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We present a study of singlet-doublet vectorlike leptonic dark matter (DM) in the framework of the two-
Higgs-doublet model (2HDM), where the dark sector is comprised of one doublet and one singlet
vectorlike fermion (VLF). The DM, that arises as an admixture of the neutral components of the VLFs, is
stabilized by an imposed discrete symmetry Z0

2. We test the viability of the DM candidate in the light of
observations from Planck and recent limits on spin-independent direct detection experiments and search for
its possible collider signals. In addition, we also look for the stochastic gravitational wave (GW) signatures
resulting from strong first-order phase transition due to the presence of the second Higgs doublet. The
model thus offers a viable parameter space for a stable DM candidate that can be probed from direct search,
collider, and GW experiments.
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I. INTRODUCTION

Despite strong evidence of the existence of dark matter
(DM) from several astrophysical and cosmological obser-
vations like rotation curves of spiral galaxies [1,2], the
bullet cluster [3], gravitational lensing [4], etc., the particle
nature of DM is unknown to date. While Planck [5] results
claim that nearly 26.5% of matter in the Universe is indeed
DM, the Standard Model (SM) of particle physics is
incapable of accounting for a viable DM candidate.
Interestingly, if DM interactions with the SM particles
are similar to those of electroweak interactions, and the
particle DM has a mass around the electroweak scale,
then such a DM can be thermally produced in the early
Universe, followed by its freeze-out, leaving a thermal relic
very close to the observed DM abundance (Ωh2 ∼ 0.12).
This remarkable coincidence is often referred to as the
weakly interacting massive particle (WIMP) miracle [6].
Although the WIMP remains as an elusive DM candidate
(for a recent review on the status of WIMP, see [7]) as it

indicates a new physics signature around the TeV scale, the
nonobservation of any excess both at the colliders and at the
DM scattering experiments such as LUX [8], PandaX-II
[9,10], and XENON1T [11,12], etc., compels us to strive
for either an alternative to the WIMP paradigm [13–16] or
to come up with some search strategies for DM detection
other than the usual scattering experiments (for an over-
view, see [17]).
Motivated from these, in this work we propose a particle

DM model by extending the SM with a second Higgs
doublet and adding one vectorlike lepton doublet and one
vectorlike lepton singlet. We consider a type-I two-Higgs-
doublet model (2HDM), where one of the Higgs doublets is
odd under a discrete Z2 symmetry. Such an imposition of a
discrete symmetry is very commonplace in context with
2HDM, as this necessarily prevents the appearance of tree-
level flavor changing neutral current (FCNC) via Higgs
[18–23]. The newly added fermions are assumed to be odd
under a second Z0

2 symmetry. All the SM particles are even
under both of the discrete symmetries Z2 and Z0

2. The
imposition of two different discrete symmetries ensures a
first-order phase transition (FOPT) without hampering the
stability of the DM. Under these circumstances, the DM
emerges as the lightest particle odd under Z0

2 due to an
admixture of the neutral component of the doublet and the
singlet. Studies of minimal singlet-doublet vectorlike DM
in the SM has been exhaustively performed in the literature
[24–42]. As is understandable, purely singlet vectorlike
fermion (VLF) DM does not have any renormalizable
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portal interaction with the SM to obtain the observed
thermal relic abundance. The purely doublet VLF, on the
other hand, annihilates too much to the SM due to its
electroweak gauge interactions, thus making it underabun-
dant unless the mass is ≳TeV. A purely doublet VLF also
faces stringent constraints from DM direct detection experi-
ments because of the large scattering cross section medi-
ated by the Z boson. In the present model, as we shall see,
due to the presence of the second Higgs doublet, the bound
from a direct search is less stringent. This is possible due to
some destructive interference1 between the scalar-mediated
direct search diagrams. Even in the absence of such
destructive interference, a small direct search cross section
is still conceivable due to the suppression coming from the
heavy Higgs mass and small scalar mixing. This provides
some freedom of choosing a moderate sin θ. However, as
the Z-mediated DM-nucleon scattering is still present,
hence the constraint is not completely alleviated, and that
confines the singlet-doublet mixing to some extent. This, in
turn, affects the collider signature for this model. Here we
would like to mention that our model is different from the
one presented in Ref. [40], where the DM particles do not
couple to the SM Z boson due to its Majorana nature.
The origin of the baryon asymmetry of the Universe

(BAU) is another long-standing puzzle of particle physics.
Electroweak baryogenesis (EWBG) is a possible way to
account for the BAU exploiting the three Sakharov con-
ditions [47]. However, it is not possible to have a successful
EWBG within the SM paradigm, as the SM provides
neither a sufficient CP violation nor a strong first-order
phase transition (SFOPT) [48–51]. Therefore, a successful
EWBG invokes new physics at the electroweak scale that
can be obtained via an extended scalar sector. The 2HDM is
a very well-motivated nonsupersymmetric extension of the
SM, where the scalar sector of the SM is augmented with an
additional Higgs doublet, giving rise to a plethora of
different phenomenological implications [18–23,52–56].
In context with an electroweak phase transition (EWPT),
the 2HDM has been extensively studied in both the CP-
conserving case [57–59] and the CP-violating scenario
[60–63]. It was also shown that the 2HDM framework is
capable of generating a SFOPT [64,65].
The production of a gravitational wave (GW) spectrum

happens mainly via three processes: bubble collisions
[66–72], soundwaves [73–76], and turbulence in the plasma
[77–81]. The signal thus produced can be detected in
different GW detectors, for example, space-based detectors
like Advanced Laser Interferometer Antenna (ALIA) [82],
Big Bang Observer (BBO) [83], Decihertz Interferometer
Gravitational Wave Observatory (DECIGO) [84], Laser
Interferometer Space Antenna (LISA) [85], ground-based
detector advanced Laser Interferometer Gravitational-Wave

Observatory (aLIGO) [86], etc. The GW signature as a
complementary search strategy in context with DM models
has already been studied in the case of both freeze-out and
freeze-in [67,87–94] (for a review on GW probes of DM,
see [95]). We have shown, within a consistent framework,
that our model is also capable of providing a detectable GW
signal by satisfying all stringent DM, collider, and other
theoretical constraints.
The paper is organized as follows: In Sec. II, we have

introduced the particle content of the model along with the
necessary interaction terms. In Sec. III, we have discussed
the constraints on the model parameters arising due to tree-
level unitarity, precision observables, and collider bounds.
We next move on to Sec. IV, where we illustrate the
parameter space satisfying relic abundance and direct
detection bounds, from which we choose a couple of
benchmark points to perform the collider analysis in
Sec. V. Then in Sec. VI we detail the generation of a
gravitational wave due to SFOPT and show the detector
reach for this model. Finally, we conclude in Sec. VII.

II. MODEL

A. Fields and interactions

We extend the SM with the addition of a second Higgs
doublet (Φ2), along with two VLFs: one doublet ψ and one
singlet χ. In order to have a stable DM candidate, we need
to impose a Z0

2 symmetry on the dark sector fermions,
different from the existing Z2 symmetry of the 2HDM,
which is anyway required to forbid tree-level Higgs-
mediated FCNC. A second discrete symmetry (Z0

2) is
needed in this framework because of the presence of soft
Z2-breaking term in the 2HDM scalar potential,2 which can
potentially lead to the decay of the DM to SM fermions if
the DM is also stabilized under the sameZ2. TheZ0

2, on the
other hand, is exact. All SM fermions are even under both
Z2 and Z0

2, which forbids the Yukawa interactions of the
dark sector with the SM sector. Different charge assign-
ments of new particles are listed in Table I.
In this setup, the Lagrangian for the model can be

written as

L ¼ LSM þ Lf þ Ls þ Lyuk; ð1Þ

where Lf is the Lagrangian for the VLFs, Ls involves the
SM doublet and the additional Higgs doublet, and Lyuk

contains the Yukawa interaction terms.
The interaction Lagrangian for the VLFs reads

Lf ¼ ψ̄ =Dψ þ χ̄0=∂χ0 −Mψ ψ̄ψ −Mχ χ̄
0χ0; ð2Þ

where Dμ is the covariant derivative under SUð2Þ ×Uð1Þ:

1The presence of a “blind spot” in the direct search cross
section for a 2HDM model has been studied in Refs. [40,43–46].

2The presence of these soft breaking terms has implications in
ensuring decoupling behavior of the 2HDM.
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Dμψ ¼ ∂μψ − ig
σa

2
Wa

μψ þ i
g0

2
Bμψ ; ð3Þ

where g and g0 are the gauge couplings corresponding to
SUð2Þ and Uð1ÞY , respectively, and a ¼ 1; 2; 3 are the
indices for the generators of SUð2Þ. Wμ and Bμ are the
gauge bosons corresponding to SM SUð2Þ and Uð1ÞY
gauge groups, respectively.
The Lagrangian of the scalar sector involving the SM

Higgs doublet (H) and the new Higgs doublet (Φ2) can be
written as

Ls ¼ ðDμΦ1Þ†ðDμΦ1Þ þ ðDμΦ2Þ†ðDμΦ2Þ − VðΦ1;Φ2Þ:
ð4Þ

The model with such a modified scalar sector thus
resembles the standard 2HDM of type I [18,20–22], where
all SM fermions have Yukawa interactions with only one of
the doublets, e.g., Φ2. The most general renormalizable
scalar potential can then be written as

VðΦ1;Φ2Þ ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 −m2

12ðΦ†
1Φ2 þΦ†

2Φ1Þ

þ λ1
2
ðΦ†

1Φ1Þ2 þ
λ2
2
ðΦ†

2Φ2Þ2 þ λ3Φ
†
1Φ1Φ

†
2Φ2

þ λ4Φ
†
1Φ2Φ

†
2Φ1 þ

λ5
2
½ðΦ†

1Φ2Þ2 þ ðΦ†
2Φ1Þ2�:

ð5Þ
As we shall see, the coefficient m12 of the softly Z2-

breaking term plays the pivotal role in deciding the nature
of the phase transition. Finally, the charge assignment
allows us to write a Yukawa interaction [32,37,41]:

−Lyuk ¼ Yðψ̄ fΦ2 χ
0 þ H:c:Þ; ð6Þ

where Y is the Yukawa coupling between the VLFs and SM
Higgs and fΦ2 ¼ iσ2Φ�

2.

