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We canonically quantize (2þ 1)-dimensional electrodynamics including a higher-derivative Chern-
Simons term. The effective theory describes a standard photon and an additional degree of freedom
associated with a massive ghost. We find the Hamiltonian and the algebra satisfied by the field operators.
The theory is characterized by an indefinite metric in the Hilbert space that brings up questions on causality
and unitarity. We study both of the latter fundamental properties and show that microcausality as well as
perturbative unitarity up to one-loop order are conserved when the Lee-Wick prescription is employed.
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I. INTRODUCTION

The concept of an indefinite metric in a Hilbert space
plays a fundamental role in the formulation of relativistic
quantum field theory. Dirac was the first to show how an
indefinite metric arises in quantum electrodynamics and
proposed how to deal with its probability interpretation [1].
One can mention two reasons for Dirac’s suggestion. On
the one hand, any finite representation of a noncompact
group—the Lorentz group included—leads to a state space
endowed with an indefinite metric. On the other hand, the
commutator of two vector field operators reads

½AμðxÞ; AνðyÞ� ¼ iημνDðx − yÞ; ð1Þ

with the scalar commutator function D and the Minkowski
metric ημν. The difference in the signs of the metric
components η00 and ηii induces an indefinite metric in the
corresponding state space; see, in particular, Heisenberg’s
contribution in the list of references [2–4].
Gupta and Bleuler used this concept within the covariant

quantization of electrodynamics. The Gupta-Bleuler for-
malism shows that the unphysical degrees of freedom are
eliminated by imposing the weak Lorentz condition on the

Hilbert space. Much of the motivation for studying indefi-
nite metric theories comes from the theory of gravitation,
where the nonrenormalizability of the Einstein-Hilbert
action forces one to consider the possibility of modified
gravity theories. Some of them also introduce indefinite
metrics in the Hilbert space [5–7].
The most notorious drawback of indefinite-metric the-

ories is the possibility of negative probabilities leading to
the loss of unitarity. Unitarity in this context has been
studied extensively for the past decades. In the 1960s, Lee
and Wick, being attracted by the idea of reconciling the
divergencies in quantum electrodynamics (QED) without
spoiling unitarity, constructed a modified electrodynamics
with an indefinite metric. Their theory, which is known as
the Lee-Wick model [8,9], is a modified electrodynamics
including a massive boson field associated with negative
metric components. One characteristic of the propagator of
their theory is that it contains complex conjugate pairs of
additional poles, which are called Lee-Wick poles.
The Lee-Wick model is also obtained by introducing a

higher-derivative term into the Lagrangian [10]. In this
model, perturbative unitarity of the S matrix has been
successfully implemented via the Cutkosky-Landshoff-
Olive-Polkinghorne prescription in which a pair of Lee-
Wick poles cancel each other out in cut diagrams [11].
Several approaches have provided a deeper understanding
of many physical aspects of Lee-Wick models in recent
years [12–15]. In fact, investigations aimed at providing
finiteness in quantum field theory have not stopped,
reaching diverse application within nonlocal quantum
gravity; see, e.g., [16–18] and higher-derivative gravity
extensions studied even earlier [5].
Basically, the loss of unitarity occurs due to the negative

contribution of the residue of the ghost field to scattering
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cross sections. In this case the cutting equations provided
by the optical theorem cannot be satisfied. It was demon-
strated that one can modify the definition of the internal
product in the Hilbert space in order to cope with the
unitarity problem. However, this approach leads to theories
characterized by non-Hermitian Hamiltonians, i.e., they
exhibit a nonstandard time evolution. However, Bender and
collaborators found that such Hamiltonians have real
eigenvalues when they are symmetric under PT trans-
formations [19]. Scenarios of this kind have attracted an
exceeding amount of interest, see, e.g., [20,21] where non-
Hermitian Hamiltonians are discussed, too.
Another motivation for the interest in indefinite-metric

