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The inflation within the minimal supersymmetric standard model (MSSM) is proposed, where the
inflaton field is a combination of the Higgs, squark, and slepton states. While the inflationary phase is fully
governed by the electron Yukawa superpotential coupling, the fields’ condensates float along the flat
D-term trajectory. This predicts the MSSM parameter tan β ≃ 13.1 determined via the value of the curvature
perturbation amplitude. The values of the scalar spectral index and the tensor-to-scalar ratio are predicted to
be ns ≃ 0.966 and r ¼ 0.00118. The postinflation reheating of the Universe proceeds by the radiative decay
of the inflaton to the two gluons (ϕ → gg) with the reheating temperature Tr ≃ 1.4 × 107 GeV.
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I. INTRODUCTION

Besides the firm support from the Planck Collaboration
measurements [1], the inflationary paradigm [2] has strong
theoretical motivations. It elegantly solves many problems
of the big bang cosmology. It is verymotivated and also, as it
turns out, highly challenging to build successful inflation
which has close connection to the particle physics model
with consistent construction. For this purpose, the super-
symmetric (SUSY) setup (insuring flatness of the inflaton’s
potential protected by the supersymmetry) looks one of the
best choice [3] and the Standard Model’s minimal SUSY
extension (MSSM) seems the reasonable framework to deal
with. However, most of the successful inflation models
exploit additional MSSM singlet(s). Among those are
models of inflation within MSSM extension by one singlet
chiral superfield (known as the NMSSM) framework [4],
which although motivated by theoretical and phenomeno-
logical reasons, have reduced predictive power because of
additional parameters. Inflation models with MSSM field
content exploiting slepton and/or squark states alongD-term
flat directions has been studied in numerous works [5] but
with utilizing higher order operators involving new free
parameters in the inflation process. Note that the successful
inflation within various well-motivated extensions of the
MSSM, such as SUSY grand unified theories (GUTs) and
SUSY left-right symmetric models, have been considered
[6]. However, still, all these constructions involve additional
MSSM singlet states with additional couplings.

In a recent paper [7] within the MSSM, the model of
inflation along D-flat trajectory was proposed, where
inflaton field emerged as a combination of the slepton
and Higgs fields. The model utilized nonminimal Kähler
potential, however, in the inflation and postinflation reheat-
ing processes onlyMSSMYukawa superpotential couplings
have been involved. This made themodel very predictive. In
this paper we pursue this approach and investigate the
possibility of involvement of the squark (the superpartners
of the quarks) states into the inflation process.We present an
interesting and novel possibility in which inflaton emerges
as a superposition of the Higgs, squark, and slepton states.
The inflaton potential, emerged from the superpotential
F-term, involves only the electron Yukawa coupling. This
fixes the value of the MSSM parameter tan β. Besides this,
the inflaton decay and subsequent reheating process is fully
governed by the known MSSM couplings. Thus, very close
interconnection between cosmology and particle physics
model is established.
Successful inflation is realized by the specific form of

nonminimal Kähler potential. Proposed inflation model,
which is discussed and investigated in next two sections,
also has several interesting phenomenological implications
(discussed at the end of the paper).

II. THE FRAMEWORK AND THE
INFLATON POTENTIAL

The framework we are using is the N ¼ 1 supergravity
[8,9]. The action is built up from the D and F-term
Lagrangian densities

LD þ LF; ð1Þ

which are determined by the Kähler potential K, the
superpotential W and by the gauge kinetic function fIJ.
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By the superconformal formulation, the LD;F are given as
follows [9]:

LD ¼ −3
Z

d4θe−K=3ϕ̄†ϕ̄;

LF ¼
Z

d2θϕ̄3W þ 1

4

Z
d2θfIJWαIWJ

α þ H:c: ð2Þ

where ϕ̄ is the conformal compensator chiral superfield.
The WαI denote the gauge chiral superfield corresponding
to the SUð3Þc, SUð2ÞL, and Uð1ÞY symmetries. We will
consider fIJ ¼ δIJ—the canonical kinetic terms for the
gauge superfields. In (2) and below, where it is convenient,
we set the reduced Planck massMPl to one. In this way, any
dimensionful quantity will be understood to be measured in
the unit(s) of MPlð¼ 2.4 × 1018 GeVÞ.
The Kähler potential K and the superpotential W are

the functions of the MSSM chiral superfields ΦI . The latter
are three families of quark and lepton superfields
ðq;uc;dc;l;ecÞα (α ¼ 1, 2, 3 is the family index), and the
up and down-type Higgs doublet chiral superfields hu, hd:

ΦI ¼ fðq; uc; dc; l; ecÞα; hu; hdg: ð3Þ

After integrating out the auxiliary fields and fixing the
conformal symmetries ϕ̄ ¼ 1, the scalar potential will get
contributions from F and D-terms:

V ¼ VF þ VD; ð4Þ

where the F-term scalar potential is given by [8,9]:

VF ¼ eKðDJ̄W̄KJ̄IDIW − 3jWj2Þ; ð5Þ

where DIW ¼ ð ∂
∂ΦI

þ ∂K
∂ΦI

ÞW and DJ̄W̄ ¼ ð ∂
∂Φ†

J
þ ∂K

∂Φ†
J
ÞW̄.

The matrix KJ̄I is an inverse of the Kähler “metric” KIJ̄ ¼
∂2K

∂ΦI∂Φ†
I
. Thus, KIM̄KM̄J ¼ δJI and KĪMKMJ̄ ¼ δĪJ̄.

Further, we will use the following nonminimal Kähler
potential:

K ¼ − ln

�
1 −

X
I

Φ†
I e

−VΦI

�
; ð6Þ

which in the small field limit (ΦI ≪ 1) has the canonical
form K →

P
I Φ

†
I e

−VΦI. However, for the large values of
the fields, as was shown [7], the form of (6) together with
the MSSM Yukawa superpotential terms can give success-
ful inflation with observables determined in terms of the
MSSM parameters. Note that with logarithmic but slightly
different Kähler potential (exploiting MSSM singlet
states), the successful chaotic inflation was realized in
Refs. [10,11]. In this paper, we study the inflation with the
inflaton emerging from the scalar components of the

MSSM states only. We will be focusing to realize inflation
along the flat D-term trajectory, i.e., hVDi ¼ 0 during the
inflation. In works [12,13] the slepton and/or squark
condensates along the flat directions have been used for
the baryogenesis process in the early Universe. The
inflation with sleptons and/or squarks has been studied
in Refs. [5], however, these constructions exploit higher
order operators with many new parameters involved in the
inflation process.
With the Kähler potential (6), the D-term potential VD is

build from the Killing potentials DG corresponding to
the Uð1ÞY; SUð2ÞL, and SUð3Þc gauge symmetries [G ¼
Y; SUð2Þ; SUð3Þ]:

VD ¼ g21
8
D2

Y þ g22
2
ðDi

SUð2ÞÞ2 þ
g23
2
ðDa

SUð3ÞÞ2: ð7Þ

The Killing potentials DG are related to the D-terms as

DG ¼ DG

1 −
P

IΦ
†
IΦI

ð8Þ

where ΦI in (8) stand for lowest scalar component of the
corresponding chiral superfield. On the other hand, the
D-terms DG corresponding to the Uð1ÞY , SUð2ÞL and
SUð3Þc, are respectively:

DY ¼ jhdj2 − jhuj2 − 2jẽcαj2 þ jl̃αj2

−
1

3
jq̃αj2 þ

4

3
jũcαj2 −

2

3
jd̃cαj2;

Di
SUð2Þ ¼

1

2
ðh†dτihd − h†uτihu þ l̃†ατil̃α þ q̃†ατiq̃αÞ;

Da
SUð3Þ ¼

1

2
ðq̃†αλaq̃α − ũc†α λaũcα − d̃c†α λad̃cαqαÞ: ð9Þ

In (9) the summation under the family index α ¼ 1, 2, 3 is
assumed. τi=2 and λa=2 are respectively SUð2ÞL and
SUð3Þc generators (i ¼ 1, 2, 3, a ¼ 1;…; 8).
One can readily check that given by (8), (9) the equations

KIJ̄ðiTAÞIMΦM ¼ i
∂

∂Φ†
J

DA;

KIJ̄ðiTAÞMI Φ†
M ¼ i

∂
∂ΦI

DA ð10Þ

are automatically satisfied (TA stand for the generator/
charge of the corresponding gauge symmetry). As known
from supergravity constructions [14], these ensure the
consistent supergravity gauge invariance.

