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We discuss a possibility of restricting parameters in N ¼ 2 supergravity based on axion observations.
We, accordingly, derive conditions that prepotential and gauge couplings should satisfy. Such conditions
not only allow us to constrain the theory but also provide the lower bound of theN ¼ 2 → N ¼ 1 breaking
scale.
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I. INTRODUCTION

Extended (N ≥ 2) supergravity in four dimensions is
well motivated from higher dimensional supergravity and
string compactifications. Although well motivated and
constructed, to restrict the theory, observations are neces-
sary. Therefore, this paper aims to investigate a possibility
for constraining extended supergravity models from obser-
vational data. In particular, we focus on the couplings
between axionlike particle (ALP)1 and photon, which are
intensively studied in the literature (see Ref. [1] for review).
This kind of coupling usually exists in supergravity models
if we regard neutral scalar fields in a gauge kinetic function
as “ALPs,” and a massless vector field as a “photon.” In this
paper, we show that some input parameters in extended
supergravity can be constrained by the observational data
on the ALP-photon coupling, by taking N ¼ 2 super-
gravity as a toy example.
When we consider supersymmetry breaking in extended

supergravity, several breaking scales appear in general. In
the case of N ¼ 2, there are two breaking scales, and in
the following, we call the higher (lower) one as the first
(second) supersymmetry breaking scale. The effects of the
first supersymmetry breaking cannot be taken into account
in the usualN ¼ 1 supergravity description, where the first
breaking scale is assumed to be high enough and its effect
is negligible. However, if this is not the case, how the
first supersymmetry breaking affects low energy physics
would be a matter of central focus. For example, in Ref. [2],
the effects of heavy modes arising from the first

supersymmetry breaking are discussed, mainly focusing on
the gravitino decay process. In the following, we extend the
analysis to the ALP-photon coupling and investigate the
effects of the first supersymmetry breaking. Remarkably,
we found that the first supersymmetry breaking scale enters
in ALP couplings in a nontrivial way, which constrain the
low scale first supersymmetry breaking models.
More specifically, we focus on a slightly generalized

model of Ref. [3], where the first supersymmetry is broken
but the second one remains unbroken (partial breaking).
The model can, of course, include the effects of the first
supersymmetry breaking (see also Refs. [4–10]) and easy to
treat due to the unbroken N ¼ 1 supersymmetry. For
example, the stability of the vacuum is ensured. In addition,
there are a lot of works which connect this model to the
D-brane effective theory [11–28]. Therefore, it would be
appropriate for the first step of our research direction.
This paper is organized as follows. First, we introduce

necessary elements in N ¼ 2 supergravity and specify
the model in Sec. II. Next, in Sec. III, we derive mass
spectra of the bosonic sector. Then in Sec. IV, ALP-photon
coupling in our model is introduced, and we discuss the
restrictions on the parameters and the supersymmetry
breaking scale with given axion observations. All the
aforementioned contents and remarks are summarized in
Sec. V. The technical details are collected in appendixes. In
Appendix A, we derive the couplings between vector and
scalar fields, and they are evaluated at assumed vacuum in
Appendix B.

II. SETUP

In this section, we follow the representation and nota-
tion in Ref. [29], and introduce the setup in N ¼ 2
supergravity. As mentioned in the Introduction, we focus
on the model [3], which consists of an Abelian vector
multiplet, a hypermultiplet, and a gravitational multiplet.
The bosonic components of the vector multiplet are a
complex scalar z and a four dimensional vector Aμ with the
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spacetime index μ ¼ 0, 1, 2, 3. Here we consider the
multiple generalization of the vector sector denoted by
i ¼ 1; 2;…; nv. The hypermultiplet contains four real
scalars bu, (u ¼ 0, 1, 2, 3), which parametrize the
quaternion-Kähler metric. Finally, the gravitational multi-
plet contains a graviton gμν and a graviphoton A0

μ. In the
following sections, vectors will be denoted as AΛ

μ ,
ðΛ ¼ 0; 1;…; nvÞ, which combines vectors from vector
and gravitational multiplets.