theories originated from gravity where it was demon-
strated that adding higher-derivative terms allows for
gravity to be renormalizable [5]. This fact implied active
studies of renormalization of R2 gravity and other higher-
derivative gravity theories (see, e.g., [22] and references
therein). Nevertheless, it was realized soon that this kind
of improvement of the renormalization behavior inevi-
tably leads to ghosts. From the formal viewpoint, their
presence can be explained as follows. Consider the
example of a propagator 1

k2ðk2þm2Þ occurring in a fourth-

derivative theory. A simple transformation shows that
this propagator describes two particles: a massless and a
massive one. The propagator of the latter carries a
negative sign, whereby the massive particle corresponds
to a free scalar field with possibly negative energy. Even
if the energy in the theory can be bounded from below
due to a redefinition of vacuum, unitarity, upon the
presence of interactions, is expected to be broken (see
[23,24] for more detailed explanations).
Furthermore, more problems related to the consistent

quantum description of higher-derivative theories were
discussed in [13,14,25]. In the latter papers, it was claimed
that these problems actually arise due to differences
between the behaviors of the theory in Minkowski space-
time and its counterpart in Euclidean space. At the same
time, it was argued in [26] that in certain cases the ghosts
are “benign” so that the theory turns out to be perturbatively
unitary, with the vacuum being perturbatively stable.
Therefore, the problem of ghosts must be considered
separately for any higher-derivative theory.
An interesting example of a higher-derivative extension

of QED containing dimension-5 operators was proposed
by Myers and Pospelov [27]. The higher-derivative term
in its Lagrangian, called the Myers-Pospelov term,
involves explicit Lorentz symmetry breaking, so that
for some special choice of the Lorentz-breaking preferred
four-vector, higher time derivatives do not arise, where-
upon unitarity breaking is avoided. In case an indefinite
metric occurs, one can apply the Lee-Wick prescription to
show that unitarity is conserved [28–30]. According to the
latter, all negative-norm states are removed from the
asymptotic Hilbert space. This procedure will turn out

to be fruitful in the analysis that we intend to carry out in
the current paper.
A further interesting Lorentz-breaking modification of

QED is the higher-derivative Carroll-Field-Jackiw-like
term exhibiting a similar behavior (both of these terms
were shown to be generated perturbatively at the one-loop
level, whereby the corresponding contributions are finite,
see [31]). In a different context, though, the possibility of
Lorentz violation due to an indefinite metric was pointed
out several years ago by Nakanishi [32,33].
Therefore, to understand the physical impact of effective

higher-derivative extensions of QED, it is important to
check how such terms affect unitarity. To do so, though,
it is reasonable to investigate a simplified model first, that
is, (2þ 1)-dimensional QED with an additive higher-
derivative Chern-Simons (CS) term, which does not involve
Lorentz symmetry breaking. Some classical issues related
to this theory such as the nature and behavior of degrees
of freedom were analyzed earlier in [34]. Its canonical
formulation was discussed in [35] and the perturbative
generation of the higher-derivative CS term was carried out
in [36]. Here, we intend to elaborate on the aspects of
microcausality and unitarity of this theory.
The structure of the paper looks as follows. In Sec. II,

we introduce the classical action and the propagator of
our theory and write down the classical field equations, the
dispersion equation, and its solutions. Furthermore, we
decompose the higher-derivative theory into a standard one
involving degrees of freedom associated with a three-
component photon field and a second contribution in terms
of a Proca ghost field. We then find the polarization vectors
for the photon and the massive ghost as well as their stress
tensors. In Sec. III, we canonically quantize the theory,
construct the field operators such that they satisfy the
expected algebra, and analyze the constraint structure in
combination with finding the Hamiltonian. In Sec. IV, we
verify tree-level unitarity of our theory and we also study
perturbative unitarity at one-loop level. Section V states a
final summary and discussion of our results. Appendix A
contains details of the derivation of Dirac brackets and the
Dirac formalism that reduces second-class constraints to
zero. Appendix B explains how to express the Hamiltonian
of the theory in terms of creation and annihilation oper-
ators. Appendix C delivers detailed computations of the
nonzero equal-time commutators satisfied by the field
operators. Finally, Appendix D provides a summary of
the most important properties of a Dirac theory in (2þ 1)
dimensions.

