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We construct a flavor model in an anti-SU(5) grand unified theory with a tetrahedral symmetry A4. We
choose a basis where Qem ¼ − 1

3
quarks and charged leptons are already mass eigenstates. This choice is

possible from the A4 symmetry. Then, matter representation 10matter
−1 contains both a quark doublet and a

heavy neutrino N, which enables us to use the A4 symmetry to both Qem ¼ þ 2
3
quark masses and neutrino

masses (through the see saw via N). This is made possible because the anti-SU(5) breaking is achieved by
the Higgs fields transforming as antisymmetric representations of SU(5), 10H−1 ⊕ 10Hþ1, reducing the rank-5
anti-SU(5) group down to the rank-4 standard model group SUð3ÞC × SUð2ÞW × Uð1ÞY . For possible mass
matrices, the A4 symmetry predictions on mass matrices at field theory level are derived. Finally, an
illustration from string compactification is presented.

DOI: 10.1103/PhysRevD.101.055022

I. INTRODUCTION

Recently, we pointed out analytically how the tetrahedral
discrete symmetry A4 results from the permutation sym-
metry S4 [1]. The A4 discrete symmetry [2–11] in
connection with the tribimaximal form of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix
[12–14] was observed a long time ago. The underlying
permutation symmetry is useful in model building and
furthermore it can be accommodated to string compacti-
fication. In string compactification, chiral fields can arise
from fixed points also [15]. The multiplicity N in a fixed
point should respect permutation symmetry SN because the
chiral fields at that fixed point are not distinguished. In this
paper, we will use a specific grand unified theory (GUT)
anti-SU(5) [16,17].
Georgi and Glashow’s (GG) GUT SU(5) [18] is an

important prototype in the consideration of GUTs. An
initial success was attributed to the b − τ unification [19].
However, there may be two issues against the GG model
when one tries to include it in an ultraviolet completed
theory. The rank of the GG group is 4 which is identical
to that of the Standard Model (SM) gauge group

SUð3ÞC × SUð2ÞW × Uð1ÞY . Therefore, string compactifi-
cation, an ultraviolet completion of the GG SU(5), needs an
adjoint representation for breaking the GG SU(5) down to
the SM gauge group without changing the rank. First, in
string compactification, it is not possible to obtain an
adjoint representation at the level-1 construction [20].
Second, the Qem ¼ − 1

3
Georgi-Jarlskog quark mass rela-

tions [21] need another representation 45 beyond a quintet
of Higgs fields. The need for this additional representation
makes it difficult for it to be realized in the string
compactification. Of course, one may argue that 45 may
arise from nonrenormalizable interactions, which needs
further fine-tuning.
Therefore, the anti-SU(5) or flipped SU(5) is preferred in

string compactification. Barr commented that flipped-
SU(5) is a subgroup of SO(10) [16], but here we consider
it an independent GUT since string compactification
may not go through an intermediate SO(10) which also
needs an adjoint representation for spontaneous symmetry
breaking to obtain Barr’s flipped SU(5). On the other
hand, for breaking anti-SU(5), we use a vectorlike repre-
sentation 10−1 and 10þ1 (the subscripts are X charges)
which are antisymmetric tensor representations of SU(5)
and hence it is called “anti-SU(5)” in [17]. This generali-
zation for spontaneous symmetry breaking by antisym-
metric representations in string compactification stops at
SU(7) [22].
Since the anti-SU(5) gauge group SUð5Þ × Uð1ÞX is

rank 5, one can use antisymmetric representations to reduce
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rank 1 to arrive at the rank-4 SM gauge group via the Higgs
fields,

10H−1 ¼ fð3; 1ÞcL; ð3; 2ÞL; B45g−1;
10Hþ1 ¼ fð3; 1ÞL; ð3; 2ÞcL; B45gþ1: ð1Þ

We use the X definition given in Ref. [15]. The vacuum
expectation values (VEVs) of neutral singlets B45 and B45

(in 10H−1 and 10Hþ1) break the anti-SU(5) down to the SM
gauge group. But, there is no b − τ unification in this anti-
SU(5).
One family in the anti-SU(5) in terms of left-handed

(L-handed) fields is

10−1¼fðdαÞcL;Qα
L;N

c
Lg; 5þ3¼fðuαÞcL;lLg; 1̄−5¼ecL;