A. Choice of flat D-term direction

In MSSM there are numerous solutions with the D-term
flat directions, which have been classified in [15]. Here we
consider one (the eclquc-type flat direction) involving the
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scalar component of hd, the sleptons ẽc; l̃ and the squarks
q̃; ũc. The state hd, different families of sleptons, squarks
(of the quantum numbers indicated above) will share
vacuum expectation values (VEVs) by appropriate weights.
In particular, we will consider the following VEV con-
figuration:

hẽc1i ¼ z; hhdi ¼
�
zcθ
0

�
; hl̃2i ¼

�
zsθ
0

� ↑

SUð2ÞL
↓

hq̃1i ¼
← SUð3Þc →�
0 0 0

0 0 z

� ↑

SUð2ÞL
↓

hũci ¼ ð 0; 0; zcφ Þ;
ht̃ci ¼ ð 0; 0; zsφeiω Þ; ð11Þ

where actions of SUð3Þc and SUð2ÞL are depicted sche-
matically. Also, the short handed definitions cosðθ;φÞ≡
cθ;φ and sinðθ;φÞ≡ sθ;φ are used. The angles θ;φ and the
phase ω will be determined/fixed from the superpotential.
Essential point is the fact that with (11) configuration (and
with zero VEVs of all remaining fields), all D-terms [of
Eq. (9)] vanish (and thus hVDi ¼ 0) for arbitrary values of
z, θ;φ, and ω. While the values of θ;φ;ω will be fixed, the
z will be a dynamical variable and will be related to
the inflaton field. As will be shown, this will lead to the
predictive and successful inflation. To see how things work
out, we need to consider the superpotential couplings.

B. The superpotential and inflaton potential

The MSSM superpotential includes three YE, YD, and
YU Yukawa matrix-couplings and the μ-term:

WMSSM ¼ ecYElhdþqYDdchdþqYUuchuþμhuhd: ð12Þ

Without loss of any generality, we choose the field basis
such that the Yukawa matrices are

YE ¼ YDiag
E ¼ Diagðλe; λμ; λτÞ;

YD ¼ YDiag
D ; YU ¼ VT

CKMY
Diag
U : ð13Þ

From Eq. (12), with (11) we have:

F�
e− ¼ −λez2cθ: ð14Þ

In our construction, this will be the only nonvanishing
F-term contributing to the inflation potential. As men-
tioned, the θ;φ, and ω will be fixed from the superpotential
couplings by imposing the vanishing conditions for all
remaining F-terms. For instance, the requirement F

hð2Þu
¼ 0

gives the condition z2ðVudλucφ þ VtdeiωλtsφÞ ¼ 0, which

is satisfied by fixing ω and φ as follows: ω ¼ π þ ArgðVud
Vtd

Þ,
tanφ ¼ λu

λt
j Vud
Vtd

j ≃ 3 × 10−4 [16]. Here and below, the
μ-term being too smallð∼fewTeVÞ and therefore irrelevant
for inflation, will be ignored. Moreover, we include addi-
tional superpotential W0, which ensures fulfilment of the
condition Fdc ¼ 0. Two cases—(i) and (ii)—can be con-
sidered which have different low energy implications, but
lead to the same inflation process.

(i) W0 ¼ −λq1l2dc. This coupling, together with the
couplings (12) gives hF�

dci ¼ z2ð−λdcθ þ λsθÞ ¼ 0,
i.e., fixing the angle θ as tan θ ¼ λd

λ .
(ii) W0 ¼ λec1ðq1l2ucÞðq1hddcÞ which gives hF�

dci ¼
z2cθð−λd þ λz4cφsθÞ ¼ 0 and fixes the angle θ as

follows sθ ≃
λd
λz4. Note that such higher order oper-

ator, after the end of the inflation, has no impact on
low energy phenomenology. The same applies to
higher terms emerging from the Kähler potential (6).

