
 

Exhaustive model selection in b → sll decays:
Pitting cross-validation against the Akaike information criterion
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In light of recent data, we study the new physics effects in the exclusive b → slþl− decays from a
model independent perspective. Different combinations of the dimension six effective operators along with
their respective Wilson coefficients are chosen for the analysis. To find out the operator or sets of operators
that can best explain the available data in this channel, we simultaneously apply popular model selection
tools like cross-validation and the information theoretic approach like Akaike information criterion (AIC).
There are one, two, and three-operator scenarios which survive the test and a left-handed quark current
with vector muon coupling is common among them. This is also the only surviving one-operator scenario.
Best-fit values and correlations of the new Wilson coefficients are supplied for all the selected scenarios.
We find that the angular observables play the dominant role in the model selection procedure. We also note
that while a left-handed quark current with axial-vector muon coupling is the only one-operator scenario
able to explain the ratios RKð�Þ (RK� for q2 ∈ ½0.045; 1.1� GeV2 in particular), there are also a couple of two
operator scenarios that can simultaneously explain the measured RKð�Þ .
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I. INTRODUCTION

Decays involving b → sll transitions are suppressed in
the standard model (SM). These decay modes are poten-
tially sensitive to new physics effects. Whether the con-
tributions appear at the tree or the loop level depends on
the type of the new physics (NP). A lot of attention,
both experimental and theoretical, have been given to
B → Kð�Þμþμ− decays in the last couple of years. There
are several angular observables associated with these
decays, which are potentially sensitive to the NP effects
and are measured by LHCb [1,2]. A couple of them have
shown discrepancies with their respective SM predictions
[3–6]. However, these angular observables are not free from
hadronic uncertainties and it is fairly possible that the
observed discrepancies are due to poorly known hadronic
effects, e.g., see [7] for details. Furthermore, these modes
offer theoretically clean observables like

RH ¼
R q2max

q2min

dΓðB→Hμþμ−Þ
dq2

R q2max

q2min

dΓðB→Heþe−Þ
dq2

ð1Þ

where H is either K or K� meson and q2 is the dilepton
squared mass. These ratios are useful to test lepton flavor
universality violation (LFUV) and within appropriately
chosen ranges of q2, these observables can be predicted
very precisely in the SM; see [8,9] for details. The SM
predictions are, respectively, RðKÞ ¼ 1.0004ð8Þ, and

RK� ¼
�
0.920� 0.007; q2 ∈ ½0.045; 1.1� GeV2;

0.996� 0.002; q2 ∈ ½1.1; 6� GeV2:
ð2Þ

The LHCb collaboration has measured [10,11]

RK ¼ 0.846þ0.060þ0.016
−0.054−0.014 ; q2 ∈ ½1.1; 6� GeV2; ð3Þ

and

RK� ¼
�
0.660þ0.110

−0.070 � 0.024; q2 ∈ ½0.045; 1.1� GeV2;

0.685þ0.113
−0.069 � 0.047; q2 ∈ ½1.1; 6� GeV2:

ð4Þ

We will use the notation RLow
K� and RCentral

K� from now on
to represent RK� for values of q2 in ½0.045; 1.1� GeV2
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and ½1.1; 6� GeV2, respectively. Very recently Belle has
measured the observables RKð�Þ and the measured values
are given by [12]

RK� ¼
�
0.52þ0.36

−0.26 � 0.05; q2 ∈ ½0.045; 1.1� GeV2;

0.96þ0.45
−0.29 � 0.11; q2 ∈ ½1.1; 6� GeV2:

ð5Þ

and [13]

RK ¼ 0.98þ0.27
−0.23 � 0.06; q2 ∈ ½1; 6� GeV2; ð6Þ

These new measurements have larger uncertainties com-
pared to those from LHCb, but the results are consistent
with each other. Belle has also measured separate ratios
like R0

K� and Rþ
K� , but the associated uncertainties are quite

large at the moment. On the whole, the deviation between
data and SM predictions stand at the level of 2.5 to 3σ.
Future measurements of these ratios with enough statistical
significance would have the potential to discover NP
unambiguously.
The observed discrepancies can be explained in various

NP models. Different types of new physics interactions (like
vector, scalar etc.) with different Lorentz structures may
contribute to these decays and explain the data. A lot of work
has already been done and it is a difficult task to quote all of
them.We are more interested, in the present work, in a model
independent analysis. There are a few related analyses
available in the literature, which mainly focus on considering
one or two operators at a time [8,14–31].
In this article, we have done a model independent

analysis of the NP affecting the b → slþl− decay modes.
The operator basis is exactly the same as that given in
Ref. [23]. We have considered all possible combinations of
these operators and categorized them as independent
models (scenarios). There are several models capable of
describing the observed data and one is thus confronted
with the problem of model selection.
In short, the problem of model selection is as follows:

any model, used to represent certain observation, will
almost never be exact; chances are, that some information
will be lost due to the choice of that particular model
[32,33]. Choosing a simplistic model with too few param-
eters can involve making unrealistically simple assump-
tions and lead to high bias, poor prediction, and consequent
missed opportunities for insight. While simplistic models
are not flexible enough to describe the sample or the
population well, a model with a larger number of param-
eters can fit the observed data very well. Does this make it
a better model? With too many parameters, we face the
possibility of just fitting the noise in the data and losing
sight of the important trends. The most general problem in
model selection is thus the optimization of the parameters
required to explain certain observation [34,35]. The moti-
vation: there must be a happy medium somewhere.

The most generally applicable, powerful, and reliable
method for model comparison (also computationally
expensive) is “cross-validation”[36], which, in addition
to testing the predictive power of the model, minimizes the
bias and variance together by minimizing the mean-
squared-error (MSE). On the other hand, penalized-like-
lihood information criteria, such as the Akaike information
criterion (AIC) [37], and the Bayesian information criterion
(BIC; more aptly named as Schwarz information criterion)
are widely used for model selection. AIC estimates the
relative amount of information lost by a given model: the
less the information lost by a model, the higher the quality
of that model. For a detailed discussion on various model
selection procedures and their relative performance with
respect to cross-validation, Ref. [38]. In our earlier pub-
lications [39,40], we have used these criteria in the context
of NP model selections in b → cτντ decays.
Very recently, in a Bayesian analysis of b → slþl−

decays [27], an information criterion has been used. They
have shown the use of a criterion closely related to DIC
(deviance information criterion; the definition by Gelman
et al. [41]) and BPIC (Bayesian predictive information
criterion [42]) for model selection, which is not only ideal
for samples from a Markov Chain Monte Carlo but is also
asymptotically equivalent [43] to natural model-robust
version of AIC.
AIC is easy to calculate in a frequentist analysis, which is

not the case for Bayesian analyses. The main difference
between that analysis and ours is that they created the model
hierarchy by definingΔIC ¼ ICSM − ICNP. As a result, the
quality of a model is determined with respect to the SM,
whereas in our case the best model is picked up first and the
hierarchy is defined with respect to that. Still, similar to our
findings, they have found that the case ΔC9 (CNP

9;μ in their
paper) provides the optimal outcome for B → K�ll tran-
sitions if we consider only the “moments” data for the
angular observables, in addition to the new LFUV data.
In the present analysis, we use both AIC and cross-

validation to pin down the best possible model(s), and find
out how one can use both procedures in tandem to glean
the most out of the data at hand.
The article is organized as follows: in Sec. II, we discuss

the present experimental and theoretical status of the
observables used in this analysis. To further motivate a
global analysis, we discuss the prospect of NP models in
explaining present data in Section III. Section IV discusses
the detailed methodology of the statistical analysis, as well
as model selection. We present our results in Sec. V and in
Sec. VI we summarize.