ð2Þ
where

Qα
L ¼

�
uα

dα

�
L

; lL ¼
�
νe

e

�
L

: ð3Þ

Note that all SU(2) singlets are with superscript c. So, the

singlet neutrino Nc
L is in 1̄0−1 and NR has X ¼ þ1. To

break the SM gauge group to Uð1Þem, we need a Higgs
quintet(s) 5̄Hþ2 and 5H−2.
The family problem or the flavor problem consists of two

parts. First, why are there three families which have exactly
the same gauge interactions. Second, why do these families
have different Yukawa couplings? In GUTs, the first
problem was formulated by Georgi [23] which was applied
in extended GUTs [24,25]. In string theory, three family
models have been searched in various compactification
schemes [26–52]. The second problem is usually talked
about in terms of flavor symmetry. The flavor symmetry is
designed to calculate the Cabibbo-Kobayashi-Maskawa
(CKM) and Pontecorvo-Maki-Nakagawa-Skata (PMNS)
matrices. Permutation symmetry S3 has been started to
calculate the CKM matrix [53,54] but permutation sym-
metries blossomed recently in fitting the PMNS
matrix [55].
In Sec. II, we summarize the results of Ref. [1]. In

Sec. III, we discuss the A4 symmetry at field theory level for
three families in the anti-SU(5) GUT. We obtain possible
forms of mass matrices of quarks and leptons, which are
related by the anti-SU(5) representations. In Sec. IV, we
present an example for possible quark and lepton mass
matrices in a string derived spectra presented in Ref. [15].
Finally, a brief conclusion is given in Sec. V.

II. A4 FROM S4

The permutation symmetry S3 was used in the leptonic
sector for a bimaximal PMNS matrix in the late 1990s
[57,58], and the A4 symmetry was started in the early 2000s

[3]. The flavor symmetry in the PMNS matrix of a
tribimaximal form

V ∼

0
B@

× × ×
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

0 sin α cos α

1
CA ð4Þ

has led to an A4 symmetry, as shown analytically in [1]. The
key points of Ref. [1] are the following:

(i) We choose the bases such thatQem ¼ − 1
3
quarks and

Qem ¼ −1 leptons are mass eigenstates.
(ii) lL in 5 of Eq. (2) is a triplet under the tetrahedral

group A4.
(iii) All quark states in Eq. (2) are singlets under A4.
(iv) The Higgs doublet(s) is a singlet under the permu-

tation symmetry group A4.
There are four representations in A4: 3, 1, 10, and 100. Let

us remark first that item i evades the problem encountered
in the Georgi-Jarlskog relation. We choose the needed mass
values in the definition of the Qem ¼ − 1

3
quark masses.

Item iv requires that the Higgs quintet 5̄Hþ2 is a tetrahedral
group singlet. Then, Items ii and iii dictate the assignment
ucL in the triplet representation 3 of A4 since both lL and ucL
belongs to the same representation 5þ3.
The tensor product of two 3’s of A4 is [65]

3 ⊗ 3 ¼ 2 · 3 ⊕ 1 ⊕ 10 ⊕ 100: ð5Þ

We use the representations where three Qem ¼ − 1
3
quarks

of each chirality form a representation 3 of A4, so do
charged leptons. Then, the tensor product Eq. (5) allows
three parameters, viz. three singlets, for three Qem ¼ − 1

3

quark masses and choosing the diagonal basis for Qem ¼
− 1

3
quarks is guaranteed from A4. The same applies to

charged leptons also.
Note that the charged currents(CCs) in the SM are

given by

gffiffiffi
2

p ðūð0ÞL γμdðmassÞ
L þ ν̄ð0ÞL γμeðmassÞ

L ÞWþ
μ þ H:c: ð6Þ

where

uð0ÞL ¼

0
B@

uð0Þ

cð0Þ

tð0Þ

1
CA

L

; νð0ÞL ¼

0
BB@

νð0Þe

νð0Þμ

νð0Þτ

1
CCA

L

: ð7Þ

With the anti-SU(5) representations of (2), these CC’s
are included in

gð1̄0−1γμT−
1̄0
10−1 þ 5̄þ3γ

μT−
5 5þ3ÞWþ

μ þ H:c: ð8Þ

where
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T−
5 ¼

0
BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1ffiffi
2

p

0 0 0 0 0

1
CCCCCCA

ð9Þ

and T−
1̄0

changes dα to uα. Three families are

T̄ ¼ ð10d−1; 10s−1; 10b−1Þ; F ¼ ð5eþ3; 5
μ
þ3; 5

τ
þ3Þ ð10Þ

where d; s; b and e; μ; τ are family indices. In terms of mass
eigenstates Qem ¼ þ 2

