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We construct a flavor model in an anti-SU(5) grand unified theory with a tetrahedral symmetry A,. We
choose a basis where Q.,, = —% quarks and charged leptons are already mass eigenstates. This choice is

possible from the A, symmetry. Then, matter representation 10™3ter
heavy neutrino N, which enables us to use the A, symmetry to both Q.,, = +% quark masses and neutrino
masses (through the see saw via N). This is made possible because the anti-SU(5) breaking is achieved by
the Higgs fields transforming as antisymmetric representations of SU(5), 107, @ 1011 1» reducing the rank-5
anti-SU(5) group down to the rank-4 standard model group SU(3). x SU(2),, x U(1),. For possible mass
matrices, the Ay symmetry predictions on mass matrices at field theory level are derived. Finally, an

illustration from string compactification is presented.

contains both a quark doublet and a
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I. INTRODUCTION

Recently, we pointed out analytically how the tetrahedral
discrete symmetry A, results from the permutation sym-
metry S; [1]. The A, discrete symmetry [2-11] in
connection with the tribimaximal form of the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix
[12—-14] was observed a long time ago. The underlying
permutation symmetry is useful in model building and
furthermore it can be accommodated to string compacti-
fication. In string compactification, chiral fields can arise
from fixed points also [15]. The multiplicity N in a fixed
point should respect permutation symmetry Sy because the
chiral fields at that fixed point are not distinguished. In this
paper, we will use a specific grand unified theory (GUT)
anti-SU(5) [16,17].

Georgi and Glashow’s (GG) GUT SU(5) [18] is an
important prototype in the consideration of GUTs. An
initial success was attributed to the b — = unification [19].
However, there may be two issues against the GG model
when one tries to include it in an ultraviolet completed
theory. The rank of the GG group is 4 which is identical
to that of the Standard Model (SM) gauge group
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SU(3) x SU(2), x U(1)y. Therefore, string compactifi-
cation, an ultraviolet completion of the GG SU(S), needs an
adjoint representation for breaking the GG SU(5) down to
the SM gauge group without changing the rank. First, in
string compactification, it is not possible to obtain an
adjoint representation at the level-1 construction [20].
Second, the Q., = —% Georgi-Jarlskog quark mass rela-
tions [21] need another representation 45 beyond a quintet
of Higgs fields. The need for this additional representation
makes it difficult for it to be realized in the string
compactification. Of course, one may argue that 45 may
arise from nonrenormalizable interactions, which needs
further fine-tuning.

Therefore, the anti-SU(5) or flipped SU(5) is preferred in
string compactification. Barr commented that flipped-
SU(5) is a subgroup of SO(10) [16], but here we consider
it an independent GUT since string compactification
may not go through an intermediate SO(10) which also
needs an adjoint representation for spontaneous symmetry
breaking to obtain Barr’s flipped SU(5). On the other
hand, for breaking anti-SU(5), we use a vectorlike repre-
sentation 10_; and 10, (the subscripts are X charges)
which are antisymmetric tensor representations of SU(5)
and hence it is called “anti-SU(5)” in [17]. This generali-
zation for spontaneous symmetry breaking by antisym-
metric representations in string compactification stops at
SU(7) [22].

Since the anti-SU(5) gauge group SU(5) x U(1)y is
rank 5, one can use antisymmetric representations to reduce
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rank 1 to arrive at the rank-4 SM gauge group via the Higgs
fields,

10, = {(3.1);, (3.2),. B},

1051 ={3.1),.(3.2)7, B45}+1- (1)
We use the X definition given in Ref. [15]. The vacuum
expectation values (VEVs) of neutral singlets B* and Bys
(in 107, and 107)) break the anti-SU(5) down to the SM
gauge group. But, there is no b — 7 unification in this anti-
SU(S).

One family in the anti-SU(S) in terms of left-handed
(L-handed) fields is

10, ={(d)5. 08 N5} 5.5={(u)s.00}, 1s=¢f.
2)

(0 e

Note that all SU(2) singlets are with superscript “. So, the

where

singlet neutrino N¢ is in 10_, and Ny has X = +1. To
break the SM gauge group to U(1),,,, we need a Higgs
quintet(s) 5%, and 5%,.

