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We consider a class of gauged Uð1Þ extensions of the Standard Model (SM), where the light neutrino
masses are generated by an inverse seesaw mechanism. In addition to the three right handed neutrinos, we
add three singlet fermions and demand an extra Z2 symmetry under which, the third generations of both of
the neutral fermions are odd, which in turn gives us a stable dark matter candidate. We express the Uð1Þ
charges of all the fermions in terms of the Uð1Þ charges of the standard model Higgs and the new complex
scalar. We study the bounds on the parameters of the model from vacuum stability, perturbative unitarity,
dark matter relic density, and direct detection constraints. We also obtain the collider constraints on the Z0

mass and the Uð1Þ0 gauge coupling. Finally, we compare all the bounds on the Z0 mass versus the Uð1Þ0
gauge coupling plane.
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I. INTRODUCTION

The discovery of the Higgs boson with a mass of
125 GeV at the Large Hadron Collider (LHC) [1,2] has
placed the Standard Model (SM) on a firm footing.
However, the SM still does not have answers to some of
the very fundamental questions like the origin of the
neutrino masses and the existence of dark matter (DM).
A straight forward way to include the generation of the
sub-eV scale neutrino masses and the presence of the DM
into the SM is by adding extra particles, which may or may
not involve the extension of the SM gauge group.
Among the various beyond Standard Model (BSM)

scenarios that have been proposed in the literature, the
models in which the SM is extended by aUð1Þ gauge group
has received some attention. The models with an extraUð1Þ
gauge group naturally contain three right-handed neutrinos
as a result of the conditions for the gauge anomaly
cancellation. Thus, the active light neutrino masses can
be generated via the canonical type-I seesaw mechanism
[3–6]. However, in canonical type-I seesaw model, which is

considered in most of theUð1Þ extended models, one either
has to go for extremely large Majorana masses
(∼1014 GeV) or very small Yukawa couplings (∼10−6),
making it difficult to probe the heavy neutrinos at the
colliders. Motivated by testability in colliders, various TeV
scale extensions of the type-I seesaw model have been
considered in the literature (for recent reviews, see [7–10]).
One of the most popular TeV scale seesaw models is the
inverse seesaw model [11], where the smallness of the
neutrino mass can then be attributed to a small lepton
number violating term. A tiny value of this lepton number
violating term is deemed natural, since when this parameter
is zero, the global Uð1Þ lepton number symmetry is
reinstated and neutrinos are massless. Especially, an inverse
seesaw mechanism in the context of aUð1ÞB−L extension of
the SM has been studied in Ref. [12]. In these models, the
presence of extra singlet fermions (in addition to the right-
handed neutrinos) helps us to bring down the seesaw scale
(which is the Uð1Þ breaking scale) to ∼OðTeVÞ, simulta-
neously allowing for large Yukawa couplings, Yν ∼Oð0.1Þ.
An important aspect of the Uð1Þ extended models which

has been scrutinized recently is the implications for the
stability of the electroweak (EW) vacuum [13–22]. The
measured values of the SM parameters, especially the top
mass Mt and strong coupling constant αs, implies that
there exists an extra deeper minima, which threatens the
stability of the present EW vacuum [23,24], since this may
tunnel into that true vacuum. The calculation of the decay
probability suggests that the present EW vacuum is
metastable at 3σ which means that the decay time is greater
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than the age of the Universe. It is well known that the scalar
couplings pull the vacuum toward stability whereas the
Yukawa couplings push it toward instability. The EW
vacuum stability in the context of a class of minimal
Uð1Þ extensions containing extra scalars and fermions has
been studied by the authors of [16–18,20], and they have
shown that the behavior of the EW vacuum depends also on
the Uð1Þ quantum numbers chosen, since the renormaliza-
tion group equations (RGEs) depend on these quantum
numbers. The conformal symmetric versions of such
models have been considered in Refs. [21,22].
As already mentioned, the existence of the DM is

another major motivation for going beyond the Standard
Model. Measurements by Planck and WMAP demonstrate
that nearly 85% of the Universe’s matter density is dark
[25]. Hence, it is very important to study models that can
simultaneously explain neutrino mass as well as DM and
their theoretical as well as phenomenological implications.
The models with an extra Uð1Þ gauge group can accom-
modate a DM candidate even in the minimal version (with
type-I seesaw), by adding an additional Z2 symmetry
[26,27], where the third generation of the right-handed
neutrinos act as the DM candidate. Other versions of the
Uð1ÞB−L extension with scalar DM have been studied in
[28–31]. Also, there are various realizations of the
grand unified theories that predict the existence of extra
Z0 boson [32,33]. The presence of the extra Z0 boson that
couples to the quarks and the leptons also gives rise to a
rich collider phenomenology in the Uð1Þ models
[20,22,34–37]. Searches for such Z0 boson through its
decay dileptons have been conducted by the ATLAS and
CMS Collaborations, and lower limits on the Z0 mass have
been obtained [38–40].
In this paper, we consider a class of gauged Uð1Þ

extensions of the SM, where active light neutrino masses
are generated by an inverse seesaw mechanism. In addition
to the three right-handed neutrinos, we add three singlet
fermions and demand an extra Z2 symmetry under which,
the third generations of both the neutral fermions are odd,
which in turn gives us a stable DM candidate. This allows
us to consider large neutrino Yukawa couplings and at the
same time, keeping the Uð1Þ0 symmetry breaking scale to
be of the order of ∼Oð1Þ TeV. The main difference of this
inverse seesaw model from that considered in [12] is that
the extra neutral fermions that we are adding are singlets
under the gauge group, and hence we do not have to worry
about anomaly cancellation. Also, instead of considering
one particular model, we express theUð1Þ charges of all the
fermions in terms of the Uð1Þ charges of the SM Higgs and
the new complex scalar. We perform a comprehensive
study of the bounds on the model parameters from low
energy neutrino data, vacuum stability, perturbative uni-
tarity, and DM, as well as collider constraints. The rest of
the paper is organized as follows. In Secs. II and III, we
introduce the class of the Uð1Þ models under consideration

and discuss the fermionic and the scalar sectors. We discuss
the fitting of the neutral fermion mass matrix in Sec. IV by
taking all the experimental constraints into account. In
Sec. V, we discuss the RGE evolution of the couplings and
present the parameter space allowed by vacuum stability
and perturbative unitarity in various planes. This is fol-
lowed by a discussion on the DM scenario in these models,
where we present the parameter space giving the correct
relic density and satisfying the direct detection bounds at
the same time. In Sec. VII, we discuss the combined
bounds from vacuum stability, unitarity, DM relic density,
and the collider constraints and finally, we summarize in
Sec. VIII.

