ

�
ðϕþϕ−Þðϕþϕ− þ ϕ2

1 þ ϕ2
2Þ þ

1

4
ðϕ2

1 þ ϕ2
2Þ2
�

þ ½λδvþ vδλ�ϕ1½ϕ2
1 þ ϕ2

2 þ 2ϕþϕ−�

þ δτ

�
ϕþϕ− þ 1

2
ϕ2
2

�
þ δM2

h
1

2
ϕ2
1 þ vδτϕ1; ðA7Þ

where

δM2
h ¼ 3v2δλþ 6λvδv − δμ2; ðA8Þ

δτ ¼ v2δλþ 2λvδv − δμ2: ðA9Þ

v is determined at tree level by Gμ as shown in Table VIII.
In order to determine δλ, δv and δμ2 we need three

constraints. The strategy is to adjust δτ so that the vδτϕ1

term in Eq. (A7) cancels the tadpole diagrams. Calling iT
the sum of the tadpole diagrams with the external legs
extracted, we have the condition

δτ ¼ −T=v: ðA10Þ

A second constraint is conveniently obtained by demanding
that the coefficient of the term proportional to 1

2
ϕ2
1 in VðrÞ be

the physical mass of the Higgs boson. So we have

M2
h ¼ 2λv2 ðA11Þ

and δM2
h is fixed by condition of on-shell renormaliza-

tion, i.e.,

δM2
h ¼ ReΠhhðM2

hÞ; ðA12Þ

where ΠhhðM2
hÞ is the Higgs boson self-energy evaluated

on shell. A third constraint is provided by Eq. (9b) of
Ref. [25]:

δM2
W ¼ ReΠwwðM2

WÞ; ðA13Þ

where ΠwwðM2
WÞ is the W boson self-energy evaluated

on shell. Recalling that the W-mass counterterm is
given by [25]

δM2
W ¼ 1

2
ðv2g2δg2 þ g22vδvÞ; ðA14Þ

δv is obtained using this expression with δg2 known from
other conditions which can be found in Eq. (28a) of [25].
Putting δv, Eqs. (A12) and (A14) into (A8) and (A9), one
can then obtain δλ and δμ2. They are as follows:

δμ2 ¼ 1

2
½ReΠhhðM2

hÞ þ 3T=v�; ðA15Þ

δλ=λ ¼ ½ReΠhhðM2
hÞ þ T=v�=M2

h − ReΠwwðM2
WÞ=M2

W

þ 2δg2=g2; ðA16Þ

δv=v ¼ ReΠwwðM2
WÞ=ð2M2

WÞ − δg2=g2: ðA17Þ

We can get the expressions of the counterterms of the other
parameters in a similar way.
Ignoring the contribution of higher order, we list the one-

loop results of counterterms as follows:

δð1Þλ¼ Gμffiffiffi
2

p M2
h

	
Δrð1Þ0 þ 1

M2
h

�
Tð1Þ

v
þReΠhhðM2

hÞ
�


; ðA18Þ

δð1Þyt ¼ 2

�
Gμffiffiffi
2

p M2
t

�
1=2
�
ReΠttðM2

t Þ
Mt

þ Δrð1Þ0

2

�
; ðA19Þ

δð1Þg2 ¼ ð
ffiffiffi
2

p
GμÞ1=2MW

�
ReΠwwðM2

WÞ
M2

W
þ Δrð1Þ0

�
; ðA20Þ

δð1ÞgY ¼ ð
ffiffiffi
2

p
GμÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z −M2
W

q
×

�
ReΠzzðM2

ZÞ − ReΠwwðM2
WÞ

M2
Z −M2

W
þ Δrð1Þ0

�
;

ðA21Þ

where superscripts 1 in these equations indicate that they

are results at one-loop order. Δrð1Þ0 in the above equations
can be written as a sum of several terms [17],