B. Mixing in the scalar sector

We parametrize the scalar doublets as

Φi ¼
� Gþ

i
hiþviþiziffiffi

2
p

�
; ð7Þ

for i ¼ 1; 2. After spontaneous symmetry breaking, doublet
Higgs fields acquire vacuum expectation values (VEVs)

hΦ1i ¼ v1 and hΦ2i ¼ v2 such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
¼ v ¼

246 GeV. The ratio of VEVs is given as tan β ¼ v2
v1
. The

physical states are obtained by diagonalizing the charged
and neutral scalar mass matrices. There are then altogether
eight mass eigenstates, three of which become the longi-
tudinal components of the W� and Z gauge bosons. Of the
remaining five, there is one charged scalar H�, two neutral
CP-even scalars h and H, and one neutral pseudoscalar A.
The mixing between CP-even scalars is denoted by an
angle α. For our analysis, we shall follow the alignment
limit ðβ − αÞ ¼ π

2
, under which h is recognized as the SM

Higgs boson of mass 125.09 GeV [96] with exactly the
same gauge, Yukawa, and self-couplings at tree level as
those of the SM Higgs bosons, while H is the beyond SM
(heavy) Higgs.
Different couplings occurring in the 2HDM scalar

potential can be expressed in terms of physical masses
fmh;mH;mH� ; mAg, mixings fα; βg, VEV v, and m12:

λ1 ¼
1

v2c2β

�
c2αm2

H þ s2αm2
h −m2

12

sβ
cβ

�
; ð8Þ

λ2 ¼
1

v2s2β

�
s2αm2

H þ c2αm2
h −m2

12

cβ
sβ

�
; ð9Þ

λ4 ¼
1

v2
ðm2

A − 2m2
HþÞ þ m2

12

v2sβcβ
; ð10Þ

λ5 ¼
m2

12

v2sβcβ
−
m2

A

v2
; ð11Þ

λ3 ¼
1

v2sβcβ
ððm2

H −m2
hÞsαcα þm2

AsβcβÞ − λ4; ð12Þ

where we denote sα ¼ sin α and cα ¼ cos α and, similarly,
sβ ¼ sin β and cβ ¼ cos β.

C. Mixing in the VLF sector

After electroweak symmetry breaking, the neutral com-
ponents of the doublet (ψ0) and singlet (χ0) mix via the
Yukawa interaction [Eq. (6)]. The mass matrix can be
diagonalized in the usual way using a 2 × 2 orthogonal
rotation matrix to find the masses in the physical basis
ðψ1;ψ2ÞT :�

mψ1
0

0 mψ2

�
¼ RT

�
Mψ m

m Mχ

�
R; ð13Þ

where the nondiagonal terms are present due to Eq. (6), and
the rotation matrix is given by

R ¼
�

cos θ sin θ

− sin θ cos θ

�
:

TABLE I. New particle content of the model and their charge
assignments.

Particles SUð3Þc SUð2Þ Uð1ÞY Z2 Z0
2

ψT : ðψ0;ψ−Þ 1 2 1 þ −
χ0 1 1 0 þ −
Φ2 1 2 1 þ þ
Φ1 1 2 1 − þ
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The mixing angle is related to the masses in the weak
(flavor) basis:

tan 2θ ¼ 2m
Mψ −Mχ

: ð14Þ

The physical eigenstates (in the mass basis) are, there-
fore, a linear superposition of the neutral weak eigenstates.
These can be expressed in terms of the mixing angles as

ψ1 ¼ cos θχ0 þ sin θψ0; ψ2 ¼ − sin θχ0 þ cos θψ0:

ð15Þ

The lightest electromagnetic charge neutral Z2 odd
particle is a viable DM candidate of this model. From
now on, we shall refer ψ1 as the lightest stable particle of
the model. In the small mixing limit, the charged compo-
nent of the VLF doublet ψ� acquires a mass as

mψ� ¼ mψ1
sin2θ þmψ2

cos2θ ≈mψ2
: ð16Þ

From Eq. (14), we see that the VLF Yukawa is related to
the mass difference between two physical eigenstates and is
no more an independent parameter:

Y ¼ ðmψ2
−mψ1

Þ sin 2θ cot βffiffiffi
2

p
v1

¼ Δm sin 2θ cot βffiffiffi
2

p
v1

: ð17Þ

Therefore, one can have three new parameters:
fmψ1

;Δm; sin θg from DM phenomenology apart from
2HDM parameters. These three parameters will play the
key role in determining the relic abundance of the DM,
also deciding the fate of the model in direct and collider
searches.

III. CONSTRAINTS ON THE
MODEL PARAMETERS

In this section, we would like to summarize constraints
on the masses, mixings, and couplings arising in the model
due to theoretical and experimental bounds. We are
particularly interested in the choice of tan β and heavy
scalar masses in the 2HDM sector in order to have a
SFOPT, while the free parameters appearing in the VLF
sector are mostly constrained by oblique parameters and
later from DM phenomenology.

A. Vacuum stability

Stability of the 2HDM potential is ensured by the
following conditions [21,22,97]:

λ1; λ2 > 0; λ3 þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0;

λ3 þ λ4 − jλ5j þ 2
ffiffiffiffiffiffiffiffiffi
λ1λ2

p
> 0: ð18Þ

These conditions have been shown to be necessary and
sufficient [98] to ensure that the scalar potential is bounded
from below [99].

B. Perturbativity

Tree-level unitarity imposes bounds on the size of the
quartic couplings λi or various combinations of them. The
quartic couplings and the Yukawa couplings appearing in
the theory need to satisfy [21,22,97]

jλij < 4π; jYj <
ffiffiffiffiffiffi
4π

p
; ð19Þ

in order to remain within the perturbative limit. Here λi ¼ λ,
λ1;2;3;4;5. Here we would like to mention that absolute
stability of the vacuum at tree level puts a bound on tan β
depending on the choice of mH as derived in Ref. [100]. For
mH ≃ 300–400 GeV, this typically allows 1≲ tan β ≲ 30.
However, as has been discussed in Refs. [101–104], for
1 ≤ tan β ≤ 5, the quartic couplings are within the pertur-
bativity bound, and tree-level unitarity is also satisfied.

C. Constraints from phase transition

In Refs. [57,64,65,104], a detailed study of a phase
transition in context with the 2HDM has been done, and,
hence,wedonot repeat it here; rather, our aimis to seewhether
ourDMparameter space is in agreementwith the choice of the
parameters of the scalar potential that can trigger a SFOPT
giving rise to a measurable GW signal. It is possible to have a
SFOPT in the 2HDM for mH� ≃mA ≈ 600 GeV and a large
positivemass difference betweenmH� andmH:mH� −mH ≳
300 GeV [64,65] with tan β ∼ 1 [104]. In our entire analysis,
we thus keep mH� ¼ mA ¼ 650 GeV and mH ¼ 300 GeV
for two different choices of tan β ¼ 1.3 and tan β ¼ 5. Such
choices of the tan β is in agreement with the DM phenom-
enology. As discussed in Refs. [64,104], a SFOPT can take
place in a type-I 2HDM even if the masses of the three extra
Higgs bosons are degenerate ∼350 GeV. Such a scenario
leads to a potentially testable premise through the A → Hh
decay channel at colliders.

D. Electroweak precision observables (EWPOs)

The splitting between the heavy scalar masses is con-
strained by the oblique electroweak T parameter whose
expression in the alignment limit is given by [21,97,105–107]

ΔT ¼ g2

64π2m2
W
ðξðm2

H� ; m2
AÞ þ ξðm2

H� ; m2
HÞ − ξðm2

A;m
2
HÞÞ;

ð20Þ

with

ξðx; yÞ ¼
� xþy

2
− xy

x−y lnðxyÞ; if x ≠ y;

0; if x ¼ y:
ð21Þ

BARMAN, DUTTA BANIK, and PAUL PHYS. REV. D 101, 055028 (2020)

055028-4



As Eq. (21) suggests, this new physics contribution to the
T parameter vanishes in the limitmH� ¼ mA ormH� ¼ mH.
Since we are working in the exact alignment limit and a
SFOPT demands mH� ¼ mA [64], a T parameter puts no
bound on the scalar sector in our setup. The presence of the
new VLFs shall also contribute to the T parameter [108]:

TVLF ¼ g2

16πm2
W
ð−2sin2θΠðMψ ; mψ1

ÞÞ

−
g2

16πm2
W
ð2cos2θΠðMψ ; mψ2

ÞÞ

þ g2

16πm2
W
ð2cos2θsin2θΠðmψ1

; mψ2
ÞÞ; ð22Þ

where

Πðmi;mjÞ ¼ −
1

2
ðm2

i þm2
jÞ
�
divþ log

�
μ2EW
mimj

��

þmimj

�
divþ

ðm2
i þm2

jÞ logð
m2

j

m2
i
Þ

2ðm2
i −m2

jÞ

þ log

�
μ2EW
mimj

�
þ 1

�

−
1

4
ðm2

i þm2
jÞ −

ðm4
i þm4

jÞ logð
m2

j

m2
i
Þ

4ðm2
i −m2

jÞ
: ð23Þ

The bound on Ŝ comes from a global fit: 103Ŝ ¼ 0.0�
1.3 [109]. For the S parameter, we consider a contribution
only due to the VLFs as given by [37,42,108]