II. MODEL AND NEUTRINO MASS
AT THE TREE LEVEL

The model considered is based on the gauge group
SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1Þ0. In addition to the SM
particles, we have three right-handed neutrinos νRi, a
complex scalar Φ required to break the Uð1Þ0 symmetry,
and three gauge singlet Majorana fermions Si. An extra Z2

symmetry is imposed to have a stable fermionic dark
matter. The matter and Higgs sector field content along
with their transformation properties under SUð3Þc ×
SUð2ÞL ×Uð1ÞY × Uð1Þ0 are given below.

QL ¼
�
uL
dL

�
∼
�
3; 2;

1

6
; xq

�
; dR ∼

�
3; 1;−

1

3
; xd

�
;

uR ∼
�
3; 1;

2

3
; xu

�
; ð2:1Þ

lL ¼
�
νL

eL

�
∼
�
1; 2;−

1

2
; xl

�
; eR ∼ ð1; 1;−1; xeÞ;

νR ∼ ð1; 1; 0; xνÞ; ð2:2Þ

H ¼ 1ffiffiffi
2

p
�

Gþ

vþ hþ iG0

�
∼
�
1; 2;

1

2
;
xH
2

�
;

Φ ¼ 1ffiffiffi
2

p ðϕþ uþ iχÞ ∼ ð1; 1; 0;−xΦÞ; ð2:3Þ

S ∼ ð1; 1; 0; 0Þ: ð2:4Þ

Note that the generation indices have been suppressed
here. Under Z2, the third generation of νR and S, i.e., νR3
and S3 are odd, whereas all the other particles are even and
we assume that this Z2 is not broken.
The Uð1Þ0 charges of the fermions are defined to satisfy

the gauge and gravitational anomaly-free conditions,
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Uð1Þ0× ½SUð3Þc�2∶ 2xq−xu−xd ¼ 0;

Uð1Þ0× ½SUð2ÞL�2∶ 3xqþxl ¼ 0;

Uð1Þ0× ½Uð1ÞY �2∶ xq−8xu−2xdþ3xl−6xe ¼ 0;

½Uð1Þ0�2×Uð1ÞY∶ x2q−2x2uþx2d−x2l þx2e ¼ 0;

½Uð1Þ0�3∶ 6x3q−3x3u−3x3dþ2x3l −x3ν−x3e ¼ 0;

Uð1Þ0× ½grav�2∶ 6xq−3xu−3xdþ2xl−xν−xe ¼ 0: ð2:5Þ

The most general Yukawa Lagrangian (along with the
Majorana mass for S) invariant under SUð3Þc × SUð2ÞL ×
Uð1ÞY ×Uð1Þ0 that could be written using the fields given
above is

−LYukawa¼Yel̄LHeRþYνl̄LH̃νRþYuQ̄LH̃uRþYdQ̄LHdR

þyNSν̄RΦSþ1

2
ScMμSþH:c:; ð2:6Þ

where H̃ ¼ iσ2H�. The invariance of this Yukawa
Lagrangian under the Uð1Þ0 symmetry gives us the follow-
ing conditions:

xH
2
¼−xqþxu¼ xq−xd ¼−xlþxν¼ xl−xe; −xΦ ¼ xν:

ð2:7Þ

Using these conditions and the anomaly-free conditions,
the Uð1Þ0 charges of all the fermions could be determined
in terms of xH and xΦ as

xν ¼ −xΦ; xl ¼ −xΦ −
xH
2
; xe ¼ −xΦ − xH;

xq ¼
1

6
ð2xΦ þ xHÞ; xu ¼

1

3
ð2xH þ xΦÞ;

xd ¼
1

3
ðxΦ − xHÞ: ð2:8Þ

Note that the choice xΦ ¼ 1 and xH ¼ 0 correspond to
the well-known Uð1ÞB−L model. From Eq. (2.6), after
symmetry breaking, the terms relevant for neutrino
mass are

−Lmass ¼ ν̄LMDνR þ νRMRSþ 1

2
ScMμSþ H:c:; ð2:9Þ

where MD ¼ YνhHi and MR ¼ yNShΦi. The neutral fer-
mion mass matrix Mν can be defined as

−Lmass ¼
1

2
ðνcLν̄RScÞ

0
B@

0 M�
D 0

M†
D 0 MR

0 MT
R Mμ

1
CA
0
B@

νL

νcR
S

1
CAþ H:c::

ð2:10Þ

The mass scales of the three submatrices of Mν may
naturally have a hierarchy MR ≫ MD ≫ Mμ. Then, the

effective light neutrino mass matrix in the seesaw approxi-
mation is given by

Mlight ¼ M�
DðMT

RÞ−1MμM−1
R M†

D: ð2:11Þ
Because of the extra Z2 symmetry, the Yukawa coupling

matrices Yν and yNS and hence the mass matrices MD and
MR will have the following textures:

MR ¼ yNShΦi ∼

0
B@

× × 0

× × 0

0 0 ×

1
CA and

MD ¼ YνhHi ∼

0
B@

× × 0

× × 0

× × 0

1
CA: ð2:12Þ

In addition, we will choose Mμ to be diagonal without loss
of generality. Since νR3 and S3 do not mix with other
neutral fermions, they will not contribute to the seesaw
mechanism and we will have a minimal inverse seesaw
mechanism (3 νL þ 2 νR þ 2S case) in which the lightest
active neutrino will be massless. The two fermions νR3 and
S3 mix among themselves and the lightest mass eigenstate
could be a stable DM candidate. In the heavy sector, we
will have two pairs of degenerate pseudo-Dirac neutrinos
of masses of the order ∼MR �Mμ that mix with the
active light neutrinos. Thus, we have an inverse seesaw
mechanism in which the smallness of Mlight is naturally
attributed to the smallness of bothMμ and

MD
MR

. For instance,
Mlight ∼Oð0.1Þ eV can easily be achieved by taking
MD
MR

∼ 10−2 and Mμ ∼Oð1Þ keV. Thus, the seesaw scale
can be lowered down considerably for typical values
of the parameters—Yν ∼Oð0.1Þ, MD ∼ 10 GeV, and
MR ∼ 1 TeV.