Δrð1Þ0 ¼ Vð1Þ
W −

Að1Þ
WW

M2
W

þ
ffiffiffi
2

p

Gμ
Bð1Þ
W þ Eð1Þ; ðA22Þ

where AWW is the W boson self-energy at zero momentum,
VW the vertex contribution in the muon decay process, BW
the box contribution, and E a term due to the renormaliza-
tion of external legs. They are all computed at zero external
momentum. Thus we eventually get the MS parameter to
one-loop order as follows [15,17]:

λðμ̄Þ ¼ Gμffiffiffi
2

p M2
h − δð1Þλ

���
fin
; ðA23Þ

ytðμ̄Þ ¼ 2

�
Gμffiffiffi
2

p M2
t

�
1=2

− δð1Þyt
���
fin
; ðA24Þ
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g2ðμ̄Þ ¼ 2ð
ffiffiffi
2

p
GμÞ1=2MW − δð1Þg2

���
fin
; ðA25Þ

gYðμ̄Þ ¼ 2ð
ffiffiffi
2

p
GμÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Z −M2
W

q
− δð1ÞgY

���
fin
: ðA26Þ

2. MS parameters in the SDFDM model

To determine the initial values of running couplings, we
use the equations given in the last section. Since the
threshold corrections have been done to NNLO in the
SM, we only need to calculate the contribution of extra
fermions in the SDFDM model. All the relevant Feynman
diagrams for computing δð1Þλjfin with extra fermions are
listed in Fig. 12.

As singlet-doublet fermions in the SDFDM model
do not couple to SM leptons, Eq. (A22) can be further
simplified as

Δr0 ¼ −
AWW

M2
W

: ðA27Þ

Summing over all the loop contributions and using the
matching conditions, we get coupling constants in the MS
scheme atMt ¼ 173 GeV energy scale and for the SDFDM
model respectively.
We summarize here the one-loop corrections to λ from

new particles in the SDFDMmodel by using Eq. (A18). We
write δð1ÞλSDFDM in terms of finite parts of the Passarino-
Veltman functions,

A0ðMÞ ¼ M2

�
1 − ln

M2

μ̄2

�
; B0ðM1;M2; pÞ ¼ −

Z
1

0

ln
xM2

1 þ ð1 − xÞM2
2 − xð1 − xÞp2

μ̄2
dx: ðA28Þ

The one-loop result is

δð1Þλjfin ¼
Gμffiffiffi
2

p ð4πÞ2 fy
2
A½4A0ðM χ0

1
Þ − 2ðM2

h − 4M2
χ0
1

ÞB0ðM χ0
1
;M χ0

1
;MhÞ�

þ y2B½4A0ðM χ0
2
Þ − 2ðM2

h − 4M2
χ0
2

ÞB0ðM χ0
2
;M χ0

2
;MhÞ�

þ 2y2C½A0ðM χ0
1
Þ þ A0ðM χ0

2
Þ − ðM2

h −M2
χ0
1

−M2
χ0
2

ÞB0ðM χ0
1
;M χ0

2
;MhÞ�

þ 2y2D½A0ðM χ0
1
Þ þ A0ðM χ0

2
Þ − ðM2

h −M2
χ0
1

−M2
χ0
2

ÞB0ðM χ0
1
;M χ0

2
;MhÞ�þ8yCyDM χ0

1
M χ0

2
B0ðM χ0

1
;M χ0

2
;MhÞg

þ Gμffiffiffi
2

p ð4πÞ2v ½−4yAM χ0
1
A0ðM χ0

1
Þ − 4yBM χ0

2
A0ðM χ0

2
Þ� þ Gμffiffiffi

2
p M2

hΔr
ð1Þ
0 jfin; ðA29Þ

FIG. 12. Contributions of extra fermions to the self-energy for (a) the Higgs boson, (b) Z boson, and (d) and (e)W bosons, as well as to
(c) the tadpole of the Higgs boson. χð1;2Þ are dark sector fermions.
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where yA;B;C;D has been given in the text following Eq. (9) and