The family problem or the flavor problem consists of two
parts. First, why are there three families which have exactly
the same gauge interactions. Second, why do these families
have different Yukawa couplings? In GUTs, the first
problem was formulated by Georgi [23] which was applied
in extended GUTs [24,25]. In string theory, three family
models have been searched in various compactification
schemes [26-52]. The second problem is usually talked
about in terms of flavor symmetry. The flavor symmetry is
designed to calculate the Cabibbo-Kobayashi-Maskawa
(CKM) and Pontecorvo-Maki-Nakagawa-Skata (PMNS)
matrices. Permutation symmetry S; has been started to
calculate the CKM matrix [53,54] but permutation sym-
metries blossomed recently in fitting the PMNS
matrix [55].

In Sec. II, we summarize the results of Ref. [1]. In
Sec. III, we discuss the A, symmetry at field theory level for
three families in the anti-SU(5) GUT. We obtain possible
forms of mass matrices of quarks and leptons, which are
related by the anti-SU(5) representations. In Sec. IV, we
present an example for possible quark and lepton mass
matrices in a string derived spectra presented in Ref. [15].
Finally, a brief conclusion is given in Sec. V.

em?

II. A, FROM S,

The permutation symmetry S; was used in the leptonic
sector for a bimaximal PMNS matrix in the late 1990s
[57,58], and the A4 symmetry was started in the early 2000s

[3]. The flavor symmetry in the PMNS matrix of a
tribimaximal form

X X X
1 1 1
V i oo )

0 sina cosa

has led to an A, symmetry, as shown analytically in [1]. The
key points of Ref. [1] are the following:
(1) We choose the bases such that Q,.,, = — % quarks and
Qcm = —1 leptons are mass eigenstates.

(i) Z; in § of Eq. (2) is a triplet under the tetrahedral
group Ay.

(iii) All quark states in Eq. (2) are singlets under A,.

(iv) The Higgs doublet(s) is a singlet under the permu-

tation symmetry group Ay.

There are four representations in A4: 3,1, 1/, and 1”. Let
us remark first that item i evades the problem encountered
in the Georgi-Jarlskog relation. We choose the needed mass
values in the definition of the Q., = —% quark masses.
Item iv requires that the Higgs quintet 552 is a tetrahedral
group singlet. Then, Items ii and iii dictate the assignment
uj in the triplet representation 3 of A, since both £ and u§
belongs to the same representation 5 ;.

The tensor product of two 3’s of A, is [65]

33=2-3@1al a1 (5)

We use the representations where three Q. = —% quarks
of each chirality form a representation 3 of A4, so do
charged leptons. Then, the tensor product Eq. (5) allows
three parameters, viz. three singlets, for three Q., = —
quark masses and choosing the diagonal basis for Q.
—% quarks is guaranteed from A,. The same applies to
charged leptons also.

Note that the charged currents(CCs) in the SM are
given by

I o

O)yﬂdimass) + DEO)yﬂegmass))W; +He. (6)

i(u<
\/i L

where
u© A0
u&o) =, U(Lo) = y,(,o) . (7)
(0) 0
4 L W0 L

With the anti-SU(5) representations of (2), these CC’s
are included in

9(1_0—17”TF0m—1 +5,37#T55,5)W,; +He.  (8)

where
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and T7; changes d” to u®. Three families are

T= (E‘ihms—lvmlil)’ F= (51315i3’513) (10)
where d, s, b and e, u, 7 are family indices. In terms of mass
eigenstates Q. = —I—% quarks (u,c,t) and neutrinos
(v1,vs,1v3), the weak eigenstates of (7) are related by
L-sector unitary matrices U and R-sector unitary matrices
U by

u©) u ygo) vy

c0) =ywif |, l/,(lo) —UuWt| oy |,
10 . t), ygo) 3 vs/) |
0 '