II. HIGHER-DERIVATIVE
MAXWELL-CHERN-SIMONS THEORY

In this section, we present the higher-derivative CS term
coupled to the Maxwell Lagrangian in (2þ 1) dimensions.
The theory describes a standard photon and a massive mode
at high energies associated with a ghost. To show this,
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we apply a linear transformation to the higher-derivative
Lagrangian, decoupling it into a sum of two standard-
derivative parts. We find the polarization vectors and
connect their sum with the propagator, which simplifies
the study of unitarity in Sec. IV.

A. The (2 + 1)-dimensional model

Our starting point consists of a Lagrangian that is the
sum of the standard Maxwell term and the higher-derivative
CS extension in (2þ 1) dimensions [34], given by

L ¼ −
1

4
FμνFμν þ g

2
ϵαβγð□AαÞð∂βAγÞ þ LGF; ð2Þ

where □ ¼ ∂μ∂μ is the d’Alembertian and g is a small
constant with inverse mass dimension. We will see that the
inverse of g is related to a mass scale. Thus, it is assumed
that g > 0. Furthermore, LGF is a covariant gauge-fixing
term inversely proportional to the arbitrary gauge-fixing
parameter ξ,

LGF ¼ −
1

2ξ
ð∂μAμÞ2: ð3Þ

We take the metric convention ημν ¼ diagðþ;−;−Þ, and
our definition of the Levi-Civita symbol is based on
ϵ012 ¼ ϵ012 ¼ ϵ12 ¼ ϵ12 ¼ 1. Hence, all Lorentz indices
run over 0,1,2.
In our study we do not consider the usual single-

derivative CS term for the sake of simplicity, since we
aim at keeping track of the higher-derivative contribution.
We note that the CS term is suppressed above some energy
scale in comparison to our higher-derivative term. In
principle, though, it is natural to expect that it would not
render the physics essentially different. Nevertheless,
the complete analysis of unitarity and, especially, of the
Dirac algebra of constraints would be much more
involved if the CS term were present. Therefore, we discard
it in our analysis.
We note in passing that a (2þ 1)-dimensional Lorentz-

violating electromagnetism involving higher-derivative
terms was derived in [37] from the electromagnetic sector
of the nonminimal Standard Model extension [38] via a
procedure known as dimensional reduction (see, e.g.,
[39,40]). The second contribution in Eq. (2) can be mapped
onto the third one in Lð1þ2Þ of [37] via suitable partial
integrations.
The treatment of systems in classical mechanics

described by higher-derivative Lagrangians was initiated
by Ostrogradsky in his seminal paper [41]. Subsequent
scientific papers reviewing and extending his original
ideas are [42–44], where this list is not claimed to be
exhaustive. One of the central results of these works is
that an application of the Hamilton principle leads to a
modified set of Euler-Lagrange equations. An analogous

development of the formalism in the context of higher-
derivative field theory can be found, e.g., in [45]. For the
particular field theory defined by Eq. (2), it is sufficient to
restrict these generalized Euler-Lagrange equations to

−∂κ∂λ
∂L

∂ð∂κ∂λAσÞ
þ ∂ρ

∂L
∂ð∂ρAσÞ

−
∂L
∂Aσ

¼ 0: ð4Þ

They lead to the modified Maxwell equations

∂ρFρσ þ gϵσβγ□∂βAγ þ
1

ξ
∂σð∂ · AÞ ¼ 0: ð5Þ

Now, contracting Eq. (5) with ∂σ yields

1

ξ
□ð∂ · AÞ ¼ 0: ð6Þ

Hence, by imposing suitable boundary conditions at
infinity it follows that ∂ · A ¼ 0 can be set.
Now, let us rewrite the Lagrangian (2) as

L ¼ 1

2
Aμ

�
□ημν −

�
1 −

1

ξ

�
∂μ∂ν þ gϵμβν∂β□

�
Aν; ð7Þ

yielding the equations of motion for the gauge field:

�
□ημν −

�
1 −

1

ξ

�
∂μ∂ν þ gϵμβν∂β□

�
AνðxÞ ¼ 0: ð8Þ

Transforming the latter to the momentum representation
with i∂μ ¼ pμ, we write

SμνðpÞAνðpÞ ¼ 0; ð9aÞ

with

SμνðpÞ ¼ p2

�
ημν −

�
1 −

1

ξ

�
pμpν

p2
− igϵμβνpβ

�
: ð9bÞ

The propagator Pμν follows from inverting the operator Sμν,
giving

PμνðpÞ ¼ −
Gμνðξ; pÞ

p2ð1 − g2p2Þ ; ð10aÞ

where

Gμνðξ; pÞ ¼ ημν − ½1 − ξð1 − g2p2Þ�pμpν

p2
þ igϵμβνpβ:

ð10bÞ

The conventions have been chosen such that the propagator
satisfies
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SμνðpÞPνρðpÞ ¼ −δμρ: ð11Þ

Considering the pole structure of the propagator (10) and
defining g≡M−1, we decompose the denominator as

M2

p2ðp2 −M2Þ ¼ −
1

p2
þ 1

p2 −M2
; ð12Þ

where the second contribution has a residue whose sign
is opposite that of the first contribution. Hence, it can be
associated with a ghost. The dispersion relations are given
by the propagator poles with respect to p0. Determining the
poles yields the modes corresponding to a photon and a
massive gauge field given by

ωðp⃗Þ ¼ ωp ¼jp⃗j; ð13aÞ

Ωðp⃗Þ ¼ Ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

q
; ð13bÞ

respectively.
Let us write down the energy-momentum tensor of our

theory. It is clear that it is a sum of two contributions. The
first is the energy-momentum tensor for electrodynamics in
(2þ 1) dimensions whose symmetric form is the well-
known Belinfante tensor equal to

Tμν
Bel ¼ Fμ

λFλν þ 1

4
ημνFαβFαβ: ð14Þ

The second is connected to the higher-derivative Chern-
Simons (HDCS) theory, whose symmetric form was found
explicitly in [34]. So we merely quote the result, which is

Tμν
HDCS ¼ g½ðϵμαβF�ν þ ϵναβF�μÞ∂αF�

β − ημνϵαβγF�
α∂βF�

γ �;
ð15Þ

where F�
α ¼ 1

2
ϵαμνFμν is the dual of the field strength

tensor Fμν.

B. Decoupling the ghost

Here we make explicit the two types of fields described
by the Lagrangian (2). We define the new fields as

Āμ ¼
1ffiffiffi
2

p ðAμ þ gF�
μÞ; ð16aÞ

Gμ ¼
gffiffiffi
2

p F�
μ; ð16bÞ

in terms of the dual tensor F�
μ defined under Eq. (15) and

the original photon field Aμ.

Considering Eqs. (16a) and (16b), we find the identities

−
1

4
F̄μνF̄μν

¼ −
1

8
FμνFμν −

g
2

�
∂μAν þ

g
2
∂μF�

ν

�
ð∂μF�ν − ∂νF�μÞ

ð17aÞ

and

−
1

4
F�
μF�μ ¼ −

1

8
FμνFμν; ð17bÞ

where F̄μν ¼ ∂μĀν − ∂νĀμ is the field strength tensor
associated with the new field of Eq. (16a).
Now, by adding both equations, performing suitable

integrations by parts, and using the (unmodified) homo-
geneous Maxwell equation ∂μF�μ ¼ 0 in (2þ 1) dimen-
sions, we can rewrite the first part of the Lagrangian (2) as

−
1

4
FμνFμν þ g

2
ϵαβγð□AαÞð∂βAγÞ

¼ −
1

4
F̄μνF̄μν −

g2

4
F�
μ

�
1

g2
þ□

�
F�μ: ð18Þ

Using the definition (16b) and ∂μAμ ¼ ffiffiffi
2

p ∂μĀμ allows us
to write the higher-derivative Lagrangian as the sum

L ¼ −
1

4
F̄μνF̄μν −

1

ξ
ð∂μĀμÞ2 þ 1

2
∂μGν∂μGν −

1

2
M2GμGμ;

ð19Þ

where the higher derivatives have been absorbed into the
new fields. The first part of the new Lagrange density
describes a photon with a gauge-fixing term and the second
part corresponds to a Proca field theory involving a mass
scale of the order of M ∼ g−1. As the coupling constant g
of the modification is assumed to be small, the latter mass
scale M is supposed to be large. The Proca field theory
presumably describes a ghost dominating the regime of
high energies.