II. BACKDROP

A. Experimental

We list the experimental results used in this analysis and
the corresponding references below:
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(i) Binned data on the angular observables related to
the B0 → K�0μþμ− decays have been obtained from
refs. [1] (LHCb) and [2] (ATLAS).1

(ii) Binned data for the differential branching fraction
for B0 → K�0μþμ− have been obtained from
Ref. [45] and that for Bþ → K�þμþμ− from [46].
Both of these are LHCb references.

(iii) Binned data on the angular observables for Bþ →
Kþμþμ− (AFB and FH) have been taken from
Ref. [47] (CMS).

(iv) Binned data on the differential branching fraction
for Bþ → Kþμþμ− and B0 → K0μþμ− reported by
LHCb have been taken from Ref. [46].

(v) Binned data on the angular observables for Bs →
ϕμþμ− (LHCb) have been taken from Ref. [48].

(vi) The lepton flavor universality violating (LFUV)
observables RK� , both for the low and central bin,
have been obtained from Ref. [10] (LHCb). We also
include the recent measurements on these observ-
ables (for the same bins) from Belle [12]. The old
RK data from LHCb has been taken from Ref. [49].
The updated result on the same has also been
included [11].

(vii) The experimental result for the branching ratio (BR)
corresponding to Bs → μþμ− has been taken from
[50] which is the average of the measured values by
CMS, ATLAS, and LHCb. The value is given by

BrðBs → μμÞ ¼ ð3.1� 0.6Þ × 10−9: ð7Þ

The decay constant is taken from Refs. [51,52]

fBs
¼ 0.2284� 0.0037 GeV: ð8Þ

All numerical uncertainties quoted in this analysis, unless
otherwise specified, denotes the 1-σ (68% c.l.) range.
A few words regarding the data on the angular observ-

ables due to LHCb taken from Ref. [1] is in order at this
point. LHCb has provided the data corresponding to the
angular observables in bins of q2 (q ¼ pμþ þ pμ− , pμ being
the four-momentum of muon) by performing two separate
analyses. The more commonly used dataset in the com-
munity is that due to the “method of moments.”The angular
observables in this case are determined by using a principal
moment analysis of the angular distribution without carry-
ing out any angular fit to the data [53,54]. These moments
are continuous functions of q2. The statistical uncertainties
for these angular moments are estimated using a boot-
strapping technique [55] and confidence intervals are
defined such that they include the 16th–84th percentiles
of the bootstrap distribution of the observables. The other

method termed the “maximum likelihood fit” involves an
unbinned maximum likelihood fit to the invariant mass
mðμþμ−ðK�→ÞKþπ−Þ and the three decay angles cos θl,
cos θK and ϕ in each q2 bin, where:

(i) θl is the angle between the μþ (μ−) and the direction
opposite to that of the B0 (B̄0) in the rest frame of the
dimuon system,

(ii) θK is the angle between the direction of the Kþ (K−)
and the B0 (B̄0) in the rest frame of the K�0 (K̄�0)
where the K�0 meson is reconstructed through the
decay K�0 → Kþπ−, and

(iii) ϕ is the angle between the plane defined by the
dimuon pair and the plane defined by theK and the π
in the B0 (B̄0) rest frame.

The bin sizes corresponding to the maximum likelihood
analysis are larger than those for the method of moments.
This is done since there is a dearth of statistics, and an
increase in the bin-size renders the precision comparable
with that for the method of moments. With increased
number of events in the future, an unbinned likelihood
analysis will become the norm, but at the present precision
level, the moments data is at least equally dependable, if not
more. To examine and point to any fundamental difference
between these two datasets in presence of NP models, we
use both these sets as separate cases in our analysis. To the
best of our knowledge, this is the first global b → sll
analysis that takes both of these datasets into account.
Apart from classifying the data according to whether it

corresponds to the “likelihood” or the “moment” method
for the angular observables, we have also prepared separate
datasets which we call:

(i) “Old” dataset, containing the (previous) estimates
for the LFUV RK and RK� ratios from Refs. [10,49]
respectively, and

(ii) “New” dataset, where the old estimate for RðKÞ [49]
by LHCb is replaced by the new one [11], while both
the previous [10] and the current [12] estimates
for the RK� ratio have been included. We also
include the most recent measurement for RK due
to Belle [13].

We should mention here that we have only taken the “low
bins” (q2 ≤ 6 GeV2) corresponding to the experimental
data referred to above. This is done so that we can avoid the
region around the J=ψ resonance (the “broad charmonium”
region) since a trustworthy theoretical estimate for this
region is challenging. Hence, we do not include the RK�

data from the low-recoil region provided by the recent Belle
measurement from [12]. We take care of the systematic and
statistical correlations separately in the data as and when
they have been reported.

B. Theoretical

The effective Hamiltonian and the operator basis for
exclusive b → sμþμ− decays are taken from [22,23] and is
written as:

1We refrain from using the very old (2012) CDF data available
from the public note [44] on the angular observables in the
B → Kð�Þμþμ− decays.
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Heff ¼ −
4GFffiffiffi

2
p ðλtHðtÞ

eff þ λuH
ðuÞ
eff Þ ð9Þ

with the CKM combination λi ¼ VibV�
is and

HðtÞ
eff ¼ C1Oc

1 þ C2Oc
2 þ

X6

i¼3

CiOi

þ
X

i¼7;8;9;10;P;S

ðCiOi þ C0
iO

0
iÞ;

HðuÞ
eff ¼ C1ðOc

1 −Ou
1Þ þ C2ðOc

2 −Ou
2Þ: ð10Þ

We consider NP effects in the following operators:

O7¼
e
g2
mbðs̄σμνPRbÞFμν; O0

7¼
e
g2
mbðs̄σμνPLbÞFμν;