A. Vector and hyper sector

Here we only show the relevant ingredients of the vector
and hyper sector for later discussion (see Ref. [29] for more
detail).
As for the vector sector, the prepotential, F, which is

a holomorphic and homogeneous function of degree
two with nv þ 1 complex variables XΛ, acts as a master
potential and takes the form

F ¼ −iðX0Þ2fðXi=X0Þ; ð2:1Þ

where f is an arbitrary holomorphic function in its argu-
ment which we take the following basis:

X0 ¼ 1; Xi ¼ zi: ð2:2Þ

Here zi are identified as physical complex scalars in vector
multiplets. With the prepotential defined, the Kähler
potential can be induced and takes expression given in

K ¼ − logK0; ð2:3Þ

where K0 ≡ 2ðfþ f̄Þ− ðz− z̄Þiðfi − f̄iÞ and fi ¼ ∂f=∂zi.
Then the Kähler metric is given as follows:

gij̄ ≡ ∂ j̄∂iK ¼ ∂iK∂ j̄K −
1

K0

ðfij þ f̄ijÞ: ð2:4Þ

Besides, the gauge kinetic functionN ΛΣ is also determined
by the prepotential and takes the form

N ΛΣ ¼ F̄ΛΣ þ
2iImFΛΓImFΣΠXΠXΓ

ImFΓΠXΠXΓ ; ð2:5Þ

where FΛ ¼ ∂F=∂XΛ and so on.
As for the hyper sector, we select the form of metric as

shown in

huv ¼
1

2ðb0Þ2 δuv; ð2:6Þ

which parametrizes a nonlinear sigma model on SOð4; 1Þ=
SOð4Þ. Observe that it allows three commuting isometries:

bα → bα þ cα; ð2:7Þ

where α ¼ 1, 2, 3 and cα ∈ R. Now, we consider gauging
this symmetry by AΛ

μ as in Ref. [3], which will be reviewed
in Sec. II B.

B. Gauging and relevant Lagrangian

Let us discuss the gauging of Eq. (2.7). To do so, we
employ the embedding tensor formalism [30–33], which
is useful to discuss a wider class of gauging. In this
formalism, we formally introduce a double copy of the
vector fields. In our system, we already have nv þ 1 vector
fields AΛ

μ , which we call electric vector fields. In addition
to them, we introduce further nv þ 1 vector fields AμΛ
called magnetic vector fields. They are summarized as
AM
μ ¼ ðAΛ

μ ; AμΛÞT . Then, the generic gauging can be
achieved by the so-called embedding tensor,

ΘM
α ¼

�ΘΛ
α

ΘΛα

�
; ð2:8Þ

and the modified covariant derivative,

Dμ ≡ ∂μ − AΛ
μΘΛ

αTα − AμΛΘΛαTα; ð2:9Þ
where all entries of Eq. (2.8) are real and α denotes the
isometries to be gauged. Tα is the generator of the
isometries.
The tensor (2.8) must satisfy the following locality

constraints2:

ΘΛ
αΘΛβ − ΘΛ

βΘΛα ¼ 0: ð2:10Þ

Also, to match the degrees of freedom of vector fields, the
auxiliary two-form fields Bμν;α and its (one-form) gauge
symmetry should be introduced (see Refs. [32,33] for
review).
Based on this technique, the relevant parts of the

Lagrangian in this paper are given by

Lvs ¼
1

4
IΛΣHΛ

μνHΣμν þ i
4
RΛΣHΛ

μνH̃
Σμν

−
i
4
ΘΛαB̃μν;α

�
Fμν
Λ −

1

4
ΘΛ

βBμν
β

�
; ð2:11Þ

Ls ¼ huvDμbuDμbv þ gij̄∂μzi∂μz̄j̄ − V; ð2:12Þ

where RΛΣ and IΛΣ are real and imaginary parts of gauge
kinetic functionN ΛΣ, respectively. TheH is defined by the
combination of the field-strength FΛ

μν ¼ ∂μAΛ
ν − ∂νAΛ

μ and
the auxiliary two-form Bμν;α as

HΛ
μν ≡ FΛ

μν þ
1

2
ΘΛαBμν;α; ð2:13Þ

2For the case of non-Abelian gauging, some additional
constraints are required.
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and H̃μν ≡ − i
2
εμνρσHρσ. The Lagrangian (2.12) contains

kinetic terms for the scalars in vector and hypermultiplet
and their potential, which is explicitly shown in Eq. (3.2).
The hyper sector is gauged by Eq. (2.9) with Tαbu ¼ δuα.
In this formalism, the model in Ref. [3] corresponds to

nv ¼ 1 and a choice of

Θ0
2 ¼ E ≠ 0; Θ11 ¼ M ≠ 0; others ¼ 0; ð2:14Þ

which manifestly satisfies the constraint (2.10). In the
following section, we call terms containing E=M as
electric/magnetic correction.
From here, we construct the physical Lagrangian

through two steps: integrating out two-form fields and
gauge away all extra fields. The details of integrating out
two-form fields and gauge fixing two-form fields are given
in Appendix A.