NO | =uwi| b, (11)

N R vs/) g

Now, Eq. (8) reads for three families as
g(Ty*T7, T + FyT;F)W, + He. (12)
The CKM and PMNS matrices are given by

VICKM) _ ) () — )

s

y(PMNS) — ) le)t — ), (13)

The definitions of U® and U® in Eq. (13) have the
required number of parameters. In U*), there are just two
phases of L-handed u(®) quarks for constraints because the
baryon number phase cannot be used as a constraint. Also,
three 1(®) masses provide three constraints. Thus, out of 9
parameters in a 3 x 3 unitary matrix, the number of
undetermined parameters are 4: 3 real angles and 1 phase.
In UW, we do not have any phase constraint because
Majorana neutrinos are real. So, we have 9 parameters
minus 3 mass parameters, leading to 3 real angles, 1 Dirac
phase and 2 Majorana phases.

Let us consider the leptonic part first, which is included
in the second term in Eq. (12). Since neutrinos belong to the
triplet representation of A4, F transforms as 3 under A,. The
Q.m = —1 leptons being chosen as mass eigenstates, there
remains to choose v(?). Thus, the A, symmetric property of
FQFis1®1 1’ ®2-3, from which we choose 1 ®
1 ® 1” for Eq. (12) to be A, symmetric. Thus, F can be
chosen as

FO 5w, bu,(,o), e, (14)

which are matched with charged leptons e, p, and 7.

In the quark sector, quarks are treated as singlets 1, 1" and
1”. So, the first term of Eq. (12) is A4 symmetric. With these
CC couplings, the question to discuss next is how the quark
and lepton Yukawa couplings are given.

III. YUKAWA COUPLINGS

To realize A, symmetry, we assign the Yukawa couplings
such that the flavor indices of i respect the A, symmetry
requirements. Since the A, symmetry was suggested from
the PMNS matrix, let us first discuss the L violating
neutrino masses. Since F is complex, it can have a global
U(1) phase which is not violated by Eq. (12). The charged
lepton in F obtains mass by the Yukawa coupling to 1_s =
e of Eq. (2), 1.5C7'F 35, Since ¢, i.e., 1_s, carries
lepton number L = —1, F 5 carries L = +1. But F 5 also
contains u¢ which is known to carry baryon number
B = —1. For consistency, we require no global anomaly.
So, F 5 should carry a vanishing global charge which can
be (B-L). F_ 5 couples to T_; by T_; C~'F_;5%,. Since 57,
is interpreted carrying no B and L charges, T_; carries
B =+1 or L=—1. In particular N§ carries L = —1.
Namely, Ny carries L = +1. The L violating source at
the super-renormalizable level is given by (my/2)N3.
What is the A, representation of T_,? To write
ZE(Ng)% T_, transforms as a singlet(s) or 3 of A,.
These L violating heavy neutrino masses are contained in

(T-1)i(H);;(T-1);, (15)

where (H) is the heavy neutrino mass matrix. Since we do
not introduce any triplet in the Higgs or fermion sectors,
our neutrino mass matrix will be a type 1 see saw. The
Dirac neutrino mass is given by

F Y, T ;5% (16)
where (Y) is the Yukawa coupling matrix. In Fig. 1, we
show the tree diagram for the type 1 see-saw mechanism. In
Fig. 1, the chiralities of v and N are L and R, respectively.
This diagram depends on the A, property of N. With these
diagrams, we obtain the effective Weinberg operators,

V; (Y)zm Nm (H)mn Nn (Y nj Vj
* . .
i i
Uu Uy

FIG. 1. The type 1 see-saw diagram.
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N;, o 10% 1\‘/1 10, N

m m

FIG. 2. The diagram for heavy neutrino masses. The fermionic
partner of the GUT Higgs 107, i.e., Bys of Eq. (1), is called
“heavy heavy neutrino.”