III. SCALAR POTENTIAL OF THE MODEL AND
SYMMETRY BREAKING

The scalar potential of the model is given by

VðΦ; HÞ ¼ m2
1H

†H þ λ1ðH†HÞ2 þ λ3H†HΦ†Φ

þm2
2Φ†Φþ λ2ðΦ†ΦÞ2: ð3:1Þ

The trivial conditions that give a stable potential are

λ1 > 0; λ2 > 0 and λ3 > 0; ð3:2Þ
and if λ3 < 0, the stability of the potential can still be
achieved by satisfying the following conditions:

λ1 > 0; λ2 > 0; 4λ1λ2 − λ23 > 0: ð3:3Þ
The above conditions are obtained by demanding the

Hessian matrix corresponding to the potential to be positive
definite at large field values [16,41,42].
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The two scalar fields acquire vacuum expectation values
(vevs) given by

hHi ¼ 1ffiffiffi
2

p
�
0

v

�
; hΦi ¼ uffiffiffi

2
p : ð3:4Þ

The values of v and u are determined by the minimization
conditions and are given by

v2 ¼ m2
2λ3=2 −m2

1λ2
λ1λ2 − λ23=4

; u2 ¼ m2
1λ3=2 −m2

2λ1
λ1λ2 − λ23=4

: ð3:5Þ

After symmetry breaking, the mixing between the fields
h and ϕ could be rotated away by an orthogonal trans-
formation to get the physical mass eigenstates as

�
h1
h2

�
¼
�
cos θ − sin θ

sin θ cos θ

��
h

ϕ

�
: ð3:6Þ

The masses of the scalar eigenstates are

m2
h1;2

¼ λ1v2þλ2u2∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1v2−λ2u2Þ2þðλ3uvÞ2

q
: ð3:7Þ

From these, one can get the relations

λ1 ¼
m2

h1

4v2
ð1þ cos 2θÞ þm2

h2

4v2
ð1 − cos 2θÞ;

λ2 ¼
m2

h1

4u2
ð1 − cos 2θÞ þm2

h2

4u2
ð1þ cos 2θÞ;

λ3 ¼ sin 2θ

�
m2

h2
−m2

h1

2uv

�
: ð3:8Þ

We use these equations to set the initial conditions on the
scalar couplings λ1, λ2, and λ3 while running the renorm-
alization group equations. Also, from the above equations,
one can get

tan 2θ ¼ λ3uv
λ1v2 − λ2u2

: ð3:9Þ

A. Perturbative unitarity

In addition to the vacuum stability conditions, the
constraints from the perturbative unitarity conditions also
put bounds on the model parameters. By considering the
hh → hh and ϕϕ → ϕϕ processes, one can derive com-
bined constraints on the three couplings appearing in the
scalar potential [43,44],

jλ3j≤ 8π; 3ðλ1þλ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ23þ9ðλ1−λ2Þ2

q
≤ 8π: ð3:10Þ

Demanding the other running couplings to remain in the
perturbative regime gives us

gi ≤
ffiffiffiffiffiffi
4π

p
; ð3:11Þ

where gi stands for SM gauge couplings. For the Uð1Þ
gauge coupling g0, we require

ðxq;d;u;l;e;ν;ΦÞg0; ðxH=2Þg0 <
ffiffiffiffiffiffi
4π

p
: ð3:12Þ

IV. NUMERICAL ANALYSIS AND PARAMETER
SCANNING IN THE NEUTRINO SECTOR

To study the parameter space allowed by vacuum
stability as well as perturbativity bounds up to MPlanck
using the RGEs, we have to first fix the initial values for all
the couplings. While setting the initial values for the
neutrino Yukawa couplings Yν and yNS, we have to make
sure that they reproduce the correct oscillation parameters
and satisfy all the experimental constraints. To do this, we
find sample benchmark points for Yν, yNS, and Mμ and the
vev of the extra scalar ΦðuÞ by fitting them with all the
constraints using the downhill simplex method [45]. Note
that here, Yν is a complex 3 × 2 matrix, yNS is a complex
2 × 2 matrix, and Mμ is a 2 × 2 diagonal matrix with real
entries. Thevarious constraintswe have taken are as follows:

(i) Cosmological constraint on the sum of light neutrino
masses as given by the Planck 2018 results [46].
This puts an upper limit on the sum of active light
neutrino masses to be

Σ ¼ m1 þm2 þm3 < 0.14 eV: ð4:1Þ
Note that in our case, the lightest active neutrino is
massless and also we are restricting our analysis
only to the normal hierarchy (NH) of the active
neutrino masses since the vacuum stability, dark
matter, and collider analyses are independent of the
hierarchy of the light neutrino masses. In addition, it
has been found that the best fit of the data is for the
NH and IH is disfavored with a Δχ2 ¼ 4.7ð9.3Þ
without (with) Super-Kamiokande atmospheric neu-
trino data [47]. Thus, we have

m1¼0; m2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δmsol

2

q
; m3¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

q
: ð4:2Þ

(ii) The constraints on the oscillation parameters in their
3σ range, given by the global analysis [48,49] of
neutrino oscillation data with three light active neu-
trinos following NH, are given in Table I. We use
the standard parametrization of the Pontecorvo–
Maki–Nakagawa–Sakata (PMNS) matrix in which

TABLE I. The oscillation parameters in their 3σ range for the
normal hierarchy (NH) as given by the global analysis of neutrino
oscillation data with three light active neutrinos [48].

Parameter 3 − σ range in NH

Δm2
sol=10

−5 eV2 6.80 → 8.02
Δm2

atm=10−3 eV2 þ2.399 → þ2.593
sin2 θ12 0.272 → 0.346
sin2 θ23 0.418 → 0.613
sin2 θ13 0.01981 → 0.02436
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Uν ¼

0
B@

c12c13 s12c13 s13e−iδ

−c23s12 − s23s13c12eiδ c23c12 − s23s13s12eiδ s23c13
s23s12 − c23s13c12eiδ −s23c12 − c23s13s12eiδ c23c13

1
CAP; ð4:3Þ

where cij ¼ cos θij, sij ¼ sin θij, and the phase
matrix P ¼ diagð1; eiα2 ; eiðα3þδÞÞ contains the Ma-
jorana phases.

(iii) The constraints on the nonunitarity of UPMNS ¼ UL
as given by the analysis of electroweak precision
observables along with various other low energy
precision observables [50]. At 90% confidence level,
we have

jULU
†
Lj

¼

0
B@
0.9979–0.9998 <10−5 <0.0021

<10−5 0.9996–1.0 <0.0008

<0.0021 <0.0008 0.9947–1.0

1
CA:

ð4:4Þ
This also takes care of the constraints coming

from various charged lepton flavor violating decays
like li → ljγ. For example, the branching ratio for
the decay μ → eγ is constrained as [51]

Brðμ → eγÞ < 4.2 × 10−13: ð4:5Þ
In addition, it has been shown in Ref. [52] that the

μ → e conversion in nuclei can give the strongest
bound out of all the flavor violating observables in
the case of type-I seesaw models. The bound on
the branching ratio for the μ → e conversion in Gold
(Au) nucleus reads as [53]

BrðμAu → eAuÞ < 7 × 10−3: ð4:6Þ

This has been converted into a bound on the
parameter R̂eμ in Ref. [52] as

R̂eμ < 9.7 × 10−6; ð4:7Þ

where

R̂eμ ¼ 2
X
j

ðYνÞ�ejðYνÞμj
�
m2

W

M2
j

�
Log

�
Mj

mW

�
; ð4:8Þ

where j ¼ 1; 2, M1;M2 are the heavy neutrino
masses such that M1 ≠ M2 and the factor of 2 takes
care of the degeneracy in mass spectrum. In our
fitting, we have made sure that the parameter sets
that we consider satisfy all these bounds.