Δrð1Þ0

���
fin

¼ 1

ð4πvÞ2
	
ðsin2θL þ sin2θRÞ

� 2M2
χ0
1

M2
χ− −M2

χ0
1

A0ðM χ0
1
Þ − 2M2

χ−

M2
χ− −M2

χ0
1

A0ðM χ−Þ þM2
χ− þM2

χ0
1

�

þ 8 sin θL sin θR

� M χ0
1
M χ−

M2
χ− −M2

χ0
1

ðA0ðM χ−Þ − A0ðM χ0
1
ÞÞ
�

þ ðcos2θL þ cos2θRÞ
� 2M2

χ0
2

M2
χ− −M2

χ0
2

A0ðM χ0
2
Þ − 2M2

χ−

M2
χ− −M2

χ0
2

A0ðM χ−Þ þM2
χ− þM2

χ0
2

�

þ 8 cos θL cos θR

� M χ0
2
M χ−

M2
χ− −M2

χ0
2

ðA0ðM χ−Þ − A0ðM χ0
2
ÞÞ
�


: ðA30Þ

Plugging Eq. (A29) into Eq. (A23) we obtain λ at one-loop
order in the SDFDM model. Contributions of extra fer-
mions to δð1Þytjfin, δð1Þg2jfin and δð1ÞgY jfin can be similarly
obtained. Plugging them into Eqs. (A24), (A25) and (A26)
we obtain relevant parameters at one-loop order in the
SDFDMmodel. Using these parameters in the MS scheme,
we then carry out the calculation of the effective action in
the MS scheme.

APPENDIX B: ONE-LOOP β AND γ FUNCTION
IN THE SDFDM MODEL

The β function and the anomalous dimension can be
decomposed into two parts:

βtotal ¼ βSM þ βSDFDM; γtotal ¼ γSM þ γSDFDM; ðB1Þ

where βSM and γSM are the β function and the anoma-
lous dimension in the SM, while βSDFDM and γSDFDM

are the contributions from new particles in the
SDFDM model.
The β functions in the SM are known to three-loop [17].

We list the one-loop results as follows:

βSMðg1Þ ¼
1

ð4πÞ2
�
41

10

�
g31; ðB2Þ

βSMðg2Þ ¼
1

ð4πÞ2
�
−
19

6

�
g32; ðB3Þ

βSMðg3Þ ¼
1

ð4πÞ2 ð−7Þg
3
3; ðB4Þ

βSMðytÞ ¼
yt

ð4πÞ2
�
9y2t
2

þ 3y2b
2

þ y2τ − 8g23 −
9g22
4

−
17g21
20

�
;

ðB5Þ

βSMðybÞ ¼
yb

ð4πÞ2
�
3y2t
2

þ 9y2b
2

þ y2τ − 8g23 −
9g22
4

−
g21
4

�
;

ðB6Þ

βSMðyτÞ ¼
yτ

ð4πÞ2
�
3y2t þ 3y2b þ

5y2τ
2

−
9g22
4

−
9g21
4

�
; ðB7Þ

βSMðλÞ ¼ 1

ð4πÞ2
�
2λ

�
12λþ 6y2t þ 6y2b þ 2y2τ −

9g22
2

−
9g21
10

�

− 6y4t − 6y4b − 2y4τ þ
9g42
8

þ 27g41
200

þ 9g22g
2
1

20

�
:

ðB8Þ

In this article we focus on the SDFDM model with
Dirac-type mass. Here we show one-loop contributions
of new particles in the SDFDM model to the β functions
of the SM parameters and the one-loop β functions of new
parameters in the SDFDM model. They can be extracted
using the Python tool PyR@TE2 [21]. They are as follows.
The β functions of the SM parameters receive one-loop

contributions of new particles in the SDFDM model as
follows:

βSDFDMðg1Þ ¼
1

ð4πÞ2
�
2

5

�
g31; ðB9Þ

βSDFDMðg2Þ ¼
1

ð4πÞ2
2

3
g32; ðB10Þ

βSDFDMðyτÞ ¼
1

ð4πÞ2 ðy
2
1 þ y22Þyτ; ðB11Þ

βSDFDMðybÞ ¼
1

ð4πÞ2 ðy
2
1 þ y22Þyb; ðB12Þ

βSDFDMðytÞ ¼
1

ð4πÞ2 ðy
2
1 þ y22Þyt; ðB13Þ
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βSDFDMðλÞ ¼ 1