III. MODEL AND MASS SPECTRA

In the model of Ref. [3], the two vector fields (grav-
iphoton and a vector in vector multiplet) become massive,
and therefore, there is no massless vector.3 To discuss the
ALP-photon coupling, we need to introduce a massless
vector which has nothing to do with the gauging, and it
would be identified as a photon. In the following, we
consider the case with nv ¼ 2 as a minimal setup, without
changing the choice (2.14).

A. Scalar sector

In this subsection, we discuss the stationary conditions
and the scalar masses. In this paper, we have two assump-
tions that simplify our calculation. First, we only consider
the case of a simple vacuum, that is, hzii ¼ 0. The second
assumption is the form of the prepotential being poly-
nomial, and it takes the expression as follows:

f ¼ c0 þ cizi þ
1

2
cijzizj þ

1

6
cijkzizjzk; ð3:1Þ

where all of the coefficients are complex and symmetric
under the interchange of their indices. Note that with the
simple vacuum assumed, there is no need to have fourth or
higher-order terms for prepotential for our purpose.
Based on the quantities defined in Sec. II, the scalar

potential is given by

V ¼ rMNðgij̄UM
i Ū

N
j̄ − V̄MVNÞ; ð3:2Þ

where

VM ≡ eK=2

�
XΛ

FΛ

�
; UM

i ≡
�
∂i þ

1

2
∂iK

�
VM;

rMN ≡ 1

ðb0Þ2
�X3

α¼1

ΘM
αΘN

α

�
: ð3:3Þ

The stationary conditions take the forms

∂b0V ¼ 0∶ rMNðgij̄UM
i Ū

N
j̄ − V̄MVNÞ ¼ 0; ð3:4Þ

∂iV ¼ 0∶ rMNŪM
j̄ Ū

N
k̄
gjj̄gkk̄fijk ¼ 0: ð3:5Þ

The analytic solution of these equations is in general
difficult to obtain even in the simplified choice of the
embedding tensor (2.14), simple vacuum, and the minimal
form of prepotential (3.1). Therefore, we concentrate on the
case where at least one supersymmetry is conserved, which
trivially satisfies Eq. (3.5).
Furthermore, we assume that

c2 ¼ c12 ¼ c112 ¼ 0; Rec11 ¼ 0 ð3:6Þ

for simplicity,4 which simplifies the derivatives of the
Kähler potential at hzii ¼ 0,

h∂1Ki ¼ −
Rec1
2Rec0

; h∂2Ki ¼ 0; ð3:7Þ

and diagonalizes the Kähler metric as

hgij̄i ¼
1

4ðRec0Þ2
� ðRec1Þ2 0

0 −2Rec0Rec22

�
; ð3:8Þ

which implies that Rec1 ≠ 0, and Rec22 < 0 since
Rec0 ¼ 1

4
e−hKi > 0.

For M ≠ 0, one can easily find that Eq. (3.4) is rewritten
as

Imc11ðRec0Imc11 − Rec1Imc1Þ ¼ 0: ð3:9Þ

Also, Eq. (3.5) with i ¼ 1 gives

Rec1 ¼ �E=M; and 2Rec0Imc11 − Rec1Imc1 ¼ 0;

ð3:10Þ

under c111 ≠ 0. Obviously, the consistent set of the
solution is5

3More generally, in the case with nv ¼ 1, a complex scalar ðz1Þ
can have a mass only if the third derivative of the prepotential
hf111i is nontrivial. However, as shown in Refs. [10,34], when
hf111i ≠ 0, we always have the (partial breaking) vacuum where
two vector fields become massive. Thus, we conclude that a
massless vector cannot exist in the case with nv ¼ 1.

4These Ansätze are used in Refs. [6].
5The last equation in Eq. (3.11) is the same relation obtained in

Ref. [4], which relates the electric and the magnetic gauge
couplings. We will use this equation to express Rec1 in terms
of the gauge couplings.
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Imc1 ¼ Imc11 ¼ 0; Rec1 ¼ E=M: ð3:11Þ

Finally, Eq. (3.5) with i ¼ 2 is trivially satisfied.
The second derivatives of the potential at this point are

evaluated as

hV11̄i ¼
Rec0jc111j2M4

ðb0Þ2E2
> 0;

hV22̄i ¼ −
jc122j2M2

2ðb0Þ2Rec22
> 0; ð3:12Þ

and the others vanish. Thus, we conclude that hz1i ¼
hz2i ¼ 0 with Eqs. (3.6) and (3.11) is at least a local
minimum of the potential.
Expanding zi around the vacuum as zi → hzii þ zi and

taking into account the canonical normalization,

Zi ≡ ffiffiffiffiffiffiffiffiffi
hgiii

p
zi; ðno sum for iÞ; ð3:13Þ

we obtain the scalar sector Lagrangian:

L ¼
X
i¼1;2

ð∂μZi∂μZ̄i −m2
i jZij2Þ þ � � � ; ð3:14Þ

where

m2
1 ¼

4ðRec0Þ3jc111j2M6

ðb0Þ2E4
; m2

2 ¼
Rec0jc122j2M2

ðb0Þ2ðRec22Þ2
;

ð3:15Þ

and the ellipsis denotes the higher-order terms. In Sec. IV,
we discuss the couplings between Zi and the vector fields.