C. Polarization vectors

Now that the theory has been decomposed into two
decoupled standard-derivative parts associated with the
fields of Eqs. (16a) and (16b), our next step is to find
the polarization vectors. First, they are crucial for the
computation of the Hamiltonian in terms of creation and
annihilation operators. Second, they are needed to construct
the tensor structure in the equal-time commutation relations
of the field operators. Last but not least, the propagator can
be expressed in terms of the polarization vectors, which will
be helpful to prove the validity of the optical theorem.
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To begin with, consider the following orthogonal basis of
(2þ 1)-dimensional Minkowski spacetime that involves
the three real vectors

eð0Þμ ¼ 1ffiffiffiffiffi
p2

p pμ; ð20aÞ

eð1Þμ ¼ 1ffiffiffiffi
G

p ϵμβγpβnγ; ð20bÞ

eð2Þμ ¼ −
1ffiffiffiffiffi
p2

p ϵμβγpβe
ð1Þ
γ ¼ 1ffiffiffiffiffiffiffiffiffi

p2G
p ðp2nμ − pμðp · nÞÞ;

ð20cÞ

where G ¼ ðp · nÞ2 − p2n2 and nμ is an auxiliary three-

vector. The three-vectors eðaÞμ are normalized according to

eðaÞ · eðbÞ ¼ gab; ð21Þ

with a ¼ 0, 1, 2 and gab ¼ diagð1;−1;−1Þ. Although gab
formally corresponds to the Minkowski metric in (2þ 1)
dimensions, we use another symbol here, as the indices of
this object are not Lorentz indices, but merely the labels of
the vectors introduced before. In order to ensure G > 0, we
will take p2 > 0 and choose nμ as a timelike vector.
Furthermore, these vectors satisfy the completeness

relation

X2
a;b¼0

gabe
ðaÞ
μ eðbÞν ¼ ημν: ð22Þ

However, note that the above basis is not suitable to
describe the photon field due to the denominator depending
on

ffiffiffiffiffi
p2

p
. To construct suitable polarization vectors for

photons we will proceed differently in Sec. III A.

Moreover, one can check that the eðaÞμ fulfill the relations

ϵμβγpβe
ð2Þ
γ ¼

ffiffiffiffiffi
p2

q
eð1Þμ; ð23aÞ

ϵμβγpβe
ð1Þ
γ ¼ −

ffiffiffiffiffi
p2

q
eð2Þμ: ð23bÞ

With the real basis feðaÞg at hand, we look for a complex
basis fεðλÞg diagonalizing the operator SμνðpÞ of Eq. (9b).
Our intention is to relate the propagator to the sum of
polarization tensors formed from the vectors of fεðλÞg. This
particular method was introduced in [46] and applied in the
context of the Maxwell-Chern-Simons-like theory in
(3þ 1) dimensions. We adopt it to the theory of Eq. (2),
as it turned out to be valuable for checking the validity of
the optical theorem. Hence, considering Eq. (9b) we
demand that these vectors fulfill

SμνðpÞεðλÞνðpÞ ¼ ΛλðpÞεðλÞμðpÞ; ð24Þ

with the new label λ ∈ f0;þ;−g and the eigenvalue ΛλðpÞ
of the polarization mode λ.
We now define the complex basis as follows:

εð0Þμ ¼ eð0Þμ; ð25aÞ

εðþÞμ ¼ eð2Þμ þ ieð1Þμffiffiffi
2

p ; ð25bÞ

εð−Þμ ¼ eð2Þμ − ieð1Þμffiffiffi
2

p : ð25cÞ

The � modes are orthogonal to the momentum, that is,
p · εð�Þ ¼ 0. By using Eqs. (21) and (23a) one can show
that