2
Uy ~(0) 1, (0
h,‘j My VEL)C 1U5~L>. (17)

We noted above that T_; of Eq. (2) transforms as 3 under
Ay, so does N¢ in T_;. The Yukawa coupling in (H) of
Fig. 1 is a constant because all three Ny’s belong to 3 of A,.
But, we allow the difference among masses of three N.
Thus, (H™") is just the inverse of the mass matrix of N. But,
the mass term of N cannot arise at the renomalizable level.
It occurs only through the dimension-5 term, from fields in
Egs. (1) and (2),

~T_, (fermion)T_; (fermion) 107, (boson)10%, (boson)
(18)

where the VEV (10, (boson))is needed to break the anti-
SU(5) to the SM gauge group. The gauge invariant super-
renormalizable mass term breaking lepton number L is

T_, (fermion)m10%, (fermion) (19)

where m is a constant (or matrix). This dictates that
10”7, (fermion) of Eq. (19) transforms as 3 of A,. In
Fig. 2, we draw a schematic Feynman diagram generating
the heavy neutrino masses from the anti-SU(5) x A,
symmetry.1 The mass matrix M transforms, under Ay, as
3®3,3®1,1Q® 3, or1’s, where the left factor combines
with N§, and the right factor combines with N¢. For each
case, we study the L-violating neutrino masses.

Before discussing each neutrino mass matrix, we present
the Qe = +% quark masses from the anti-SU(5) coupling
which depends only on the coupling given in Eq. (16). The
Ocm = +% quark Yukawa couplings are determined from
the A, tensor product3® 3 =101 @ 1" @ 2 - 3. There
are three independent singlets, which are three independent
Yukawa couplings. Y;; in Eq. (16) are matrix elements.
There is only one class for matrices which have Det = 1
and Tr = —1 for entries with +1,

-1 0 0
0 -1 0]. (20)
0 0 1

lIdentifying 10*,’s of Egs. (18) and (19), we may be led to
introduce supersymmetry.

For example, the matrix

0 -1 0
1 0 0 (21)
0 0 -1

satisfies the required conditions but changing the indices
1 < 2 gives the form Eq. (20). Similarly, all the other cases
can be reduced to the form (20). For Eq. (20), the Yukawa
couplings are defined as Y| = hy, Yo, = hy, Y33 = h3,and
all the rest are zeros.

Now let us proceed to discuss each class of M on
neutrino masses.

AM~3IQ®3

In this case, three values are the same for the left and
right factors. In the matrix form,

M M M
M=|M M M (22)
M M M

which has eigenvalues of 3M, 0, and 0. The above is a
democratic form suggested in Refs. [59,60]. The heavy
neutrino mass components are

M,,=—. 23
= (23)

In this case Y;; of Eq. (16) is Y;; = hd;;. Then, the SM
neutrinos obtain masses through Fig. 1,

m; = b AZ;;Z (24)
The above universal mass matrix is diagonalized by
V31 =3l L
2V3 V3 V3
H H 5 2
iV

which is trimaximal.

B.M~3Q®1

The left factors give the same value and the right factors
give three different values,

M, M, Ms;
M: Ml M2 M3 (26)
M, M, Ms;

055022-4
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which has eigenvalues of M| + M, + M3, 0, and 0. All the
heavy neutrinos have the same mass,

2

m

In this case Y;; of Eq. (16) is Y;; = hd;; at the LHS vertex
and h; at the RHS vertex. Thus, the SM neutrinos obtain

masses through Fig. 1 as

M v
which is proportional to
hy hy hy
n X hl l’lz h3 (29)
hy  hy s

whose eigenvalues are 0, 0, and h; + h, + h3. Three
column vectors of m” with eigenvalues 0, 0, and h; +
h2 + h3 are

h2 hl hl

wi~ | —h |, wa~ ha .y~ by . (30)
0 hich3 h
I 3

Note that Eq. (29) has a freedom to choose the scale. We fix
such that the unitarity matrix results. The unitarity matrix
diagonalizing m” is

h2V1+h2 l’ll ,’lll’l

1
U=s——7r——7—| -hV1+h & hyh |> 31
R2(1 + h?) Vi 2 B
0 W2 h
where we choose
hy =1,
h? = h? + h3. (32)

Then, the diagonalized states and matrix are expressed in
terms of the original ones as

ll/(diag) = Uy,,
m\42e) = ymU*, (33)
CM~1®3

The left factors give three different values and the right
factors give the same values,