Ŝ ¼ g2

16π2
ðΠ̃0ðmψ� ; mψ� ; 0Þ − cos4θΠ̃0ðmψ1

; mψ1
; 0Þ

− sin4θΠ̃0ðmψ2
; mψ2

; 0ÞÞ

−
g2

16π2
ð2sin2θcos2θΠ̃0ðmψ2

; mψ1
; 0ÞÞ; ð24Þ

where g2 is the SUð2ÞL gauge coupling. The expression
for vacuum polarization for identical masses (at q2 ¼ 0)
[37,42,108] is

Π̃0ðmi;mi; 0Þ ¼
1

3
divþ 1

3
ln

�
μ2EW
m2

i

�
: ð25Þ

For two different masses (mi ≠ mj), the expression for
vacuum polarization reads [37,42,108]

Π̃0ðmi;mj; 0Þ

¼
�
1

3
divþ 1

3
ln

�
μ2EW
mimj

��
þm4

i − 8m2
i m

2
j þm4

j

9ðm2
i −m2

jÞ2

þ ðm2
i þm2

jÞðm4
i − 4m2

i m
2
j þm4

jÞ
6ðm2

i −m2
jÞ3

ln

�
m2

j

m2
i

�
þmimj

�
1

2

m2
i þm2

j

ðm2
i −m2

jÞ2
þ m2

i m
2
j

ðm2
i −m2

jÞ3
ln

�
m2

j

m2
i

��
: ð26Þ

Note that all the divergences appearing in Eqs. (25) and
(26), along with the renormalization scale μEW , are can-
celed on substitution in Eq. (24). In the lhs of Fig. 1, we
have shown the region allowed by the bound on the T
parameter in the bidimensional plane of mψ1

− Δm. We see
that large Δm is compatible with the T parameter for small

FIG. 1. Left: Limit from T̂ on DM mass mψ1
and Δm for different choices of sin θ∶ f0.1; 0.3; 0.6g shown, respectively, in gray, red,

and green. Right: Limit from Ŝ on DM massmψ1
and Δm for different choices of sin θ∶ f0.1; 0.3; 0.6g shown, respectively, in gray, red,

and green.
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sin θ, while large sin θ heavily constrains Δm≲ 300 GeV
irrespective of the DM mass. The bound is rather comple-
mentary in the case of the S parameter as depicted in the rhs
of Fig. 1. Here we see large sin θ constrains the DM mass
≲200 GeV, but Δm is allowed up to 1 TeV for any choice
of the VLF mixing.

E. Collider bounds

The LEP experiments have performed direct searches for
charged Higgs. A combination of LEP data from searches
in the τν and cs final states put a limit of mH� ≳ 80 GeV
[110,111] under the assumption that the decay H� →
W�h1 is absent. If the aforementioned decay channel is
open, then DELPHI and OPAL provide complementary
constraints that slightly weaken the charged Higgs mass:
mH� ≳ 72.5 GeV [110,111] for type-I 2HDM (in the
context of LEP searches, Ref. [112] is also relevant).
Moving on to LHC constraints which come from the t →
H�b search withH� → τν or cs final states [113–116], the
values of the charged Higgs masses for which such decay is
kinematically allowed are excluded for tan β ≲ 10 [40] in
type-I 2HDM. Here we would like to mention that in type-I
2HDM tan β is unconstrained from Higgs signal strength
in the strict alignment limit, that otherwise puts a strong
limit [40,117–119]. Flavor physics observables provide very
strong constraints on the charged Higgs mass. Inclusive
b → sγ and more general b → s transitions lead to a robust
exclusion of mH� < 570 GeV [120] for type-II 2HDM,
while for type I it is excluded for tan β ≳ 2 [111]. For type-I
2HDM, the constraint from meson decay is rather weak,
allowing mH� ≳ 200 GeV for tan β ∼ 1.5 [121,122].
Finally, we would like to highlight that LEP has set a

lower limit on pair-produced charged heavy vectorlike
leptons: mψ ≳ 101.2 GeV at 95% C.L. for ψ� → νW�
final states [123]. For a SUð2ÞL singlet charged vectorlike
lepton, the CMS search does not improve on the LEP
limits. The limits for a heavy lepton doublet decaying to
l ∈ fe; μg flavors are mL ≳ 450 GeV [124]. In the case of
decays to the τ flavor, the limits are less stringent: mL ≳
270 GeV [124]. However, in our case the charged VLF ψ�
has dominant decay to the DM ψ1. As a result, the limits are
less stringent, and we follow only the LEP limit in choosing
our benchmark points for all the analyses.

F. Invisible decay constraints

When the DM mass mψ1
< mh1=2 or mψ1

< mZ=2, they
can decay to a pair of the VLF DM (ψ1). Higgs and Z
invisible decays are precisely measured at the LHC [96].
Our model thus can be constrained from these measure-
ments in the low mass range of DM. Both the Higgs and Z
invisible decays to DM are proportional to VLF mixing
angle sin θ. In the Appendix, Sec. 1, we have computed the
invisible decay width of the Higgs and Z boson.

IV. DARK MATTER PHENOMENOLOGY

In this section, we would like to elaborate on the DM
phenomenology, where we show in detail the parameter
space satisfying the Planck observed relic density by
scanning over the free parameters of the model. Then we
investigate how much of the relic density allowed parameter
space also satisfies current direct detection bounds, e.g.,
from XENON1T [11,12]. Finally, from the resulting param-
eter space satisfying relic abundance, direct search, and
existing theoretical and experimental bounds discussed ear-
lier, we choose a few benchmark points for further analysis.
All the relevant Feynman diagrams that contribute to the DM
freeze-out are listed in the Appendix, Sec. 2 (Figs. 11–13).

A. Relic abundance of the dark matter

As we have already mentioned earlier, ψ1 is the lightest
VLF physical eigenstate which is odd under Z2 and, hence,
a potential DM candidate in this model. The relic abun-
dance of ψ1 is mainly governed by the DM number
changing annihilation and coannihilation processes medi-
ated by the SM Higgs h1, the nonstandard Higgses h2 and
h3, and the SM gauge bosons Z and γ to various SM final
states. The DM number density, thus, can be determined
by solving the Boltzmann equation [6,125] for single-
component DM, which in our case reads

dn
dt

þ 3Hn ¼ −hσvieffðn2 − n2eqÞ; ð27Þ

where

hσvieff ¼
g21
g2eff

hσviψ1ψ1

þ 2g1g2
g2eff

hσviψ̄1ψ2

�
1þ Δm

mψ1

�
3=2

e−xðΔm=mψ1
Þ

þ 2g1g3
g2eff

hσviψ1ψ
−

�
1þ Δm

mψ1

�
3=2

e−xðΔm=mψ1
Þ

þ 2g2g3
g2eff

hσviψ2ψ
−

�
1þ Δm

mψ1

�
3

e−2xðΔm=mψ1
Þ

þ g22
g2eff

hσviψ2ψ2

�
1þ Δm

mψ1

�
3

e−2xðΔm=mψ1
Þ

þ g23
g2eff

hσviψþψ−

�
1þ Δm

mψ1

�
3

e−2xðΔm=mψ1
Þ; ð28Þ

with n ¼ nψ1
þ nψ2

þ nψ� and H is the Hubble parameter.
In the above equation, geff is defined as effective degrees of
freedom, given by

geff ¼ g1 þ g2

�
1þ Δm

mψ1

�
3=2

e−xðΔm=mψ1
Þ

þ g3

�
1þ Δm

mψ1

�
3=2

e−xðΔm=mψ1
Þ; ð29Þ
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where g1, g2, and g3 are the degrees of freedom of ψ1, ψ2,
and ψ�, respectively, and x ¼ xf ¼ mψ1

Tf
, where Tf is the

freeze-out temperature. We have implemented the model
in LanHEP-3.3.2 [126], and the model files are then fed into
micrOMEGAs-4.3.5 [127] for determining the relic abundance
and direct detection cross section for the DM. Before delving
into the detailed parameter scan, we first start by looking into
the variation of relic density with DM mass mψ1

for some
fixed choices of twoof the other freeparameters:fΔm; sin θg.
Here we would like to clarify that for the entire analysis we
have kept the masses of the new scalars fixed at

mH ¼ 300 GeV; mH� ¼ mA ¼ 650 GeV: ð30Þ

We perform a scan over a range of the parameter space:

mψ1
∶ f1–3000g GeV; Δm∶ f1–3000g GeV;

sin θ∶ f0.01–0.8g;
m12∶ f1–500g GeV: ð31Þ

As discussed earlier in Sec. III C, this choice of the scalar
masses is motivated from the requirement of a SFOPT. Also,
we would like to remind once more that we are strictly
following the alignment limit, and, hence, the lightest
CP-even scalar resembles the 125 GeVobserved Higgs.
In Fig. 2, we show how the relic density of the DM ψ1

varies with the DM mass while we choose some of the free
parameters at fixed values. In the left-hand side (lhs) of the
top panel, we show such a variation for a fixed VLF mixing
sin θ ¼ 0.05 for four different values of Δm∶ f5; 50;
100; 500g GeV in red, green, blue, and black curves,
respectively. Here we see a number of interesting features.
First of all, for smaller Δm (red), the DM is largely
underabundant. This is due to the fact that smaller Δm
enhances coannihilation by making the effective annihila-
tion cross section large as evident from Eq. (28). This, in
turn, reduces the relic abundance. For larger Δm, the
coannihilation effect diminishes, and we see the right
relic is obtained at two sharp resonances: mψ1