3
quarks (u; c; t) and neutrinos

(ν1; ν2; ν3), the weak eigenstates of (7) are related by
L-sector unitary matrices U and R-sector unitary matrices
U by

0
B@
uð0Þ

cð0Þ

tð0Þ

1
CA

L

¼UðuÞ†

0
B@
u

c

t

1
CA

L

;

0
BB@
νð0Þe

νð0Þμ

νð0Þτ

1
CCA

L

¼UðνÞ†

0
B@
ν1

ν2

ν3

1
CA

L

;

0
BB@
Nð0Þ

e

Nð0Þ
μ

Nð0Þ
τ

1
CCA

R

¼UðνÞ†

0
B@
ν1

ν2

ν3

1
CA

R

: ð11Þ

Now, Eq. (8) reads for three families as

gð ¯̄TγμT−
1̄0
T̄þ F̄γμT−

5FÞWþ
μ þ H:c: ð12Þ

The CKM and PMNS matrices are given by

VðCKMÞ ¼ UðuÞUðdÞ † ¼ UðuÞ;

VðPMNSÞ ¼ UðνÞUðeÞ † ¼ UðνÞ: ð13Þ
The definitions of UðuÞ and UðνÞ in Eq. (13) have the
required number of parameters. In UðuÞ, there are just two
phases of L-handed uð0Þ quarks for constraints because the
baryon number phase cannot be used as a constraint. Also,
three uð0Þ masses provide three constraints. Thus, out of 9
parameters in a 3 × 3 unitary matrix, the number of
undetermined parameters are 4: 3 real angles and 1 phase.
In UðνÞ, we do not have any phase constraint because
Majorana neutrinos are real. So, we have 9 parameters
minus 3 mass parameters, leading to 3 real angles, 1 Dirac
phase and 2 Majorana phases.
Let us consider the leptonic part first, which is included

in the second term in Eq. (12). Since neutrinos belong to the
triplet representation of A4, F transforms as 3 under A4. The
Qem ¼ −1 leptons being chosen as mass eigenstates, there
remains to choose νð0Þ. Thus, the A4 symmetric property of
F̄ ⊗ F is 1 ⊕ 10 ⊕ 100 ⊕ 2 · 3, from which we choose 1 ⊕
10 ⊕ 100 for Eq. (12) to be A4 symmetric. Thus, F can be
chosen as

Fð0Þ ∋ aνð0Þe ; bνð0Þμ ; cνð0Þτ ; ð14Þ

which are matched with charged leptons e; μ, and τ.
In the quark sector, quarks are treated as singlets 1; 10 and

100. So, the first term of Eq. (12) is A4 symmetric. With these
CC couplings, the question to discuss next is how the quark
and lepton Yukawa couplings are given.

III. YUKAWA COUPLINGS

To realize A4 symmetry, we assign the Yukawa couplings
such that the flavor indices of i respect the A4 symmetry
requirements. Since the A4 symmetry was suggested from
the PMNS matrix, let us first discuss the L violating
neutrino masses. Since F is complex, it can have a global
U(1) phase which is not violated by Eq. (12). The charged
lepton in F obtains mass by the Yukawa coupling to 1̄−5 ¼
ec of Eq. (2), 1̄−5C−1Fþ35̄Hþ2. Since ec, i.e., 1̄−5, carries
lepton number L ¼ −1, Fþ3 carries L ¼ þ1. But Fþ3 also
contains uc which is known to carry baryon number
B ¼ −1. For consistency, we require no global anomaly.
So, Fþ3 should carry a vanishing global charge which can
be (B–L). Fþ3 couples to T̄−1 by T̄−1C−1Fþ35H−2. Since 5

H
−2

is interpreted carrying no B and L charges, T̄−1 carries
B ¼ þ1 or L ¼ −1. In particular Nc

L carries L ¼ −1.
Namely, NR carries L ¼ þ1. The L violating source at
the super-renormalizable level is given by ðmN=2ÞN2