B. Vector sector

Now we evaluate the vector masses. First, the kinetic
terms of the vector fields are obtained in Appendix B, and
the result is the first term in Eq. (B1):

L ¼ 1

4

�
−Rec0

M2

E2
F1μνF

μν
1 − Rec0F0

μνF0μν

þ Rec22F2
μνF2μν

�
: ð3:16Þ

Then, the canonical gauge fields Aμ are given by

ffiffiffiffiffiffiffiffiffiffi
Rec0

p M
E
A1μ ¼ A1μ;

ffiffiffiffiffiffiffiffiffiffi
Rec0

p
A0
μ ¼ A0

μ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRec22j

p
A2
μ ¼ A2

μ: ð3:17Þ

Also, from the kinetic terms for the hyper sector in
Eq. (2.12), we have

huvDμbuDμbv ¼ 1

2ðb0Þ2 fð∂μb0Þ2 þ ð∂μb3Þ2

þ ð∂μb1 −MAμ1Þ2 þ ð∂μb2 − EA0
μÞ2g:
ð3:18Þ

Then after fixing U(1) gauge symmetry by Aμ1 → Aμ1 þ
∂μb1=M and A0

μ → A0
μ þ ∂μb2=E, the third and the fourth

terms in Eq. (3.18) give the same masses for Aμ1 and A0
μ,

m2
A ≡ E2

ðb0Þ2Rec0
: ð3:19Þ

The degeneration of their masses are the result of the
remainingN ¼ 1 supersymmetry. Indeed, they constitute a
massive spin 3=2 multiplets with massive gravitino and
another fermion [35]. Note that the gauge field A2

μ remains
massless as expected, and we identify it as a “photon.” As
for the other two massive gauge fields, we assume those
two massive gauge fields, A0

μ and Aμ1, live in the dark
sector and call them “dark photons.”

IV. ALP-PHOTON COUPLINGS

In this section, we focus on the ALP-photon couplings in
the model given in Sec. III and discuss the consequences of
observations. From Eq. (B6) with the normalization (3.13)
and (3.17), and by omitting spacetime indices, we obtain

L ¼ g1Z1F 1F̃ 1 þ g2Z1F 0F̃ 0 þ g3Z2F 0F̃ 2

þ ðg4Z1 þ g5Z2ÞF 2F̃ 2

þ ig6Z1F 1F̃
0 þ ig7Z2F 1F̃

2 þ H:c:; ð4:1Þ

where F are field strengths defined by the canonical fields
in Eq. (3.17). The coupling constants are given by

g1 ¼
1

4MP

�
1 − ðRec0Þ2c111

M3

E3
ðMPÞ3

�
; g2 ¼ −g1;

ð4:2Þ

g3 ¼ −
ffiffiffi
2

p

4MP

�
1þ Rec0c122

jRec22j
M
E
MP

�
;

g4 ¼
1

4MP

�
Rec0c122
jRec22j

M
E
MP

�
; ð4:3Þ

g5 ¼
1

4
ffiffiffi
2

p
MP

ffiffiffiffiffiffiffiffiffiffi
Rec0

p
jRec22j3=2

c222;

g6 ¼
1

2MP

�
ðRec0Þ2c111

M3

E3
ðMPÞ3

�
; g7 ¼ g3; ð4:4Þ

where the reduced Planck mass MP ¼ 2.4 × 1018 GeV is
recovered. Since we haveA2 to be photon, the ALP-photon
couplings are those with g4 and g5 coefficients.
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Before going through the analysis of Eqs. (4.1)–(4.4),
there are two points we wish to recall with an assumption
hb0i ≈MP.