¼ mZ
2

and

mψ1
¼ mh1

2
. There is another resonance at mψ1

≃ 150 GeV,

FIG. 2. Top left: Variation of relic abundance with DM mass for Δm∶ f5; 50; 100; 500g GeV in red, green, blue, and black,
respectively, for VLF mixing sin θ ¼ 0.05. Top right: The same with sin θ ¼ 0.1. Bottom left: Variation of DM relic abundance withmψ1

for different choices of sin θ∶ f0.01; 0.05; 0.1g shown in red, green, and blue, respectively, for a fixedΔm ¼ 10 GeV. Bottom right: The
same for Δm ¼ 100 GeV. For all plots, tan β ¼ 1.3 has been chosen with m12 ¼ 170.
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which occurs due to the second Higgs at 300 GeV. Thus, for
a fixed sin θ, smaller Δm ≃ 5 GeV results in coannihilation
dominantly to light quark final states. For larger
Δm ≃ 100 GeV, on the other hand, annihilation dominates,
and WW, Zh1, h1h1 final states contribute dominantly to
the relic abundance. We see the same features in the right-
hand side (rhs) of the top panel in Fig. 2. In both the plots,
all the curves rise with the increase in DM mass, ensuring
the unitarity of the model. In the bottom panel in Fig. 2, we
again show the variation of relic density of the DM with
DM mass mψ1

, but now for a fixed Δm and for three
different sin θ∶ f0.01; 0.05; 0.1g in red, green, and blue,
respectively. Here we see, again, for small Δm (left-hand
side of the bottom panel), due to coannihilation domina-
tion, the resonances are not sharp. However, with an
increase in sin θ, the DM becomes underabundant. This
is understandable, as larger sin θ gives rise to larger (co)
annihilation due to sin2 θ dependence at the vertex for
gauge-mediated processes and sin 2θ dependence for

scalar-mediated processes (due to proportionality to the
Yukawa Y). As a result, the relic abundance naturally
decreases. On the rhs in the bottom panel in Fig. 2, we show
the same plot as that of the lhs but for larger
Δm ¼ 100 GeV. Now we see, as before, the resonances
become important where the observed relic density is
achieved. For all these plots, we have kept tan β ¼ 1.3
and m12 ¼ 170; for some other choice of tan β (e.g.,
tan β ¼ 5), the inferences remain unaltered.
In the top left panel in Fig. 3, we show the parameter

space allowed by the Planck observed relic density in the
mψ1

-Δm plane for different choices of the VLF mixing
sin θ, where 0.01 ≤ sin θ ≤ 0.1 is shown by the red points,
0.1 < sin θ ≤ 0.3 are shown by the green points, and 0.3 <
sin θ ≤ 0.6 where tan β ¼ 1.3. Here we see, large Δm is
achieved for smaller sin θ. This can be intuitively under-
stood in the following way: The scalar-mediated annihila-
tion channels are essentially proportional to the Yukawa Y,
which is proportional to both sin θ and Δm. Hence, a

FIG. 3. Top left: Parameter space satisfying Planck observed relic abundance in the mψ1
-Δm plane for 0.01 ≤ sin θ ≤ 0.1 in red,

0.1 < sin θ ≤ 0.3 in green, and 0.3 < sin θ ≤ 0.6 in blue, respectively, for tan β ¼ 1.3. Top right: The same for tan β ¼ 5 (color codes are
unchanged). In both cases, the gray shaded region below represents the neutrino floor (see the text for details). Bottom left: Variation of
DM relic abundance with Δm for a fixed sin θ ¼ 0.1 and four different choices of the DM mass: mψ1

∶ f10; 100; 500; 1000g GeV.
Bottom right: Parameter space in the mψ1

-Δm plane for a fixed sin θ ¼ 0.1, where the overabundant, underabundant, and observed
abundant regions are shown, respectively, in red, green, and blue.
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smaller sin θ requires a larger Δm to produce the correct
abundance. On the top right panel in Fig. 3, the same
parameter space is shown for tan β ¼ 5. We note the same
pattern here except for the fact that the 0.01 ≤ sin θ ≤ 0.1
region is more populated. This is a direct consequence of
Eq. (17), which shows sin θ needs to be reduced as tan β
increases (i.e., v2 increases) to adjust the Yukawa Y such
that the relic abundance is satisfied.
In order to understand the behavior more intricately, we

have obtained a parameter space for a fixed sin θ in the
mψ1

-Δm plane as shown in the bottom right panel in Fig. 3.
Here we have shown three different regions corresponding
to underabundance (green), overabundance (red), and the
right relic (blue). As we move from left to right in this plot,
we first encounter overabundant regions for small DMmass
≲20 GeV. This is due to the lack of annihilation channels
present for the DM to produce the right relic, as the only
annihilation channels are to the light quarks. As we reach
mψ1

∼ 30 GeV, coannihilation starts playing, and, as a con-
sequence, the DM becomes underabundant. Still, the right
relic abundance is not obtained, as Y is small due to small
Δm, and, hence, all the scalar-mediated annihilations do
not contribute significantly. The right relic is first obtained
atmψ1

∼ mh1
2
, due to the SM Higgs resonance. For DMmass

∼100 GeV as we move from lower Δm to higherΔm (from
bottom to top), the DM is at first underabundant due to
coannihilation domination. Then the right relic abundance
is achieved as the coannihilation is correctly tuned.
Immediately after that, there is an overabundant region
for larger Δm as coannihilation loses its goodness, and,
hence, the effective annihilation cross section [Eq. (28)]
becomes small. Note that, for a fixed DMmass≳100 GeV,
the right relic abundance is reached twice: (a) once for
small Δm, where the right coannihilation gives rise to the
observed relic, and (b) for large Δm, where Y is large
enough to produce the correct relic via scalar-mediated

channels (to gauge-boson-dominated final states) as shown
in the bottom left panel in Fig. 3. Beyond mψ1

∼ 500 GeV,
the parameter space is largely overabundant as the suppres-
sion due to 1=m2

ψ1
becomes significant, thus overproducing

the DM. Note that the right relic abundance is also obtained
at the second Higgs resonance at mψ1

∼ 150 GeV. Beyond
Δm ∼ 200 GeV, for a fixed DM mass, the parameter space
is largely underabundant as coannihilation is completely
switched off and annihilation to all possible final states are
open. This produces a very large effective annihilation cross
section, making the DM completely underabundant. A
cumulative effect of all these features is reflected in the
upper panel in Fig. 3 for different choices of the VLFmixing
sin θ. Before moving on to the DM direct search section, we
would like to see what the values of m12 are that satisfy the
right relic abundance. This is shown in Fig. 4 for both
tan β ¼ 1.3 (left) and tan β ¼ 5 (right). As we see, the
dependence of the relic abundance parameter space on the
choice m12 is not very strict, as almost all values of m12 are
allowed by any choice of DM mass and Δm.

B. Direct detection of the dark matter

In the present framework, the DM exhibits spin-inde-
pendent interactions with the nuclei induced at the tree level
by the mediation of CP-even states h1 (SM Higgs-like)
and h2 (heavier Higgs) and also by the SM Z-boson
exchange (as in Fig. 5). The relevant cross section per
nucleon reads [40]

σ
h1;2
SI ¼ 1

πA2
μ2rkMk2; ð32Þ

where A is the mass number of the target nucleus, μr ¼
mψ1

mN

mψ1
þmN

is the DM-nucleus reduced mass, and kMk is the

spin-averaged DM-nucleus scattering amplitude given by

FIG. 4. Left: Relic density allowed parameter space in the bidimensional plane of mψ1
− Δm, where different colors correspond to

different choices of m12: 1 ≤ m12 ≤ 100 GeV in red, 101 < m12 ≤ 200 GeV in green, and 201 ≤ m12 ≤ 300 GeV in blue for
tan β ¼ 1.3. Right: The same for tan β ¼ 5.
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kMk ¼
X
i¼1;2

½Zfip þ ðA − ZÞfin�: ð33Þ

The effective couplings in Eq. (33) can be expressed as

fip;n ¼
X

q¼u;d;s

fp;nTq
αiq

mp;n

mq
þ 2

27
fp;nTG

X
Q¼c;t;b

αiQ
mp;n

mQ
; ð34Þ

with

α1q ¼ −
ffiffiffi
2

p
Y sin θ cos θcos2α

sin βm2
h1

mq cot β

v1
; ð35Þ

α2q ¼ −
ffiffiffi
2

p
Y sin θ cos θsin2α

sin βm2
H

mq cot β

v1
; ð36Þ

where fp;nT are nucleon form factors. For Z-mediated spin-
independent direct detection, on the other hand, one can
write the scattering cross section per nucleon as [40]

σZSI ¼
1

πA2
μ2rkMk2; ð37Þ

with

kMk ¼
ffiffiffi
2

p
GF

�
Z

�
fp
fn

þ ðA − ZÞ
��

fnsin2θ; ð38Þ

where fp;n are again suitable nucleon form factors.3 For
simplicity, we can assume conservation of isospin, i.e.,
fp=fn ¼ 1. Here one should note that the Z mediation also
gives rise to a spin-dependent direct search cross section.