R.
What is the A4 representation of T̄−1? To write
mN
2
ðNRÞ2, T̄−1 transforms as a singlet(s) or 3 of A4.

These L violating heavy neutrino masses are contained in

ðT̄−1ÞiðHÞijðT̄−1Þj; ð15Þ

where ðHÞ is the heavy neutrino mass matrix. Since we do
not introduce any triplet in the Higgs or fermion sectors,
our neutrino mass matrix will be a type 1 see saw. The
Dirac neutrino mass is given by

Fþ3iYijT̄−1;j5H−2 ð16Þ

where ðYÞ is the Yukawa coupling matrix. In Fig. 1, we
show the tree diagram for the type 1 see-saw mechanism. In
Fig. 1, the chiralities of ν and N are L and R, respectively.
This diagram depends on the A4 property of N. With these
diagrams, we obtain the effective Weinberg operators,

FIG. 1. The type 1 see-saw diagram.
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hij
v2u
mN

ν̃ð0ÞiL C
−1νð0ÞjL : ð17Þ

We noted above that T̄−1 of Eq. (2) transforms as 3 under
A4, so does Nc

L in T̄−1. The Yukawa coupling in ðHÞ of
Fig. 1 is a constant because all three NR’s belong to 3 of A4.
But, we allow the difference among masses of three N.
Thus, ðH−1Þ is just the inverse of the mass matrix ofN. But,
the mass term of N cannot arise at the renomalizable level.
It occurs only through the dimension-5 term, from fields in
Eqs. (1) and (2),

∼T̄−1ðfermionÞT̄−1ðfermionÞ10Hþ1ðbosonÞ10Hþ1ðbosonÞ
ð18Þ

where the VEV h10Hþ1ðbosonÞiis needed to break the anti-
SU(5) to the SM gauge group. The gauge invariant super-
renormalizable mass term breaking lepton number L is

T̄−1ðfermionÞm10Hþ1ðfermionÞ ð19Þ

where m is a constant (or matrix). This dictates that
10Hþ1ðfermionÞ of Eq. (19) transforms as 3 of A4. In
Fig. 2, we draw a schematic Feynman diagram generating
the heavy neutrino masses from the anti-SUð5Þ × A4

symmetry.1 The mass matrix M transforms, under A4, as
3 ⊗ 3, 3 ⊗ 1, 1 ⊗ 3, or 1’s, where the left factor combines
with Nc

m and the right factor combines with Nc
n. For each

case, we study the L-violating neutrino masses.
Before discussing each neutrino mass matrix, we present

the Qem ¼ þ 2
3
quark masses from the anti-SU(5) coupling

which depends only on the coupling given in Eq. (16). The
Qem ¼ þ 2

3
quark Yukawa couplings are determined from

the A4 tensor product 3 ⊗ 3 ¼ 1 ⊕ 10 ⊕ 100 ⊕ 2 · 3. There
are three independent singlets, which are three independent
Yukawa couplings. Yij in Eq. (16) are matrix elements.
There is only one class for matrices which have Det ¼ 1
and Tr ¼ −1 for entries with �1,

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA: ð20Þ

For example, the matrix

0
B@

0 −1 0

1 0 0

0 0 −1

1
CA ð21Þ

satisfies the required conditions but changing the indices
1 ↔ 2 gives the form Eq. (20). Similarly, all the other cases
can be reduced to the form (20). For Eq. (20), the Yukawa
couplings are defined as Y11 ¼ h1, Y22 ¼ h2, Y33 ¼ h3, and
all the rest are zeros.
Now let us proceed to discuss each class of M on

neutrino masses.

A. M ∼ 3 ⊗ 3

In this case, three values are the same for the left and
right factors. In the matrix form,

M ¼

0
B@

M M M

M M M

M M M

1
CA ð22Þ

which has eigenvalues of 3M, 0, and 0. The above is a
democratic form suggested in Refs. [59,60]. The heavy
neutrino mass components are

Mmn ¼
m2

M
: ð23Þ

In this case Yij of Eq. (16) is Yij ¼ hδij. Then, the SM
neutrinos obtain masses through Fig. 1,

mij ¼ h2
Mv2u
m2

: ð24Þ

The above universal mass matrix is diagonalized by

0
BBB@

ffiffi
3

p
−1

2
ffiffi
3

p −
ffiffi
3

p
−1

2
ffiffi
3

p 1ffiffi
3

p

−
ffiffi
3

p
−1

2
ffiffi
3

p
ffiffi
3

p
−1

2
ffiffi
3

p 1ffiffi
3

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1
CCCA ð25Þ

which is trimaximal.