In Table II, we give two benchmark points consistent
with all the experimental data discussed above. As a
consistency check, we also give the value of Brðμ → eγÞ
obtained at the two benchmark points.

V. RGE EVOLUTION

The couplings in any quantum field theory get correc-
tions from higher-order loop diagrams and as a result, the
couplings run with the renormalization scale. We have the
renormalization group equation (RGE) for a coupling C as

TABLE II. Two sample benchmark points for the neutrino sector. The above parameters give the correct mixing angles and satisfy the
nonunitarity constraints on UPMNS. The value of Brðμ → eγÞ is given as a check.

Parameter BM-I BM-II

Tr½YνY
†
ν� 0.0898 0.4000

½Yν�3×2  
0.0694 − i0.1182 0 − i0.0499
0.0038 − i0.0022 0.0778þ i0.0442
−0.0008 − i0.2183 −0.0071 − i0.1128

!  −0.0210þ i0.2269 −0.0329þ i0.0036
0.0495 − i0.0352 −0.2321 − i0.3021
−0.1081 − i0.3771 0.1450þ i0.1526

!

Tr½yNSY
†
R� 0.0101 0.1472

½yNS�2×2  
0.0031 − i0.0082 0.0375 − i0.0351
0.0821þ i0.0093 −0.0002 − i0.0241

!  
0.2861þ i0.0073 −0.0025þ i0.1521
0.0623 − i0.0545 −0.1596 − i0.0990

!

½Mμ�2×2 GeV
 
1.0921 × 10−6 0

0 −2.2092 × 10−8

!  
1.2655 × 10−8 0

0 −2.5248 × 10−8

!

Mj GeV 1766.82, 1766.82, 3085.87, 3085.87 2227.88, 2227.88, 3659.58, 3659.58

Brðμ → eγÞ 4.0946 × 10−13 2.2954 × 10−13

u (TeV) 50 12
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μ
dC
dμ

¼
X
i

βðiÞC
ð16π2Þi ; ð5:1Þ

where i stands for the ith loop and βC is the corresponding
β function.
We have evaluated the SM coupling constants at the top

quark mass scale and then run them using the RGEs from
Mt to MPlanck. For this, we have taken into account the
various threshold corrections at Mt [54–56]. Then the SM
RGEs are used to run all the couplings up to the vev of the
new scalar, after which, the new couplings enter. The
modified RGEs for the SUð3Þc × SUð2ÞL ×Uð1ÞY ×Uð1Þ0
have been used. These have been generated using SARAH
[57]. Since we have considered only the one-loop RGEs of
all the required parameters, it has to be noted that the
allowed parameter space that we present is minimal.
The inclusion of the higher-order RG effects will increase
the size of the allowed parameter space.1 The RGEs that we
have used are given in the Appendix. Throughout this
paper, we have fixed the standard model parameters as
mh ¼ 125.6 GeV, Mt ¼ 173.4 GeV, and αs ¼ 0.1184.
Also, we have kept the Uð1Þ gauge mixing to be 0 at
the scale u throughout this paper.
Figure 1 displays the allowed region in themh2 − θ plane

for the model with xH ¼ xΦ ¼ 1, keeping all the other
parameters fixed. For the neutrino Yukawa couplings, we
have used BM-I from Table II and we have fixed g0 ¼ 0.1
and y33NS ¼ 0.5. From the figure, one can see that for higher
values of θ, only smaller values ofmh2 are allowed whereas
for smaller values of θ, larger values of mh2 over a
wider range are allowed. Also, it can be seen that for this
model with the considered set of parameters, the values of
mh2 > 33 TeV and θ > 0.012 are disallowed.

In Fig. 2, we have plotted the running of λ1, λ2, and λ3 for
the model with xH ¼ xΦ ¼ 1 for two different values of
mh2 and θ. The figure in the left side is for mh2 ¼ 15 TeV
and θ ¼ 0.004, whereas the one in the right side is for
mh2 ¼ 20 TeV and θ ¼ 0.003. For the neutrino Yukawa
couplings, we have used BM-I from Table II and we have
fixed g0 ¼ 0.1 and y33NS ¼ 0.5. We can see that all the three
quartic couplings remain positive up toMPlanck for both the
cases implying that the electroweak vacuum is absolutely
stable. This can be seen from Fig. 1 as well where the
above-mentioned points fall in the stable region. Here, the
presence of the extra scalar coupling helps in stabilizing
the vacuum.
In Fig. 3, we have plotted the regions allowed by both

vacuum stability and perturbativity bounds up toMPlanck in
the mh2 − xH and mh2 − xΦ planes, for two different values
of θ. The red regions are for θ ¼ 0.003 and the blue regions
are for θ ¼ 0.01. Figure 3(a) shows the allowed regions in
the mh2 − xH plane keeping all the other parameters fixed.
For the neutrino Yukawa couplings, we have used BM-I
from Table II and we have fixed xΦ ¼ 1, g0 ¼ 0.1, and
y33NS ¼ 0.5. It can be seen that for θ ¼ 0.01, a very narrow
region ofmh2 in the range ≈10–11.7 TeV is allowed by the
stability and perturbativity constraints and the correspond-
ing allowed range of xH is ≈ − 5.6–4.1. Here, the higher
values of mh2 are disfavored by the perturbativity con-
straints, whereas the lower values of mh2 are disfavored by
the constraints from vacuum stability. At the same time, for
θ ¼ 0.003, mh2 ≈ 11–30 TeV is allowed depending on the
value of xH.
Similarly, in Fig. 3(b), we have shown the allowed region

in the mh2 − xΦ plane keeping xH ¼ 1 and all the other
parameters fixed for two different values of θ. Here also, for
θ ¼ 0.01, the values of mh2 greater than 11.7 TeV are
disfavored by unitarity constraints. The lower values ofmh2
are disfavored by the stability constraints depending on the
value of xΦ. For −1.6 ≤ xΦ ≤ 1.6, values of mh2 less than
∼10 TeV are disallowed, whereas for −5 ≤ xΦ ≤ −3 and
3 ≤ xΦ ≤ 4, values of mh2 as low as ∼4 TeV are allowed.
For θ ¼ 0.003, values of mh2 < 13.4–15.8 TeV are dis-
allowed depending on the values of xH, but values as high
as 30 TeV are allowed for −5 ≤ xH ≤ 4. These results are
consistent with the observations from Fig. 1 where we have
seen that for xH ¼ xΦ ¼ 1, larger(smaller) values ofmh2 are
disfavored for larger(smaller) values of θ.
In Fig. 4, we have presented the regions in the xΦ − xH

plane allowed by both vacuum stability and perturbativity
up to MPlanck for fixed values of mh2 , θ, and g0. For the
neutrino Yukawa couplings, we have used the BM-I in
Table II and we have taken y33NS ¼ 0.5. The mass of the
extra scalar has been taken to be 6 TeV (10 TeV) in the left
(right) panel and the values of θ and g0 are taken to be 0.01
and 0.1, respectively, for both the plots. From these two
figures, we can see that increasing the scalar mass will

FIG. 1. Region in the mh2 − θ plane allowed by both vacuum
stability and perturbativity bounds up to MPlanck for the model
with xH ¼ xΦ ¼ 1. For the neutrino Yukawa couplings, we have
used BM-I from the Table II and we have fixed g0 ¼ 0.1 and
y33NS ¼ 0.5.