O9¼
e2

g2
ðs̄γμPLbÞðμ̄γμμÞ; O0

9¼
e2

g2
ðs̄γμPRbÞðμ̄γμμÞ;

O10¼
e2

g2
ðs̄γμPLbÞðμ̄γμγ5μÞ; O0

10¼
e2

g2
ðs̄γμPRbÞðμ̄γμγ5μÞ;

OS¼
e2

16π2
mbðs̄PRbÞðμ̄μÞ; O0

S¼
e2

16π2
mbðs̄PLbÞðμ̄μÞ;

OP¼
e2

16π2
mbðs̄PRbÞðμ̄γ5μÞ; O0

P¼
e2

16π2
mbðs̄PLbÞðμ̄γ5μÞ:

ð11Þ

The NP contributions to operators O9;10 is given by
ΔC9;10. In these decays, when the final state contains a
vector meson, one can construct various helicity ampli-
tudes. These helicity amplitudes are used to form angular
coefficients which are relevant in defining the CP-sym-
metric and asymmetric observables measured by the differ-
ent experimental collaborations. The details about various
transversity amplitudes and the respective angular coeffi-
cients can be obtained from [23]. The two major compo-
nents that go into the formation of the helicity amplitudes
are the Wilson coefficients (WC) of different operators and
the form factors which are defined as the hadronic matrix
elements of various operators. We follow Ref. [6] for the
form factors in B → K� and Bs → ϕ decays.2

For the B → K sector we closely follow the methodol-
ogy communicated in Ref. [57]. This includes expressing
the differential decay distribution in terms of a polynomial
in cos θ, where θ denotes the angle between the direction of
motion of the parent B meson and the positively charged
lepton in the dilepton center of mass frame. The coefficients
of these terms can then be expressed as combinations of
the corresponding WC and form factors. For the form

factors, we use the results from Ref. [22], where the authors
perform a combined fit to the lattice computation in
Ref. [58] as well as LCSR predictions at q2 ¼ 0 [59,60],
using the parametrization and conventions of [58]. The
method is described in details in the Appendix of Ref. [61].
We also take care of the correlations among these form

factor elements as reported in these references, in order to
propagate them to form the theoretical correlations and
errors for the corresponding observables.
Since our aim is to perform a global model selection

based on the plethora of available b → sll data discussed
in Sec. II A, there is a possibility that among the selected
models the operator with C0

7 as coefficient may appear as a
plausible solution. Such an operator is also relevant for the
radiative decays like inclusive and exclusive b → sγ. For
such scenarios, we have checked whether parameter spaces
which are allowed by b → sll data are also allowed by the
inclusive B → Xsγ measurement, alongwith the branching
ratios for the three exclusive radiative modes Bþ → K�þγ,
B0 → K�0γ and the time integrated BRðBs → ϕγÞ.3 The
definitions and formulas for these modes are taken from
Ref. [62]. We provide the experimental values and the SM
estimates used in our analysis in Table I. The corresponding
theoretical (for B → Xsγ) and experimental references are
provided therein. Our SM values are consistent with the
estimates of Ref. [62], within 1σ.

III. NP and current data on RK and RK�

Before pursuing a detailed discussion on model selec-
tion, let us look for the NP effects in b → sμμ decays, only
in the light of recently updated measurements on RK and
RK� in this section, focusing on the measurements of RK�

in the low q2 bins. There is some discrepancy between
this particular data and the corresponding predicted value
in the SM. However, one needs to remember that the
angular observables are not free from hadronic uncertain-
ties. In this part of the study, we do not consider any of the
angular observables, neither do we carry out any fit to data.
We simply check the dependencies of RLow

K� , RCentral
K� , and RK

on various WCs in one and two operator scenarios. We do

TABLE I. SM values and experimental world averages of
inclusive and exclusive b → sγ observables used in our analysis.

Observable
SM

prediction ×105 Measurement ×105

BRðB → XsγÞEγ>1.6 GeV 33.6� 2.6 [63] 32.7� 1.4 [64]

BRðBþ → K�γÞ 3.51� 0.78 4.21� 0.18 [65]
BRðB0 → K�γÞ 3.49� 0.78 4.33� 0.15 [65]
BRðBs → ϕγÞ 4.33� 0.77 3.5� 0.4 [66,67]

2Although the latest LCSR estimates for the B → K� decays is
calculated in Ref. [56], it does not include the corresponding
Bs → ϕ matrix elements. Hence we refrain from using these
results.

3We refrain from using measurements for the CP asymmetries
since our NP Wilson coefficients are taken to be real, thus
excluding the possibility of CP violation in NP.
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not include CS, CP, C0
S, and C0

P, since the corresponding
operators by themselves, or combinations including such
operators, are unable to explain the observed data in RLow

K� .
These WCs also suffer from tight constraints due to
Bs → μμ decays [68]. Also, the new electromagnetic dipole
operator O0

7 alone would not be able to explain the

observed data on Rð�Þ
K and the branching fractions in the

above mentioned radiative decays simultaneously. Hence,
we have not considered the effects of this operator in this
part of the analysis.
The results of our analysis are presented in Figs. 1 and 2.

In single operator scenarios, the correlations between all
the above-mentioned observables are shown in Figs. 1(a)
and 1(b). It would be difficult to explain the observed data
for RLow

K� within their 1σ ranges will be difficult in the
single-operator scenarios. Although the allowed region is
tightly constrained, O10 (with WC ΔC10) is the only
operator that can simultaneously explain all the data on
RKð�Þ except RLow

K� from LHCb. The required value of ΔC10

lies in between 0.5 and 1.5, which is consistent with the
measured value of BrðBs → μμÞ within its 2-σ range for
detail see Fig. 2(k). However, there are several candidates
in the two operator scenarios that could explain all the data
simultaneously. Among various possible combinations, the
highly probable scenarios are the operators with the WCs
½ΔC9; C0

10�, ½ΔC10; C0
9�, ½ΔC10; C0

10�, and ½ΔC10;ΔC9�.
The other possible scenario ½ΔC9; C0

9� is less favored but
allowed by the data. Also, the allowed values of ΔC10

and/or C0
10 can explain BrðBs → μμÞ within its 1-σ range,

wherever applicable; see Fig. 2(k) for details. In Fig. 2(k),
we have shown the variations of BrðBs → μμÞ with respect
to the parameters ½ΔC10; C0

10�. However, there are scenarios
where only ΔC10 or C0

10 appears. In such cases, depending
on the scenario, one needs to look at the plot with either
ΔC10 ¼ 0 or C0

10 ¼ 0. To conclude this section, we would

like to mention that the three or more operator scenarios
could also be relevant to explain the present data on RKð�Þ

simultaneously. The take home message is that simulta-
neous contributions from various operators are required
for a simultaneous explanation of the RKð�Þ data alone.
The results of this section will be useful for a better
understanding of the results in the following section.