But the order of magnitude of such a spin-dependent cross
section being extremely small compared to that of spin-
independent ones, we choose to ignore that.4

In the top left panel in Fig. 6, we have illustrated the relic
density allowed parameter space that survives the present
spin-independent direct detection bound from XENON1T
for tan β ¼ 1.3. We see a moderate range of sin θ’s are
allowed by a direct search: 0.01≲ sin θ ≲ 0.3. This is
expected, as the direct detection cross section is propor-
tional to sin2 θ for scalar mediation and sin4 θ for gauge
mediation. As a consequence, smaller mixing should give
rise to smaller σSI, making the DM parameter space more
viable from the direct search bound. The presence of the
second Higgs helps in keeping the VLF mixing within a
moderate limit, unlike the case in Ref. [32], where the
bound on the mixing is even more stringent due to the
presence of only one (SM) Higgs. This is a consequence of
sin2 α
m2

H
suppression due to the heavier Higgs and small scalar

mixing in the case of scalar-mediated elastic scattering.
This is also possible due to some cancellation between the
Higgs-mediated diagrams leading to a destructive interfer-
ence that allows one to choose sin θ as large as ∼0.3
without getting disallowed by the direct search exclusion.
Also note here that most of the allowed parameter space lies
just above the neutrino floor [128] and, hence, can still be
probed by the future direct search experiments with
improved sensitivity. In summary, constraints from the
requirement of right relic abundance, together with the
direct search exclusion limit, allows the VLF mixing to
vary within a range of 0.01≲ sin θ ≲ 0.3 for a DM mass
starting from around 100 GeVup to 3 TeV. The presence of
the second Higgs helps the model to evade the present
direct search bound and allows the parameter space to fit
just above the neutrino floor, leaving the window open to
either get discovered or get discarded from the very next
limit on a spin-independent direct search. The top right
panel in Fig. 6 shows the same with tan β ¼ 5.
In the bottom left panel in Fig. 6, we show the residual

parameter space satisfying both relic abundance and direct
detection bounds in the mψ1

-Δm plane with respect to
the variation of the VLF mixing sin θ for tan β ¼ 1.3.
This clearly shows that Δm≲ 1.5 TeV (for DM mass
∼500 GeV) in order to abide by both relic abundance
and spin-independent direct detection bounds for sin θ≲
0.3. For larger tan β, shown in the right panel in Fig. 6, the
bound on Δm is a bit more relaxed, which allows it to
∼2.5 TeV but for a larger DM mass. However, the VLF
mixing is rather restricted and can be as large as sin θ ∼ 0.1,
which helps in suitably choosing the Yukawa Y via Eq. (17).

FIG. 5. Feynman graph showing DM-nucleon scattering via
SM Z (left) and SM-like Higgs (h) and heavier Higgs (H) (right).
Here n ∈ n; p stands for the nucleons.

3For the numerical values of all form factors, we have relied on
the default assignations of the micrOMEGAs package.

4To give an order of estimate, the set of data fsin θ;Δm;
mψ1

g ¼ f0.07; 366; 647g, which gives rise to a correct relic
abundance for tan β ¼ 5, produces a spin-independent direct
detection cross section of ∼Oð10−10Þ pb, compared to a spin-
dependent direct search cross section of ∼Oð10−50Þ pb.
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The bound on Δm is crucial, as larger Δm results in larger
missing energy, which, in turn, helps the model to be
separated from the SM background at the colliders, as we
shall explain in Sec. V. For smaller Δm, the model can

still be found at the colliders via a stable charged track
signature.
Before moving on to the collider analysis, we have

tabulated some of the benchmark points (BPs) in Table II.

FIG. 6. Top left: Relic abundance allowed parameter space in the direct search plane for tan β ¼ 1.3 for different choices of VLF
mixing: 0.01 ≤ sin θ ≤ 0.1 in red, 0.1 < sin θ ≤ 0.3 in green, and 0.3 < sin θ ≤ 0.6 in blue, respectively, for tan β ¼ 1.3. Top right: The
same as the top left with tan β ¼ 5 (color codes remain unchanged). In both the plots, the thick black curve is the exclusion limit from the
XENON1T experiment. Bottom left: Resulting parameter space satisfying both relic abundance and spin-independent direct detection
for tan β ¼ 1.3 in the mψ1

-Δm plane, where the color bar shows different values of sin θ. Bottom right: The same as the bottom left
with tan β ¼ 5.

TABLE II. Choices of the benchmark points for collider analysis. Masses, mixings, relic density, and direct search cross sections for
the DM candidate are tabulated. In each case, the corresponding values of S and T parameters are also quoted.

Benchmark point sin θ Δm (GeV) mψ1
(GeV) 103Ŝ 103T̂ tan β m12 (GeV) σDD (cm2) Ωh2

BP1 0.06 966 143 4.06 × 10−2 2.94 × 10−3 1.3 176 6.14 × 10−47 0.122
BP2 0.19 628 1175 6.96 × 10−1 1.25 × 10−2 1.3 185 1.50 × 10−45 0.119
BP3 0.05 383 60 1.21 × 10−2 2.19 × 10−4 1.3 176 5.56 × 10−47 0.121
BP4 0.08 369 804 1.08 × 10−1 1.14 × 10−4 5 125 1.05 × 10−45 0.121
BP5 0.22 218 72 1.70 × 10−1 1.73 × 10−2 5 130 9.77 × 10−48 0.121
BP6 0.03 10 256 6.81 × 10−3 2.03 × 10−11 5 125 6.23 × 10−47 0.121
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These BPs satisfy bounds from relic abundance, direct
detection, and also those arising from EWPO. The BPs are
listed in the decreasing order of Δm, where BP6 has the
minimumΔm. We have also kept the DMmass< 2 TeV to
have a sizable ψ� production cross section. As we shall
show in Sec. V, BP(1–5) can be distinguished at the LHC,
as they produce huge missing energy due to large Δm that
helps to separate them from the SM background. On the
other hand, due to very small Δm (specifically, as
Δm < mW), BP6 can produce only a displaced vertex at
the collider or can be searched at the ILC via missing
energy excess as shown in Refs. [36,37,41].

V. COLLIDER PHENOMENOLOGY

The detailed study of the collider signature for vectorlike
fermions can be found in Refs. [32,36,37,41]. As we have
already seen, due to the presence of the second Higgs
doublet, large sin θ can be achieved, satisfying both relic
density and direct detection. As a result, one need not be
confined in small Δm, and a large Δm is also viable. Such
large Δm’s are favorable in order to distinguish this model
at the collider from the SM background [41,42]. It is to be
noted that the charged component of the SUð2ÞL doublet
VLF can be produced at the LHC via SM Z and photon
mediation. The charged VLF can further decay via on-shell
and/or off-shell W (depending on whether ΔM ≳ 80 GeV
or Δm≲ 80 GeV) to the following final states:

(i) hadronically quiet opposite sign dilepton (OSD)
with missing energy ðlþl− þ =ETÞ,

(ii) single lepton, with two jets plus missing energy
ðl� þ jjþ =EÞ, and

(iii) four jets plus missing energy ðjjjjþ =EÞ.
We shall focus only on the leptonic final states (hadroni-

cally quiet dilepton), as they are much cleaner compared to

others. The Feynman graph for such a process is depicted in
the lhs of Fig. 7. In the rhs of Fig. 7, we have shown the
variation of the pair production cross section of the charged
component of the VLF with a VLF mass at

ffiffiffi
s

p ¼ 14 TeV.
As one can see, the production cross section decreases with
an increase in the charged VLF mass showing the usual
nature. We have also shown the position of different BPs on
the same plot. As one can notice, BP6 has the highest
production cross section, while BP2 has the least. This is
evident from the fact that for BP6 Δm ¼ 10 GeV, giving
rise to a charged VLF mass of mψ� ¼ 276 GeV. On the
other hand BP2 has a larger Δm but the highest DM mass,
which gives rise to mψ� ¼ 1803 GeV, much larger than
that for BP4.

A. Object reconstruction and simulation details

As already mentioned, we implemented this model in
LanHEP-3.3.2, and the parton level events are generated in
CalcHEP-3.7.3 [129]. Those events are then fed to PYTHIA-6.4

[130] for showering and hadronization. The dominant SM
backgrounds that can imitate our final state are generated in
MADGRAPH-2.6.6 [131], and the corresponding production
cross sections are multiplied with the appropriate K factor
[132] in order to match with the next-to-leading-order cross
sections. For all cases, we have used CTEQ6l as the parton
distribution function [133]. Now, in order to mimic the
collider environment, all the leptons, jets, and unclustered
objects have been reconstructed assuming the following
criteria:

(i) Lepton (l ¼ e; μ).—Leptons are identified with a
minimum transverse momentum pT > 20 GeV and
pseudorapidity jηj < 2.5. Two leptons can be distin-
guished as separate objects if their mutual distance in
the η-ϕ plane is ΔR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
≥ 0.2,

TABLE III. Variation of the final state signal cross section with the MET cut for a fixed cut onHT > 300 GeV. All
simulations are done at

ffiffiffi
s

p ¼ 14 TeV.

Benchmark points σψþψ− (fb) =E (GeV) σOSD (fb)

BP1 1.12 × 10−1 >100 HT > 300 GeV 2.51 × 10−2

>200 1.97 × 10−2

>300 1.39 × 10−2

BP2 3.94 × 10−3 >100 7.43 × 10−4

>200 5.46 × 10−4

>300 3.47 × 10−4

BP3 9.95 >100 5.60 × 10−1

>200 2.01 × 10−1

>300 6.94 × 10−2

BP4 7.77 × 10−2 >100 8.19 × 10−3

>200 3.75 × 10−3

>300 1.23 × 10−3

BP5 52.26 >100 5.95 × 10−1

>200 1.94 × 10−1

>300 5.22 × 10−2

BARMAN, DUTTA BANIK, and PAUL PHYS. REV. D 101, 055028 (2020)

055028-12



while the separation between a lepton and a jet needs
to be ΔR ≥ 0.4.

(ii) Jets (j).—All the partons within ΔR ¼ 0.4 from the
jet initiator cell are included to form the jets using
the cone jet algorithm PYCELL built in PYTHIA. We
demand pT > 20 GeV for a clustered object to be
considered as a jet. Jets are isolated from unclustered
objects if ΔR > 0.4.

