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We consider a class of gauged U(1) extensions of the Standard Model (SM), where the light neutrino
masses are generated by an inverse seesaw mechanism. In addition to the three right handed neutrinos, we
add three singlet fermions and demand an extra Z, symmetry under which, the third generations of both of
the neutral fermions are odd, which in turn gives us a stable dark matter candidate. We express the U(1)
charges of all the fermions in terms of the U(1) charges of the standard model Higgs and the new complex
scalar. We study the bounds on the parameters of the model from vacuum stability, perturbative unitarity,
dark matter relic density, and direct detection constraints. We also obtain the collider constraints on the Z’
mass and the U(1)’ gauge coupling. Finally, we compare all the bounds on the Z' mass versus the U(1)’

gauge coupling plane.
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I. INTRODUCTION

The discovery of the Higgs boson with a mass of
125 GeV at the Large Hadron Collider (LHC) [1,2] has
placed the Standard Model (SM) on a firm footing.
However, the SM still does not have answers to some of
the very fundamental questions like the origin of the
neutrino masses and the existence of dark matter (DM).
A straight forward way to include the generation of the
sub-eV scale neutrino masses and the presence of the DM
into the SM is by adding extra particles, which may or may
not involve the extension of the SM gauge group.

Among the various beyond Standard Model (BSM)
scenarios that have been proposed in the literature, the
models in which the SM is extended by a U(1) gauge group
has received some attention. The models with an extra U(1)
gauge group naturally contain three right-handed neutrinos
as a result of the conditions for the gauge anomaly
cancellation. Thus, the active light neutrino masses can
be generated via the canonical type-I seesaw mechanism
[3-6]. However, in canonical type-I seesaw model, which is

*arindam.das@het.phys.sci.osaka-u.ac.jp
sruba@prl.res.in

*vishnudath@prl.res.in
nomura@Xkias.re.kr

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010,/2020,/101(5)/055026(17)

055026-1

considered in most of the U(1) extended models, one either
has to go for extremely large Majorana masses
(~10' GeV) or very small Yukawa couplings (~107°),
making it difficult to probe the heavy neutrinos at the
colliders. Motivated by testability in colliders, various TeV
scale extensions of the type-I seesaw model have been
considered in the literature (for recent reviews, see [7—10]).
One of the most popular TeV scale seesaw models is the
inverse seesaw model [11], where the smallness of the
neutrino mass can then be attributed to a small lepton
number violating term. A tiny value of this lepton number
violating term is deemed natural, since when this parameter
is zero, the global U(1) lepton number symmetry is
reinstated and neutrinos are massless. Especially, an inverse
seesaw mechanism in the context of a U(1),_, extension of
the SM has been studied in Ref. [12]. In these models, the
presence of extra singlet fermions (in addition to the right-
handed neutrinos) helps us to bring down the seesaw scale
(which is the U(1) breaking scale) to ~O(TeV), simulta-
neously allowing for large Yukawa couplings, ¥, ~ O(0.1).

An important aspect of the U(1) extended models which
has been scrutinized recently is the implications for the
stability of the electroweak (EW) vacuum [13-22]. The
measured values of the SM parameters, especially the top
mass M, and strong coupling constant a,, implies that
there exists an extra deeper minima, which threatens the
stability of the present EW vacuum [23,24], since this may
tunnel into that true vacuum. The calculation of the decay
probability suggests that the present EW vacuum is
metastable at 3¢ which means that the decay time is greater
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than the age of the Universe. It is well known that the scalar
couplings pull the vacuum toward stability whereas the
Yukawa couplings push it toward instability. The EW
vacuum stability in the context of a class of minimal
U(1) extensions containing extra scalars and fermions has
been studied by the authors of [16-18,20], and they have
shown that the behavior of the EW vacuum depends also on
the U(1) quantum numbers chosen, since the renormaliza-
tion group equations (RGEs) depend on these quantum
numbers. The conformal symmetric versions of such
models have been considered in Refs. [21,22].

As already mentioned, the existence of the DM is
another major motivation for going beyond the Standard
Model. Measurements by Planck and WMAP demonstrate
that nearly 85% of the Universe’s matter density is dark
[25]. Hence, it is very important to study models that can
simultaneously explain neutrino mass as well as DM and
their theoretical as well as phenomenological implications.
The models with an extra U(1) gauge group can accom-
modate a DM candidate even in the minimal version (with
type-I seesaw), by adding an additional Z, symmetry
[26,27], where the third generation of the right-handed
neutrinos act as the DM candidate. Other versions of the
U(1)g_, extension with scalar DM have been studied in
[28-31]. Also, there are various realizations of the
grand unified theories that predict the existence of extra
7' boson [32,33]. The presence of the extra Z' boson that
couples to the quarks and the leptons also gives rise to a
rich collider phenomenology in the U(1) models
[20,22,34-37]. Searches for such Z' boson through its
decay dileptons have been conducted by the ATLAS and
CMS Collaborations, and lower limits on the Z’ mass have
been obtained [38—40].

In this paper, we consider a class of gauged U(1)
extensions of the SM, where active light neutrino masses
are generated by an inverse seesaw mechanism. In addition
to the three right-handed neutrinos, we add three singlet
fermions and demand an extra Z, symmetry under which,
the third generations of both the neutral fermions are odd,
which in turn gives us a stable DM candidate. This allows
us to consider large neutrino Yukawa couplings and at the
same time, keeping the U(1)" symmetry breaking scale to
be of the order of ~O(1) TeV. The main difference of this
inverse seesaw model from that considered in [12] is that
the extra neutral fermions that we are adding are singlets
under the gauge group, and hence we do not have to worry
about anomaly cancellation. Also, instead of considering
one particular model, we express the U(1) charges of all the
fermions in terms of the U(1) charges of the SM Higgs and
the new complex scalar. We perform a comprehensive
study of the bounds on the model parameters from low
energy neutrino data, vacuum stability, perturbative uni-
tarity, and DM, as well as collider constraints. The rest of
the paper is organized as follows. In Secs. II and III, we
introduce the class of the U(1) models under consideration

and discuss the fermionic and the scalar sectors. We discuss
the fitting of the neutral fermion mass matrix in Sec. [V by
taking all the experimental constraints into account. In
Sec. V, we discuss the RGE evolution of the couplings and
present the parameter space allowed by vacuum stability
and perturbative unitarity in various planes. This is fol-
lowed by a discussion on the DM scenario in these models,
where we present the parameter space giving the correct
relic density and satisfying the direct detection bounds at
the same time. In Sec. VII, we discuss the combined
bounds from vacuum stability, unitarity, DM relic density,
and the collider constraints and finally, we summarize in
Sec. VIIL