6 First, the first supersymmetry breaking scale is
given by Eq. (3.19), which is rewritten here but with the
Planck scale,

mSUSY ≡ Effiffiffiffiffiffiffiffiffiffi
Rec0

p ðMPÞ: ð4:5Þ

Next, the axion masses are given as follows with Planck
mass given explicitly:

jm1j ¼
2Rec0

ffiffiffiffiffiffiffiffiffiffi
Rec0

p jc111jM3

E2
ðMPÞ4;

jm2j ¼
ffiffiffiffiffiffiffiffiffiffi
Rec0

p jc122jM
jRec22j

ðMPÞ2: ð4:6Þ

Then, we define relative mass scales for axions comparing
to a supersymmetry breaking scale. That is

ρ1 ≡ jm1j
mSUSY

¼ 2ðRec0Þ2jc111j
M3

E3
ðMPÞ3;

ρ2 ≡ jm2j
mSUSY

¼ Rec0jc122j
jRec22j

M
E
MP: ð4:7Þ

Now, we come back to the analysis of Eqs. (4.1)–(4.4).
In Eqs. (4.2)–(4.4), we can find some corrections which

depend on the gauge coupling E. Also, from Eq. (4.5), we
can directly relate E to the supersymmetry breaking scale
for fixed Rec0. Therefore, the corrections are the result
of the first supersymmetry breaking. As the breaking scale
becomes sufficiently low (small E), it enlarges some
couplings in Eqs. (4.2)–(4.4). Besides, as we see that the
corrections (terms depend on E or M) in Eqs. (4.2)–(4.4)
are related to the axion masses in Eq. (4.6), and interest-
ingly, those terms are explicitly proportional to ρ1 and ρ2 in
Eq. (4.7). That, then, not only suggests axion masses are
related to couplings but also implies that the first super-
symmetry breaking scale is influencing the axion phenom-
enology in this model.
SinceA0 andA1 stay in the dark sector whileA2 is in the

normal sector, we have a classification for axions from
Eq. (4.1); that is, except for ALP-photon couplings (g4 and
g5 terms), Z1 is responsible to interact within the dark
sector (g1, g2 and g6 terms), while Z2 interacts between
normal and dark sectors (g3 and g7 terms).
Having two different types of complex axions brings us

a difficulty of how to compare to observations, which most
of the works are devoted to only one kind of axions.
Therefore, to constrain our model with axion observations,
we, for simplicity, consider about its asymptotic behavior

which makes the Lagrangian (4.1) contain either Z1 or Z2.
Here we demonstrate three ways of completing the
asymptotic analyses: (i) ρ1, ρ2 ≪ 1, (ii) ρ2 ≪ 1 ≪ ρ1,
and (iii) ρ1 ≪ 1 ≪ ρ2. Also, as we will see later, a mild
assumption on the parameters cijk in the prepotential leads
to the Lagrangian of an effectively single axion field, which
simplifies the situation.
Note that in the following discussion, we use the axion

observational constraint from Ref. [36]. That is, axion-
photon coupling gaγγ is bounded with given axion mass m
range as gaγγ ≲ 0.66 × 10−10 GeV−1 when m≲ 0.02 eV,
and for simplicity, we implement their product as our
constraint, which is looser. That is

mgaγγ ≲ 1.32 × 10−21: ð4:8Þ

A. ρ1, ρ2 ≪ 1

To get started with, we assume both axion masses are
relatively small comparing to the first breaking scale. That
means ρ1, ρ2 ≪ 1, and for simplicity, we assume that it is
caused by having c111, c122 → 0.7 Then, the effective
Lagrangian becomes

Leff ¼ g1Z1F 1F̃ 1 þ g2Z1F 0F̃ 0 þ g3Z2F 0F̃ 2

þ g5Z2F 2F̃ 2 þ ig7Z2F 1F̃
2 þ H:c:

≡ igaγγaFF̃ þ igaγHaFHF̃ þ � � � ; ð4:9Þ

where the ellipsis denotes terms not containing the axion
defined in Eq. (4.12) and the couplings become

g1 ∼
1

4MP
; g2 ¼ −g1; ð4:10Þ

g3 ∼ −
ffiffiffi
2

p

4MP
; g5 ¼

1

4
ffiffiffi
2

p
MP

ffiffiffiffiffiffiffiffiffiffi
Rec0

p
jRec22j3=2

c222; g7 ¼ g3:

ð4:11Þ

Here, by assuming c222 to be real for simplicity, and then,
the effective fields and associated couplings in the second
equality of Eq. (4.9) are given as

a≡ ImZ2; F ≡ F 2; FH ≡ F 0;

gaγγ ≡ 2g5; gaγH ≡ 2g3; ð4:12Þ

where a is the axion field, F is the photon field strength,
and FH is the hidden photon field strength.

6The stabilization of moduli fields is beyond the scale of this
paper.