IV. METHODOLOGY

A. Parameter estimation

The methodology adopted in this paper for the model
selection is as follows:
(1) Define models: Considering the NP Wilson coef-

ficients real, we take all possible combinations
(511 in total) of the coefficients forming a predefined
global set of different scenarios. Each scenario with
a specific combination of coefficients thus consti-
tutes a potential model to explain the experimental
results.

(2) Numerical optimization: Next, for each such model
k, as mentioned above, we perform a frequentist
statistical analysis optimizing a χ2 statistic which is a
function of the Wilson coefficients. Whenever appli-
cable, statistical (systematic) covariance matrices
VstatðsystÞ, are constructed by taking separate corre-
lations. Theoretical uncertainties are propagated
separately and are introduced in the χ2 in terms of
a “theoretical” covariance matrix V th. The effect of
the interplay of the SM uncertainties and the NP
parameters come in the fit at a higher order and are
neglected without any loss of generality. Following
Sec. II A, we perform 4 types of fit for each model:
(a) New data with Likelihood data for angular

observables, a total of 214 observables.

FIG. 1. Correlations between RK and RK� for different single-operator NP scenarios. The arrows indicate the increasing values of the
WCs from −2 to þ2. All the experimental data are considered within their 1σ ranges.
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(b) New data with Moments data for angular ob-
servables, a total of 258 observables.

(c) Old data with Likelihood data for angular ob-
servables, a total of 211 observables.

(d) Old data with Moments data for angular observ-
ables, a total of 255 observables.

All fits are done in batch using Mathematica© in the form
of a package [69]. The chosen optimization method is

differential evolution, a stochastic parallel direct search
evolution strategy [70].4

(3) Postprocess: In the postprocess for each fit, we
obtain fit-quality using p-value and find outliers by

FIG. 2. Figure 2(a) to 2(j) shows the correlations between RK and RK� in different NP scenarios. The constraints onΔC10 and C0
10 from

the measured value of BrðBs → μμÞ can be inferred from Fig. 2(k).

4Capable of handling nondifferentiable, nonlinear, and multi-
modal objective functions. Considerably faster than generic genetic
algorithms and extremely able to find the global minimum.
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constructing a pull (related to studentized residuals;
for our purpose, the difference between the fitted and
experimental results, normalized by the uncertainty
of the data, including theory uncertainties [71,72])
for each data-point. We also check the normality of
the pull-distribution (i.e., consistency with a Gaus-
sian of μ ¼ 0 and σ ¼ 1) to ensure the applicability
of the χ2 as the fit-statistic. We use the “Cramér-von
Mises” criterion [73] for the normality check.
Scenarios not satisfying the normality criterion are
dropped from the analysis.

(4) Parameter-space: Parameter uncertainties are ob-
tained both from the Fisher matrix5 and the profile-
likelihood curve6

With the remaining scenarios, we perform a model-
selection procedure for each dataset. In the following
subsection, we elaborate the methods used to do the
multimodel selection procedure.

B. Model selection

Following the “concept of parsimony” [76], we need
to optimize the dimension (measure of the degree of
structure) of the model explaining our data. All model
selection methods, to some extent, depend on the prin-
ciple of parsimony [77]. In statistical terms, this is
expressed as a bias versus variance trade-off. In general,
bias decreases and variance increases as the model-
dimension increases.

1. Cross-validation

As we have mentioned in the Introduction, cross-
validation is the most generally applicable, powerful,
reliable, and computationally expensive method for model
comparison. The most straightforward and the most expen-
sive flavor of cross-validation is “leave-one-out cross-
validation” (LOOCV). In LOOCV, one of the data points
is left out and the rest of the sample (“training set”) is
optimized for a particular model. Then that result is used to
find the predicted residual for the left out data point. This
process is repeated for all data points and a mean-squared-
error (MSE) is obtained using all those residuals. This
process is repeated for all models. The models with the
least MSE are the best ones.

2. Criteria from information theory

In addition to the extreme computational cost demanded
by cross-validation methods, especially LOOCV, its

applicability is questionable to very small sample sizes
[78,79]. Due to this reason, in our earlier works [39,40], we
have shown the importance and use of the information-
theoretic criterion AIC [37] and its second order variant
AICc [80]. It has been shown that minimizing AIC is
asymptotically equivalent to cross-validation [81]. For a
detailed discussion on AICc, we point the reader to those
papers and references therein. Here, let us reiterate the main
important aspects of AICc in with respect to model
selection in the present work:
(a) AICc: If the full reality or truth is noted as f and

an approximating model in terms of probability dis-
tribution is g, then we can define a model selection
criterion in terms of the χ2min (equivalent to the
maximum point of the empirical log-likelihood func-
tion) in the parameter space:

AICc ¼ χ2min þ 2K þ 2KðK þ 1Þ
n − K − 1

ð12Þ

where n is the number of data points and K is
the number of estimable parameters.7

(b) wΔAICc
i : The model which is the closest to the unknown

reality generating the data should have the smallest
value of AICc among the considered models. Simple
differences of them (ΔAIC

i ¼ AICi
c − AICmin

c ) estimate
the relative expected information loss between f and
gi allowing comparison and ranking of candidate
models in increasing order of ΔAIC

i . Generally, the
level of empirical support in favor of gi is considered
substantial when ΔAICc is between 0 and 2
(ΔAICc ≤ 4 is considered to be a conservative and
loose bound). We can also quantify the weight of
evidence in favor of model i by defining a set of
positive “Akaike weights”:

wΔAICc
i ¼ eð−ΔAIC

i =2Þ
P

R
r¼1 e

ð−ΔAIC
r =2Þ ; ð13Þ

adding up to 1 [34]. As these depend on the entire
set, adding or dropping a model during an analysis
requires recomputation for all models in the new set.

In the present analysis, we have a unique opportunity
to not only test the relative capability of MSE from
cross-validation and wΔAICc

i , but also the validity of the
empirical rule of selecting models with ΔAICc ≤ 2. To that
end, we first select a large number of competing models by

5In case of approximately Gaussian parameter-profile like-
lihoods, it is possible to obtain the HESSE errors [74], which are,
obviously, symmetric.

6Range of the 1σ confidence level (CL) of the profile like-
lihoods of the said parameter. One and two dimensional profile
likelihoods in this analysis will be depicted as 1-CL plots, closely
following the PROB method followed in Ref. [75]

7A more preferable way of calculating “number of estimable
parameters” is to calculate the p-value of the fit from toy Monte-
Carlo (MC) method. Under the assumption that the fit-statistic
follows a χ2 distribution, this can give us the number of degrees of
freedom, and thus the number of estimable parameters. Still, as
we need the differences between the AICc values instead of the
absolute ones, the naive way of parameter counting works fine.
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using the conservative limit of ΔAICc ≤ 4, and then
distribute them in the plane of MSEX-val vs wΔAICc and
check how they are clustered. Models with a low value of
MSEX-val and a high value of wΔAICc are the undoubtedly
the best ones to explain the data.