II. MODEL AND NEUTRINO MASS
AT THE TREE LEVEL

The model considered is based on the gauge group
SU(3).x SU(2), x U(1)y x U(1)". In addition to the SM
particles, we have three right-handed neutrinos vg;, a
complex scalar @ required to break the U(1)" symmetry,
and three gauge singlet Majorana fermions S;. An extra Z,
symmetry is imposed to have a stable fermionic dark
matter. The matter and Higgs sector field content along
with their transformation properties under SU(3), x
SU(2), xU(1)y x U(1)" are given below.

ur 1 1
QLzlidL:|~<3,2,g,xq); dR~<3,1,—§,xd);

2
MRN<3717_’XM)’ (21)
3
1
lL:[DL}rv(l,Z,——,xl); er~(1,1,-1,x,);
er 2
vgp~(1,1,0,x,), (2.2)
G+
H:i< )~<1,2,1,x—H>;
V2 \v+h+iG° 2’2
1
d=—(ptu+iy)~(1,1,0,—xg), 2.3
Wt~ o) 23)
S~(1,1,0,0). (2.4)

Note that the generation indices have been suppressed
here. Under Z,, the third generation of vy and S, i.e., Vg3
and S5 are odd, whereas all the other particles are even and
we assume that this Z, is not broken.

The U(1) charges of the fermions are defined to satisfy
the gauge and gravitational anomaly-free conditions,
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U(1) x[SU3).J*: 2x,—x,—x4=0,
U(1) x[SU(2).]*: 3x,4+x,=0,

U(1) x[U(1)y)?: x,—8x,—2x,+3x,—6x, =0,
[U)PxU1)y: x2—=2x2+x5—x7 +x2=0,
[U(1)P: 6x3—3x) —3x3+2x] —x; —x) =0,

U(1) x [grav]*: 6x,—3x, —3x,+2x,—x,—x,=0. (2.5)

The most general Yukawa Lagrangian (along with the

Majorana mass for §) invariant under SU(3), x SU(2), x

U(1)y x U(1) that could be written using the fields given
above is

—Lyuawa =Y [ Heg + Y, I Hug+Y,0  Hug + Y ;0 Hdg

_ | —
—|—yNsl/Rq)S+§SLM”S+H.C., (26)

where H = io,H*. The invariance of this Yukawa
Lagrangian under the U(1)" symmetry gives us the follow-
ing conditions:

XH

) ==Xy T X, =Xy =Xy ==X X, =X =X,

—Xp = X,
2.7)

Using these conditions and the anomaly-free conditions,
the U(1)’ charges of all the fermions could be determined
in terms of xy and x4 as

XH
Xl/ = —Xq>, )Cl = —Xq) - 7, Xe = —Xq) - XH,
1 1
X, —E(qu,—i—xH), X, —g(sz + Xo),
Xq = 5 (Xo — Xpg). (2.8)

Note that the choice x4 = 1 and xz = 0 correspond to
the well-known U(1)z_;, model. From Eq. (2.6), after
symmetry breaking, the terms relevant for neutrino
mass are

_ _ l—c
—Lyass = U Mprg +UgMgS + ES MMS +H.c., (29)

where Mp =Y, (H) and My = yys(®). The neutral fer-
mion mass matrix M, can be defined as

0 M; O v
1 — .

—Lnass :E( 2URSC) M}L) 0 My vy | +He.
0 M1€ M, S

(2.10)

The mass scales of the three submatrices of M, may
naturally have a hierarchy My > M > M. Then, the

effective light neutrino mass matrix in the seesaw approxi-
mation is given by
Mygne = M (ME) ™' M, Mz M. (2.11)
Because of the extra Z, symmetry, the Yukawa coupling
matrices Y, and yyg and hence the mass matrices M, and
My will have the following textures:

x x 0
Mr=yys(®)~ ] x x 0 and
0 0 x
x x 0
Mp=Y,(H)y~| x x 0]. (2.12)
x x 0

In addition, we will choose M|, to be diagonal without loss
of generality. Since vg; and S3 do not mix with other
neutral fermions, they will not contribute to the seesaw
mechanism and we will have a minimal inverse seesaw
mechanism (3v; + 2vg + 2 S case) in which the lightest
active neutrino will be massless. The two fermions vz5 and
S3; mix among themselves and the lightest mass eigenstate
could be a stable DM candidate. In the heavy sector, we
will have two pairs of degenerate pseudo-Dirac neutrinos
of masses of the order ~Mp + M, that mix with the
active light neutrinos. Thus, we have an inverse seesaw
mechanism in which the smallness of Mj;g, is naturally

attributed to the smallness of both M, and %—l}: For instance,
Mjgn ~ O(0.1) eV can easily be achieved by taking
%—2~ 1072 and M, ~ O(1) keV. Thus, the seesaw scale

can be lowered down considerably for typical values
of the parameters—Y, ~O(0.1), Mp ~ 10 GeV, and
M R 1 TCV

III. SCALAR POTENTIAL OF THE MODEL AND
SYMMETRY BREAKING

The scalar potential of the model is given by

V(®,H) =miH H+ A (H H)> + ,;H HO'®

+ m3®T D + 1,(OT D). (3.1)

The trivial conditions that give a stable potential are

>0,  J>0 and A3 >0, (3.2)

and if A3 < 0, the stability of the potential can still be
achieved by satisfying the following conditions:

A >0, Ay > 0, 402, =23 >0. (3.3)
The above conditions are obtained by demanding the
Hessian matrix corresponding to the potential to be positive

definite at large field values [16,41,42].
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The two scalar fields acquire vacuum expectation values
(vews) given by

=7 (V)@=

The values of v and u are determined by the minimization
conditions and are given by

(3.4)

2 _ m3As/2 — midy

) m%/13/2 — m%/’{]
My =23/4 a

3.5
My — 23/4 (33

After symmetry breaking, the mixing between the fields
h and ¢ could be rotated away by an orthogonal trans-
formation to get the physical mass eigenstates as

<h1>_<cos6 —sin6><h)
hy ~ \sin® cos@ o)

The masses of the scalar eigenstates are

(3.6)

m%],z :ll 1}2 +12u2 :F \/(/111)2 _/12142)2 + (13141))2. (37)

From these, one can get the relations
2

2

A = %(1 + cos20) + "y (1 —cos26),
49? 49?
2 2

1 = %(1 —c0s20) + Ty (1 + cos26),
4u? 4u?