B. M ∼ 3 ⊗ 1

The left factors give the same value and the right factors
give three different values,

M ¼

0
B@

M1 M2 M3

M1 M2 M3

M1 M2 M3

1
CA ð26Þ

FIG. 2. The diagram for heavy neutrino masses. The fermionic
partner of the GUT Higgs 10Hþ1, i.e., B45 of Eq. (1), is called
“heavy heavy neutrino.”

1Identifying 10Hþ1’s of Eqs. (18) and (19), we may be led to
introduce supersymmetry.

FRAMPTON, KIM, KIM, and NAM PHYS. REV. D 101, 055022 (2020)

055022-4



which has eigenvalues ofM1 þM2 þM3; 0, and 0. All the
heavy neutrinos have the same mass,

Mmn ¼
m2

Mn
: ð27Þ

In this case Yij of Eq. (16) is Yij ¼ hδij at the LHS vertex
and hj at the RHS vertex. Thus, the SM neutrinos obtain
masses through Fig. 1 as

mij ¼ hhj
Mjv2u
m2

; ð28Þ

which is proportional to

m ∝

0
B@

h1 h2 h3
h1 h2 h3
h1 h2 h3

1
CA ð29Þ

whose eigenvalues are 0, 0, and h1 þ h2 þ h3. Three
column vectors of mT with eigenvalues 0, 0, and h1 þ
h2 þ h3 are

ψ1∼

0
B@

h2
−h1
0

1
CA; ψ2∼

0
BB@

h1
h2

−h2
1
−h2

2

h3

1
CCA; ψ3∼

0
B@
h1
h2
h3

1
CA: ð30Þ

Note that Eq. (29) has a freedom to choose the scale. We fix
such that the unitarity matrix results. The unitarity matrix
diagonalizing mT is

U ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð1þ h2Þ

p
0
B@

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
h1 h1h

−h1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
h2 h2h

0 −h2 h

1
CA; ð31Þ

where we choose

h3 ¼ 1;

h2 ≡ h21 þ h22: ð32Þ

Then, the diagonalized states and matrix are expressed in
terms of the original ones as

ψ ðdiagÞ ¼ Uψ0;

mðdiagÞ ¼ UmU†: ð33Þ

C. M ∼ 1 ⊗ 3

The left factors give three different values and the right
factors give the same values,

M ¼

0
B@

M1 M1 M1

M2 M2 M2

M3 M3 M3

1
CA ð34Þ

which has eigenvalues of 3M, 0, and 0. All the heavy
neutrinos have the same mass,

Mmn ¼
m2

Mm
: ð35Þ

In this case Yij of Eq. (16) is Yij ¼ hi at the LHS vertex
and hδij at the RHS vertex. Thus, the SM neutrinos obtain
masses through Fig. 1 as

mij ¼ hhi
Miv2u
m2

: ð36Þ

As in case B, we obtain the following

U ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð1þ h2Þ

p
0
B@

h2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
−h1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

p
0

h1 h2 −h2

h1h h2h h

1
CA;

ð37Þ

where

ψ ðdiagÞ ¼ Uψ0;

mðdiagÞ ¼ UmU†: ð38Þ

D. M ∼ 1’s

In this case, both the left and right factors give three
different values,

M ¼

0
B@

M11 M12 M13

M21 M22 M23

M31 M32 M33

1
CA ð39Þ

which in general gives three different nonzero eigenvalues.
All the heavy neutrinos have the same mass,

Mij ¼
m2

Mij
: ð40Þ

In this case Yij of Eq. (16) is Yij ¼ hi at the LHS vertex and
hj at the RHS vertex. Thus, the SM neutrinos obtain masses
through Fig. 1 as

mij ¼ hihj
Mijv2u
m2

; ð41Þ

which is general enough to obtain any unitarity matrix U.
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E. Allowed matrices for M from effective
neutrino masses