ð4πÞ2 ½−2y
4
1 − 2y42 þ 4λðy21 þ y22Þ�: ðB14Þ

The one-loop β functions of new parameters in the SDFDM model are as follows:

βSDFDMðy1Þ ¼
1

ð4πÞ2
�
5

2
y31 þ y1y22 −

9

20
g21y1 −

9

4
g22y1 þ 3y2t y1 þ 3y2by1 þ y2τy1

�
; ðB15Þ

βSDFDMðy2Þ ¼
1

ð4πÞ2
�
5

2
y32 þ y21y2 −

9

20
g21y2 −

9

4
g22y2 þ 3y2t y2 þ 3y2by2 þ y2τy2

�
: ðB16Þ

Note here that g1ðg21 ¼ 5
3
g2YÞ, g2, g3 are the gauge couplings, yt, yb, yτ, y1, and y2 are the Yukawa couplings, and λ is the

Higgs quartic coupling. The one-loop anomalous dimension of the Higgs field is

γtotal ¼ γSM þ γSDFDM ¼ 1

ð4πÞ2
�
9

4
g22 þ

9

20
g21 − 3y2t − 3y2b − y2τ

�
þ 1

ð4πÞ2 ð−y
2
1 − y22Þ: ðB17Þ

APPENDIX C: RENORMALIZATION OF
KINETIC TERM IN EFFECTIVE ACTION

We compute effective action of an external field
using derivative expansion. As long as the field varies
slowly with respect to space and time, this is a valid
approximation. Keeping derivatives up to second order,
the Euclidean effective action for a neutral scalar ϕ is
written as

Seff ½ϕ� ¼
Z

d4x

�
VeffðϕÞ þ

1

2
ð∂μϕÞ2Z2ðϕÞ

�
; ðC1Þ

where Veff is the effective potential. The one-loop
result of Veff in the SM in the background Rξ gauge
is given in [19]. Z2 can be obtained from the p2 terms in
self-energy Feynman diagrams. We renormalize Z2 to
make Z2ðϕ¼0Þ¼1 which means that the kinetic term
goes back to the standard form when there is no
external field.

1. Feynman rules in background Rξ gauge

The Feynman rules with external field ϕ in the SM and in
the SDFDM model are given in Figs. 13 and 14. Here, we
only list the vertices that we need in the Z2 calculation. We
have introduced

m̄2
G ¼ −m2

ϕ þ λϕ2; m̄2
H ¼ −m2

ϕ þ 3λϕ2; ðC2Þ

where m2
ϕ is the mass term in the Higgs potential given in

(10). The other ϕ-dependent masses can be obtained by
substituting the vacuum expectation value v with ϕ.
We define the field-dependent masses of Goldstone

bosons and ghost particles as

m̄2
C� ¼ ξ̄Wm̄2

W; ðC3Þ
m̄2

CZ
¼ ξ̄Zm̄2

Z; ðC4Þ

m̄2
Gþ ¼ m̄2

G þ ξ̄Wm̄2
W; ðC5Þ

m̄2
G0 ¼ m̄2

G þ ξ̄Zm̄2
Z: ðC6Þ

FIG. 13. Propagators for SM fields with external field ϕ in
background Rξ gauge. m̄2

h, m̄
2
G, m̄W , m̄Z, m̄f are the ϕ-dependent

masses, which can be defined as m̄2
G¼−m2

ϕþλϕ2, m̄2
H ¼ −m2

ϕþ
3λϕ2, m̄W ¼ 1

2
gϕ, m̄Z ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
ϕ, m̄f ¼ yfffiffi

2
p ϕ. m2

ϕ is the

mass term in the Higgs potential, yf is the Yukawa coupling for
the alternative SM fermion. Note here that G� and G0 are the
Goldstone bosons, CZ and C� are the ghost fields.
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2. Z2 factor in the SM

For simplicity, we calculate Z2 in the ’t Hooft-Feynman
gauge with ξ̄W ¼ ξ̄Z ¼ 1. Z2 comes from the p2 term in the

Higgs self-energy diagram in Fig. 15. Notations in [26] are
used for the integrals calculated in the modified minimal
subtraction scheme:

FIG. 14. Vertices with external field ϕ for the SM in background Rξ gauge. m̄W and m̄Z are the ϕ-dependent masses as given in Fig. 13.
ξ̄W and ξ̄Z are the gauge fixing parameters in background Rξ gauge.