1 = sin2g( ™~ " (3.8)
3 2uv ' '
We use these equations to set the initial conditions on the
scalar couplings 4, 4,, and 13 while running the renorm-
alization group equations. Also, from the above equations,
one can get

Auv

tan20 = ———.
an i]Uz—ﬂzuz

(3.9)

A. Perturbative unitarity

In addition to the vacuum stability conditions, the
constraints from the perturbative unitarity conditions also
put bounds on the model parameters. By considering the
hh — hh and ¢¢ — ¢¢ processes, one can derive com-
bined constraints on the three couplings appearing in the
scalar potential [43,44],

3] <85 3(4 +4) £/ +9(4 —4)? <8z (3.10)

Demanding the other running couplings to remain in the
perturbative regime gives us

g; < Var, (3.11)

where g; stands for SM gauge couplings. For the U(1)
gauge coupling ¢, we require

(xq,d,u.l,e,u.(b)g/’ (.XH/2)g/ < Vénr. (312)

IV. NUMERICAL ANALYSIS AND PARAMETER
SCANNING IN THE NEUTRINO SECTOR

To study the parameter space allowed by vacuum
stability as well as perturbativity bounds up to Mpjuck
using the RGEs, we have to first fix the initial values for all
the couplings. While setting the initial values for the
neutrino Yukawa couplings Y, and yyg, we have to make
sure that they reproduce the correct oscillation parameters
and satisfy all the experimental constraints. To do this, we
find sample benchmark points for ¥, yys, and M, and the
vev of the extra scalar ®(u) by fitting them with all the
constraints using the downhill simplex method [45]. Note
that here, Y, is a complex 3 x 2 matrix, yyg is a complex
2 x 2 matrix, and M, is a 2 x 2 diagonal matrix with real
entries. The various constraints we have taken are as follows:

(i) Cosmological constraint on the sum of light neutrino

masses as given by the Planck 2018 results [46].
This puts an upper limit on the sum of active light
neutrino masses to be

E=m +my+my<0.14 eV. (4.1)

Note that in our case, the lightest active neutrino is
massless and also we are restricting our analysis
only to the normal hierarchy (NH) of the active
neutrino masses since the vacuum stability, dark
matter, and collider analyses are independent of the
hierarchy of the light neutrino masses. In addition, it
has been found that the best fit of the data is for the
NH and IH is disfavored with a Ay? = 4.7(9.3)
without (with) Super-Kamiokande atmospheric neu-
trino data [47]. Thus, we have

m; =0, my=1\/Amy?>, m3=+/Am?,,. (4.2)

(i) The constraints on the oscillation parameters in their
30 range, given by the global analysis [48,49] of
neutrino oscillation data with three light active neu-
trinos following NH, are given in Table I. We use
the standard parametrization of the Pontecorvo—
Maki-Nakagawa—Sakata (PMNS) matrix in which

TABLE I. The oscillation parameters in their 3¢ range for the
normal hierarchy (NH) as given by the global analysis of neutrino
oscillation data with three light active neutrinos [48].

Parameter 3 — o range in NH
Am?,; /1073 eV? 6.80 — 8.02
Am2,, /1073 eV? +2.399 — +2.593
sin® 0, 0.272 - 0.346
sin? 03 0418 - 0.613
sin? 63 0.01981 — 0.02436

055026-4



CONSTRAINING A GENERAL U(1)" INVERSE ...

PHYS. REV. D 101, 055026 (2020)

TABLE II. Two sample benchmark points for the neutrino sector. The above parameters give the correct mixing angles and satisfy the
nonunitarity constraints on Upyns. The value of Br(u — ey) is given as a check.
Parameter BM-I BM-II
Tr[Y, Y]] 0.0898 0.4000
Y. 52 0.0694 — i0.1182 0 —i0.0499 —0.0210 + i0.2269 —0.0329 + i0.0036
( 0.0038 — i0.0022  0.0778 + i0.0442 ) ( 0.0495 - i0.0352  —-0.2321 — i0.3021>
—0.0008 —i0.2183 —0.0071 —i0.1128 —0.1081 —i0.3771  0.1450 + i0.1526
Tr[yNsYH 0.0101 0.1472
Dnslaxe 0.0031 —i0.0082  0.0375 —i0.0351 0.2861 + i0.0073  —0.0025 + i0.1521
My]5.2 GeV 1.0921 x 10 0 1.2655 x 1078 0
0 —2.2092 x 1078 0 —2.5248 x 1078
M; GeV 1766.82, 1766.82, 3085.87, 3085.87 2227.88, 2227.88, 3659.58, 3659.58
Br(u — ey) 4.0946 x 10713 2.2954 x 10713
u (TeV) 50 12
—is
C12€13 $12€13 S13€
U, = | —c3812 = $23513¢12€° 03012 — 533813512¢°  spacy3 | P (4.3)
523512 = €23513C12€"°  —833C15 = C3813512€" Co3cp3
where c¢;; = cos6,;, s;; =sinf;;, and the phase Br(uAu — e Au) <7 x 1073, (4.6)

(iif)

matrix P = diag(1, e®, e(%*9)) contains the Ma-
jorana phases.