7This assumption is not necessary because couplings or its
magnetic corrections are proportional to ρ1 and ρ2. However, this
assumption simplifies the analysis without deterring the final
result.
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Here, it is then clear that Z1 sinks into the dark sector
entirely. The reason is the assumption of ρ2 ≪ 1. Also, note
that the only coupling constant which depends on the form
of the prepotential is that associated with the axionic
coupling, gaγγ , while the rest are just small constants.
Here we show the possibility of constraining the theory

by applying the constraint (4.8) to the product of gaγγ in
Eq. (4.12) and m2 in Eq. (4.6) (since a ¼ ImZ2 is the
effective axion), and we get

jm2gaγγj ¼
MP

2
ffiffiffi
2

p
�

Rec0
jRec22j5=2

jc122jjc222j
�
M≲ 1.32× 10−21;

ð4:13Þ

which is equivalent to

cpreM ≲ 3.73 × 10−21; ð4:14Þ

where we defined a dimensionless combination of the para-
meters in the prepotential as cpre ¼ Rec0jc122jjc222jMP=
jRec22j5=2. Then, we obtained the upper bound for the
product of parameters in the prepotential, cpre, and gauge
coupling, M. This observation would be important when
we embed the model into string models since those
parameters are determined by the flux and geometric
quantities in that case (see Ref. [37] for example).
Interestingly, this upper bound is independent of another
gauge parameter E, and thus, it is independent of the first
breaking scale given in Eq. (4.5) with fixed Rec0.

B. ρ1 ≫ 1 ≫ ρ2
Next, let us consider the limit Z1 decouples. This can be

achieved by ρ1 ≫ 1 ≫ ρ2, or for simplicity, jc111j ≫ jc122j.
Then the effective Lagrangian contains the following terms:

Leff ¼ g3Z2F 0F̃ 2 þ g5Z2F 2F̃ 2 þ ig7Z2F 1F̃
2 þ H:c:;

≡ igaγγaFF̃ þ igaγHaFF̃H þ � � � ; ð4:15Þ

where the definitions of the fields and the couplings in the
second line are the same as Eq. (4.12). Therefore, the terms
containing the axion are exactly the same as the example
we discussed in Sec. IVA. Then the constraints (4.13)
obtained in the previous section can also be applied in this
case. Note that the similarities are only in ALP-photon
couplings. The other parts of these two cases are totally
different. That is, to fully determine which case we fall into,
we need to discuss the other terms in the Lagrangians.

C. ρ2 ≫ 1 ≫ ρ1
Similar to Sec. IV B, by assuming ρ2 ≫ 1 ≫ ρ1, or for

simplicity jc122j ≫ jc111j, we get the decoupling limit of
Z2. Then the effective Lagrangian is obtained as

Leff ¼ g1Z1F 1F̃ 1 þ g2Z1F 0F̃ 0 þ g4Z1F 2F̃ 2

þ ig6Z1F 1F̃
0 þ H:c:;

≡ igaγγaFF̃ þ igaHHaFHF̃H þ igaH0H0aFH0F̃H0 þ � � �
ð4:16Þ

where the ellipsis denotes terms without axion which is
defined in Eq. (4.19), and coupling constants are

g1 ∼
1

4MP
; g2 ¼ −g1; ð4:17Þ

g4 ¼
1

4

M
E

Rec0
jRec22j

c122; g6 ¼
ðMPÞ2
2

M3

E3
ðRec0Þ2c111:

ð4:18Þ

Here, by assuming c122 to be real for simplicity, and then,
the effective fields and associated couplings in the second
equality of Eq. (4.16) are given as

a≡ ImZ1; F ≡ F 2; FH ≡ F 0; FH0 ≡ F 1;

gaγγ ≡ 2g4; gaHH ≡ 2g2; gaH0H0 ≡ 2g1; ð4:19Þ

where a is the axion field, F is the photon field strength,
and FHð0Þ are the hidden photon field strengths.
Similar to what we had in Sec. IVA, only gaγγ is the

concerning term, the ALP-photon coupling. Then, by
applying Eq. (4.8) to the product of m1 in Eq. (4.6) and
gaγγ in Eq. (4.19), we get

jm1gaγγj ¼ ðMPÞ4
�ðRec0Þ5=2

jRec22j
jc111jjc122j

�
M4

E3

≲ 1.32 × 10−21; ð4:20Þ

or equivalently,

cpre
M4

E3
≲ 1.32 × 10−21; ð4:21Þ

where cpre ≡ ðRec0Þ5=2jc111jjc122jðMPÞ4=jRec22j. In the
same way with Eq. (4.13), this gives an upper bound for
the product of some parameters of the prepotential and
gauge couplings. However, the left-hand side of Eq. (4.21)
depends also on E in this case, which is related to the
supersymmetry breaking scale given by Eq. (4.5) and
differs from the previous cases. Then we can rewrite
Eq. (4.20) in terms of the first breaking scale as

mSUSY ≳MPc0preM4=3 × 107; ð4:22Þ

where c0pre ≡ ðRec0jc111jjc122j=jRec22jðMPÞ4Þ1=3 is again a
dimensionless collective of the parameters inside the
prepotential. Then we see that the lower bound of the first
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supersymmetry breaking scale can be derived by axion
observations. The value of c0preM4=3 is not determined
in our setup, but it should be fixed if we consider the
compactification of higher dimensional supergravity con-
cretely and we can estimate how large the first breaking
scale should be.