For both these cases we will be considering the sup-
pressed values of θ < 0.1 (i.e., cθ ≃ 1), therefore expres-
sions given above are pretty accurate [17].
It is essential and very important that the values of θ;φ

and ω are fixed. Since they are parametrizing the field
configuration along the D-term flat direction [see Eq. (11)]
they are dynamical degrees and their fixation means their
stabilization. This ensures that during the inflation there are
no unstable/runaway directions. Plots in Fig. 1 represent the
potential as a function of ðϕ; θÞ and ðϕ;φÞ variables
respectively [ϕ denotes inflaton and is related to z via
Eq. (19). See also the caption of Fig. 1]. They demonstrate
that the valley (with a slight slope) is along the direction of
the inflaton field ϕ. Also, it is important that there are no
other tachyonic or fast moving degrees of freedom. We
have checked, with the couplings and arrangements given
above, and made sure that the presented inflation scenario
is fully consistent.
Now we are ready to derive the inflaton potential. With

the VEV configuration (11) we have hWi ¼ 0 and non-
vanishing F-term of Eq. (14) gives from (5):

VF ¼ eKKe−†e− jFe− j2; ð15Þ

which depend on the form of the K. Had we have
considered minimal (canonical) form for the Kähler poten-
tial

P
I Φ

†
I e

−VΦI, with (14) and θ ≪ 1, the inflaton
potential would be λ2ez4. The latter would give an unac-
ceptably large tensor-to-scalar ratio. Thus, refuting this
possibility, we are considering the form given by Eq. (6).
The kinetic part, which includes ð∂zÞ2 is

KIJ̄∂ΦI∂Φ�
J → ð∂VzÞ†hKðzÞi∂Vz; ð16Þ

where with (6) and (11) we have:
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VT
z ¼ ðz; zcθ; zsθ; z; zcφ; zsφe−iωÞ;

hKðzÞiT ¼ 1

1 − 4z2
16×6 þ

z2

ð1 − 4z2Þ2

0
BBBBBBBBBB@

1 cθ sθ 1 cφ sφe−iω

cθ c2θ cθsθ cθ cθcφ cθsφe−iω

sθ cθsθ s2θ sθ sθcφ sθsφe−iω

1 cθ sθ 1 cφ sφe−iω

cφ cθcφ sθcφ cφ c2φ cφsφe−iω

sφeiω cθsφeiω sθsφeiω sφeiω cφsφeiω s2φ

1
CCCCCCCCCCA

ð17Þ

Using (17) in (16) and introducing canonically normalized
real scalar ϕ—the inflaton—we obtain

KIJ̄∂ΦI∂Φ�
J → 4

ð∂zÞ2
ð1 − 4z2Þ2 ≡

1

2
ð∂ϕÞ2: ð18Þ

From the last equality of (18) we can get the following
relation

z ¼ 1

2
tanh

�
ϕffiffiffi
2

p
�
; ð19Þ

where ϕ is canonically normalized inflaton field. Moreover,
due to the form of the K in (6) and the VEV configuration
(11), we have eKKe−†e− ¼ 1. With these, from (15), for
θ ≪ 1 (achieved by suitably selecting the value of λ) we
derive the inflaton potential V to have the form:

VðϕÞ ¼ VFðϕÞ ≃
λ2e
16

tanh4
�

ϕffiffiffi
2

p
�
: ð20Þ

As we see, the inflaton potential depends on a single
MSSM Yukawa coupling λe. Its value, i.e., the value of the
MSSM parameter tan β [18], will be determined from As—
the amplitude of the curvature perturbations.

III. INFLATION AND REHEATING

The flat shape of the tanh ϕffiffi
2

p function for the large values
of ϕ ensures also the flatness of the inflaton potential (20).
The dynamics during the slow roll regime is governed
by the slow roll parameters which, derived from the
potential—the “VSR” parameters—are [19,20]:

ϵ ¼ 1

2

�
V 0

V

�
2

; η ¼ V 00

V
; ξ ¼ V 0V 000

V2
: ð21Þ

These parameters determine the spectral index ns, the
tensor-to-scalar ratio r

ns¼ 1−6ϵiþ2ηiþ
2

3
ð22−9CÞϵ2i

− ð14−4CÞϵiηiþ
2

3
η2i þ

1

6
ð13−3CÞξi;

r¼ 16ϵi

�
1−

�
2

3
−2C

�
ð2ϵi−ηiÞ

�
; C¼ 0.0815; ð22Þ

and the value of the spectral index running

dns
d ln k

¼ 16ϵiηi − 24ϵ2i − 2ξi: ð23Þ

(a)

(b)

FIG. 1. (a): Dependance of the potential on θ and ϕ. V̂F ¼
VF=ð85λ2eÞ and φ ≃ 3 × 10−4 is taken. (b): Potential as a function
of φ and ϕ. ṼF ¼ VF=ð8λ2eÞ and θ ≃ 0.012 is taken. Both plots
corresponds to the case (i) and ω ¼ π þ ArgðVud

Vtd
Þ is taken.

Arrows correspond to the inflaton’s path.
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Expressions in Eqs. (22), (23) are valid within the second
order approximation, which is fully sufficient due to the
slow roll regime. Here and throughout the paper, the
subscript “i” indicate that the appropriate quantity is
calculated at point ϕi, which corresponds to the beginning
of inflation. Similarly, subscript “e” will correspond to
ϕe—the point at which inflation ends.
Since the slow roll breaks down at ϕe, the ϕe’s value

should be determined by the exact condition ϵH ¼ 1. The
ϵH ¼ 1 (the HSR parameter) is derived from the Hubble
parameter. The relations between HSR and VSR parame-
ters (given in Refs. [19,20]) can be used upon analysis of
the inflation process. As far as the ϕi is concerned, its value
(with ϕe already fixed by the condition ϵH ¼ 1) determines
the number of e-foldings Ninf

e during the inflation. The
latter is given by the exact expression:

Ninf
e ¼ 1ffiffiffi

2
p

Z
ϕi

ϕe

1ffiffiffiffiffiffi
ϵH

p dϕ: ð24Þ

On the other hand, to guarantee the causality of fluctua-
tions, the Ninf

e should satisfy [21]:

Ninf
e ¼ 62 − ln

k
a0H0

− ln
1016 GeV

V1=4
i

þ ln
V1=4
i

V1=4
e

−
4 − 3γ

3γ
ln
V1=4
e

ρ1=4reh

; ð25Þ

where k ¼ 0.002 Mpc−1 and the present horizon scale a0H0

is a0H0≈0.00033Mpc−1. The factor γ¼2

R
ϕe
0

ð1−V=VeÞ1=2dϕR
ϕe
0

ð1−V=VeÞ−1=2dϕ
(equals to ≃1.19 in our case) accounts for the effect of
inflaton’s oscillation around its minima after inflation [22].
For consistency, we need tomatch the values ofNinf

e obtained
fromEqs. (24) and (25). As it turns out, within the considered
scenario ϕi ≃ 1.1295 and ϕe ≃ 4.8325 (given in the units of
MPl ¼ 2.4 × 1018 GeV). These points, together with the
inflaton’s trajectory during the course of the inflations, are
shown in plots of Fig. 1. Because of the large values of ϕ,
inclusion of some additional higher order operators may
affect the process of inflation. For avoiding this, one way
would be to impose additional symmetries forbidding such
potentially dangerous terms [23]. Once such symmetry is
found, all obtained results would be robust. Not pursuing
here, we leave this issue for further investigation.
With ϕi get fixed, we can calculate the observables given

in (22) and (23). These quantities are calculated by the
parameters in (21). The latter are independent of the λe—
the single coupling appearing in (20). λe’s value is
important for the value of the vacuum energy dominantly
stored in the scalar potential V during the inflation. The
values Vi;e are needed to carry calculations with Eq. (25).
On the other hand, another observable—the amplitude of
curvature perturbation As given by

A1=2
s ¼ 1ffiffiffiffiffi

12
p

π

���� V3=2

M3
PlV

0

����
ϕi

; ð26Þ

can be used to determine Vi and consequently the value of
λe. In order to get experimentally measured value A1=2

s ¼
4.581 × 10−5 [1], using (26), we need to have λeðMPlÞ ¼
2.435 × 10−5 [16]. This, in turn allows us to determine the
MSSM parameter tan β to be [18]:

tan β ≃ 13.12: ð27Þ

In addition, calculation of the thermal energy density
ρreh ¼ π2

30
g�T4

r is required. It depends on the reheating
process (via reheating temperature Tr) which is realized
by the inflaton’s decay. In this case [24]:

Tr ¼
�

90

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPlΓðϕÞ
p

; ð28Þ

where g� is the effective number of massless degrees of
freedom at temperature Tr (g� ¼ Nb þ 7

8
Nb and in our case

is g� ¼ 42.75), and ΓðϕÞ is inflaton’s decay width. It turns
out that within our model, all parameters involved in the
inflation and in this process are known. This enables us to
calculate ΓðϕÞ and therefore predict the Tr.
Since the inflaton comes from the MSSM states, its

couplings to the remaining states are well fixed. The VEV
configuration (11) breaks the SUð3Þc × SUð2ÞL ×Uð1ÞY
symmetry down to the SUð2Þc. Thus, from the gauge sector
only SUð2Þc’s states are massless. Via the Yukawa super-
potential, the inflaton field couples to the MSSM chiral
superfield states via the z VEV. And the very same
couplings generate masses (which scale as z times corre-
sponding Yukawa coupling) of the latter states. Because of
this, it turns out that states which have tree level coupling
with the inflaton are heavier than the inflaton. Therefore,
inflaton’s tree level decays are either kinematically for-
bidden or (if realized via many body decays) are strongly
suppressed.
The dominant decay of the inflaton ϕ happens radia-

tively (via 1-loop correction) in two massless gluons of the
unbroken SUð2Þc. Corresponding decay width is given by:

ΓðϕÞ ≃ Γðϕ → ggÞ ¼ 3m3
ϕα

2
s

2ð8πÞ3
����
X

Q
fQA1=2ðτQÞ

����
2

≃
m3

ϕα
2
s

48π3

�
F0

F
þ F0

g

Fg

�
2

; ð29Þ

where m2
ϕ ¼ V 00 (is the inflaton’s mass), τq ¼ m2

ϕ

4m2
Q
and mQ

denote masses of SUð2Þc colored fermions which couple
with the inflaton. Among them are SUð2Þc doublets from
massive s, b quarks, which circulate into the loop diagram.
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For them fs;b ¼ F0
F is taken in Eq. (29). Their canonically

normalized couplings to the inflaton emerges from the
Yukawa term:

1

2
FðϕÞdTYDdc; FðϕÞ ¼ tanh

ϕffiffiffi
2

p
�
1 − tanh2

ϕffiffiffi
2

p
�

1=2
;

ð30Þ

which for ϕ − d − dc-type interaction gives 1
2
F0ϕdTYDdc,

where F0 ¼ dF
dϕ, and that is how the term F0

F ¼ fs;b appears in
Eq. (29). Besides these, in the loop (governing inflaton’s
decay) two massive Dirac fermions circulate, which are
formed after SUð3Þc → SUð2Þc breaking and pairing cor-

responding gauginos and colored matter. For them fg ¼ F0
g

Fg

was used in (29) with FgðϕÞ ¼ sinh ϕffiffi
2

p . The function

A1=2ðτQÞ in Eq. (29) has property A1=2ðτQÞjτQ≪1
≃ 4=3

[25]. In (29) all ϕ dependent quantities need to be evaluated
at point ϕ ¼ ϕe.
Having all these expressions, we can carry out detailed

analysis related to the inflation process. Doing so, for the
observables we obtain [16]:

ns ¼ 0.9662; r¼ 0.00118;
dns
d lnk

¼ −5.98× 10−4;

Ninf
e ¼ 57.74; ρ1=4reh ¼ 2.61× 107 GeV;

Tr ¼ 1.35× 107 GeV: ð31Þ

As one can see, the values of ns; r and dns
d ln k are in good

agreement with the current observations [1]. We will
comment about the value of the reheating temperature
Tr in the next section, where some implications and related
phenomenology are discussed.

IV. RELATED PHENOMENOLOGY
AND DISCUSSION

In this section, first we discuss some implications and
phenomenology related to the inflationary scenario we have
presented above and then give a brief summary.