V. RESULTS

A. Model selection

As explained in Sec. IV, we perform the fit for four
different sets. After applying the normality check (as
explained in Sec. IVA) on all the 511 models (thus
ensuring only valid fits remain in our dataset), we pick
out the large set of models with ΔAICc ≤ 4. The list of
models, thus selected, are shown in Figs. 3 and 4, which are
based on the analysis of all the available data sets given in
Sec. II A. Each point in these figures represents a “selected”
model (i.e., a model for which ΔAICc ≤ 4). Among these,

the indices (labels for points) for models selected by
ΔAICc ≤ 2 are framed. As is evident from the figure
(and explained earlier in Sec. IV B 1), the lower the
MSEX-val, the better the model. One can clearly see three
separate clusters depending only on MSEX-val, and we can
safely label the lowest one as the cluster of the best models
(from MSEX-val) and discard the rest. Similarly, there are
three clusters in the wΔAICc direction as well, where the
cluster with the largest wΔAICc value contains only one
model. All models with ΔAICc ≤ 2 lie in the two rightmost
clusters. Following Sec. IV B 2, we know that a model with
a larger value of wΔAICc is more probable to explain the
data. So, we put a commensurate bound on wΔAICc . We note
that out of the various possible combinations, only a few are
“selected” by the combined criteria of MSEX-val and AICc.
Figures 3(a) and 3(b) respectively compare the selected

models in the analyses of moments and likelihood data on
angular observables along with the new data on RKð�Þ .

FIG. 3. For the fit with “New Data,” indices of competing scenarios with ΔAICc ≤ 4 in the MSEX-val vs w
ΔAICc
i plane. We break the

plane in four regions, with the one in right-bottom being the best one. Models in this region are chosen as the best ones from these two
criteria and the labels are colored blue. Wilson coefficients contained in these models are shown in-box. For comparison, indices for
models picked up by the criterion ΔAICc ≤ 2 are framed. For details, check Sec. VA.

FIG. 4. Same as Fig. 4, but for the fit with “Old Data.”
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Similar comparisons are done with the old data on RKð�Þ in
Figs. 4(a) and 4(b), respectively. We note that apart from
the two-operator scenario ½O0

7;O9�, the likelihood and
moments data pick up very different combinations of
operators after model selection. The likelihood data prefer
scenarios with more operators than those that are required
for moments data. This could be since most of the
observables which are determined from an unbinned
maximum likelihood fit are consistent with their respective
SM predictions. A large value of a single WC may lead to a
discrepancy between the measured values and the corre-
sponding SM predictions. It is thus preferable to have
simultaneous contributions from different operators. The
same observation can be made from the comparison of
the quality of fits with moments and likelihood data which
are shown in Tables II and III, respectively. The values of
the reduced χ2 and corresponding p-values, indicating the
quality of the fit and the relative quality of the various
models (scenarios) for a given set of data are provided in
each corresponding table. We note that in general, the
quality of the fits is better in the analysis with moments data

compared to that with likelihood data. It can be seen that
the ranking of the models depends not only on the quality
of fit but also on the penalty function defined in Eq. (12).
This is one of the major advantage of AICc over data-
fitting. Results of a similar analysis after dropping RKð�Þ are
presented in Fig. 9 in Appendix B. We note that after
dropping the LFUV observables from the fits for the
respective cases, the multioperator scenarios cannot survive
the competition from those scenarios with relatively less
number of operators.
As we know, the data from Belle has significant errors

compared to those given by LHCb. To check whether this
data has any influence over the selected scenarios, we have
performed an analysis where we drop the RKð�Þ data from
Belle only.We note that the selected scenarios are the same as
that given in Fig. 3. Also, the quality of fits or the respective
p-values do not change. The reason is straightforward: the
Belle data being consistent with LHCb, and the extracted
RðKÞ and RðK�Þ in the selected models in Fig. 3 are
consistentwith both LHCb andBelle. Hence, the conclusions
remain unchanged even after dropping Belle data.

TABLE II. Fit-qualities, model selection criteria, parameter estimates and effects on radiative decays for the “best” selected models
with the “new” dataset, with the “moments” estimate of the angular observables. Selected models are obtained from Fig. 3a. Last four
columns showcase the deviations (in units of σ) between the experimental value of the radiative decays and the corresponding value
obtained with the fit results.

Deviation in σ

Model
index χ2Min=DOF

p-val
(%)

ωΔAICc

(%) MSEX-val Parameter values B → Xsγ Bþ → K�γ ΔB0 → K�γ ΔBs → ϕγ

18 250.28=256 58.9 3.4 0.917
ΔC9 → −1.13� 0.13 − − − −
C0
9 → 0.25� 0.17

2 252.44=257 56.9 3.2 0.933 ΔC9 → −1.12� 0.13 − − − −

76 249.12=255 59.2 2.2 0.918
ΔC9 → −1.18� 0.14

− − − −C0
9 → 0.34� 0.19

CS → −0.035� 0.016

77 249.16=255 59.1 2.1 0.918
ΔC9 → −1.18� 0.14

− − − −C0
9 → 0.34� 0.19

C0
S → 0.035� 0.016

20 251.52=256 56.7 1.8 0.928
ΔC9 → −1.15� 0.14 − − − −
C0
10 → −0.1� 0.104

10 251.97=256 55.9 1.4 0.932
C0
7 → 0.01� 0.015Δ

0.31 −0.87 −1.06 1.22
C9 → −1.15� 0.14

46 250.14=255 57.4 1.3 0.922
C0
7 → 0.0058� 0.0155

0.3 −0.87 −1.06 1.22ΔC9 → −1.15� 0.14
C0
9 → 0.24� 0.18

74 250.16=255 57.4 1.3 0.925
ΔC9 → −1.16� 0.15

− − − −C0
9 → 0.26� 0.17

ΔC10→−0.041�0.118

75 250.21=255 57.3 1.2 0.923
ΔC9 → −1.12� 0.14

− − − −C0
9 → 0.3� 0.26

C0
10 → 0.04� 0.157
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There are a few other relevant observations here as well.
For example, both in the case of the old and new datasets,
the majority of the selected scenarios are with two, three, or
four operators and all of them contain the operator
corresponding to the WC ΔC9. Also, the only scenario
with a single operator selected by the new dataset (in

particular the moments dataset) has the WCΔC9 (model 2).
Model 2 is clearly the better option for all the datasets.
However, for the new moments dataset, scenarios with two
operators corresponding to the WCs [ΔC9, C0

9] (model 18),
[ΔC9, C0

7] (model 10), and [ΔC9, C0
10] (model 20) are other

possible choices. An important feature of the data is that the

TABLE III. Same as the Table II, but with the “likelihood” estimate of the angular observables. Selected models are obtained from
Fig. 3(b).