In the above subsections, the heavy heavy neutrno mass
matrixM of Fig. 2, leading to the heavy neutrino masses of
N in Eq. (2), were given. On the other hand, the effective
neutrino mass operator of Weinberg [61],

∼lT
i C

−1lj; ð42Þ

is symmetric on the exchange i ↔ j. But, cases B and C
allow asymmetric neutrino masses. Therefore, the heavy
heavy neutrno mass matrixM can take only casesA andD.
Since case D is not very much predictive at this stage, we
present the A4 from the anti-SU(5) prediction given in
Eq. (25),

0
BBB@

−
ffiffi
3

p
−1

2
ffiffi
3

p 1ffiffi
3

p
ffiffi
3

p
−1

2
ffiffi
3

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p
ffiffi
3

p
−1

2
ffiffi
3

p 1ffiffi
3

p −
ffiffi
3

p
−1

2
ffiffi
3

p

1
CCCA ð43Þ

where jðU†Þ13j ¼
ffiffi
3

p
−1

2
ffiffi
3

p ≃ 0.211. The best fit [55] gives

0.147 and the 3σ range is 0.138–0.156. Therefore, case A
is ruled out. Only case D, which is general enough, is a
viable mass pattern of the heavy neutrinos.

F. The CKM matrix

For case D, let us consider the CKM matrix. In Ref. [1],
we argued that the CKM matrix is close to the identity
because of the huge ratio of mt=mc. So, the mass matrix is
of the form

∼

0
BB@

aε2 bε
3
2 cε

dε
3
2 eε fε

1
2

gε hε
1
2 1

1
CCA ð44Þ

where ε is Oðmc
mt
Þ ≈ 0.007. The determinant of the above

matrix is D ¼ ðae − bdþ bfgþ cdh − afh − cegÞε3. We
choose e ≃ 1 such that the trace is almost mt þmc.
D ≃ ða − bd − cgþ bfgþ cdh − afhÞε3, and hence mu≃
mcðmc=mtÞ2ða− bd− cgþ bfgþ cdh− afhÞ≃ 2.5 MeV
leading to ða − bd − cgþ bfgþ cdh − afhÞ ≃ 43. Since
we follow case D, all these coefficients a ∼ g are arbitrary.
Let us take a real symmetric matrix, choosing simple
numbers just for an illustration,

a¼−32.1615; e¼ 1;

b¼ d¼ c¼ g¼ð43Þ1=3; f¼ h¼ 1.42; ð45Þ

where a is chosen to satisfy ða − bd − cgþ bfgþ
cdh − afhÞ ≃ 43. In this case, the mass matrix is

M ∼

0
B@

−0.00157596; 0.00205181; 0.0245238

0.00205181; 0.007; 0.118806

0.0245238; 0.118806; 1

1
CA: ð46Þ

Then, eigenvalues of M are

−0.00203125; −0.00715645; 1.01461; ð47Þ

where the first term can be corrected more by higher
dimensional operators. Here, mc=mt ≃ 0.007, and the
diagonalizing matrix, UMU† ¼ ðdiagonalÞ, is [62]

VðCKMÞ ¼ UðuÞ

¼

0
B@

0.985959 −0.166933 −0.00433802
−0.165227 −0.978988 0.119506

0.0241964 0.117111 0.992824

1
CA

ð48Þ

which gives the Cabibbo angle jθCj ≃ 9.61°, roughly 3.4°
smaller than the needed one. Note however that we
neglected the CP phase δ and other higher dimensional
contributions. Most importantly, it is for a specific set of
parameters in Eq. (45). In general, the mass matrix is
complex which can be diagonalized by bi-unitary matrices,
by U and U. In sum, we tried to show there can be a
reasonable set of parameters fitting all the flavor data for
case D.