The constraints on the nonunitarity of Upyys = U}
as given by the analysis of electroweak precision
observables along with various other low energy
precision observables [50]. At 90% confidence level,
we have

U, U
0.9979-0.9998 <1073 <0.0021
= <107 0.9996-1.0 <0.0008
<0.0021 <0.0008 0.9947-1.0
(4.4)
This also takes care of the constraints coming
from various charged lepton flavor violating decays

like /; — l;y. For example, the branching ratio for
the decay u — ey is constrained as [51]

Br(u — ey) < 4.2 x 10713, (4.5)

In addition, it has been shown in Ref. [52] that the
4 — e conversion in nuclei can give the strongest
bound out of all the flavor violating observables in
the case of type-I seesaw models. The bound on
the branching ratio for the 4 — e conversion in Gold
(Au) nucleus reads as [53]

This has been converted into a bound on the
parameter ﬁeﬂ in Ref. [52] as

R,, <9.7x107°, (4.7)

where
2
D _ * My MJ
o= 2500500, (G o (). 49

where j=1,2, M|,M, are the heavy neutrino
masses such that M| # M, and the factor of 2 takes
care of the degeneracy in mass spectrum. In our
fitting, we have made sure that the parameter sets
that we consider satisfy all these bounds.

In Table II, we give two benchmark points consistent
with all the experimental data discussed above. As a
consistency check, we also give the value of Br(u — ey)
obtained at the two benchmark points.

V. RGE EVOLUTION

The couplings in any quantum field theory get correc-
tions from higher-order loop diagrams and as a result, the
couplings run with the renormalization scale. We have the
renormalization group equation (RGE) for a coupling C as
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0.012 ‘% o= 0;
0.010f %, =l

B xp=1
0.008} u =50 TeV

()
0.006}
0.004 Conucy 7B
0.002 PRGN,
10 15 20 25 30 35

FIG. 1. Region in the m,;, — 0 plane allowed by both vacuum
stability and perturbativity bounds up to Mpj,,q for the model
with x5z = x¢ = 1. For the neutrino Yukawa couplings, we have
used BM-I from the Table II and we have fixed ¢ = 0.1 and
yf\fs =0.5.

ac pY
AN

i

where i stands for the ith loop and f is the corresponding
S function.

We have evaluated the SM coupling constants at the top
quark mass scale and then run them using the RGEs from
M, to Mpjne- For this, we have taken into account the
various threshold corrections at M, [54-56]. Then the SM
RGE:s are used to run all the couplings up to the vev of the
new scalar, after which, the new couplings enter. The
modified RGEs for the SU(3), x SU(2), x U(1), x U(1)
have been used. These have been generated using SARAH
[57]. Since we have considered only the one-loop RGEs of
all the required parameters, it has to be noted that the
allowed parameter space that we present is minimal.
The inclusion of the higher-order RG effects will increase
the size of the allowed parameter space.' The RGEs that we
have used are given in the Appendix. Throughout this
paper, we have fixed the standard model parameters as
my, = 125.6 GeV, M,=173.4 GeV, and a, =0.1184.
Also, we have kept the U(1) gauge mixing to be O at
the scale u throughout this paper.

Figure 1 displays the allowed region in the m, — 6 plane
for the model with x; = xo = 1, keeping all the other
parameters fixed. For the neutrino Yukawa couplings, we
have used BM-I from Table II and we have fixed ¢ = 0.1
and )’}3\?5 = 0.5. From the figure, one can see that for higher
values of 6, only smaller values of m,,, are allowed whereas
for smaller values of 6, larger values of m,, over a
wider range are allowed. Also, it can be seen that for this
model with the considered set of parameters, the values of
my,, > 33 TeV and 6 > 0.012 are disallowed.

"The effect of the two-loop RGEs with one-loop matching is
discussed in Ref. [18] in the context of a class of minimal U(1)
extensions of the SM.

In Fig. 2, we have plotted the running of 1, 4,, and A5 for
the model with xy = xq = 1 for two different values of
my,, and 6. The figure in the left side is for m;,, = 15 TeV
and 0 = 0.004, whereas the one in the right side is for
my,, =20 TeV and 6 = 0.003. For the neutrino Yukawa
couplings, we have used BM-I from Table II and we have
fixed ¢ = 0.1 and y13\,35 = 0.5. We can see that all the three
quartic couplings remain positive up to Mpy,,o for both the
cases implying that the electroweak vacuum is absolutely
stable. This can be seen from Fig. 1 as well where the
above-mentioned points fall in the stable region. Here, the
presence of the extra scalar coupling helps in stabilizing
the vacuum.

In Fig. 3, we have plotted the regions allowed by both
vacuum stability and perturbativity bounds up to Mpj,,g in
the m;,, — xy and m,, — xg planes, for two different values
of 0. The red regions are for @ = 0.003 and the blue regions
are for 6 = 0.01. Figure 3(a) shows the allowed regions in
the mj,, — xy plane keeping all the other parameters fixed.
For the neutrino Yukawa couplings, we have used BM-I
from Table II and we have fixed x4 = 1, ¢ = 0.1, and
yiis = 0.5. It can be seen that for @ = 0.01, a very narrow
region of m,, in the range ~ 10-11.7 TeV is allowed by the
stability and perturbativity constraints and the correspond-
ing allowed range of xy is & — 5.6-4.1. Here, the higher
values of my, are disfavored by the perturbativity con-
straints, whereas the lower values of m,,, are disfavored by
the constraints from vacuum stability. At the same time, for
0 = 0.003, m;, ~ 11-30 TeV is allowed depending on the
value of xy.

Similarly, in Fig. 3(b), we have shown the allowed region
in the my,, — x¢ plane keeping xy = 1 and all the other
parameters fixed for two different values of 6. Here also, for
0 = 0.01, the values of my, greater than 11.7 TeV are
disfavored by unitarity constraints. The lower values of m,,
are disfavored by the stability constraints depending on the
value of xg. For —1.6 < x¢ < 1.6, values of m,, less than
~10 TeV are disallowed, whereas for —5 < xq < —3 and
3 <x¢p <4, values of my, as low as ~4 TeV are allowed.
For 6 = 0.003, values of m;, < 13.4-15.8 TeV are dis-
allowed depending on the values of x, but values as high
as 30 TeV are allowed for —5 < x5 < 4. These results are
consistent with the observations from Fig. 1 where we have
seen that for x;; = x = 1, larger(smaller) values of m,,, are
disfavored for larger(smaller) values of 4.