Deviation in σ

Model
index χ2Min=DOF

p-val
(%)

ωΔAICc

(%) MSEX-val Parameter values B → Xsγ Bþ → K�γ ΔB0 → K�γ ΔBs → ϕγ

132 217.02=210 35.5 3.7 0.985

C0
7 → 0.04� 0.015

0.44 −0.82 −1.02 1.27
ΔC9 → −1.39� 0.13
C0
9 → 0.45� 0.2

CS → −0.042� 0.013

133 217.07=210 35.4 3.6 0.986

C0
7 → 0.04� 0.015

0.44 −0.82 −1.02 1.27
ΔC9 → −1.39� 0.13
C0
9 → 0.45� 0.2

C0
S → 0.042� 0.013

130 217.58=210 34.5 2.8 0.976

C0
7 → 0.044� 0.015

0.47 −0.81 −1.01 1.28
ΔC9 → −1.42� 0.14
C0
9 → 0.32� 0.19

ΔC10 → −0.16� 0.11

46 219.66=211 32.7 2.8 0.988
C0
7 → 0.04� 0.015

0.44 −0.82 −1.02 1.27ΔC9 → −1.34� 0.13
C0
9 → 0.33� 0.2

47 220.36=211 31.5 2. 0.995
C0
7 → 0.048� 0.015

0.5 −0.8 −1 1.29ΔC9 → −1.43� 0.15
ΔC10 → −0.16� 0.11

10 222.46=212 29.7 1.9 1.001
C0
7 → 0.043� 0.015

0.46 −0.81 −1.01 1.28ΔC9 → −1.33� 0.13

257 216.47=209 34.7 1.7 0.99

C0
7 → 0.042� 0.015

0.46 −0.82 −1.01 1.28
ΔC9 → −1.42� 0.14
C0
9 → 0.41� 0.21

ΔC10 → −0.091� 0.123
CS → −0.036� 0.017

258 216.51=209 34.6 1.7 0.99

C0
7 → 0.042� 0.015

0.46 −0.82 −1.01 1.28
ΔC9 → −1.42� 0.14
C0
9 → 0.41� 0.21

ΔC10 → −0.092� 0.123
C0
S → 0.036� 0.017

131 218.98=210 32.1 1.4 0.993

C0
7 → 0.04� 0.015

0.44 −0.82 −1.02 1.27
ΔC9 → −1.32� 0.13
C0
9 → 0.47� 0.25

C0
10 → 0.11� 0.14

265 216.92=209 33.9 1.4 0.986

C0
7 → 0.04� 0.015

0.44 −0.82 −1.02 1.27
ΔC9 → −1.39� 0.13
C0
9 → 0.44� 0.2

CS → −0.24� 0.6
C0
S → −0.19� 0.6
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likelihood and moments datasets pick completely different
types of models. For likelihood, an explanation of the
observed data with a single operator is less plausible.
We note that some models have low MSE scores but are

rejected by AICc. Although leave-one-out-cross-validation
(LOO-CV) is asymptotically equivalent to AIC, there are
differences between the two. Theoretical considerations
aside, AIC is just likelihood penalized by the degrees of
freedom. Evidently, AIC accounts for uncertainty in the
data (-2Log(L)) and assumes that more parameters lead to a
higher risk of overfitting (2k). Cross-validation (CV) just
looks at the test set performance of the model, with no
further assumptions. There is no explicit measure of model
complexity, unlike AIC. Clearly, AIC penalizes model
complexity more than CV. The accepted practice in the
literature is that if one cares mostly about making pre-
dictions and assumes that the test set(s) to be reasonably

similar to the validation sets, one should go for CV (only
with a large number of data) [38].
Following the reasoning in the paragraph above, it seems

clear a priori that models with lowMSE but not selected by
AICc may have more parameters. In our analysis, the
models are organized in such a way that more complex
models with a larger number of parameters have a higher
index. A quick examination of the plots in Figs. 3 and 4
validates this assumption, as the left sides of the plots are
littered with models of higher indices.
On another note, as the title suggests, this study clearly

finds that under the simultaneous application of bothAIC and
CV, the models cluster in such a way that lets us carry out a
tighter selection of models than would have been possible by
the use of any one of these criteria. So the fact that some of the
selected models by CV are further discarded by AIC due to
relative complexity is actually quite a nontrivial finding.

FIG. 5. Comparison of the CP-averaged angular observables obtained in experiment, SM and from our fit results considering all the
available inputs.
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The best fit values of the new WCs with the correspond-
ing errors for the selected models in Fig. 3 are given in
Tables II and III. We note that for all the fit results, the
allowed values of ΔC9 are negative and greater than one.
Other WCs appearing along with ΔC9 as probable sol-
utions have values≪ 1 or −1. The selected models with C0

7

as one of the WCs will impact radiative decays. Hence,
along with the allowed values for the new WCs, we have
shown that in all the relevant models the branching
fractions for B → K�γ, B → ϕγ and B → Xsγ are consistent
with their respective measurements within 1σ confidence
interval in the relevant tables. The fitted values of the
selected WCs remain almost unchanged in the analysis
obtained after dropping RKð�Þ . The allowed parameter
spaces of the respective WC’s are similar in the analyses
with old dataset which are given in the Appendix in
Tables IV and V. However, note that the fit qualities are
relatively better in the analysis with old data which is an
indicator of relatively poor NP-description of the new
LFUV observables along with the angular observables.
We compare our fit results for various angular observ-

ables with their respective measured values and the SM
predictions in Figs. 5 and 6 for a set of selected models. We
see that the data in a few bins are inconsistent with their
corresponding SM predictions, particularly in the data set
for the moment analysis. For the likelihood analysis, most
of the measured values in different bins are consistent with
their SM predictions, albeit with exceptions. Assuming the
observed discrepancies are due to NP, most of them can be

resolved by our selected models. For the likelihood data,
our analysis shows that the angular observables obtained
from the selected models are fully consistent with their SM
predictions as well as measured values. On the contrary, the
fitted angular observables in the selected models in the
moment-data analysis are shifted from their respective SM
predictions in a few bins. Moreover, in some of those, the fit
results shift from their measured values as well. One can
also notice the correlations among various angular observ-
ables in the presence of different new operators from these
figures. For example, AFB and FL are positively correlated,
FL and S5 are negatively correlated, etc. For some of the
bins of FL, the values predicted by the selected models are
shifted from respective measured values. Similar plots
obtained in our analysis after dropping RKð�Þ is provided
in Fig. 10 in the Appendix.
In Fig. 7, the predicted values of different observables

and their respective correlations are shown for a few of the
models (only one or two operator scenarios) selected in our
analysis. We note that RCentral