1The effect of the two-loop RGEs with one-loop matching is
discussed in Ref. [18] in the context of a class of minimal Uð1Þ
extensions of the SM.
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allow more values of xΦ for a given value of xH. In fact, one
can see that the allowed values for xΦ lie in the ranges
≈� 2.7 to �6 and ≈� 1 to �6 for the figures in the left
and the right panels, respectively. Also, xH lies in the range
≈ − 6.8 to 7 for both the cases with the considered values of
the parameters. This can be understood from Eq. (3.8)

which shows that higher value of mh2 implies higher value
of the scalar couplings which in turn favors stability.
Figure 5 displays the regions allowed by both vacuum

stability and perturbativity up to MPlanck in the MZ0 − xH
plane for fixed values ofmh2 , θ, and xΦ. Here also, we have
used the BM-I in Table II for the neutrino Yukawa
couplings and we have taken y33NS ¼ 0.5. The mass of
the extra scalar has been taken to be 7 and 10.5 TeV in the

FIG. 3. Regions in the mh2 − xH and mh2 − xΦ planes allowed
by both vacuum stability and perturbativity bounds up to MPlanck
for two different values of θ. For the left panel, we have fixed
xΦ ¼ 1 and for the right panel, we have fixed xH ¼ 1. For the
neutrino Yukawa couplings, we have used BM-I from Table II
and we have fixed g0 ¼ 0.1 and y33NS ¼ 0.5. The red region is for
θ ¼ 0.003 and the blue region is for θ ¼ 0.01.

FIG. 4. Regions in the xΦ − xH plane allowed by both vacuum
stability and perturbativity up toMPlanck. We have taken the mass
of the extra scalar to be 6 TeV (10 TeV) in the left (right) panel.
For the neutrino Yukawa couplings, we have used BM-I from
Table II and we have fixed θ ¼ 0.01, g0 ¼ 0.1, and y33NS ¼ 0.5 for
both the plots.

FIG. 2. Running of λ1, λ2, and λ3 for the model with xH ¼ xΦ ¼ 1 for two different values of mh2 and θ. For the neutrino Yukawa
couplings, we have used BM-I from Table II and we have fixed g0 ¼ 0.1 and y33NS ¼ 0.5.
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left and the right panels, respectively, and the values of θ
and xΦ are taken to be 0.01 and 1 for both the plots. Also,
we have varied g0 from 0 to 1 keeping u fixed at 50 TeVand
xH in the range −8 to 8. The corresponding values of MZ0

have been calculated using

MZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxΦg0uÞ2 þ

�
xH
2
g0vSM

�
2

s
: ð5:2Þ

From these figures, we can see that lower values of MZ0

allow large values of xH (or, equivalently lower values of
g0). Also, one can note that for a lower scalar mass, the
lower values ofM0

Z (or equivalently, lower values of g0) are
disfavored. For mh2 ¼ 7 TeV, values of MZ0 less than
13 TeV are disallowed and a very small range of xH is
allowed, whereas for mh2 ¼ 10.5 TeV, values of MZ0 as
low as 100 GeV are allowed and correspondingly, xH is
allowed from −8 to 8.

VI. DARK MATTER SCENARIO

In this section, we discuss dark matter physics in our
model with respect to the constraints from relic density and
direct detection experiments. As mentioned earlier, the

third generations of NR and SL ðN3
R; S

3
LÞ are odd under the

Z2 parity in the generalUð1Þ0 inverse seesaw model that we
consider. This ensures the stability of N3

R and S3L which is
required for these to be potential DM candidates. As a
result, the relevant interactions in the Lagrangian can be
written as

−L2
mass ⊃ y33NSN

3
RS

3
LΦþM33

S S3cL S3L: ð6:1Þ

Note that N3
R cannot couple to the SM Higgs and lepton

doublets due to the Z2 symmetry. After the symmetry
breaking, we have hΦi ¼ uffiffi

2
p and the mass matrix can be

written as

MN3S3 ¼
 

0 M33
NS

M33
NS M33

S

!
; ð6:2Þ

whereM33
NS ¼ y33NSuffiffi

2
p . Now, rotating the basis we can write the

physical eigenstates as 
N3c

R

S3L

!
¼
 

cos θ̄ sin θ̄

− sin θ̄ cos θ̄

! 
ψ1

ψ2

!
; ð6:3Þ

where tan 2θ̄ ¼ j 2M33
NS

−M33
S
j ¼ ffiffiffi

2
p y33NSu

M33
S
. Note that ψ1 and ψ2 are

Majorana fermions. The mass eigenvalues are obtained as

mψ1;ψ2
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM33

S Þ2 þ 4ðM33
NSÞ2

q
∓ 1

2
M33

S ; ð6:4Þ

where we take mψ1
< mψ2

. Thus, ψ1 is the lightest Z2 odd
particle and our DM candidate. Putting ψ1 and ψ2 back into
Eq. (6.1) along with the physical mass eigenstates of h and
ϕ, we write the interaction among Z2 odd fermion and
scalars as

−L ⊃ y33NSð− sin θ cos θ̄ cos θ̄h1 þ cos θ sin θ̄ sin θ̄h2Þ
× ð−ψc

1ψ1 þ ψc
2ψ2Þ: ð6:5Þ

Then the DM candidate can annihilate through the scalar
portal [Fig. 6(a)], where interactions between h2 and SM
particles are induced by scalar mixing [see Eq. (3.6)], and
these couplings are equal to the SM Higgs couplings times
sin θ. In addition, the DM can annihilate to the SM particles
via Z0 exchange [Fig. 6(c)] where the gauge interactions are
given by

L ⊃ −
xΦg0

2
Z0
μðcos2θ̄ψ̄1γ

μγ5ψ1 þ sin2θ̄ψ̄2γ
μγ5ψ2

− 2 cos θ̄ sin θ̄ψ̄1γ
μγ5ψ2Þ: ð6:6Þ

Furthermore, DM can annihilate into Z0Z0 mode via scalar
portal where the relevant scalar-Z0Z0 interaction is given by