V. SUMMARY

In this paper, we demonstrated the possibility of restrict-
ing several parameters in N ¼ 2 gauged supergravity such
as the ones in the prepotential and gauge couplings by
observations; to be specific, we compare a partial breaking
model generalized from Ref. [3] to axion observations.
In supersymmetric theory, couplings with neutral scalars
and vector fields, in general, exist through the gauge kinetic
function. In particular, with the help of ALP-photon
observations, the coupling between neutral scalars andthe
photon, and scalar masses, in principle, can be restricted if
we regard such scalars as “axions.” Then, we obtained the
constraints on the parameters of the theory which could be
compared to string compactification. Also, note that the
gauge kinetic function and the scalar potential are related in
N ¼ 2 theory, which leads to a nontrivial relation between
ALP-photon couplings and ALP masses.
Besides that, as mentioned in the Introduction, restric-

tions on the breaking scale of extended supersymmetry are
important from the phenomenological viewpoints but were
rarely discussed. In this paper, we show that the breaking
scale of N ¼ 2 → N ¼ 1 can be also constrained by the
ALP-photon constraints.
At the same time, the model we discussed contains two

types of axions with different sets of couplings. One of
them (Z1) is responsible for interactions within either a
dark or normal sector themselves, while the other one (Z2)
interacts with both sectors at once. These features seem
interesting in terms of the several applications of axion-
photon-hidden photon, and axion-double hidden photon
couplings, which are discussed in e.g., [38–45].
For practical reasons, we considered three different

effective theories of generating only a single axion just
for simplicity. In Sec. IVA, by asking both types of axions
being relatively stable (light) and with mild assumption on
the parameter in the prepotential, we find that ImZ2 is
responsible for ALP-photon coupling. Then we obtain a
bound for the parameters in the prepotential and gauge
coupling as Eq. (4.21). In Sec. IV B where we consider the
limit Z1 decouples, a similar result with that of Sec. IVA is
obtained when we focus only on the axion interactions.
Finally, in Sec. IV C, we consider the case Z1 decouples
and find the bound (4.21) for the parameters. Indeed, this
can be rewritten as Eq. (4.22), which gives a suggestive
lower bound for the supersymmetry breaking scale.
There are several remarks: (i) As mentioned before, the

“axion” in this paper is different from the usual one [46,47]

or other ALPs [1] which originate from global symmetry
breaking as a Nambu-Goldstone boson. The scalar fields
we discussed are not protected by the shift symmetry if we
consider other sectors coupling with it. Thus, the other
terms besides ALP-photon couplings have different proper-
ties compared to the ordinary ones. (ii) Here we focused
on the model of Ref. [3] where N ¼ 1 supersymmetry
remains unbroken. It is interesting to investigate how the
breaking from N ¼ 1 to N ¼ 0 affects the result. (iii) Our
approach can be applied to other extended supergravity
models. It is also interesting to study other models and see
direct restrictions on flux and geometrical parameters
defined in compactification.
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APPENDIX A: INTEGRATING OUT
TWO FORM FIELDS

Here we show the resultant Lagrangian after the inte-
gration of the two-form fields. For the general arguments,
we refer Refs. [30–33,48–50]. In the following discussion,
we will suppress spacetime indices.
The relevant parts are given in Eq. (2.11). In the case

with nv ¼ 2, or Λ ¼ 0, 1, 2, and with our choice of the
embedding tensor (2.14), they are reduced to

L ¼ 1

4
IΛΣHΛHΣ þ i

4
RΛΣHΛH̃Σ −

i
4
MB̃1

�
F1 −

1

4
EB1

�
;

ðA1Þ

where

HΛ ¼

0
B@

F0

F1 þ 1
2
MB1

F2

1
CA: ðA2Þ

Note that the Lagrangian (2.11) is invariant up to total
derivative under

δBμν;1 ¼ ∂μΞν;1 − ∂νΞμ;1; ðA3Þ

δAΛ
μ ¼ ∂μλ

Λ −
1

2
MΞμ;1; ðA4Þ

δAμΛ ¼ ∂μλΛ; ðA5Þ

where λΛ and Ξ1 are the parameters of the ordinary zero-
form and the one-form gauge symmetries, respectively.
Using the gauge symmetry, we can eliminate F1 by
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B1 → B1 −
2