εðλÞ · εðλ0Þ� ¼ gλλ0 ; ð26aÞ

ϵμβσpβε
ð�Þ
σ ¼∓ i

ffiffiffiffiffi
p2

q
εð�Þμ; ð26bÞ

with gλλ0 ¼ diagð1;−1;−1Þ. Note that the latter matrix
again corresponds to the Minkowski metric in (2þ 1)
dimensions. As its indices are the labels of the vectors
fεðλÞg, we denote it by gλλ0.
Indeed, it is not difficult to show that the vectors of

Eq. (25) diagonalize Sμν, i.e.,

SμνðpÞεð0Þν ¼ Λ0ðpÞεð0Þμ; ð27aÞ

SμνðpÞεðþÞν ¼ ΛþðpÞεðþÞμ; ð27bÞ

SμνðpÞεð−Þν ¼ Λ−ðpÞεð−Þμ; ð27cÞ

where the eigenvalues are given by

Λ0ðpÞ ¼
p2

ξ
; ð28aÞ

ΛþðpÞ ¼ p2

�
1 − g

ffiffiffiffiffi
p2

q �
; ð28bÞ

Λ−ðpÞ ¼ p2

�
1þ g

ffiffiffiffiffi
p2

q �
: ð28cÞ

The dispersion relations of our theory follow from requir-
ing that the product of eigenvalues vanish,

Y
λ¼0;�

ΛλðpÞ ¼
1

ξ
ðp2Þ3ð1 − g2p2Þ ¼ 0; ð29Þ

giving the dispersion relations of Eqs. (13a) and (13b) for
the photon and massive ghost mode, respectively. Hence,
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the vectors of the basis fεðλÞg are solutions of the field
equations when they are evaluated on shell. Therefore, they
can be interpreted as polarization vectors.
From these relations, it is possible to show that

εð�Þ
μ εð�Þ�

ν ¼ −
1

2

�
ημν −

pμpν

p2
� i

ϵμβνpβffiffiffiffiffi
p2

p
�

ð30Þ

or

εð�Þ
μ εð�Þ�

ν ¼ 1

2
ðeμν � iϵμνÞ; ð31Þ

where we have defined the tensors eμν and ϵμν by

eμν ≡ eð1Þμ eð1Þν þ eð2Þμ eð2Þν ¼ −ημν þ
pμpν

p2
; ð32aÞ

ϵμν ≡ eð1Þμ eð2Þν − eð1Þν eð2Þμ ¼ −
1ffiffiffiffiffi
p2

p ϵμβνpβ: ð32bÞ

Now, to make contact with the propagator Pμν of Eq. (10a)
via the relation [46]

Pμν ¼ −
X

λ;λ0¼0;�
gλλ0

εðλÞμ εðλ
0Þ�

ν

Λλ
; ð33Þ

we consider the sum over two-tensors formed from the
polarization vectors.
First, we investigate the transverse part and perform the

sum over the � modes. Based on the eigenvalues of
Eqs. (28a), (28b), and (28c) and the finding of Eq. (30),
we have

εðþÞ
μ εð−Þν

Λþ
þ εð−Þμ εðþÞ

ν

Λ−

¼ −
1

p2ð1 − g2p2Þ
�
ημν −

pμpν

p2
þ igϵμβνpβ

�
: ð34Þ

Next, by adding the mode labeled with λ ¼ 0 we obtain

εð0Þμ εð0Þν

Λ0

−
εðþÞ
μ εð−Þν

Λþ
−
εð−Þμ εðþÞ

ν

Λ−

¼ 1

p2ð1 − g2p2Þ
�
ημν −

pμpν

p2
þ igϵμβνpβ

�
þ ξpμpν

ðp2Þ2 ;

ð35Þ

to finally arrive at

−
X

λ;λ0¼0;�
gλλ0

εðλÞμ εðλ
0Þ�

ν

Λλ

¼ −
1

p2ð1 − g2p2Þ

×
�
ημν − ð1 − ξð1 − g2p2ÞÞpμpν

p2
þ igϵμβνpβ

�
: ð36Þ

The latter is just the propagator of Eq. (10). Hence, the
method introduced in [46,47] turns out to work in the
context of the (2þ 1)-dimensional theory defined by
Eq. (2), as well.