A. Relic gravitinos

For the reheat temperature Tr obtained in this scenario
[see Eq. (31)], the thermally produced gravitino abundance
can easily be compatible [26] with observations for specific
and phenomenologically viable sparticle spectroscopy.
As far as the nonthermal gravitino production, via the

inflaton decay is concerned, as shown in [27], this process
can be adequately suppressed. However, results of [27]
applies for minimal Kähler potential. If nonminimal Kähler
potential involves specific mixing terms between the
inflaton z (as denoted in the present work) and SUSY
breaking superfield X, then situation in general would be

different [28–30]. As was pointed out [28,30], the addi-
tional δK ¼ jzj2X2 Kähler potential coupling, can lead to
the gravitino overproduction. This term can be easily
forbidden if X field transforms either under some Uð1Þ
or R-symmetry, or under discrete symmetry (such as for
instance Z3). Thus, the details of the SUSY breaking sector
is important. On the other hand, connection of the SUSY
breaking mechanism with our inflation model deserves
separate investigation.

B. Neutrino masses

Within the considered scenario, in case (i) [see paragraph
after Eq. (14)] the lepton number violating W0 ¼ −λq1l2dc
superpotential coupling, which also breaks matter parity,
was exploited. This, at 1-loop level induce μihuli-type
superpotential and soft Bihul̃i terms, which result neutrino

mass mνμ ≈
λ2g2

2

4c2w

m2
d

m̃ ð 9
8π2

lnMPl
MZ

Þ2 [31], by neutralino exchange

[similar to seesaw induced neutrino mass, generated by the
right handed neutrino (RHN) exchange], where m̃ is the
SUSY scale (for simplicity we have assumed that all
sparticles have masses close to m̃). This, by demanding
mν∼

<
0.1 eV for m̃ ¼ 2 TeV gives the bound λ∼< 0.1. This,

together with desirably suppressed value of tan θ ≃ λd
λ < 0.1

gives 6 × 10−4∼< λ∼< 0.1. The λq1l2dc superpotential cou-
pling term also directly contribute to the 1-loop neutrino

mass ∼ 3λ2

8π2
m2

d
m̃ [31]. This, for λ∼< 0.1 gives more suppressed

contribution δmν∼
<
2 × 10−3 eV. Although these neutrino

mass scales are close to the values needed for accommo-
dation of the neutrino data [32], by the W0 ¼ −λq1l2dc
coupling alone would be hard and challenging to get also
desirable neutrino mixing pattern. To achieve all these, one
way is to include additional λ̄ijkeci ljlk and λijkqiljdck-type
terms, and by proper selection of various couplings obtain
consistent neutrino sector. However, within our study, one
should also take care that considered inflation model
remains intact. Alternative, and perhaps simpler, way would
be to include right handed neutrino (RHN) state(s), which
can lead to desirable neutrino oscillations via the contribu-
tion of conventional seesaw mechanism [33]. This possibil-
ity definitely seems the simplest choice especially for our
case (ii), which preserves matter parity and lepton number.
Detailed study of the neutrino sector in connection to the
considered model of inflation should be pursued elsewhere.
Concluding, within the MSSM we have presented model

of inflation in which the inflaton is a combination of the
Higgs, slepton, and squark states. While the VEVs of these
states are along the flat D-term trajectory, the inflation is
driven by the vacuum energy of the electron Yukawa
superpotential. This uniquely fixes the value of the
MSSM parameter tan β [see Eq. (27)]. To our knowledge,
it is first example with such close connection between the
particle physics model and inflationary cosmology. Since
all parameters involved in the inflation and postinflationary
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reheating processes were known, the presented model is
very predictive.
Encouraged by these findings, would be interesting

to realize similar constructions in a framework of other
well-motivated SUSY constructions such as left-right
symmetric and grand unified [i.e., SUð5Þ, SOð10Þ, etc.]

models. Note that, if within the GUTs, inflaton condensate
(being either Higgs, slepton, or squark state) breaks the
GUT symmetry, then (as shown in Ref. [34]) within such
construction the monopole problem can be easily avoided.
Investigation of these exciting issues will be performed
elsewhere.
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