IV. STRING COMPACTIFICATION

To discuss flavor symmetry from string compactifica-
tion, one needs a compactification model where details of
the SM field assignment are presented. In doing so, the key
SM phenomenologies are automatically included, i.e., it is
not ruled out from any well-established data. Here, we
show a realization of A4 symmetry based on an anti-SU(5)
GUT [15] possessing the Z4R discrete parity which is
obtained from the Z12−I compactification of the E8 × E0

8

heterotic string [63]. Anyway, for a detailed study of flavor
physics, one has to specify every aspect of the flavors for
which we do not find any reference except Ref. [15]. So, we
show an example of A4 symmetry based on an anti-SU(5)
GUTof [15] based on the model [64]. Here, we just cite the
needed information from Refs. [15,64]. In string compac-
tification, the needed Yukawa couplings arise by satisfying
all the selection criteria. The anti-SU(5) GUT of [15] does
not allow any SM Yukawa couplings at the renormalizable
level. But, at the level of dimension-5 there appear the
SM Yukawa couplings which are proportional to the VEVs
of h10Hþ1i ¼ h10H−1i. Since these VEVs are near the string
scale, we obtain top quark mass at the order the electroweak
scale. Since we are not attempting to discuss details of
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models in string compactification, we only pay attention to
the multiplicities of the needed chiral fields.
First consider 10Hþ1 and 10H−1 needed for breaking anti-

SU(5). In the T3 twisted sector, chiral fields are constructed
in Eqs. (23) and (24) of Ref. [15],

s Multiplicity P · V

ð⊕ j −þ−Þ∶ 2; þ1
4
ðΣ�

1Þ
ð⊖j − −−Þ 1; −1

4
ðΣ2Þ

ð49Þ

s Multiplicity P · V

ð⊕ j −þ−Þ∶ 1; þ1
4
ðΣ�

1Þ
ð⊖j − −−Þ∶ 2; −1

4
ðΣ2Þ

ð50Þ

where ⊕ and ⊖ denote L-handed and R-handed chiral
fields respectively. So, here we consider only the number of
chiral fields at the same fixed points. We cited only chirality
and multiplicity. Θi in Table I and P · V in Eqs. (49) and
(50) are used to calculate the multiplicity. From Eqs. (49)
and (50), note that there appear three L-handed fields
Σ2, and three R-handed fields Σ�

1. These chiral fields at
the same fixed points are not distinguished. Thus, in the
L-handed fields Σ2 has the representation 3 of A4, so do the
R-handed fields have Σ�

1. Σ2 is the one for 10Hþ1 of Eq. (19).
But T̄−1 of Eq. (19) belongs to the matter fields in Table I of
[15]. Two matter 10−1’s appear in T0

4, viz. Table I. But it is
better to check all 10−1’s before removing vectorlike
representations, for which we go back to Ref. [64].
In fact, there was no vectorlike representations of
10−1 ⊕ 10þ1’s removed in Ref. [64]. So, from our string
model, 10−1 is a doublet 2 of permutation symmetry S3. We
do not realize the coupling of Eq. (19).

From Table II, we note that the doublet representation 2
of the permutation group S3 can be obtained from 3 of S4.
Also, 3 of A4 is from 3 of S4.
In Eq. (19), T̄−1 transforms as 2 under the permutation

group S3 and 10Hþ1 transforms as 3 of A4. Note that 2 and 3
of S4 produce 2 of S3. Out of two 1’s of S4, we restrict to
only 1. Let us consider the relevant tensor products of S4,

Tensor products in S4

8>>><
>>>:

3 × 3 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30

3 × 30 ¼ 10 ⊕ 2 ⊕ 3 ⊕ 30

30 × 30 ¼ 1 ⊕ 2 ⊕ 3 ⊕ 30

2 ⊗ 3 ¼ 3 ⊕ 30

ð51Þ

where the last line does not produce a singlet. The other
three lines produce S4 singlets and we consider the first
line, 3 ⊗ 3. The other cases can be equivalent to this by
redefining the origin of 3 of A4. Then, T̄−1 and 10Hþ1 can be
traced back to 3 of S4.

RðS3Þ ⊗ RðA4Þ∶ ð1; 2Þ ⊗ 3

→ ð1 ⊗ 3Þ ⊕ ð2 ⊗ 3Þ
→ 1 ⊗ 3 ⊕ 10 ⊗ 3 ⊕ 100 ⊗ 3 ð52Þ

where the first line is the fourth line of Table II, written as
S3 and A4 subgroups. In the second line, 1 ⊗ 3 is the S4
product and can be interpreted as the A4 triplet. In the
second line, 2 ⊗ 3 is the S4 product from the third and
fourth lines of Table II. In terms of A4, it produces
10 ⊗ 3 ⊕ 100 ⊗ 3, i.e., two independent 3’s. In total, there
are three independent 3’s. Therefore, M of Fig. 2 is

M ¼

0
B@

M11 M12 M13

M21 M21 M23

M31 M32 M33

1
CA ð53Þ

which is case D of Sec. III, which is allowed from the
neutrino mass data.
So farwe paid attention to the heavy neutrinomass in T̄−1.