K� and RK are correlated
differently in different two operator scenarios. However,
all of them satisfy the current experimental bounds on these
observables. Interestingly, the single operator scenario with
ΔC9 and the two operator scenario with ½ΔC9; C0

7� are
unable to satisfy the current experimental bounds on RLow

K� .
In these scenarios, satisfying the experimental bounds on
RK , it is hard to get a value of RLow

K� below 0.85. However,
the scenarios with ½ΔC9; C0

9� and ½ΔC9; C0
10� as WCs can

explain the observed data on RK and RK� . From the

FIG. 6. Comparison of the optimized angular observables obtained in experiment, SM and from our fit results considering all the
avilable inputs.
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respective correlations, one can also see that RLow
K� and RK

are negatively correlated and values of RLow
K� lower than

0.88 prefers RK > 0.8. In Figs. 7(c), 7(d), 7(e), and 7(f), we
provide the predicted values of the branching fractions of
different radiative decays and their correlations with RLow

K�

in scenarios corresponding to the WCs ½ΔC9; C0
7�. We note

that there are no noticeable correlations between these
branching fractions and RLow

K� , or for that matter with RK

and RCentral
K� .

The q2 distributions and the zero crossing of the
angular observables AFB, S4 and S5 corresponding to
the SM and the selected models are shown in Fig. 8.
We have noted discrepancies between the q2 distributions
for the SM and the selected models in the cases of AFB

and S5 while S4ðq2Þ in the selected models are fully
consistent with the SM. The q2 distributions of these
angular observables in different selected models overlap
with each other. Hence it is hard to discriminate models
from these distributions. In the Appendix in Fig. 12, we
compare the values of q2 at the zero crossing (q20) between
SM, our selected models and the measured values for the
above mentioned observables.

The uncertainties of the observables, in terms of the
parameters, are obtained by two different techniques for
Figs. 7 and 8. For Fig. 7, which contains spaces for any 2
observables, we take, from our fit-results, all the informa-
tion (best-fit values, uncertainties, and correlations) of
only the NP parameters occurring in those observables,
create a multivariate distribution out of those, and sample
a large number of points (∼5000) from that distribution
using Monte-Carlo. For each of those points, we get sets
of values of the observables, which in turn lets us draw the
1 (39.35%) and 2 ð63.21%Þσ contours (for 2-observable
plots) from these datasets.
For Fig. 8, we are dealing with only one observable at a

time and that too, for a specific value of q2. Taking the 1σ
(68%) confidence levels for the marginal likelihoods
around the central (for SM/nuisance parameters) or best-
fit values (for NP) of the parameters as uncertainties and the
corresponding correlations between them, we propagate the
uncertainties to get the central values and uncertainties of
the observables at some q2. Doing this for many points over
the allowed q2 range and interpolating between them gives
us the plots of q2 distribution.

FIG. 7. Predicted values, and the correlation of different observables in a few selected scenarios.
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We should also mention here that the scenario ΔC9 ¼
−ΔC10 that arises, for example, in some leptoquark models
(among other model-dependent origins) does not pass the
criteria of ΔAICc ≤ 4. We hence do not display or discuss
this scenario.

VI. SUMMARY

In this article, we have analyzed the semileptonic
b → sll decays in a model independent framework with
the relevant dimension six effective operators invariant
under the strong and electromagnetic gauge groups. Our
chosen set of operators does not include the four quark
operators, chromomagnetic operators, and tensor operators.
Different possible combinations of all the effective oper-
ators have been considered, and following the statistical
tools like cross-validation and the small-sample-corrected
Akaike information criterion (AICc), we have found out the
combinations which best explain the available data. We
have provided separate analyses for the data on angular
observables obtained from an unbinned maximum like-
lihood fit and that due to the principal moments of the
angular distribution in B → K�μþμ− decay.
Among all the possible combinations, a relatively small

number of one, two, and three-operator scenarios satisfy
the criterion of a selected “best” model. All the selected
scenarios contain a left-handed quark current with vector
muon coupling as an operator (O9). This is also the only
one-operator scenario that survives the exclusion test in our
search for the best model(s). We have noted differences
between the selected models in the analysis with angular
data from likelihood fit and those from the principal
moments analysis. The RKð�Þ , along with the angular
observables associated with B → K�μþμ− decays, have
played an important role in this selection. In the analysis

with the new data on RKð�Þ , the scenarios with three, four
and five operators are selected. This could be due to the
fact that the tension between the updated measured values
of RK and RK� and their respective SM predictions have
reduced in comparison to that for their old experimental
measurements. Therefore, in order to explain all the data
simultaneously, simultaneous contributions from different
operators are required. We have noticed changes in the
selected scenarios when we drop RKð�Þ from the list of
inputs. We have performed the analysis with and without
the 2019 updates on RKð�Þ from Belle and have compared
them. We have noticed changes in the allowed parameter
spaces for the Wilson coefficients of the selected scenarios.
We have compared our fit results for the angular

observables with the corresponding SM predictions and
the measured values in different bins for a few selected
models. While our fit results are fully consistent with both
the measured values and the respective SM predictions in
the analysis of likelihood data, in the analysis of moment
data, there are discrepancies between our fitted results and
the respective SM predictions and the measured values in
some bins. For some of the selected scenarios, we have
studied the correlations between different observables,
which show that the operator O9 and the combination
of O9 and O0

7 (flavor changing electromagnetic dipole
operator) cannot explain all the available data on RKð�Þ

simultaneously. In particular, they have difficulty in
explaining the observed results of RK� in the low q2

bin (q2 ∈ ½0.045; 1.1� GeV2).
We have studied the NP effects in RKð�Þ only, and noticed

that the operator with a left-handed quark current with an
axial-vector muon coupling (O10) is the only one-operator
scenario that can explain the data. Also, the parameter
space for the corresponding Wilson-coefficient ΔC10,
allowed by RKð�Þ, is tightly constrained by the measured

FIG. 8. q2 distributions of a few angular observables.
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values of BrðBs → μþμ−Þ. However, there are a few two-
operator scenarios which have the potential to explain the
current observation. Those operators are obtained from
possible combinations of O9, O10 and operators like right-
handed quark current with vector or axial-vector muon
couplings (O0

9, O
0
10). In the two-operator scenarios, the

allowed parameter spaces for ΔC10 or/and C0
10 can com-

fortably explain the observed data on BrðBs → μþμ−Þ.
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Note added.—The complete list of all models used in this
analysis is too long to include in this draft. We have added
an ancillary file named “models.json” along with this
draft (to be found within the arXiv source file). This file
contains all combinations of WCs, relating them with their
corresponding indices in our analysis.