III. CANONICAL QUANTIZATION

In this section, we quantize the higher-derivative theory
starting from the extended symplectic structure provided
by the Ostrogradsky formalism [41–44] applied to the
context of higher-derivative field theories [45]. The theory
of Eq. (2) has constraints that modify the canonical Poisson
brackets rendering its quantization more involved. We
compute the Hamiltonian by choosing a particular vacuum
state and show that the theory is stable, but the associated
Hilbert space is endowed with an indefinite metric. We
prove that in spite of the presence of negative-norm states,
which can be interpreted as ghosts, causality is preserved
in the theory.

A. Constrained Hamiltonian formulation

We consider the Lagrangian (2) for ξ ¼ 1 and after some
integration by parts we arrive at

L ¼ −
1

2
∂μAν∂μAν þ 1

2
gϵμβγ□Aμ∂βAγ: ð37Þ

The variational methods of higher-derivative theories
[41–45] are applied to obtain the canonical conjugated
momenta to both Aμ and _Aμ. They are given by

Pμ ¼ ∂L
∂ _Aμ

−
∂Πμ

∂t ; ð38aÞ

Πμ ¼ ∂L
∂Äμ

; ð38bÞ

respectively. The higher-order Hamiltonian follows from an
extended Legendre transformation,

H ¼
Z

d2xðPμðxÞ _AμðxÞ þ ΠμðxÞÄμðxÞ − LðxÞÞ; ð39Þ

and the canonical Poisson brackets for the extended phase
space are
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fAμðt; x⃗Þ; Pνðt; y⃗Þg ¼ ημνδ
ð2Þðx⃗ − y⃗Þ; ð40aÞ

f _Aμðt; x⃗Þ;Πνðt; y⃗Þg ¼ ημνδ
ð2Þðx⃗ − y⃗Þ; ð40bÞ

where the remaining ones vanish.
Applying these formulas to the specific Lagrangian (37)

one finds

Pμ ¼ − _Aμ −
g
2
ϵμ0γ□Aγ −

g
2
ϵμβγ∂β

_Aγ; ð41aÞ

Πμ ¼ g
2
ϵμβγ∂βAγ: ð41bÞ

After one inserts them into Eq. (39), the Hamiltonian reads

H ¼
Z

d2x

�
−
1

2
_AμÛ

μν _Aν þ
1

2
AμÛ

μν∇2Aν þ
g
2
ϵij _Ai□Aj

�
;

ð42aÞ

where we have defined the tensor operator

Ûμν ¼ Ûμνð∂Þ ¼ ημν þ gϵμβν∂β: ð42bÞ

Recall the Levi-Civita symbol in (2þ 1) dimensions
defined below Eq. (3).
In order to quantize the theory, as usual, one postulates

equal-time commutation relations on the phase space
variables:

½Aμðt; x⃗Þ; Pνðt; y⃗Þ� ¼ iημνδð2Þðx⃗ − y⃗Þ; ð43aÞ

½ _Aμðt; x⃗Þ;Πνðt; y⃗Þ� ¼ iημνδð2Þðx⃗ − y⃗Þ; ð43bÞ

where all the others are defined to vanish.
However, for constrained systems, the above commuta-

tors are not always possible to satisfy [48]. For instance,
taking the derivative g

2
ϵμβγ∂β of the first field of the

commutator

½Aμðt; x⃗Þ; _Aνðt; y⃗Þ� ¼ 0; ð44Þ

producing Πðt; xÞ, gives a relation incompatible with the
commutator of Eq. (43b). Therefore, the canonical structure
of constraints has to be taken into consideration in order to
modify the Poisson brackets consistently. Some work in
this direction has already been carried out; see the formu-
lation of first- and second-class constraints for the higher-
derivative Maxwell-Chern-Simons theory in [35,49,50]. In
the latter papers, the Dirac approach has been implemented
and the reduced Hamiltonian has been obtained success-
fully with second-class constraints strongly imposed to
zero. The Dirac brackets together with the reduced
Hamiltonian neatly reproduce the equations of motion.