Now, let us check how this representation containing a quark
doublet predicts on the Yukawa couplings through Eq. (16)
with an R-handedQem ¼ 2

3
quark in Fþ3. Both T̄−1 and Fþ3

are doublets under S3. It belongs to the third row of Table II.
The S4 tensor product is 2 ⊗ 2 ¼ 2 ⊕ 1 ⊕ 10 which

TABLE I. Phases Θi of matter fields in the SM. U and T are
twisted sectors. In T0

4, there are two 10−1’s.

StateðPþ kV0Þ Θi RXðSect:Þ
ξ3 ðþ þ þ − −;− −þÞð08Þ0 0 10−1ðU3Þ
η̄3 ðþ − − − −;þ − −Þð08Þ0 0 5þ3ðU3Þ
τc ðþ þ þ þþ;−þ −Þð08Þ0 0 1−5ðU3Þ
ξ2 ðþ þ þ − −;− 1

6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4 10−1ðT0
4Þ

η̄2 ðþ − − − −;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
5þ3ðT0

4Þ
μc ðþ þ þ þþ;− 1

6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
1−5ðT0

4Þ
ξ1 ðþ þ þ − −;− 1

6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4 10−1ðT0
4Þ

η̄1 ðþ − − − −;− 1
6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
5þ3ðT0

4Þ
ec ðþ þ þ þþ;− 1

6
;− 1

6
;− 1

6
Þð08Þ0 þ1

4
1−5ðT0

4Þ
HuL ðþ1 0 0 0 0; 0 0 0Þð05; −1

2
þ1
2
0Þ0 þ1

3
2 · 5−2ðT6Þ

HdL ð−1 0 0 0 0; 0 0 0Þð05; þ1
2

−1
2
0Þ0 þ1

3
2 · 5̄þ2ðT6Þ

TABLE II. Branching of S4 representations 1; 10; 2; 3 and 30
into the A4 and S3 representations [65].

S4 A4 S3

1 1 1
10 1 10
2 10 ⊕ 100 2
3 3 1 ⊕ 2
30 3 10 ⊕ 2
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becomes 2 · 1 ⊕ 10 ⊕ 100 under A4. Thus, there are three
independent couplings2which can be of the form in the2 × 2

subspace (due to doublets in the T0
4 twisted sector),

0
B@

0 0 0

0 a b

0 c a

1
CA; ð54Þ

which is general enough to allow the mixing between top
and charm quarks. With higher dimensional operators [15],
the 0 entries will be supplied with small numbers and may
fulfill the needed 3 × 3matrix for theQem ¼ 2

3
quarkmatrix.

The above illustration from a compactification model
was intended to show a possibility. To study the flavor
problem from string compactification, one needs an explicit
model locating all the SM fields in the sectors of the
compactification as shown in this section.

V. CONCLUSION

We constructed quark and lepton mass matrices in an
anti-SU(5) GUT with a tetrahedral symmetry A4. In the

previous paper [1], we showed the hint of the A4 from the
PMNSmatrix form with one entry being zero. In this paper,
for a convenience of presentation we chose a basis where
Qem ¼ − 1

3
quarks and charged leptons are already diagon-

alized. Then, matter representation T̄−1 contains both a
quark doublet and a heavy neutrino N. For Qem ¼ þ 2

3

quark masses T̄−1 coupling to Fþ3 is used, and for neutrino
masses the Weinberg operator of ðFþ3Þ2 is used through
the see saw of T̄−1. In this sense, the quark and neutrino
masses are related by the symmetry A4. One notable
feature is the anti-SU(5) breaking achieved by the Higgs
fields transforming as antisymmetric representations
of SU(5), 10H−1 ⊕ 10Hþ1. This set reduces the rank-5 anti-
SU(5) group down to the rank-4 standard model group
SUð3ÞC × SUð2ÞW × Uð1ÞY . Finally, a string compactifi-
cation example is presented. As illustrated in this example,
the definite assignments of the SM fields in the twisted
sectors are needed to compare with the CKM and
PMNS data.
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