M, M, M,
M=|M, M, M, (34)
M; M; Ms;

which has eigenvalues of 3M, 0, and 0. All the heavy
neutrinos have the same mass,

M, — > (35)

m

In this case Y;; of Eq. (16) is Y;; = h; at the LHS vertex
and ho;; at the RHS vertex. Thus, the SM neutrinos obtain
masses through Fig. 1 as

M;v;
mij = /’lhl m2 . (36)
As in case B, we obtain the following
| hoV1+h* —hyV1+h* 0
U=—F—7F177—= h h -h? |,
R (1 + h?) : ?
hih hyh h
(37)
where
Y8 = Uy,
m4iae) = ymUT. (38)
D. M ~1’s

In this case, both the left and right factors give three
different values,

My My Mg
M= | My My My (39)
M3 Mz M

which in general gives three different nonzero eigenvalues.
All the heavy neutrinos have the same mass,

m2

M, =-——. 40
=i, (40)

In this case Y;; of Eq. (16) is Y;; = h; at the LHS vertex and
h; at the RHS vertex. Thus, the SM neutrinos obtain masses
through Fig. 1 as

(41)

which is general enough to obtain any unitarity matrix U.
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E. Allowed matrices for M from effective
neutrino masses

In the above subsections, the heavy heavy neutrno mass
matrix M of Fig. 2, leading to the heavy neutrino masses of
N in Eq. (2), were given. On the other hand, the effective
neutrino mass operator of Weinberg [61],

is symmetric on the exchange i <> j. But, cases B and C
allow asymmetric neutrino masses. Therefore, the heavy
heavy neutrno mass matrix M can take only cases A and D.
Since case D is not very much predictive at this stage, we
present the A, from the anti-SU(5) prediction given in
Eq. (25),

—V3-1 1 V3=l
2V3 V3 2V3
1 1 1
iV (43)
V3-1 1 =3l
V3 V3 23

where [(U7)5 :{3—\/%':0.211. The best fit [55] gives
0.147 and the 30 range is 0.138-0.156. Therefore, case A
is ruled out. Only case D, which is general enough, is a

viable mass pattern of the heavy neutrinos.

F. The CKM matrix
For case D, let us consider the CKM matrix. In Ref. [1],
we argued that the CKM matrix is close to the identity

because of the huge ratio of m,/m,. So, the mass matrix is
of the form

3
ag? be  ce

~| dé  ee fs% (44)
ge her 1

where ¢ is O(;¢)  0.007. The determinant of the above

matrix is D = (ae — bd + bfg+ cdh — afh — ceg)e’. We
choose e~1 such that the trace is almost m, + m,.
D~ (a—bd—cg+bfg+ cdh—afh)e*, and hence m,~
m.(m./m,)*(a —bd —cg+ bfg+ cdh—afh) ~2.5 MeV
leading to (a —bd — cg+ bfg+ cdh — afh) ~43. Since
we follow case D, all these coefficients a ~ g are arbitrary.
Let us take a real symmetric matrix, choosing simple
numbers just for an illustration,

a=-32.1615,
b=d=c=g=(43)'/3,

e=1,

f=h=142, (45

where a is chosen to satisfy (a—bd—cg+ bfg+
cdh — afh) ~43. In this case, the mass matrix is

—0.00157596, 0.00205181, 0.0245238
M~ | 0.00205181, 0.007, 0.118806 |. (46)
0.0245238, 0.118806, 1

Then, eigenvalues of M are

—0.00203125, —0.00715645, 1.01461, (47)
where the first term can be corrected more by higher
dimensional operators. Here, m./m, ~0.007, and the

diagonalizing matrix, UMU" = (diagonal), is [62]

V(CKM) — ry(u)
0.985959 —0.166933 —0.00433802
= | —0.165227 —0.978988 0.119506
0.0241964  0.117111 0.992824
(48)

which gives the Cabibbo angle |0 ~9.61°, roughly 3.4°
smaller than the needed one. Note however that we
neglected the CP phase 6 and other higher dimensional
contributions. Most importantly, it is for a specific set of
parameters in Eq. (45). In general, the mass matrix is
complex which can be diagonalized by bi-unitary matrices,
by U and . In sum, we tried to show there can be a
reasonable set of parameters fitting all the flavor data for
case D.