In Fig. 4, we have presented the regions in the xo — Xy
plane allowed by both vacuum stability and perturbativity
up to Mpjye for fixed values of my,, 6, and ¢'. For the
neutrino Yukawa couplings, we have used the BM-I in
Table 11 and we have taken y3%x = 0.5. The mass of the
extra scalar has been taken to be 6 TeV (10 TeV) in the left
(right) panel and the values of 6 and ¢ are taken to be 0.01
and 0.1, respectively, for both the plots. From these two
figures, we can see that increasing the scalar mass will
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FIG. 2. Running of 4;, 45, and 43 for the model with x;; = x4 = 1 for two different values of m,, and 6. For the neutrino Yukawa
couplings, we have used BM-I from Table II and we have fixed ¢ = 0.1 and y?\fs =0.5.

allow more values of x4, for a given value of x. In fact, one
can see that the allowed values for xq lie in the ranges
~+2.71to £6 and ~ £ 1 to £6 for the figures in the left
and the right panels, respectively. Also, x lies in the range
~ — 6.8 to 7 for both the cases with the considered values of
the parameters. This can be understood from Eq. (3.8)

10 . :
xg =1 g'=01:
=50 TeV :
5.
><I 0
—5Ff
-10 ; : y -
10 15 20 25 30
mp, (TeV)
(@)
10—
Xg=1:g' =01
5t =50 TeV :
;5‘ 0
_5f
5 10 15 20 25 30
mhz(TeV)
(b)
FIG. 3. Regions in the m;, — xy and m;,, — x¢ planes allowed

by both vacuum stability and perturbativity bounds up to Mpj,nck
for two different values of . For the left panel, we have fixed
xg = 1 and for the right panel, we have fixed xy; = 1. For the
neutrino Yukawa couplings, we have used BM-I from Table II
and we have fixed ¢ = 0.1 and y]3V3S = 0.5. The red region is for
6 = 0.003 and the blue region is for 8 = 0.01.

which shows that higher value of m;,, implies higher value
of the scalar couplings which in turn favors stability.
Figure 5 displays the regions allowed by both vacuum
stability and perturbativity up to Mpjne in the My — xy
plane for fixed values of mp,, 0, and x4. Here also, we have
used the BM-I in Table II for the neutrino Yukawa
couplings and we have taken )’13\/35 = 0.5. The mass of
the extra scalar has been taken to be 7 and 10.5 TeV in the

10 m,,;_ =6TeV:
50 =001
'=0.1;
>‘<: 0 u =350 TeV;
_5f
-10 . . .
-10 -5 0 5 10
Xy
(@) mp, = 6 TeV
10 "'h:_; =10 TeV;
5t 6 =001;
g'=0.1;
>é: 0 =50 TeV;
-5t
-10 - - -
-10 -5 0 5 10
Xg

(b) mp, = 10 TeV

FIG. 4. Regions in the x¢ — xy plane allowed by both vacuum
stability and perturbativity up to Mpj,,cc- We have taken the mass
of the extra scalar to be 6 TeV (10 TeV) in the left (right) panel.
For the neutrino Yukawa couplings, we have used BM-I from
Table IT and we have fixed & = 0.01, ¢ = 0.1, and y13v3s = 0.5 for
both the plots.
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10 -
mp, =7TeV;
5t 6 =0.01;
xp =13
- u =50 TeV
SO I, |\
-5t
-10 : ‘ : :
10 15 20 25 30
M,(TeV)
(a) mp, =7 TeV
10 . .
my =105 TeV;
5B 0=00L;
T S
x OF

M,(TeV)

(b) mp, = 10.5 TeV

FIG.5. Regions inthe M, — xy plane allowed by both vacuum
stability and perturbativity bounds up to Mpy,,.. We have taken
the mass of the extra scalar to be 7 TeV (10.5 TeV) in the left
(right) panel. For the neutrino Yukawa couplings, we have used
BM-I from Table II and we have fixed & = 0.01, x4 = 1, and
yiis = 0.5 for both the plots.

left and the right panels, respectively, and the values of 6
and x4, are taken to be 0.01 and 1 for both the plots. Also,
we have varied ¢’ from 0 to 1 keeping u fixed at 50 TeV and
xy in the range —8 to 8. The corresponding values of M,
have been calculated using

X 2
My = \/(xcbglu)z + <7H9/USM> .

From these figures, we can see that lower values of M,
allow large values of xy (or, equivalently lower values of
¢). Also, one can note that for a lower scalar mass, the
lower values of M/, (or equivalently, lower values of ¢) are
disfavored. For mp, =7 TeV, values of M, less than
13 TeV are disallowed and a very small range of xy is
allowed, whereas for m;,, = 10.5 TeV, values of M, as
low as 100 GeV are allowed and correspondingly, xj is
allowed from -8 to 8.

(5.2)

VI. DARK MATTER SCENARIO

In this section, we discuss dark matter physics in our
model with respect to the constraints from relic density and
direct detection experiments. As mentioned earlier, the

third generations of N and S; (N%, S3) are odd under the
Z, parity in the general U(1)’ inverse seesaw model that we
consider. This ensures the stability of N3 and S; which is
required for these to be potential DM candidates. As a
result, the relevant interactions in the Lagrangian can be
written as

_‘Crznass ) y?\?SN_??S:z(D + M?S}S_ZCSZ (61)
Note that N3 cannot couple to the SM Higgs and lepton

doublets due to the Z, symmetry. After the symmetry
breaking, we have (®) = 75 and the mass matrix can be