FIG. 5. Regions in theMZ0 − xH plane allowed by both vacuum
stability and perturbativity bounds up to MPlanck. We have taken
the mass of the extra scalar to be 7 TeV (10.5 TeV) in the left
(right) panel. For the neutrino Yukawa couplings, we have used
BM-I from Table II and we have fixed θ ¼ 0.01, xΦ ¼ 1, and
y33NS ¼ 0.5 for both the plots.
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L ⊃
M2

Z0

u
cos θh2Z0Z0 −

M2
Z0

u
sin θh1Z0Z0: ð6:7Þ

A. Relic density

Here we analyze the relic density of our DM candidate.
The DM candidate ψ1 annihilates into the SM particles via
processes induced by Z0 and scalar boson interactions as
shown in Fig. 6. Then we estimate the relic density using
micrOMEGAs 4.3.5 [58] implementing the relevant inter-
actions. First, we focus on the parameter space where the Z0
mediated process dominates for DM annihilation. For
illustration, in Fig. 7, we show the relic density as a
function of DM mass (MDM ≡mψ1

) for mZ0 ¼ 4 TeV,
fixing the other parameters as indicated in the plot. The
plot indicates that the required gauge coupling is g0 ≳ 0.5,
but it is excluded by the LHC data as we will see later. Note
that in this case, the value of g0 that gives the correct relic
density depends on the choice of xH and xΦ since the
interaction strength of Z0 with the other particles is a
product of g0 and a linear combination of xH and xΦ. If we
increase xH and xΦ, then the value of g0 that can give the
correct relic density can be lowered. However, for smaller
values of g0, the LHC constraints imply much lower values
ofM0

Z where the Z
0 exchange is not a dominant process. We

also find that the Z0 mediated process cannot provide
sufficient annihilation cross section to explain the observed
relic density if DM is heavier than ∼3 TeV, complying
with the requirement that the gauge coupling satisfy

ðxq;d;u;l;e;ν;ΦÞg0, ðxH=2Þg0 <
ffiffiffiffiffiffi
4π

p
for perturbativity. This

tendency comes from the fact that the annihilation cross
section is P wave suppressed since our DM is Majorana
fermion.
We will now focus on the contribution of h2 exchange

process to the relic density of DM. For illustrating the effect
of this process, we show the relic density as a function of
DM mass for different values of y33NS and mh2 in Fig. 8. In
the left panel, we have fixed y33NS ¼ 2.5 and plotted the relic
density as a function of MDM for three different values of

DM

DM
SM

SM

DM DM

N N

(a) (b)

DM

DM

SM

SM(c)

FIG. 6. (a) Scalar mediated DM annihilation, (b) direct detection, and (c) Z0 mediated DM annihilation.

FIG. 7. Relic abundance as a function of DM mass for different
values of g0. All the other parameters have been fixed as given in
the plot.
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mh2 , keeping all the other parameters fixed. Similarly, we
have taken mh2 ¼ 13 TeV in the right plot and plotted the
relic density for three different values of y33NS. We have also
shown the sin θ̄ dependence in the lower panel of the same
figure. We find that the observed relic density can be
realized for y33NS ≳ 2 when mh2 ¼ 13 TeV. In addition,
mh2 ∼ 2MDM is preferred to enhance the annihilation cross
section which implies that mh2 mass is around Oð10Þ TeV
in our model. Note that such a heavy mass scale for h2 is
also preferred in stabilizing the scalar potential as we
discussed in the previous section.
We perform a parameter scan and search for the allowed

regions which can explain the relic density of DM. First, we
perform parameter scan in the following ranges focusing on
the scalar exchange process:

MDM ∈ ½1.0; 10.0� TeV; mh2 ∈ ½1.8MDM; 2.2MDM�;
y33NS ∈ ½0.2; 3.0�; sin θ ∈ ½0.001; 0.02�;
xH ∈ ½−5; 5�; xΦ ∈ ½−5; 5�; sin θ̄ ∈ ½0.2; 0.7�;
mZ0 ¼ 5 TeV; g0 ¼ 0.01: ð6:8Þ

We fixed Z0 mass and g0 for simplicity. Note that we
chose mh2 ∼ 2MDM since we can obtain the observed relic
density in this region via h2 exchange process as discussed
above. In Fig. 9, we show the allowed parameter space in
MDM − y33NS and mh2 − sin θ planes that give the correct
relic density of DM, 0.11 < Ωh2 < 0.13, adopting the
approximate range around the best fit value [46]. From
the left panel of Fig. 9, we can see that in general, for larger

FIG. 8. Relic abundance as a function of DMmass: for different values of y33NS and fixedmh2 ¼ 13 TeV (upper left panel); for different
values of mh2 and fixed y33NS ¼ 2.5 (upper right panel) and for different sin θ̄ (lower panel).
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values of MDM, the allowed values of y33NS are large. But, a
few points with smaller values of y33NS are also obtained for
MDM > MZ0 since ψ1ψ1 → h2 → Z0Z0 process is kinemat-
ically allowed there. In the right panel of Fig. 9, we have
shown the allowed parameter space in the mh2 − sin θ
plane. From this plot, we can see that sin θ can be small
for MDM > MZ0 (mh2 ∼ 2MDM) since h2Z0Z0 coupling is
not suppressed by sin θ as we can see from Eq. (6.7).
However, we have some lower limit of sin θ for
MDM < mZ0 , since here ψ1ψ1 → h2 → Z0Z0 process is
kinematically disallowed and the coupling of h2 to the
SM particles is suppressed by sin θ.

B. Direct detection

Here we briefly discuss the constraints from the direct
detection experiments estimating the DM-nucleon (N)
scattering in our model. First, note that the Z0 exchange
process between DM and nucleon will not get stringent
constraint since DM-Z0 interaction is via axial vector
current due to the Majorana property of DM and provides
spin-dependent operator for DM-nucleon interaction. We
thus focus on the scalar mediated processes for DM-
nucleon scattering where the corresponding Feynman
diagram is given in Fig. 6(b). In our case, the DM interacts
with the nucleon through the scalar boson exchange
ðh1; h2Þ. The relevant interaction Lagrangian with the
mixing effect is given by

L ⊃ Cψ1ψ1h1h1ψ
c
1ψ1 þ Cψ1ψ1h1h2ψ

c
1ψ1

þ CNNh1h1N̄N þ CNNh2h2N̄N; ð6:9Þ

where the effective couplings are

Cψ1ψ1h1 ¼ sin θ̄ cos θ̄ cos θ
y33NSffiffiffi
2

p ;

Cψ1ψ1h2 ¼ − sin θ̄ cos θ̄ sin θ
y33NSffiffiffi
2

p ; ð6:10Þ

CNNh1 ¼ sin θghNN; CNNh2 ¼ cos θghNN: ð6:11Þ

Hence, the effective Lagrangian can be written as

Leff ¼ Ghψ1ψ1N̄N; ð6:12Þ

Gh ¼
�
Cψ1ψ1h1Ch1NN

m2
h1

þ Cψ2ψ2h2Ch2NN

m2
h2

�
; ð6:13Þ

where mh1 and mh2 are the SM and BSM Higgs masses.
The corresponding cross section of Fig. 6(b) in the non-
relativistic limit can be calculated as