(iii) Unclustered objects.—All the final state objects
which are neither clustered to form jets nor identified
as leptons belong to this category. Particles with
0.5 < pT < 20 GeV and jηj < 5 are considered as
unclustered. Although unclustered objects do not
intervene with our signal definition, they are impor-
tant in constructing the missing energy of the events.

(iv) Missing energy (=ET).—The transverse momentum
of all the missing particles (those are not registered
in the detector) can be estimated from the momen-
tum imbalance in the transverse direction associated
to the visible particles. Missing energy (MET) is
thus defined as

=ET ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X

l;j

px

�
2

þ
�X

l;j

py

�
2

s
; ð39Þ

where the sum runs over all visible objects that
include the leptons, jets, and unclustered com-
ponents.

(v) Invariant dilepton mass ðmllÞ.—We can construct
the invariant dilepton mass variable for two opposite
sign leptons by defining

m2
ll ¼ ðplþ þ pl−Þ2: ð40Þ

The invariant mass of OSD events, if created from a
single parent, peaks at the parent mass, for example,

the Z boson. As the signal events (Fig. 7) do not
arise from a single parent particle, the invariant mass
cut plays a key role in eliminating the Z-mediated
SM background.

(vi) HT .—HT is defined as the scalar sum of all isolated
jets and lepton pT’s:

HT ¼
X
l;j

pT: ð41Þ

For our signal, the sum includes only the two leptons
that are present in the final state.

We shall use different cuts on these observables depend-
ing on their distribution patterns to separate the signal from
the SM backgrounds. Thus, we can predict the significance
as a function of the integrated luminosity. These are
discussed in the following sections.

B. Event rates and signal significance

In Fig. 8, we have shown the distribution of a
normalized number of events with respect to MET
(lhs) and HT (rhs) for all the chosen BPs. In the same
plot, we have also shown the distribution from dominant
SM backgrounds that can mimic our signal. For the SM,
the only source of MET are the SM neutrinos, which are
almost massless with respect to the center of mass energy
of the collider. As a result, the MET and HT distribution
for SM peaks up at a lower value, while for the model on
top of the SM neutrinos MET arises from the DM ψ1

which is massive, and, hence, the corresponding distri-
butions for the signals are much flattened. The notable
feature in these plots is the fact that for larger Δm
the signal distributions are well separated from that
of the background. This is due to the fact that the
peak of the MET distribution is determined by how
much of pT is being carried away by the missing particle

FIG. 7. Left: Pair production of charged VLFs and their subsequent decay to the OSDþ =ET final state. Right: Variation of the
production cross section of ψ� with mψ� for Δm ¼ 10 GeV and center of mass energy

ffiffiffi
s

p ¼ 14 TeV. The production cross sections
corresponding to different BPs are also shown in red, green, and blue on top of the curve.
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(i.e., the DM), which, in turn, depends on the mass
difference of the charged and neutral component of the
VLF, i.e., Δm. Hence, for larger Δm the DM carries
away most of the pT , making the distribution much
flatter, while for smaller Δm the distribution peaks up at
a lower value, as the produced DM particles are not
boosted enough. As a consequence, BP1 and BP2 have
the most flattened distribution, while BP(3,4,5) are
increasingly overwhelmed by the SM background.
Since BP6 has the smallest Δm, we refrain from showing
this in the plots, as BP6 will be inseparable from the SM
backgrounds. From these distributions, it is quite evident
that with a cut on MET ≳200 GeV and on HT ≳
300 GeV (Table III) one can get rid of the SM back-
grounds, retaining most of the signals. This is also
reflected in Tables II and IV, where we have tabulated
the cross section corresponding to final state OSDþ =ET
events for the BPs and for the SM backgrounds,
respectively. In order to understand the effectiveness of
the choice of our cuts, we have shown the cut flow for an
increasing choice of =E, keeping the HT fixed. Note that,
for the signal (Table II), the final state cross section in

each case gradually diminishes with an increase in the
MET cut; i.e., the harder the cut, the lesser is the cross
section. The same is also true for the SM backgrounds as
shown in Table IV. Note that, for the backgrounds, the

TABLE IV. Variation of the final state SM background cross
section with the MET cut for a fixed cut on HT > 250 GeV. All
simulations are done at

ffiffiffi
s

p ¼ 14 TeV.

Processes σproduction (pb) =E (GeV) σOSD (fb)

tt̄ 814.64 >100 HT > 300 GeV 0
>200 0
>300 0

WþW− 99.98 >100 2.99
>200 1.49
>300 0

WþW−Z 0.15 >100 0.039
>200 0.024
>300 0.012

ZZ 14.01 >100 0
>200 0
>300 0

FIG. 8. Top left: Distribution of the normalized number of signal and background events with MET for BP(1,2,3). Top right:
Distribution of normalized number of events with HT for BP(1,2,3). Bottom left: The same as the top left but for BP(4,5). Bottom right:
The same as the top right but for BP(4,5). In all cases, the black and gray histograms correspond to the dominant SM backgrounds. All
simulations are done at

ffiffiffi
s

p ¼ 14 TeV with CTEQ6l as the parton distribution function. Note that we do not show the corresponding
distributions for BP6, since due to very small Δm it is indistinguishable from the SM backgrounds.
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most dominant one, i.e., tt̄, is completely killed by the
zero jet veto. Among the rest, WW and WWZ still exist
for =E > 200 GeV but can still be put to zero by a harder
MET cut. ZZ, on the other hand, is again completely
eliminated thanks to the invariant mass cut over a
window of jmZ � 50j GeV around the central value of
Z mass. Thus, a wise choice of the cuts on the
observables can help to completely get rid of the SM
backgrounds while retaining most of the signal.
This can be translated into the signal significance for

this model, which is shown in Fig. 9. Here we have
plotted the significance of the chosen BPs with respect to
the integrated luminosity. In order to minimize the SM
background, we have employed =E > 300 GeV and HT >
300 GeV to compute the significance. We see, of all the
BPs, BP(2,4) have the least possibility to be probed even
with a luminosity as high as 3000 fb−1. A large Δm in
one way helps to distinguish BP(2,4) from the SM
background, but due to the very small cross section at
the production level the final state cross section becomes
even smaller. This makes BP(2,4) least significant. For BP
(1,3,5), on the other hand, Δm is optimum such that they
can be separated from the background because of their
larger missing energy, and at the same time the cross
section is large enough so that a 5σ significance can be
achieved. Thus, we see BP3 and BP5 reach a discovery
limit at a lower luminosity ∼500 fb−1, while BP1 needs
∼1000 fb−1 for a 5σ reach. Finally, we would like to
mention that for all benchmarks with Δm≲mW (e.g.,
BP6) one can find a stable charged track due to the off-
shell decay of the heavy charged VLF ψ� via a W boson
or they can also be probed at the ILC with a lower cut on
MET. These scenarios have already been thoroughly
investigated in Refs. [36,41]; hence, we do not discuss
them here further.

VI. STRONG FIRST-ORDER ELECTROWEAK
PHASE TRANSITION AND GRAVITATIONAL

WAVE SIGNALS

In this section, we would like to show the possibility of
generation of stochastic GW from a SFOPT. The frequency
of such GWs is well within the reach of the proposed GW
detectors. The occurrence of a SFOPT and subsequent GW
generation in context with the 2HDM has already been
thoroughly studied [64,65]. In the context of our present
model, we explore how such a detectable GW signal can
be an alternate search strategy for singlet-doublet DM. The
dynamics of the SFOPT is completely determined by the
parameters of the scalar potential, as we shall see in
the following sections. It is interesting to note that the
choice of the scalar potential parameters agrees well with
both the DM phenomenology and the GW generation, thus
giving us a handle to probe the dark sector beyond DM and
collider search experiments.

A. Finite temperature effective potential

In order to explore the EWPT in the 2HDM, we need to
include temperature corrections with the tree-level poten-
tial. In general, the finite temperature effective potential at
temperature T can be expressed as [134]

Veff ¼ V tree þ VT¼0
1-loop þ VT≠0

1-loop; ð42Þ

where V tree, VT¼0
1-loop, and VT≠0

1-loop are the tree-level potential
at zero temperature, the Coleman-Weinberg one-loop
effective potential at zero temperature, and the one-loop
effective potential at a finite temperature, respectively. The
tree-level potential V tree can be obtained from Eq. (5) by
replacing the fields Φ1 and Φ2 with their classical fields v1
and v2, which is given by

V tree ¼
1

2
m2

11v
2
1 þ

1

2
m2

22v
2
2 −

1

2
m2

12v1v2 þ
1

8
λ1v41

þ 1

8
λ2v42 þ

1

4
ðλ3 þ λ4 þ λ5Þv21v22: ð43Þ

The Coleman-Weinberg one-loop effective potential at
zero temperature VT¼0

1-loop can be written as [134,135]

VT¼0
1-loop ¼ � 1

64π2
X
i

nim4
i

�
log

m2
i

Q2
− Ci

�
; ð44Þ

where the þ sign corresponds to bosons and the − sign
corresponds to fermions. The sum i is over the Goldstone
bosons G�, G, A, and H�, Higgs bosons h and H, gauge
bosons W� and Z, and the top fermion t. The field-
dependent squared masses m2

i for the top quark and gauge
bosons at T ¼ 0 are given by

m2
t ¼

1

2
y2t v22=s

2
β; ð45Þ

FIG. 9. Significance plotted against the integrated luminosity
for the three benchmarks in Table II. The solid, dotted, and dot-
dashed black lines correspond to different benchmark points. The
solid red and dashed red lines denote 3σ and 5σ confidence,
respectively.
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m2
W ¼ 1