0 ME
Mg = ( 33 Z§>
Mys M

33
where M35 = % Now, rotating the basis we can write the

written as

(6.2)

physical eigenstates as

N%c _ co's 9_ siné_ v , (63)
S3 —sin@ cos@ ) \ v,

- 2M33, ,33<
where tan260 = | =1 | = \/E}A%" . Note that y; and v, are
N N

Majorana fermions. The mass eigenvalues are obtained as

1 1
My = 5 \/(M§3)2 + (M) F §M§3’ (6.4)

where we take m,, < m,,,. Thus, y, is the lightest Z, odd
particle and our DM candidate. Putting y; and y, back into
Eq. (6.1) along with the physical mass eigenstates of 4 and
¢, we write the interaction among Z, odd fermion and
scalars as

-L>D yifs(— sin @ cos @ cos Oh, + cos Asin O sin Oh,)

X (=yiy1 +yiyn). (6.5)
Then the DM candidate can annihilate through the scalar
portal [Fig. 6(a)], where interactions between h, and SM
particles are induced by scalar mixing [see Eq. (3.6)], and
these couplings are equal to the SM Higgs couplings times
sin @. In addition, the DM can annihilate to the SM particles
via Z' exchange [Fig. 6(c)] where the gauge interactions are
given by

xq>gf - _ . - _
LD~ TZL(COSZHWW’%% + sin®Oo 'y sy,

— 208 Osin Oy ysyr). (6.6)

Furthermore, DM can annihilate into Z’Z’ mode via scalar
portal where the relevant scalar-Z’'Z’ interaction is given by
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DM DM DM
SM
______ |
1
|
|
DM sm /\
N N
(@) (b)
SM
DM
bm (c) SM
FIG. 6. (a) Scalar mediated DM annihilation, (b) direct detection, and (c) Z' mediated DM annihilation.
2 2

M2, M,
LD —%cosOh,Z'7 ——%sin0hZ'7Z'.  (6.7)
u u

A. Relic density

Here we analyze the relic density of our DM candidate.
The DM candidate y; annihilates into the SM particles via
processes induced by Z’' and scalar boson interactions as
shown in Fig. 6. Then we estimate the relic density using
micrOMEGAs 4.3.5 [58] implementing the relevant inter-
actions. First, we focus on the parameter space where the Z’
mediated process dominates for DM annihilation. For
illustration, in Fig. 7, we show the relic density as a
function of DM mass (Mpy = m,,,) for my =4 TeV,
fixing the other parameters as indicated in the plot. The
plot indicates that the required gauge coupling is ¢ 2 0.5,
but it is excluded by the LHC data as we will see later. Note
that in this case, the value of ¢ that gives the correct relic
density depends on the choice of xy and x4 since the
interaction strength of Z’' with the other particles is a
product of ¢ and a linear combination of x; and xg. If we
increase xy and xg, then the value of ¢ that can give the
correct relic density can be lowered. However, for smaller
values of ¢/, the LHC constraints imply much lower values
of M, where the Z’ exchange is not a dominant process. We
also find that the Z' mediated process cannot provide
sufficient annihilation cross section to explain the observed
relic density if DM is heavier than ~3 TeV, complying
with the requirement that the gauge coupling satisfy

(Xgdutevw)ds (xg/2)d < V4n for perturbativity. This
tendency comes from the fact that the annihilation cross
section is P wave suppressed since our DM is Majorana
fermion.

We will now focus on the contribution of /4, exchange
process to the relic density of DM. For illustrating the effect
of this process, we show the relic density as a function of
DM mass for different values of y?\?s and my, in Fig. 8. In

the left panel, we have fixed y?\fs = 2.5 and plotted the relic
density as a function of Mpy for three different values of

My, = 10 TeV

| mz = 4TeV ,/’ |
0.50 ol y

sinf = 0.01

N xp=xy =1

0.20 -

Qn?

0.10-

0.05

185 190 1.95 2.00

Mpy [TeV]

205 210

FIG. 7. Relic abundance as a function of DM mass for different
values of ¢'. All the other parameters have been fixed as given in
the plot.

055026-9



DAS, GOSWAMI, VISHNUDATH, and NOMURA

PHYS. REV. D 101, 055026 (2020)
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0.05 mzg = 6 TeV |
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.02 sinf = 0.5

62 63 64 65 66

1.00} H 3
0.50 ]
147Tev
0.20
« S SN
5 010
my =6TeV
0.05 g =0l 1
sing = 0.005 |
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0.02 sinf=0.5
Ws =25
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1.00
0.50/
0.20 |
D T P S N Y /N
S 0.10 ]
my, = 13 TeV
my =6TeV
0.05 g
sind = 0.005
Xp =Xy = 1
0.02} »E =25 1
62 63 64 65 66
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FIG. 8. Relic abundance as a function of DM mass: for different values of y3 and fixed m,,, = 13 TeV (upper left panel); for different

33 _

values of my,, and fixed y3¢ = 2.5 (upper right panel) and for different sin @ (lower panel).

my,,, keeping all the other parameters fixed. Similarly, we
have taken m;, = 13 TeV in the right plot and plotted the
relic density for three different values of y33. We have also
shown the sin @ dependence in the lower panel of the same
figure. We find that the observed relic density can be
realized for y3% %2 when my, =13 TeV. In addition,
my,, ~ 2Mpy is preferred to enhance the annihilation cross
section which implies that m,, mass is around O(10) TeV
in our model. Note that such a heavy mass scale for &, is
also preferred in stabilizing the scalar potential as we
discussed in the previous section.

We perform a parameter scan and search for the allowed
regions which can explain the relic density of DM. First, we
perform parameter scan in the following ranges focusing on
the scalar exchange process:

Mpy € [1.0,10.0] TeV,  my, € [1.8Mpy. 2.2Mpyy],
v €10.2,3.0], sin@ € [0.001,0.02],
xy € [-5,5], sin € [0.2,0.7],
my =5 TeV, (6.8)

Xo (S [—5,5],
J =0.0l.

We fixed Z' mass and ¢ for simplicity. Note that we
chose my,, ~2Mpy; since we can obtain the observed relic
density in this region via /&, exchange process as discussed
above. In Fig. 9, we show the allowed parameter space in
Mpy — y?\?s and m;,, —sin@ planes that give the correct
relic density of DM, 0.11 < Qh? < 0.13, adopting the
approximate range around the best fit value [46]. From
the left panel of Fig. 9, we can see that in general, for larger

055026-10



CONSTRAINING A GENERAL U(1)" INVERSE ...