σ¼g2hNN
M2

DMM
2
N

16πðM2
DMþM2

NÞ2
ðy33NSsin2θ̄sin2θÞ2

�
1

m2
h1

−
1

m2
h2

�
2

;

ð6:14Þ

where MDM and MN are the DM and nucleon masses,
respectively. The effective coupling can be written as
ghNN ¼ fNMN

v
ffiffi
2

p , where we apply fN ¼ 0.287 for neutron

[59]2 and v ¼ 246 GeV.We then estimate the cross sections
applying allowed parameter sets obtained in previous sub-
section, and the results are shown in Fig. 10. The black
dotted and dashed lines show the current upper bounds from

FIG. 9. Parameter regions that give the correct relic density of DM in MDM − y33NS and Mh2 − sin θ planes for scanning done in the
ranges of parameters as given by Eq. (6.8).

2fN for proton has similar value and we here just use fN in
estimating the cross section.
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PANDAX-II [60] and XENON-1t [61], respectively. We
find that our parameter region is allowed by the direct
detection constraints since the cross section is suppressed by
small sin θ, which is also preferred by the constraints from
vacuum stability. The cross section will be further explored
by the future direct detection experiments like XENON 1t,
PandaX, etc.

VII. BOUNDS ON THE M0
Z − g0 PLANE

In this section, we consider the production of Z0 from the
proton proton collision at the LHC and its decay into
different types of leptons. We first calculate the Z0
production cross section at the LHC from protons followed
by the decay into lepton, pp → Z0 → lþl− with l ¼ e; μ.
In our analysis, we calculate the cross section combining
the electron and muon final states. We compare our cross
section with the latest ATLAS search [40] for the heavy Z0
resonance. Since we are considering Uð1Þ0 models with
extra Z0, the ATLAS results can be compared directly
with our results. Atlas analysis has considered different
models like sequential Standard Model (SSM) and Z0

ψ [62],
where the Z0 decays into e and μ. Conservatively consid-
ering these limits for our case, we first produce the Z0
(300 GeV ≤ M0

Z ≤ 6 TeV) at the 13 TeV LHC followed by
the decay into the dilepton mode and finally compare with
the cross sections in our model. To calculate the bounds on
the g0, we calculate the model cross section, σModel, for the
process pp → Z0 → 2e; 2μ, with a Uð1Þ0 coupling constant
gModel at the LHC at the 13 TeV center of mass energy. Then
we compare this with the observed ATLAS bound
ðσObservedATLAS Þ for Γ

m ¼ 3% which has been studied for the

SSM. The corresponding cross sections are plotted in
Fig. 11 for different choices of xH and xΦ. Thus, the value
of g0 corresponding to a given MZ0 is given as

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σObservedATLAS

ðσModel
g2Model

Þ

vuut ; ð7:1Þ

since the cross section varies with the square of the Uð1Þ0
coupling ðg2ModelÞ.
In this analysis, we consider several choices of the xH

and xΦ to calculate the bounds in the M0
Z − g0 plane. These

correspond to two scenarios: (i) xH is negative and xΦ is
positive for which the results are shown in Fig. 12 and
(ii) both xH and xΦ are positive and the corresponding
constraints in the M0

Z − g0 plane are shown in Fig. 13. The
interaction of the Z0 with the fermions via the covariant
derivative will depend on the xH and xϕ values and is given
by the Lagrangian,

−Lint ⊃ fLγμg0QxZ0
μfL þ fRγμg0Q0

xZ0
μfR: ð7:2Þ

FIG. 11. Comparison between the ATLAS [40] (black solid
line) result and model cross sections (blue lines) for the different
values of xH and xΦ. The model cross sections are produced with
gModel ¼ 0.05. The left and right panels correspond to xH < 0 and
xH > 0, respectively, and we have considered xΦ > 0 for both
the cases.

FIG. 10. Nucleon-DM scattering cross section as a function of
DM mass for parameters that give the correct relic density. The
current upper bounds from PANDAX-II [60] (black dotted line)
and XENON-1t [61] (back dashed line) are also shown.
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FIG. 13. Allowed parameter space combining the bounds
obtained on g0 as a function of M0

Z from vacuum stability and
perturbativity (red dots), DM constraints (green dots), and
collider (region below the blue solid line). The blue shaded
regions are ruled out by the recent ATLAS search [40] at 139 fb−1

luminosity.

FIG. 12. Allowed parameter space combining the bounds ob-
tained on g0 as a function of M0

Z from vacuum stability and
perturbativity (red dots), DM constraints (green dots), and collider
(region below the blue solid line). The blue shaded regions are ruled
out by the recent ATLAS search [40] at 139 fb−1 luminosity.
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Here, fL and fR are the left-handed and right-handed
fermions and Qx and Q0

x are the corresponding charges
under the Uð1Þ0 gauge group. These charges are linear
combinations of xH and xΦ and will appear in the CV and
CA coefficients of the Z0 interactions. The Z0 interaction
with the colored fermions will contain the color factor
Nc ¼ 3 in the interaction whereasNc ¼ 1 for the uncolored
fermions. The bounds from the collider for various models
are shown by the blue solid lines in Figs. 12 and 13. The
blue shaded regions in these figures are ruled out by the
current LHC data obtained from the ATLAS experiment
[40] at 139 fb−1 luminosity.
In these figures, we have also given the bounds from

vacuum stability, perturbativity, and relic density for
purposes of comparison. For finding the regions that are
allowed by vacuum stability and perturbativity, we have
done a scanning in the following ranges of parameters:

g0 ∈ ½0.0001; 1.0�; u ∈ ½0.3; 100� TeV
mh2 ∈ ½2.0; 16� TeV; y33NS ∈ ½0.2; 2.5�; ð7:3Þ

with θ ¼ 0.01. For Yν and ðyNSÞ2×2, we have used BM-I
from Table II and we have scaled yNS according to the
variation in u. The values ofMZ0 have been calculated using
Eq. (5.2), and the allowed regions are shown by the red
points in Figs. 12 and 13. It can be seen from these figures
that the bulk of the parameter space allowed by vacuum
stability lies in the region disfavored by the ATLAS results.
Regions beyond MZ0 > 5 TeV that is not explored by
ATLAS are seen to be allowed by vacuum stability and
perturbativity constraints. Future ATLAS results will be
able to explore this region.
Similarly, to find out the points that can give the correct

DM relic density, we have performed a scanning of
parameters in the ranges

g0∈ ½0.0001;1.0�; mZ0 ∈ ½0.1;16�TeV mh2 ∈ ½2.0;16�TeV;
y33NS∈ ½0.2;2.5�; MDM∈ ½1.0;10.0�TeV: ð7:4Þ

Here also, we have fixed θ ¼ 0.01. The green dots in
Figs. 12 and 13 correspond to the values that give the
correct DM relic density. The constraints coming from this
are seen to be less stringent than the combined constraints
from vacuum stability, perturbativity, and ATLAS analysis.