APPENDIX A: BEST FIT VALUES OF THE NEW
WCs IN THE ANALYSIS WITH OLD DATASET

The selected models in the analysis with old datasets are
shown in Fig. 4. The best fit values of the corresponding
WCs along with their respective errors are given in
Tables IV and V, respectively.

TABLE IV. Fit-qualities, model selection criteria, parameter estimates and effects on radiative decays for the best selected models with
the old dataset, with the moments estimate of the angular observables. Selected models are obtained from Fig. 4(a). Last four columns
showcase the deviations (in units of σ) between the experimental value of the radiative decays and the corresponding value obtained with
the fit results.

Deviation in σ

Model
index χ2Min=DOF

p-val
(%)

ωΔAICc

(%) MSEX-val Parameter values B → Xsγ Bþ → K�γ ΔB0 → K�γ ΔBs → ϕγ

2 245.67=254 63.5 5. 0.918 ΔC9 → −1.26� 0.14 − − − −

10 244.92=253 63.1 2.6 0.916
C0
7 → 0.013� 0.015

0.32 −0.87 −1.06 1.22ΔC9 → −1.3� 0.15

19 245.42=253 62.2 2. 0.926
ΔC9 → −1.22� 0.16 − − − −ΔC10 → 0.061� 0.123

21 245.48=253 62.1 2. 0.923
ΔC9 → −1.27� 0.15 − − − −
CS → −0.021� 0.026

22 245.51=253 62. 1.9 0.923
ΔC9 → −1.27� 0.15 − − − −
C0
S → 0.02� 0.026

18 245.55=253 62. 1.9 0.915
ΔC9 → −1.25� 0.14 − − − −
C0
9 → 0.067� 0.195

20 245.59=253 61.9 1.9 0.92
ΔC9 → −1.26� 0.14 − − − −C0
10 → −0.03� 0.109

TABLE V. Same as Table IV, but with the likelihood estimate of the angular observables. Selected models are obtained from Fig. 4(b).

Deviation in σ

Model
index χ2Min=DOF

p-val
(%)

ωΔAICc

(%) MSEX-val Parameter values B → Xsγ Bþ → K�γ ΔB0 → K�γ ΔBs → ϕγ

10 213.78=209 39.6 5.3 0.973
C0
7 → 0.028� 0.015

0.37 −0.85 −1.04 1.24ΔC9 → −1.37� 0.14

2 217.19=210 35.2 2.7 0.989 ΔC9 → −1.28� 0.13 − − − −

49 213.2=208 38.8 2.5 0.981
C0
7 → 0.029� 0.015

0.38 −0.85 −1.04 1.25ΔC9 → −1.4� 0.14
CS → −0.028� 0.019

(Table continued)
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APPENDIX B: RESULTS FOR MODEL-
SELECTION WITH DATASETS OTHER THAN
NEW-MOMENTS AND NEW-LIKELIHOOD

A comparison of the selected models in Figs. 3 and 9 is
helpful in understanding the impact of the new RKð�Þ

measurements by LHCb and Belle on the process of model
selection. With more precise measurements on RK and RK� ,
the consistency between the data and the corresponding SM
measurements may increase further. Therefore, it is impor-
tant to gain insights on the probable NP effects in the
angular observables. In Fig. 9, we provide the results for the
model selection corresponding to the “new-moments” and
the “new-likelihood” datasets after dropping the LFUV
observables RK and RK� . The selected scenarios can be
compared with the one given in Fig. 3. We note that in both
the likelihood and moments data under the given selection
setup, the number of selected scenarios reduce after we
drop RðKÞ and RðK�Þ from the inputs. A comparison of
between Figs. 9(a) and 3(a) indicates that the three-operator
scenarios become less favorable. Similarly, from Figs. 9(b)
and 3(b) we see that the four and five-operators scenarios
are less favorable in the analysis without RðKÞ and RðK�Þ.
As explained in the main text, the explanation of new data

prefers NP scenarios with more than two operators like
three, four, or five-operator scenarios. In particular, we have
noted that the fit qualities improve once we drop these
LFUVobservables from the fits in general, which is on par
with our expectations. For comparison with the new data-
set, Fig. 10 lists the angular observables from SM, experi-
ment, and our fit results.
Figure 11 depicts the allowed parameter spaces of the

most commonly occurring one and two parameter scenarios
selected from different types of fits and datasets. For one
operator scenario (O9), the allowed parameter space of the
correspondingWCΔC9, is shown in Fig. 11(a). For the two
operator scenarios, Figs. 11(b), 11(c), and 11(d) shows the
correlations between the WCs. We note that the allowed
values of C0

7 and ΔC9 have reasonably small ranges and
they are negatively correlated. The corresponding value is
−0.316. Large (negative) values of ΔC9 prefers large
positive values of C0

7. The other two plots show the allowed
parameter spaces and the correlations of ΔC9 with C0

9 with
C0
10, respectively. The fitted values of C0

9 and C0
10 have

large errors. Guessing the exact correlations between them
from the figures alone is therefore difficult. However, one
can see that in the analysis with new data, the value of the

TABLE V. (Continued)

Deviation in σ

Model
index χ2Min=DOF

p-val
(%)

ωΔAICc

(%) MSEX-val Parameter values B → Xsγ Bþ → K�γ ΔB0 → K�γ ΔBs → ϕγ

50 213.23=208 38.7 2.5 0.981
C0
7 → 0.029� 0.015

0.38 −0.85 −1.04 1.25ΔC9 → −1.4� 0.14
C0
S → 0.028� 0.019

47 213.65=208 37.9 2. 0.976
C0
7 → 0.029� 0.015

0.38 −0.85 −1.04 1.25ΔC9 → −1.39� 0.15
ΔC10 → −0.042� 0.117

FIG. 9. Results similar to Fig. 3 but with RK and RK� dropped.
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FIG. 10. Comparison of the CP-averaged angular observables in different bins which are obtained in experiment, SM and from our fit
results after dropping RKð�Þ .
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FIG. 11. Allowed parameter space for ΔC9 in one-operator scenario and allowed NP parameter spaces and their respective correlation
for some selected two-operator scenarios.
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correlation between ΔC9 and C0
10 (þ0.24) is greater than

that between ΔC9 and C0
9 which is −0.11.

In Fig. 12 we compare the values of q2 at the zero
crossing (q20) between SM, our selected models and the

measured values for the above mentioned observables.
We note that in our selected models, the q20 for all these
three observables are in good agreement with the corre-
sponding measured values.
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