PHYS. REV. D 101, 055026 (2020)

Mty
FE LA
25

A
e

3
L~

Tor
'
X

ng",f

- y \gfé.' oy .3:?*\?’_."-“ >
NG| 5%‘.‘%3‘11""‘“’ :.w‘....."
2 Y - RS
s ?"é,?" #% o
PRy
ORI
% u:’h
:e' ..g.t‘
o.sg%,»
2 4 6 8 10

Mpm [TeV]

sin@

T Y R A G e e
§ :.;‘%:%,?:.J'“.: r.::&"f:‘ :\\.‘\(%:O.JE:. . .: o " o
: SRR iy

My, [TeV]

FIG. 9. Parameter regions that give the correct relic density of DM in Mpy — y3i and M n, — sin@ planes for scanning done in the

ranges of parameters as given by Eq. (6.8).

values of Mpy, the allowed values of yi}s are large. But, a
few points with smaller values of y33 are also obtained for
Mpy > My since w oy, — hy — Z'Z’ process is kinemat-
ically allowed there. In the right panel of Fig. 9, we have
shown the allowed parameter space in the m,, —sin6
plane. From this plot, we can see that sin € can be small
for Mpy > My (my, ~ 2Mpy) since h,Z'Z' coupling is
not suppressed by sinf as we can see from Eq. (6.7).
However, we have some lower limit of sin@ for
Mpy < my, since here ww, — hy, > Z'Z' process is
kinematically disallowed and the coupling of h, to the
SM particles is suppressed by sin 6.

B. Direct detection

Here we briefly discuss the constraints from the direct
detection experiments estimating the DM-nucleon (N)
scattering in our model. First, note that the Z’' exchange
process between DM and nucleon will not get stringent
constraint since DM-Z’ interaction is via axial vector
current due to the Majorana property of DM and provides
spin-dependent operator for DM-nucleon interaction. We
thus focus on the scalar mediated processes for DM-
nucleon scattering where the corresponding Feynman
diagram is given in Fig. 6(b). In our case, the DM interacts
with the nucleon through the scalar boson exchange
(hy, hy). The relevant interaction Lagrangian with the
mixing effect is given by

LD CV/IWIh]hllI/_(l:WI + CV/IWIhthW_(l:WI

+ Cynin, miNN + Cyyp, hoyNN, (6.9)

where the effective couplings are

33
10 cos O YNs
Cyy,n, = sinfcos 6 cos Hﬁ,
_ y33

C —sin@ cos Osin @-L2 (6.10)

iy \/z’

Cwynn, = sinOguyy. (6.11)

Cynn, = €08 Ogny-

Hence, the effective Lagrangian can be written as

Ley = Gy NN, (6.12)
C/]ulh]ChINN C/ woh Ch NN
Gh — Y /m2 1/2/2m22 2 , (613)
n h

where m;, and m,,, are the SM and BSM Higgs masses.
The corresponding cross section of Fig. 6(b) in the non-
relativistic limit can be calculated as

5 M3\ M3
o=
INN 62 (M, + M)

oz 11?2
5 (a5 8in26sin26)> <m_%l]_m—,212> ,

(6.14)

where Mpy and My are the DM and nucleon masses,

respectively. The effective coupling can be written as

GINN =L ;V%N where we apply fy = 0.287 for neutron

[59]2 and v = 246 GeV. We then estimate the cross sections
applying allowed parameter sets obtained in previous sub-
section, and the results are shown in Fig. 10. The black
dotted and dashed lines show the current upper bounds from

2 fn for proton has similar value and we here just use fy in
estimating the cross section.
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mpm [TeV]

FIG. 10. Nucleon-DM scattering cross section as a function of
DM mass for parameters that give the correct relic density. The
current upper bounds from PANDAX-II [60] (black dotted line)
and XENON-1t [61] (back dashed line) are also shown.

PANDAX-IT [60] and XENON-1t [61], respectively. We
find that our parameter region is allowed by the direct
detection constraints since the cross section is suppressed by
small sin 8, which is also preferred by the constraints from
vacuum stability. The cross section will be further explored
by the future direct detection experiments like XENON 1t,
PandaX, etc.

VII. BOUNDS ON THE M/ -g' PLANE

In this section, we consider the production of Z’ from the
proton proton collision at the LHC and its decay into
different types of leptons. We first calculate the Z’
production cross section at the LHC from protons followed
by the decay into lepton, pp — Z' — ¢~ with £ = e, u.
In our analysis, we calculate the cross section combining
the electron and muon final states. We compare our cross
section with the latest ATLAS search [40] for the heavy Z’
resonance. Since we are considering U(1)" models with
extra Z', the ATLAS results can be compared directly
with our results. Atlas analysis has considered different
models like sequential Standard Model (SSM) and Z{l, [62],
where the Z' decays into e and u. Conservatively consid-
ering these limits for our case, we first produce the Z’
(300 GeV < M!, < 6 TeV) at the 13 TeV LHC followed by
the decay into the dilepton mode and finally compare with
the cross sections in our model. To calculate the bounds on
the ¢, we calculate the model cross section, oyjoqe» fOr the
process pp — Z' — 2e,2u, with a U(1)’ coupling constant
IModel at the LHC at the 13 TeV center of mass energy. Then
we compare this with the observed ATLAS bound
(ohensd) for L =3% which has been studied for the

Observed I

Vs=13 TeV. — o L=3%)

— xy=-1, xo=1
- Xy=—1, Xp=5
...... X==5, Xo=1
worereee XH==5, Xp=5

100}

107

- ‘
Mz[TeV]

Observed, [
— OpriAs (=3%)

— xy=1, Xo=1

100 N et Xu=1, Xo=5
wmemee X=5, Xo=1
weee Xp=5, Xo=5

0.1

oB[fb]

1074+ 1

1 2 3 4 5 6
Mz[TeV]

FIG. 11. Comparison between the ATLAS [40] (black solid
line) result and model cross sections (blue lines) for the different
values of xz and xq. The model cross sections are produced with
Imodel = 0.05. The left and right panels correspond to xz < 0 and
xy > 0, respectively, and we have considered xq > 0 for both
the cases.