VIII. CONCLUDING REMARKS

In this paper, we have studied the inverse seesaw model
in a class of general Uð1Þ extensions of the SM. We have
studied the parameter spaces in various planes that are
allowed by vacuum stability and perturbativity as well as
consistent with the low energy neutrino data. In addition,
this model has a prospective DM candidate resulting from
the stabilization of the third generations of the SUð2ÞL
singlet neutral fermions using the odd parity under the
discrete Z2 symmetry. Comparing the Z0 production and its
decay into the dilepton mode at the LHC with the current
ATLAS results, we find the bounds on the Uð1Þ0 coupling
constant with respect to the Z0 mass. Finally, combining all
the constraints, we obtain the resultant allowed parameter
space which can be probed in the future experiments.
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APPENDIX: ONE-LOOP RG EQUATIONS

βg1 ¼
1

6
ð41g31 þ g21g1p1ð78xH þ 64xΦÞ þ g11pg1p1ð39g11pxH þ 41g0x2H þ 32g11pxΦ þ 64g0xHxΦ þ 66g0x2ΦÞ

þ g1ð41g211p þ g11pg0ð39xH þ 32xΦÞ þ g21p1ð41x2H þ 64xHxΦ þ 66x2ΦÞÞÞ; ðA1Þ

βg2 ¼
ð−19g32Þ

6
; ðA2Þ

βg3 ¼ ð−7g33Þ; ðA3Þ

βg0 ¼
1

6
ð41g211pg0 þ g11pð41g1g1p1 þ ð2g02 þ g21p1Þð39xH þ 32xΦÞÞ

þ g0ðg1g1p1ð39xH þ 32xΦÞ þ ðg02 þ g21p1Þð41x2H þ 64xHxΦ þ 66x2ΦÞÞÞ; ðA4Þ

βg1p1 ¼
1

6
ð41g21g1p1 þ g1ð41g11pg0 þ ðg02 þ 2g21p1Þð39xH þ 32xΦÞÞ

þ g1p1ðg11pg0ð39xH þ 32xΦÞ þ ðg02 þ g21p1Þð41x2H þ 64xHxΦ þ 66x2ΦÞÞÞ; ðA5Þ
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βg11p ¼
1

6
ðg21ð41g11p þ 39g0xH þ 32g0xΦÞ þ g1g1p1ð39g11pxH þ 41g0x2H þ 32g11pxΦ

þ 64g0xHxΦ þ 66g0x2ΦÞ þ g11pð41g211p þ g11pg0ð78xH þ 64xΦÞ þ g02ð41x2H þ 64xHxΦ þ 66x2ΦÞÞÞ; ðA6Þ

βλ1 ¼
1

8
ð3g41 þ 6g21g

2
11p þ 3g411p þ 6g21g

2
2 þ 6g211pg

2
2 þ 9g42 − 24g21λ1 − 24g211pλ1 − 72g22λ1 þ 192λ21 þ 8λ23 − 12g21g11pg

0xH

− 12g311pg
0xH − 12g31g1p1xH − 12g1g211pg1p1xH − 12g11pg0g22xH − 12g1g1p1g22xH þ 48g11pg0λ1xH þ 48g1g1p1λ1xH

þ 6g21g
02x2H þ 18g211pg

02x2H þ 24g1g11pg0g1p1x2H þ 18g21g
2
1p1x

2
H þ 6g211pg

2
1p1x

2
H þ 6g02g22x

2
H þ 6g21p1g

2
2x

2
H

− 24g02λ1x2H − 24g21p1λ1x
2
H − 12g11pg03x3H − 12g1g02g1p1x3H − 12g11pg0g21p1x

3
H − 12g1g31p1x

3
H þ 3g04x4H

þ 6g02g21p1x
4
H þ 3g41p1x

4
H þ 96λ1y2t þ 32λ1Tr½YνY

†
ν� − 48y4t − 16Tr½YνY

†
νYνY

†
ν�Þ; ðA7Þ

βλ2 ¼ ð10λ22 þ λ23 − 6g02λ2x2Φ − 6g21p1λ2x
2
Φ þ 3g04x4Φ þ 2λ2Tr½yNSy

†
NS� − Tr½yNSy

†
NSyNSy

†
NS�Þ; ðA8Þ

βλ3 ¼
1

2
ð−3g21λ3 − 3g211pλ3 − 9g22λ3 þ 24λ1λ3 þ 16λ2λ3 þ 8λ23 þ 6g11pg0λ3xH þ 6g1g1p1λ3xH

− 3g02λ3x2H − 3g21p1λ3x
2
H þ 6g211pg

02x2Φ − 12g02λ3x2Φ − 12g21p1λ3x
2
Φ − 12g11pg03xHx2Φ

þ 6g04x2Hx
2
Φ þ 12λ3y2t þ 4λ3Tr½YνY

†
ν� þ 4λ3Tr½yNSy

†
NS� − 8Tr½yNSy

†
NSYνY

†
ν�Þ; ðA9Þ

β
yð1Þt

¼ 1

12
ð−ðð17g21 þ 17g211p þ 27g22 þ 96g23 þ 34g11pg0xH þ 34g1g1p1xH þ 17g02x2H

þ 17g21p1x
2
H þ 20g11pg0xΦ þ 20g1g1p1xΦ þ 20g02xHxΦ þ 20g21p1xHxΦ þ 8g02x2Φ

þ 8g21p1x
2
Φ − 36y2t − 12Tr½YνY

†
ν�ÞytÞ þ 18ðy3t ÞÞ; ðA10Þ

β
yð1ÞNS

¼ ðð−3ðg02 þ g21p1Þx2Φ þ Tr½yNSy
†
NS�ÞyNS þ yNSy

†
NSyNS þ YT

νY�
νyNSÞ; ðA11Þ

β
Yð1Þ
ν

¼ 1

4
ð−ðð3g21 þ 3g211p þ 9g22 þ 6g11pg0xH þ 6g1g1p1xH þ 3g02x2H þ 3g21p1x

2
H

þ 12g11pg0xΦ þ 12g1g1p1xΦ þ 12g02xHxΦ þ 12g21p1xHxΦ þ 24g02x2Φ

þ 24g21p1x
2
Φ − 12y2t − 4Tr½YνY

†
ν�ÞYνÞ þ 2ð3YνY†

νYν þ Yνy�NSy
T
NSÞÞ: ðA12Þ
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