4
g2ðv21 þ v22Þ; ð46Þ

m2
Z ¼ 1

4
ðg2 þ g02Þðv21 þ v22Þ; ð47Þ

where yt, g, and g0 are the top Yukawa coupling and SUð2ÞL
and Uð1ÞY gauge couplings of the SM, respectively.
The field-dependent squared masses m2

i at T ¼ 0 for the
scalar bosons can be obtained by diagonalizing the follow-
ing matrices:

m2
h;H ¼

�
m2

11 þ 3
2
λ1v21 þ 1

2
ðλ3 þ λ4 þ λ5Þv22 − 1

2
m2

12 þ ðλ3 þ λ4 þ λ5Þv1v2
− 1

2
m2

12 þ ðλ3 þ λ4 þ λ5Þv1v2 m2
22 þ 3

2
λ2v22 þ 1

2
ðλ3 þ λ4 þ λ5Þv21

�
; ð48Þ

m2
G;A ¼

�
m2

11 þ 1
2
λ1v21 þ 1

2
λ3v22 − 1

2
m2

12 þ 1
2
ðλ4 þ λ5Þv1v2

− 1
2
m2

12 þ 1
2
ðλ4 þ λ5Þv1v2 m2

22 þ 1
2
λ2v22 þ 1

2
λ3v21

�
; ð49Þ

m2
G�;H� ¼

�
2m2

11 þ λ1v21 þ λ3v22 −m2
12 þ ðλ4 þ λ5Þv1v2

−m2
12 þ ðλ4 þ λ5Þv1v2 2m2

22 þ λ2v22 þ λ3v21

�
: ð50Þ

Here we have applied the Landau gauge, where the Gold-
stones are massless at zero temperature (T ¼ 0) but at a
finite temperature (T ≠ 0) they acquire a mass [59]. In
Eq. (44), Ci’s are the renormalization-scheme-dependent
numerical constant, Q is a renormalizable scale, and ni’s
are the number of degrees of freedom (DOF). For the gauge
bosons (W;Z) CW;Z ¼ 5=6, and for the other particle
species Ch;H;G;A;Hþ;H−;Gþ;G−;t ¼ 3=2 with the corresponding
DOFs: nW� ¼ 6, nZ ¼ 3, nh;H;G;A;Hþ;H−;Gþ;G− ¼ 1, and
nt ¼ 12. The one-loop finite temperature effective potential
VT≠0
1-loop [Eq. (44)] reads [134]

VT≠0
1-loop ¼

T2

2π2
X
i

niJ�

�
m2

i

T2

�
; ð51Þ

where the functions J� are

J�

�
m2

i

T2

�
¼ �

Z
∞

0

dyy2 log
�
1 ∓ e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þðm2

i =T
2Þ

p 	
: ð52Þ

In the finite temperature effective potential VT≠0
1-loop, we

include the temperature-corrected terms to the boson
masses by following the Daisy resummation method
[136]. In the Daisy resummation method, the thermal
masses are [137–140] μ21ðTÞ ¼ m2

11 þ c1T2 and μ22ðTÞ ¼
m2

22 þ c2T2, where

c1 ¼
3λ1 þ 2λ3 þ λ4

12
þ 3g2 þ g02

16
þ y2t

4
; ð53Þ

c2 ¼
3λ2 þ 2λ3 þ λ4

12
þ 3g2 þ g02

16
: ð54Þ

B. Gravitational wave from SFOPT

The central idea of a FOPT is the bubble nucleation of a
true vacuum state (from several metastable states) at a
temperature commonly known as the nucleation temper-
ature. The bubbles produced in this process can be of
different sizes: small and large. The smaller bubbles tend to
collapse, whereas the larger bubbles tend to expand after
attaining the criticality. These bubbles of critical size then
collide with each other, and their spherical symmetry is thus
broken. This initiates the phase transition and subsequent
production of the GW. The bubble nucleation rate per unit
volume at a temperature T can be expressed as [141]

Γ ¼ Γ0ðTÞe−S3ðTÞ=T; ð55Þ

where Γ0ðTÞ ∝ T4 and S3ðTÞ denotes the Euclidean action
of the critical bubble [141]:

S3 ¼ 4π

Z
drr2

�
1

2
ð∂rϕ⃗Þ2 þ Veff

�
; ð56Þ

where Veff is the effective finite temperature potential
[Eq. (42)]. Bubble nucleation occurs at the nucleation
temperature Tn, which satisfies the condition S3ðTnÞ=Tn ≈
140 [134].
As mentioned in Sec. I, GWs are produced from the

FOPT mainly via three mechanisms, namely, bubble
collisions [66–72], sound waves [73–76], and turbulence
in the plasma [77–81]. The total GW intensity ΩGWh2 as a
function of the frequency can be expressed as the sum of
the contributions from the individual components [66–81]:

ΩGWh2 ¼ Ωcolh2 þ ΩSWh2 þ Ωturbh2: ð57Þ

The component from the bubbles collision Ωcolh2 is
given by (for an analytic and more accurate derivation,
see [142,143])
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Ωcolh2 ¼ 1.67 × 10−5
�
β0

H

�
−2 0.11v3w

0.42þ v2w

�
κα0

1þ α0

�
2

×

�
g�
100

�
−1=3 3.8ð f

fcol
Þ2.8

1þ 2.8ð f
fcol

Þ3.8 ; ð58Þ

where the parameter

β0 ¼
�
HT

d
dT

�
S3
T

��




Tn

; ð59Þ

where Tn is the nucleation temperature and Hn is the
Hubble parameter at Tn. The most general expression of the
bubble wall velocity vw can be written as5 [71,145]

vw ¼ 1=
ffiffiffi
3

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α02 þ 2α0=3

p
1þ α0

: ð60Þ

The parameter κ in Eq. (58) is the fraction of latent heat
deposited in a thin shell, which can be expressed as

κ ¼ 1 −
α0∞
α0

; ð61Þ

with [85,92]

α0∞ ¼ 30

24π2g�

�
vn
Tn

�
2
�
6

�
mW

v

�
2

þ 3

�
mZ

v

�
2

þ 6

�
mt

v

�
2
�
;

ð62Þ

where vn represents the vacuum expectation value of Higgs
at Tn and mW , mZ, and mt are the masses of W, Z, and top
quarks, respectively. The parameter α0, which is defined as
the ratio of vacuum energy density ρvac released by the
electroweak phase transition to the background energy
density of the plasma ρrad� at Tn, has the form

α0 ¼
�
ρvac
ρ�rad

�




Tn

ð63Þ

with

ρvac ¼
��

Vhigh
eff − T

dVhigh
eff

dT

�
−
�
V low
eff − T

dV low
eff

dT

��
ð64Þ

and

ρ�rad ¼
g�π2T4

n

30
: ð65Þ

The quantity fcol in Eq. (58) is the peak frequency
produced by the bubble collisions and reads

fcol ¼ 16.5 × 10−6 Hz

�
0.62

v2w − 0.1vw þ 1.8

�
×

�
β0

H

��
Tn

100 GeV

��
g�
100

�
1=6

: ð66Þ

The sound wave (SW) component of the gravitational
wave [Eq. (57)] is given by

ΩSWh2 ¼ 2.65 × 10−6
�
β0

H

�
−1
vw

�
κvα

0

1þ α0

�
2
�

g�
100

�
−1=3

×

�
f

fSW

�
3
"

7

4þ 3ð f
fSW

Þ2
#
7=2

; ð67Þ

where κv is the fraction of latent heat transformed into the
bulk motion of the fluid, which can be expressed as

κv ¼
α0∞
α0

�
α0∞

0.73þ 0.083
ffiffiffiffiffiffi
α0∞

p
þ α0∞

�
: ð68Þ

In Eq. (67), fSW denotes the peak frequency produced by
the sound wave mechanisms, which has the following
form:

fSW ¼ 1.9 × 10−5 Hz

�
1

vw

��
β0

H

��
Tn

100 GeV

��
g�
100

�
1=6

:

ð69Þ

To check the contribution of the sound wave component
to the total GW intensity, we need to estimate the
suppression factor HR�=Ūf, where Ūf denotes the root-
mean-square (rms) fluid velocity and R� denotes the mean
bubble separation [85,146,147]. If the calculated suppres-
sion factor HR�=Ūf of a given model comes out to be > 1,
then the sound wave lasts more than a Hubble time;
otherwise, it is an overestimate to the GW signal.
Finally, the component from the turbulence in the plasma

Ωturbh2 is given by

Ωturbh2 ¼ 3.35 × 10−4
�
β0

H

�
−1
vw

�
ϵκvα

0

1þ α0

�
3=2

×

�
g�
100

�
−1=3 ð f

fturb
Þ3ð1þ f

fturb
Þ−11=3

ð1þ 8πf
h�
Þ ; ð70Þ

where ϵ ¼ 0.1 and fturb denotes the peak frequency
produced by the turbulence mechanism which takes the
form

fturb ¼ 2.7 × 10−5 Hz

�
1

vw

��
β0

H

��
Tn

100 GeV

��
g�
100

�
1=6

:

ð71Þ
5A more detailed discussion on the choice of vw can be found

in Ref. [144].
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In Eq. (70), the parameter h� can be written as

h� ¼ 16.5 × 10−6 Hz

�
Tn

100 GeV

��
g�
100

�
1=6

: ð72Þ

Equations (57)–(72) are used for calculating the gravi-
tational wave intensity. In order to study the phase
transition properties and production of GWs in the present
DM model, we choose four BPs (Table V) from the viable
model parameter space. An EWPT takes place at the

nucleation temperature, where a high phase and a low
phase are separated by a potential barrier. The strength of
the phase transition depends on the ratio of the VEVs
vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv1i2 þ hv2i2

p
, measured at the critical temperature,

to the critical temperature Tc at which two degenerate
minima exist. If the condition ξ ¼ vc=Tc > 1 is satisfied,
then the SFOPT is said to have occurred [64].
The BPs in Table V are chosen in such a way that they

not only satisfy constraints from the DM sector, but obey
the condition for SFOPT as well. Thus, one should note
here that the choices of m12 and tan β in Table V are in
accordance with those in Table II. In Table VI, we present
our calculated ξ value corresponding to the benchmarks
in Table V. In Table VI, we also tabulate other thermal
parameters: fvn; Tc; Tn; α0; β0=Hg for each of the BPs,
which are further used for the calculation of GW intensity.
From Table VI, one can see that the nucleation temperature
Tn is smaller than the critical temperature Tc for each of the
BPs. The renormalizable scale Q ¼ 246.22 GeV is fixed
for the calculation.
We calculate the GW intensity using Eqs. (57)–(72). For

computing the intensity, we need to first estimate the
thermal parameters related to FOPT. In order to find them,
we have used the Cosmotransition package [134]. The tree-
level potential [Eq. (43)] is given as an input to this
package, and the resulting thermal parameters are tabulated
in Table VI. The GW intensity mainly depends on several
factors, e.g., nucleation temperature Tn, bubble wall
velocity vw, strength of the FOPT α0, and the parameter
β0. As mentioned in Sec. VI B, the sound wave contribution
to the total GW intensity depends on the suppression factor
HR�=Ūf depending on whether it lasts more than a Hubble
time or not. We estimate the suppression factor HR�=Ūf

following Refs. [85,146,147] and found it to be < 1 for all
the BPs. Because of this fact, following Refs. [85,146,147],
we include the suppression factor HR�=Ūf to the sound
wave component of the GW intensity. In Fig. 10, we have
plotted and compared the GW intensities for the chosen
benchmarks (Table V) as a function of the frequency
against the power-law-integrated sensitivity6 curves for
future GW detectors such as ALIA, BBO, DECIGO,
aLIGO, aLIGO+, and LISA following Refs. [149,150].
The frequencies at which the GW intensities acquire a

TABLE VI. Thermal parameters associated with the strong
first-order electroweak phase transition (SFOEWPT) for the
chosen four BPs.

BP Tc (GeV) ξ vn (GeV) Tn (GeV) α0 β0
H

I 71.36 1.71 125.73 66.86 0.26 3527
II 49.34 1.74 88.82 46.22 0.26 3571.17
III 62.39 1.17 75.87 61.33 0.12 14078.9
IV 58.88 1.21 73.74 57.79 0.13 13190.8

TABLE V. Choice of the BPs allowed by DM phenomenology to investigate the phase transition properties and
production of GWs.

BP m2
11 in GeV2 m2

22 in GeV2 m12 in GeV λ1 λ2 λ3 λ4 λ5 tan β

I 27511.8 18531.5 176 6.05 2.00 6.63 −8.27 −8.27 1.3
II 36668.7 18503.2 185 0.79 0.45 11.54 −5.80 −5.80 1.3
III 70301.2 −4698.75 125 3.87 0.26 11.37 −5.63 −5.63 5
IV 76676.2 −4443.75 130 1.13 0.26 11.26 −5.52 −5.52 5

FIG. 10. Variation of GW intensity as a function of the
frequency for the chosen four BPs with the sensitivity curves
of ALIA, BBO, DECIGO, aLIGO, aLIGO+, and LISA detectors. 6For an alternative approach, see [148].
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maximum value are 10−2, 7 × 10−3, 3.80 × 10−2, and
3.40 × 10−2 Hz for BPI, BPII, BPIII, and BPIV, respec-
tively. As is evident from Fig. 10, the GW intensities for all
the BPs (BPI–BPIV) lie within the sensitivity curves of
ALIA, BBO, and DECIGO. The upshot is thus to note the
fact that the benchmark values of m12 and tan β for DM
phenomenology agree well with those of a successful
SFOPT leading to the production of a detectable GW
signal.

VII. CONCLUSIONS

In this paper, we have proposed a singlet-doublet fer-
mionic DM model, where the lightest fermion (odd under
an imposed discrete symmetry Z0

2), emerging as a singlet-
doublet admixture of VLFs, can be a viable DM candidate
(ψ1). We extend the model with a second Higgs doublet,
where the second Higgs is odd under another discrete
symmetry Z2. The imposition of two different discrete
symmetries is necessary to prevent the occurrence of the
FCNC at tree level, while allowing a strong first-order phase
transition within a consistent DM framework. The DM in
this case is a weakly interacting massive particle that
undergoes freeze-out to yield the Planck observed relic
abundance. This is achieved via annihilation of the DM with
itself, also via its coannihilation with its massive component
(ψ2) and with the charged component (ψ�). As the doublet
carries a SUð2ÞL charge, hence, on top of scalar mediation,
the annihilation channels are also SM gauge mediated. The
presence of the Z-mediated direct search puts a strong bound
on the model parameter space allowing the VLF mixing
sin θ ≲ 0.3 for both tan β ¼ 1.3 and tan β ¼ 5 for a DM
mass up to ≳1 TeV. The presence of the second Higgs
makes the direct detection bounds less stringent. This is
typically due to (a) sin2 α=m2

H suppression from the heavier
Higgs with small scalar mixing and (b) some destructive
interference between the two scalar-mediated diagrams (the
so-called blind spot) that offers some breathing space in the
direct detection parameter space. Thus, one can still achieve
a moderate sin θ in contrast with singlet-doublet models
with only a SM Higgs. The model thus lives over a large
parameter space, satisfying both relic abundance and spin-
independent direct search bounds.
We have then explored possible signatures that this

model can give rise to at the LHC. As the leptonic channels
are cleaner, we have studied the hadronically quiet dilepton
final states (HQ2L) where we see that a substantial signal
significance is achievable (for an integrated luminosity
L ∼ 300 fb−1) by a judicious choice of cuts on the MET
and HT . This is again possible because of the presence of
the second Higgs doublet that allows large sin θ, satisfying
both relic abundance and direct search, which, in turn,
allows a large Δmð≡mψ� −mψ1

Þ ∼ 1 TeV. Larger Δm is
the key to distinguish the signal from the dominant SM
backgrounds exploiting hard cuts on MET and HT . For

Δm≲mW the model may be probed via a displaced vertex
signature due to the off-shell decay of the charged VLF to
SM leptons and neutrino.
We finally have looked into the possibility of getting a

GWvia a SFOPT due to the extended scalar sector. We have
found that for both tan β ¼ f1.3; 5g the model is capable of
producing a detectable GW signal modulo we tune the
parameter m12 accordingly. The probability of getting a
SFOPT is thus very sensitive to the choice of m12. We see
that, for some benchmark values of m12 and tan β, one can
have a detectable GW signal via SFOPTwhile satisfying all
DM constraints. This model thus leaves us with the window
of probing such singlet-doublet DM models via GW
detectors even if other experiments give rise to null results.
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APPENDIX: EXPRESSIONS FOR THE
DECAY WIDTHS AND RELEVANT

FEYNMANN DIAGRAMS

1. Invisible Higgs and Z decay

The SM Higgs can decay to ψ1 pairs. Now, the
combination of SM channels yields an observed (expected)
upper limit on the Higgs branching fraction of 0.24 at
95% C.L. [151] with a total decay width Γ ¼ 4.07×
10−3 GeV. On the other hand, the SM Z boson can also
decay to DM pairs and, hence, constrained from observa-
tion: ΓZ

inv ¼ 499� 1.5 MeV [96]. So, if Z is allowed to
decay into a ψ1ψ1 pair, the decay width should not be more
than 1.5 MeV.

TABLE VII. Invisible Higgs branching ratio and invisible Z
decay width for different benchmark points tabulated in Tab. II.
Only for BP3 the constraint from invisible Higgs branching ratio is
applicable, which isOð10−6Þ for tan β ¼ 1.3 or tan β ¼ 5. Blanks
cells are “not applicable” for cases where mψ1

> mZðmhÞ=2.
Benchmark point Brhiggsinv

ΓZ
inv (MeV)

BP1
BP2
BP3 ∼10−6
BP4
BP5
BP6
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Since either Δm [for BP(1,2,3,4,5,6)] or mψ1
is much larger than 100 GeV for all the benchmarks, neither Z nor h

can decay to the heavier mass eigenstate ψ2. Therefore, the expressions for H1 → ψ1ψ1 and Z → ψ1ψ1 decay widths are
given by

Γhiggs
inv ðH1 → ψ1ψ1Þ ¼

�
Y2sin2θcos2θsin2α

8π

�
mh1

�
1 −

4m2
ψ1

m2
h1

�
3=2

; ðA1Þ

ΓZ
invðZ → ψ1ψ1Þ ¼

mZ

48π

e2sin4θ
sin2θWcos2θW

�
1þm2

ψ1

m2
Z

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
ψ1

m2
Z

s
: ðA2Þ

Note that for none of the benchmark points in Table II, except BP3, is either of the constraints from Higgs invisible decay
branching or Z-boson invisible decay branching applicable. Since for BP3 the DMmass is 60 GeV, it is possible for the SM
Higgs to decay to a pair of ψ1. However, due to small VLF mixing, such a decay is well within the measured invisible decay
rate of SM Higgs (Table VII).

2. Relevant Feynman diagrams for DM (co)annihilation

FIG. 11. Annihilation (i ¼ j) and coannihilation (i ≠ j) type number changing processes for vectorlike fermionic DM in the model.
Here i; j; k ¼ 1; 2; a; b; c ¼ 1; 2, and f stands for SM fermions.

FIG. 12. Feynman diagrams for coannihilation type number changing processes of ψ iði ¼ 1; 2Þ with the charged component ψ� to
SM particles. Here f and f0 stand for SM fermions (f ≠ f0).
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