FIG. 15. Self-energy diagrams contributing to theZ2 factor in theSM.G� andG0 are theGoldstone bosons,CZ andC� are the ghost fields.
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i
16π2

B0ðm1; m2; p2Þ

¼ μϵ0

Z
ddk
ð2πÞd

1

ðk2 −m2
1Þððkþ pÞ2 −m2

2Þ
; ðC7Þ

i
16π2

B0ðm1; m2; p2Þ

¼ μϵ0

Z
ddk
ð2πÞd

1

ðk2 −m2
1Þððkþ pÞ2 −m2

2Þ
; ðC8Þ

B0ðm1; m2; p2Þ ¼ B0
0ðm1; m2Þ þ B1

0ðm1; m2Þ · p2

þOðp4Þ þ � � � ; ðC9Þ

where B0
0ðm1; m2Þ and B1

0ðm1; m2Þ can be expressed as

B0
0ðm1; m2Þ ¼ 1þ

m2
1 ln

m2
1

μ2
−m2

2 ln
m2

2

μ2

m2
2 −m2

1

; ðC10Þ

B1
0ðm1; m2Þ ¼

1

2

m2
1 þm2

2

ðm2
1 −m2

2Þ2
−

m2
1m

2
2 ln

m2
1

m2
2

ðm2
1 −m2

2Þ3
: ðC11Þ

When m1 ¼ m2 ¼ m, B0
0ðm1; m2Þ and B1

0ðm1; m2Þ can
be written as B0

0ðmÞ and B1
0ðmÞ. They are expressed as

B0
0ðmÞ ¼ −ln

m2

μ2
; ðC12Þ

B1
0ðmÞ ¼ 1

6m2
: ðC13Þ

We list the p2 terms of each self-diagram in Table IX.
Summing over all the p2 term contributions, we obtain the
Z2 factor in the SM. Since the RG equation for the kinetic
term in the effective action can be solved in a way similar to
the solution to VeffðϕÞ, we can obtain the RG-improved
kinetic term by replacing ϕ, μ, λi with ϕðtÞ, μðtÞ and λðtÞ.
Their expressions or equations are shown in Eqs. (15) and
(17). Taking μðtÞ ¼ ϕ as mentioned above, we get the RG-
improved Z2 factor in the SM for large ϕ field:

ZSM
2 ¼ 1þ 1

16π2

�
λþ 8λ2

12λþ 3g2
þ 4λ2

12λþ 3ðg2 þ g02Þ þ
2

3
ð2g2 þ g02Þ − ð2g2 þ g02Þ

24

�

þ 1

8π2

	�−ð4λg2 þ g4Þlnð4λþg2

g2 Þ
16λ3

þ 2λþ g2

4λ2

�
8λg2 þ g4

16
−
ð4λg2 þ g4Þlnðλe2Γ þ 1

4
g2e2ΓÞ − g4lnð1

4
g2e2ΓÞ

8λ
þ g2

2




−
1

16π2

	�−ð4λðg2 þ g02Þ þ ðg2 þ g02Þ2Þlnð4λþg2þg02
g2þg02 Þ

16λ3
þ 2λþ g2 þ g02

4λ2

�
8λðg2 þ g02Þ þ ðg2 þ g02Þ2

16

−
ð4λðg2 þ g02Þ þ ðg2 þ g02Þ2Þlnðλe2Γ þ 1

4
ðg2 þ g02Þe2ΓÞ − ðg2 þ g02Þ2lnð1

4
ðg2 þ g02Þe2ΓÞ

8λ
þ g2 þ g02

2




−
3

16π2

�
ln

�
y2t
2
e2Γ
�
y2t þ

2

3
y2t

�
ðC14Þ

with

ΓðtÞ ¼ −
Z

t

0

γðλðt0ÞÞdt0: ðC15Þ

TABLE IX. p2 terms from the self-energy diagram in the SM
which contribute to Z2. Note that in these results we only list the
fermion loop contribution from the top quark.