IV. STRING COMPACTIFICATION

To discuss flavor symmetry from string compactifica-
tion, one needs a compactification model where details of
the SM field assignment are presented. In doing so, the key
SM phenomenologies are automatically included, i.e., it is
not ruled out from any well-established data. Here, we
show a realization of A, symmetry based on an anti-SU(5)
GUT [15] possessing the Z,p discrete parity which is
obtained from the Z;,_; compactification of the Eg x E§
heterotic string [63]. Anyway, for a detailed study of flavor
physics, one has to specify every aspect of the flavors for
which we do not find any reference except Ref. [15]. So, we
show an example of A, symmetry based on an anti-SU(5)
GUT of [15] based on the model [64]. Here, we just cite the
needed information from Refs. [15,64]. In string compac-
tification, the needed Yukawa couplings arise by satisfying
all the selection criteria. The anti-SU(5) GUT of [15] does
not allow any SM Yukawa couplings at the renormalizable
level. But, at the level of dimension-5 there appear the
SM Yukawa couplings which are proportional to the VEVs
of (104,) = (10”,). Since these VEVs are near the string
scale, we obtain top quark mass at the order the electroweak
scale. Since we are not attempting to discuss details of

055022-6
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TABLE I. Phases ©; of matter fields in the SM. U and T are
twisted sectors. In 79, there are two 10_;’s.

State(P + kVy) (C} Ry (Sect.)
& (H++ === =)0 0 10.,(U3)
3 (+===—=+--)(0% 0 5.:3(Us)
¢ (+ 4+ + 45—+ =) (08 0 1_5(U3)
& (Ftt-=i—t—g DOy T0(19)
72 (t====i—g. =5 =0 & 5.5(T9)
pe (+++++H-1.-5L-Hody F 1419
& (Ftt=—=—g.—5.—pO0) 10_,(79)
m (t====i—5. =5 -0 & 5,5(79)
e (F++++H-g—5—0) H 1.5(T3)
H,  (+£10000;000)(0%5450) i 2-5,(Ts)
Hy  (=10000;000)(0%45L0y £ 2.5,,(T)

models in string compactification, we only pay attention to
the multiplicities of the needed chiral fields.

First consider 107, and 10, needed for breaking anti-
SU(S). In the T5 twisted sector, chiral fields are constructed
in Egs. (23) and (24) of Ref. [15],

s Multiplicity P -V

(@[ —+-): 2, FE (49
ClEty) L, 7 (%)
s Multiplicity P -V

@ -+-): L 2= (50)
(e -—): 2, 7 (%)

where @ and © denote L-handed and R-handed chiral
fields respectively. So, here we consider only the number of
chiral fields at the same fixed points. We cited only chirality
and multiplicity. ®; in Table I and P - V in Eqgs. (49) and
(50) are used to calculate the multiplicity. From Eqgs. (49)
and (50), note that there appear three L-handed fields
%,, and three R-handed fields Xj. These chiral fields at
the same fixed points are not distinguished. Thus, in the
L-handed fields X, has the representation 3 of A4, so do the
R-handed fields have ;. %, is the one for 107, of Eq. (19).
But T_, of Eq. (19) belongs to the matter fields in Table I of
[15]. Two matter 10_,’s appear in 79, viz. Table L. But it is
better to check all 10_,’s before removing vectorlike
representations, for which we go back to Ref. [64].
In fact, there was no vectorlike representations of
10_, @ 10.,’s removed in Ref. [64]. So, from our string
model, 10_, is a doublet 2 of permutation symmetry S5. We
do not realize the coupling of Eq. (19).