SSM. The corresponding cross sections are plotted in
Fig. 11 for different choices of x5 and x4. Thus, the value
of ¢ corresponding to a given M, is given as

UObserved
ATLAS

OModel

: (7.1)

IModel

since the cross section varies with the square of the U(1)’
coupling (Gisoqer)-

In this analysis, we consider several choices of the xy
and xg to calculate the bounds in the M’, — ¢ plane. These
correspond to two scenarios: (i) xy is negative and xgq is
positive for which the results are shown in Fig. 12 and
(ii) both xy and x4 are positive and the corresponding
constraints in the M/, — ¢ plane are shown in Fig. 13. The
interaction of the Z’' with the fermions via the covariant
derivative will depend on the x;; and x,, values and is given
by the Lagrangian,

—Lin D fL1"d 0.2, f1 + frr*d 0 Z, fr. (7.2)
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FIG. 12. Allowed parameter space combining the bounds ob-
tained on ¢’ as a function of M/, from vacuum stability and
perturbativity (red dots), DM constraints (green dots), and collider
(region below the blue solid line). The blue shaded regions are ruled
out by the recent ATLAS search [40] at 139 fb~! luminosity.
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Here, f; and fj are the left-handed and right-handed
fermions and Q, and Q) are the corresponding charges
under the U(1) gauge group. These charges are linear
combinations of xy and x4 and will appear in the Cy and
C, coefficients of the Z' interactions. The Z’ interaction
with the colored fermions will contain the color factor
N. = 3 in the interaction whereas N. = 1 for the uncolored
fermions. The bounds from the collider for various models
are shown by the blue solid lines in Figs. 12 and 13. The
blue shaded regions in these figures are ruled out by the
current LHC data obtained from the ATLAS experiment
[40] at 139 fb~! luminosity.

In these figures, we have also given the bounds from
vacuum stability, perturbativity, and relic density for
purposes of comparison. For finding the regions that are
allowed by vacuum stability and perturbativity, we have
done a scanning in the following ranges of parameters:

¢ €1[0.0001,1.0],
my, € [2.0,16] TeV,

u €[0.3,100] TeV

yis €10.2,2.5], (7.3)
with @ = 0.01. For Y, and (yys),y,, We have used BM-I
from Table II and we have scaled yyg according to the
variation in u. The values of M, have been calculated using
Eq. (5.2), and the allowed regions are shown by the red
points in Figs. 12 and 13. It can be seen from these figures
that the bulk of the parameter space allowed by vacuum
stability lies in the region disfavored by the ATLAS results.
Regions beyond M, > 5 TeV that is not explored by
ATLAS are seen to be allowed by vacuum stability and
perturbativity constraints. Future ATLAS results will be
able to explore this region.

Similarly, to find out the points that can give the correct
DM relic density, we have performed a scanning of
parameters in the ranges

¢ €[0.0001,1.0], my €[0.1,16] TeV m, €[2.0,16] TeV,
¥ €[02.2.5], Mpy€[1.0,10.0] TeV. (7.4)

Here also, we have fixed @ = 0.01. The green dots in
Figs. 12 and 13 correspond to the values that give the
correct DM relic density. The constraints coming from this
are seen to be less stringent than the combined constraints
from vacuum stability, perturbativity, and ATLAS analysis.

VIII. CONCLUDING REMARKS

In this paper, we have studied the inverse seesaw model
in a class of general U(1) extensions of the SM. We have
studied the parameter spaces in various planes that are
allowed by vacuum stability and perturbativity as well as
consistent with the low energy neutrino data. In addition,
this model has a prospective DM candidate resulting from
the stabilization of the third generations of the SU(2),
singlet neutral fermions using the odd parity under the
discrete Z, symmetry. Comparing the Z’' production and its
decay into the dilepton mode at the LHC with the current
ATLAS results, we find the bounds on the U(1)’ coupling
constant with respect to the Z' mass. Finally, combining all
the constraints, we obtain the resultant allowed parameter
space which can be probed in the future experiments.
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APPENDIX: ONE-LOOP RG EQUATIONS

1
By, == (419} + g1 91,1 (T8xy + 64x0) + g11p911 3991p%0 + 419X + 32911 %0 + 649 xyXe + 664/x3,)

6
+a (419%11; + 91,9 (39xy + 32xp) + 9%;;1(41)6%1 + 64xpxg + 66x3))), (A1)
—-1943
g, =707, (A2)
Bgs = (=103), (A3)
1
Py = 5(419%1”d + 911 (4191911 + (297 + g1 ,1) (39xy + 32x,))
+ 9 (9191,1(39xy + 32xe) + (9% + g%pl)(41xi, + 64xpxg + 66x3))), (A4)
1
Py = 6 (419%91,71 +gl(41g11,9 + (9% + 29%[;1)(39?% + 32x0))
+ 91p1(911,9 (39xy + 32xe) + (g% + g%p])(41x%, + 64xyxe + 66x3))), (AS5)
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1
(2 / /2
11p
Py, 6(91 (41911, +399'xy 4 329 x0) + 91911 (39911 X0 + 41g'x5 + 32911 p X0

+ 64¢/xpxe + 669'x3) + 911p(419%1p + 9119 (78xy + 64xg) + g (41x3; + 64xyxg + 66x3))).

Bu=¢

- 129?1PQ/XH - 129?91,713% -
+6glgl2 2 +18911 ‘dZ

12919%1,;91;713‘11 -

(341 + 691911, + 3911, + 69195 + 641,,95 + 995 — 244914
lzgllpéfg%xH -
+2491911,9 911 X3 + 189191 ,1 %% + 6911 ,91 1 %5 + 697 G3x3 + 641,195

(A6)

—72g30, + 19272 + 842 —

- 249%1,,/11 129%911;;9/3511

129191,719%3% + 489119 M1 xn + 489191141 X0
”.2.2

— 24474 xH - 24glplﬂle 12911,;9 XH - 12g,4? glple 12911p9/91p1x11 129191p1xH + 39/4 2
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