(a) 1
16π2

ð18λ2ϕ2B1
0ðm̄HÞÞ

(b) 1
16π2

ð4λ2ϕ2B1
0ðm̄G�ÞÞ

(c) 1
16π2

ð2λ2ϕ2B1
0ðm̄G0

ÞÞ
(d) 1

16π2
ð4g2m̄2

WB
1
0ðm̄WÞÞ

(e) 1
16π2

ð 4g2

cos2ðθwÞ m̄
2
ZB

1
0ðm̄ZÞÞ

(f) 1
16π2

ð− g2

4 cos2ðθwÞ m̄
2
CZ
B1
0ðm̄CZ

ÞÞ
(g) 1

16π2
ð− g2

4
m̄2

C�B1
0ðm̄C�ÞÞ

(h) 1
16π2

ð−g2

4
Þ½ð−2m̄2

G−þm̄2
WþÞB1

0ðm̄G− ;m̄WþÞ−2B0
0ðm̄G− ;m̄WþÞ�

(i) 1
16π2

ð−g2

4
Þ½ð−2m̄2

Gþþm̄2
W−ÞB1

0ðm̄Gþ ;m̄W−
Þ−2B0

0ðm̄Gþ ;m̄W−
Þ�

(j) 1
16π2

ðg2þg02
4

Þ½ð−2m̄2
G0

þ m̄2
ZÞB1

0ðm̄G0
; m̄ZÞ − 2B0

0ðm̄G0
; m̄ZÞ�

(k) 1
16π2

ð−g2t Þ½−B0
0ðm̄tÞ þ 4m̄2

t B1
0ðm̄tÞ�
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3. Z2 factor in the SDFDM model

The Feynman diagrams in the SDFDM model contrib-
uting to the Higgs self-energy are shown in Fig. 16. p2 term
contributions to Z2 in these diagrams are summarized in
Table X. Summing over all the p2 term contributions in
Tables IX and X, we obtain the Z2 factor in the SDFDM
model. In the large ϕ limit, the Z2 factor in the SDFDM
model can be expressed as

ZSDFDM
2 ¼ ZSM

2 −
y22

16π2

�
ln

�
y22
2
e2Γ
�
þ 2

3

�

−
y21

16π2

�
ln
�
y21
2
e2Γ
�
þ 2

3

�
; ðC16Þ

where ZSM
2 is given in Eq. (C14).

APPENDIX D: THRESHOLD EFFECT, Z2 AND β FUNCTION IN THE GENERAL
SINGLET-DOUBLET FERMION EXTENSION MODEL

We summarize here the one-loop corrections to λ from new particles in the general singlet-doublet extension model
using Eq. (A18).
The one-loop result is

δð1Þλjfin ¼
Gμffiffiffi
2

p ð4πÞ2
XQþN

i¼1

XQþN

j¼1

f2YijY
þ
ji½A0ðM χ0i

Þ þ A0ðM χ0j
Þ − ðM2

h −M2
χ0i
−M2

χ0j
ÞB0ðM χ0i

; M χ0j
; MhÞ�

þ 2ðYijYji þ Yþ
ijY

þ
jiÞM χ0i

M χ0j
B0ðM χ0i

; M χ0j
; MhÞg þ

Gμffiffiffi
2

p ð4πÞ2v
XNþQ

i¼1

½ð−2Yii − 2Yþ
ii ÞM χ0i

A0ðM χ0i
Þ�

þ Gμffiffiffi
2

p M2
hΔr

ð1Þ
0 jfin; ðD1Þ

where Y has been given in Eq. (45) and the new contribution to Δrð1Þ0 jfin is

FIG. 16. Self-energy diagrams contributing to Z2 factor by extra fermions in the SDFDMmodel. χ01 and χ02 are the new extra fermions
in the SDFDM model.