M
F1: ðA6Þ

Then it is straightforward to solve the equation of motion of
B1, I11B1 þ irB̃1 − 2

M J ¼ 0, which gives

B1 ¼
2

M
ðI11 þ r2I−1

11 Þ−1ðJ̃ − irI−1
11 JÞ; ðA7Þ

where

r≡R11 þ
E
M

; J ≡ −I1UF̃U − iR1UFU þ iF1: ðA8Þ

The index U runs only 0 and 2. Substituting the solution
(A7) into the Lagrangian, we obtain

L ¼ 1

4
ðÎ11F1F1 þ ÎUVFUFV þ 2Î1

UF1FUÞ

þ i
4
ðR̂11F1F̃1 þ R̂UVFUF̃V þ 2R̂1

UF1F̃UÞ; ðA9Þ

where

Î11 ¼ ðI11 þ r2I−1
11 Þ−1; ðA10Þ

ÎUV ¼ IUV þ Î11ðR1UR1V − I1UI1V − 2rI−1
11R1ðUIVÞ1Þ;

ðA11Þ

Î I
U ¼ Î11ð−R1U þ rI−1

11 I1UÞ; ðA12Þ

R̂11 ¼ −Î11rI−1
11 ; ðA13Þ

R̂UV ¼ RUV þ Î11ðrI−1
11 ð−R1UR1V þ I1UI1VÞ

− 2R1ðUIVÞ1Þ; ðA14Þ

R̂I
U ¼ Î11ðI1U þ rI−1

11R1UÞ: ðA15Þ

Note that the degrees of freedom of vector fields are 3, i.e.,
A0, A1, and A2, even though we introduced a magnetic
vector A1 since A0;2 are absent from the beginning and A1 is
gauged away in Eq. (A6).

APPENDIX B: COUPLINGS AT THE VACUUM

Here we show the result of relevant couplings evaluated
at the vacuum. Expanding the complex scalars around their
vacuum expectation values, the quadratic and the cubic
terms of Eq. (A9) are given by

Lquad ¼
1

4
½hÎ11iF1F1 þ hÎUViFUFV þ 2hÎ1

UiF1FU�

þ i
4
½hR̂11iF1F̃1 þ hR̂UViFUF̃V þ 2hR̂1

UiF1F̃U�;
ðB1Þ

Lcub ¼
1

4
½h∂mÎ

11izmF1F1 þ h∂mÎUVizmFUFV þ 2h∂mÎ
1
UizmF1FU�

þ i
4
½h∂mR̂

11izmF1F̃1 þ h∂mR̂UVizmFUF̃V þ 2h∂mR̂
1
UizmF1F̃U� þ H:c:; ðB2Þ

where

hÎ11i ¼ −Rec0
M2

E2
; hÎUVi ¼

�−Rec0 0

0 Rec22

�
; hÎ1

Ui ¼
�
0

0

�
ðB3Þ

hR̂11i ¼ 0; hR̂UVi ¼
�
2Imc0 0

0 Imc22

�
; hR̂1

Ui ¼
��Rec0 M2

E2

0

�
ðB4Þ

and

h∂mÎ
11i ¼

�
−
M
2E

�
1þM3

E3
ðRec0Þ2c111

�
; 0

�
;

h∂mÎUVi ¼
1

2

�� E
M þ M2

E2 ðRec0Þ2c111 0

0 c122

�
;

�
0 −Rec22 − M

E Rec0c122

−Rec22 − M
E Rec0c122 c222

��
;

h∂mÎ
1
Ui ¼

i
2

��M3

E3 ðRec0Þ2c111
0

�
;

�
0

−M
E Rec22 − M2

E2 Rec0c122

��
: ðB5Þ
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h∂mR̂
11i ¼

�
−
iM
2E

�
1 −

M3

E3
ðRec0Þ2c111

�
; 0

�
;

h∂mR̂UVi ¼
i
2

�� E
M − M2

E2 ðRec0Þ2c111 0

0 −c122

�
;

�
0 −Rec22 þ M

E Rec0c122

−Rec22 þ M
E Rec0c122 −c222

��
;

h∂mR̂
1
Ui ¼

1

2

��M3

E3 ðRec0Þ2c111
0

�
;

�
0

M
E Rec22 − M2

E2 Rec0c122

��
: ðB6Þ

Here we used a notation ∂mI ¼ f∂1I ; ∂2Ig and so on.
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