TABLE II. Branching of S, representations 1,1,2,3 and 3/
into the A, and S5 representations [65].

S4 A4 S3

1 1 1
1 1 1

2 11" 2

3 3 12
3 3 1®2

From Table II, we note that the doublet representation 2
of the permutation group S5 can be obtained from 3 of S.
Also, 3 of A, is from 3 of S.

In Eq. (19), T_, transforms as 2 under the permutation
group S3 and 10’1 | transforms as 3 of A4. Note that 2 and 3
of S, produce 2 of S5. Out of two 1’s of S, we restrict to
only 1. Let us consider the relevant tensor products of Sy,

3Ix3=10203603%

) Ix¥=1p20303
Tensor products in Sy (51)
IxI=1020303

2@3=3073

where the last line does not produce a singlet. The other
three lines produce S, singlets and we consider the first
line, 3 ® 3. The other cases can be equivalent to this by
redefining the origin of 3 of A. Then, T_; and 10*/, can be
traced back to 3 of S.

R(S;) ® R(As): (1.2) ® 3
S~(1®3)0(2®3)
-1R301'R301"®3 (52)

where the first line is the fourth line of Table II, written as
S3 and A, subgroups. In the second line, 1 ® 3 is the S,
product and can be interpreted as the A, triplet. In the
second line, 2 ® 3 is the S, product from the third and
fourth lines of Table II. In terms of Ay, it produces
1®3®1"®3, ie., two independent 3’s. In total, there
are three independent 3’s. Therefore, M of Fig. 2 is

My My, My
M= | My My My (53)
M3 Mz M

which is case D of Sec. III, which is allowed from the
neutrino mass data.

So far we paid attention to the heavy neutrino massin T_;.
Now, let us check how this representation containing a quark
doublet predicts on the Yukawa couplings through Eq. (16)
with an R-handed Q.,, = %quark inF_ 5. Both T_; and F 5
are doublets under S3. It belongs to the third row of Table II.
The S, tensor product is 2®2=2@® 1@ 1 which
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becomes 2-1@® 1’ @ 1”7 under A,. Thus, there are three
independent couplings2 which can be of the formin the2 x 2
subspace (due to doublets in the Tg twisted sector),

0
a

0
0 (54)
0

Q* o O

c

which is general enough to allow the mixing between top
and charm quarks. With higher dimensional operators [15],
the O entries will be supplied with small numbers and may
fulfill the needed 3 x 3 matrix for the Q.,, = %quark matrix.
The above illustration from a compactification model
was intended to show a possibility. To study the flavor
problem from string compactification, one needs an explicit
model locating all the SM fields in the sectors of the
compactification as shown in this section.

V. CONCLUSION

We constructed quark and lepton mass matrices in an
anti-SU(5) GUT with a tetrahedral symmetry A, In the

*Two 1’s are counted as the same entry.

previous paper [1], we showed the hint of the A4 from the
PMNS matrix form with one entry being zero. In this paper,
for a convenience of presentation we chose a basis where
Oem = —% quarks and charged leptons are already diagon-
alized. Then, matter representation T_, contains both a
quark doublet and a heavy neutrino N. For Q., = +%
quark masses T_, coupling to F_ is used, and for neutrino
masses the Weinberg operator of (F_3)? is used through
the see saw of T_l. In this sense, the quark and neutrino
masses are related by the symmetry A,. One notable
feature is the anti-SU(5) breaking achieved by the Higgs
fields transforming as antisymmetric representations
of SU(5), 1_0’_11 () 10ﬁ1. This set reduces the rank-5 anti-
SU(5) group down to the rank-4 standard model group
SU(3) x SU(2)y, x U(1),. Finally, a string compactifi-
cation example is presented. As illustrated in this example,
the definite assignments of the SM fields in the twisted
sectors are needed to compare with the CKM and
PMNS data.
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