TABLE X. p2 terms from the self-energy diagram contributed
by extra fermions in the SDFDM model. Here we define
A ¼ ð−y2 cos θL sin θR − y1 sin θL cos θRÞ, B¼y2 cosθR sinθLþ
y1 sinθR cosθL, C ¼ y2 cos θL cos θR − y1 sin θL sin θR, D ¼
−y2 sin θL sin θR þ y1 cos θL cos θR. m̄ χ0

1
, m̄ χ0

2
are the masses of

new particles under the external field ϕ. They are obtained by
substituting v in Eqs. (5) and (6) with ϕ.

(a) 1
16π2

ð−A2Þð4m̄2
χ0
1

B1
0ðm̄ χ0

1
Þ − B0

0ðm̄ χ0
1
Þ

(b) 1
16π2

ð−B2Þð4m̄2
χ0
2

B1
0ðm̄ χ0

2
Þ − B0

0ðm̄ χ0
2
Þ

(c) 1
16π2

ð− CD
2
Þð2ðm̄ χ0

1
m̄ χ0

2
B1
0ðm̄ χ0

1
; m̄ χ0

2
Þ

(d) 1
16π2

ð− CD
2
Þð2ðm̄ χ0

1
m̄ χ0

2
B1
0ðm̄ χ0

1
; m̄ χ0

2
Þ

(e) 1
16π2

ð− D2

2
Þ½ðm̄2

χ0
1

þ m̄2
χ0
2

ÞB1
0ðm̄ χ0

1
; m̄ χ0

2
Þ − B0

0ðm̄ χ0
1
; m̄ χ0

2
Þ�

(f) 1
16π2

ð− C2

2
Þ½ðm̄2

χ0
1

þ m̄2
χ0
2

ÞB1
0ðm̄ χ0

1
; m̄ χ0

2
Þ − B0

0ðm̄ χ0
1
; m̄ χ0

2
Þ�

YU CHENG and WEI LIAO PHYS. REV. D 101, 055038 (2020)

055038-22



Δrð1Þ0

���
fin

¼ 1

ð4πvÞ2
	
4
XN
k¼1

ððU†
LÞi;kþQðURÞkþQ;i þ ðU†

RÞi;kþQðULÞkþQ;iÞ
� M χ0i

M χ−k

M2
χ−k

−M2
χ0i

ðA0ðM χ−k
Þ − A0ðM χ0i

ÞÞ
�

þ
XN
k¼1

XNþQ

i¼1

ððU†
LÞi;kþQðULÞkþQ;i þ ðU†

RÞi;kþQðURÞkþQ;iÞ

×

� 2M2
χ0i

M2
χ−k

−M2
χ0i

A0ðM χ0i
Þ − 2M2

χ−k

M2
χ−k

−M2
χ0i

A0ðM χ−k
Þ þM2

χ−k
þM2

χ0i

�

: ðD2Þ

Plugging Eq. (D1) into Eq. (A23) we obtain λ at one-
loop order in the general singlet-doublet extension model.
Contributions of extra fermions to δð1Þytjfin, δð1Þg2jfin and
δð1ÞgY jfin can be similarly obtained. Plugging them into
Eqs. (A24)–(A26) we obtain relevant parameters at one-
loop order in the general model. Using these parameters in
the MS scheme, we then carry out the calculation of the
effective action in the MS scheme.
In the large ϕ limit, the Z2 factor in model I can be

expressed as

Zmodel I
2 ¼ ZSM

2 −
Ny22
16π2

�
ln

�
y22
2
e2Γ
�
þ 2

3

�

−
Ny21
16π2

�
ln

�
y21
2
e2Γ
�
þ 2

3

�
: ðD3Þ

The Z2 factor in models II and III can be expressed as

Zmodel II;III
2 ¼ ZSM

2 −
Ny22
16π2

�
ln
�
Ny22
2

e2Γ
�
þ 2

3

�

−
Ny21
16π2

�
ln

�
Ny21
2

e2Γ
�
þ 2

3

�
: ðD4Þ

The one-loop β functions and the anomalous dimension
of the three singlet-doublet extension models are as
follows.

1. Model I

βmodel Iðg1Þ ¼
1

ð4πÞ2
�
2

5
N

�
g31; ðD5Þ

βmodel Iðg2Þ ¼
1

ð4πÞ2
2

3
Ng32; ðD6Þ

βmodel IðyτÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyτ; ðD7Þ

βmodel IðybÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyb; ðD8Þ

βmodel IðytÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyt; ðD9Þ

βmodel IðλÞ ¼ 1

ð4πÞ2 ½−Nð2y41 þ 2y42Þ þ 4Nλðy21 þ y22Þ�:

ðD10Þ

βmodel Iðy1Þ ¼
1

ð4πÞ2
�
3

2
y31 þ Ny31 þ Ny1y22 −

9

20
g21y1

−
9

4
g22y1 þ 3y2t y1 þ 3y2by1 þ y2τy1

�
; ðD11Þ

βmodel Iðy2Þ ¼
1

ð4πÞ2
�
3

2
y32 þ Ny32 þ Ny21y2 −

9

20
g21y2

−
9

4
g22y2 þ 3y2t y2 þ 3y2by2 þ y2τy2

�
: ðD12Þ

The one-loop contribution of new particles to the anoma-
lous dimension is

γmodel I ¼ 1

ð4πÞ2Nð−y21 − y22Þ: ðD13Þ

2. Model II

βmodel IIðg1Þ ¼
1

ð4πÞ2
�
2

5
N

�
g31; ðD14Þ

βmodel IIðg2Þ ¼
1

ð4πÞ2
2

3
Ng32; ðD15Þ

βmodel IIðyτÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyτ; ðD16Þ

βmodel IIðybÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyb; ðD17Þ

βmodel IIðytÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyt; ðD18Þ

βmodel IIðλÞ ¼ 1

ð4πÞ2 ½−N
2ð2y41 þ 2y42Þ þ 4Nλðy21 þ y22Þ�:

ðD19Þ

βmodel IIðy1Þ ¼
1

ð4πÞ2
�
5

2
Ny31 þ Ny1y22 −

9

20
g21y1 −

9

4
g22y1

þ 3y2t y1 þ 3y2by1 þ y2τy1

�
; ðD20Þ
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βmodel IIðy2Þ ¼
1

ð4πÞ2
�
5

2
Ny32 þ Ny21y2 −

9

20
g21y2 −

9

4
g22y2

þ 3y2t y2 þ 3y2by2 þ y2τy2

�
: ðD21Þ

The one-loop contribution of new particles to the anoma-
lous dimension is

γmodel II ¼ 1

ð4πÞ2 Nð−y21 − y22Þ: ðD22Þ

3. Model III

βmodel IIIðg1Þ ¼
1

ð4πÞ2
�
2

5

�
g31; ðD23Þ

βmodel IIIðg2Þ ¼
1

ð4πÞ2
2

3
g32; ðD24Þ

βmodel IIIðyτÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyτ; ðD25Þ

βmodel IIIðybÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyb; ðD26Þ

βmodel IIIðytÞ ¼
1

ð4πÞ2 Nðy21 þ y22Þyt; ðD27Þ

βmodelIIIðλÞ¼ 1

ð4πÞ2 ½−N
2ð2y41þ2y42Þþ4Nλðy21þy22Þ�:

ðD28Þ

βmodel IIIðy1Þ ¼
1

ð4πÞ2
�
5

2
Ny31 þ Ny1y22 −

9

20
g21y1 −

9

4
g22y1

þ 3y2t y1 þ 3y2by1 þ y2τy1

�
; ðD29Þ

βmodel IIIðy2Þ ¼
1

ð4πÞ2
�
5

2
Ny32 þ Ny21y2 −

9

2
g21y2 −

9

4
g22y2

þ 3y2t y2 þ 3y2by2 þ y2τy2

�
: ðD30Þ

The one-loop contribution of new particles to the anoma-
lous dimension is

γmodel III ¼ 1

ð4πÞ2 Nð−y21 − y22Þ: ðD31Þ
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