Here, in order to implement quantization we will follow
an alternative method. We will quantize the fields such that
they satisfy the second-class constraints automatically via
their expansion in terms of plane waves. That is, in addition
to requiring that the plane waves propagate with energy ωp

of Eq. (13a) and Ωp of Eq. (13b), respectively, we choose
the polarization vectors such that the fields satisfy the
equations of motion and the second-class constraints in the
Dirac formalism; see Appendix A. Then, we expect the
fields Aμðt; x⃗Þ and _Aμðt; x⃗Þ together with their canonical
conjugate momenta to reproduce the Dirac algebra. We
verify this property for each relevant field operator in
Appendix C. Notice, though, that the field Aμðt; x⃗Þ cannot
be considered physical in the sense of propagating degrees
of freedom independent of the gauge-fixing parameter ξ. In
Lorenz gauge, there is still the unphysical polarization
vector associated with the mode λ ¼ 0.
Let us consider the decomposition of our gauge field Aμ

in terms of the photon and massive ghost field of Eqs. (16a)
and (16b) as follows:

AμðxÞ ¼ ĀμðxÞ þGμðxÞ: ð45Þ

By inserting the decomposition into the equation of
motion (8) with ξ ¼ 1 and considering the on-shell con-
dition for the photon, □Āμ ¼ 0, we arrive at

ðημν þ gϵμβν∂βÞGν ¼ 0: ð46Þ

By taking the derivative ∂μ of Eq. (46), one has

∂ ·G ¼ 0: ð47Þ

Considering all these conditions, we can write the photon
field operator as

ĀμðxÞ ¼
Z

d2p⃗
ð2πÞ2

X
λ¼0;1;2

1

2ωp

h
aðλÞp⃗ ēðλÞμ ðpÞe−ip·x

þ aðλÞ†p⃗ ēðλÞ�μ ðpÞeip·x
i
p0¼ωp

; ð48Þ

with suitable annihilation and creation operators aðλÞp⃗ ¼
aðλÞðp⃗Þ and aðλÞ†p⃗ ¼ aðλÞ†ðp⃗Þ, respectively, for the mode λ.
The polarization vectors are chosen as

ēðλÞμ ðpÞ ¼
�
ημν −

3g2

8
pμpν þ

ig
2
ϵμβνpβ

�����
p0¼ωp

vðλÞνðpÞ;

ð49aÞ

where

vð0ÞμðpÞ ¼ nμ; ð49bÞ
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vð1ÞμðpÞ ¼ ϵμβγpβnγ
ðp · nÞ

����
p0¼ωp

; ð49cÞ

vð2ÞμðpÞ ¼ ϵμβγnβv
ð1Þ
γ ðpÞ ¼ pμ − nμðp · nÞ

ðp · nÞ
����
p0¼ωp

; ð49dÞ

with a timelike auxiliary vector nμ. Note the bar on top of
the symbol in Eq. (49a) to distinguish these vectors from

the basis feðaÞμ g introduced in Eq. (20). One can check that
the latter form an orthonormal basis, i.e.,

vðλÞμ vðλ0Þμ ¼ gλλ
0
: ð50Þ

Also, they satisfy the relation

X
λ;λ0

gλλ0 ē
ðλÞ
μ ðpÞēðλ0Þ�ν ðpÞ ¼ TμνðpÞjp0¼ωp

; ð51aÞ

where we defined

TμνðpÞ≡ Gμνðξ ¼ 1; pÞ ¼ ημν − g2pμpν þ igϵμβνpβ;

ð51bÞ

using Eq. (10b). According to Eq. (46) and the orthogon-
ality condition of Eq. (47), we write the ghost field
operator as

GμðxÞ ¼
Z

d2p⃗
ð2πÞ2

1

2Ωp

h
bp⃗ε̄

ðþÞ
μ ðp⃗Þe−ip·x

þ b†p⃗ε̄
ðþÞ�
μ ðp⃗Þeip·x

i
p0¼Ωp

; ð52Þ

with another set of annihilation and creation operators
bp⃗ ¼ bðp⃗Þ and b†p⃗ ¼ b†ðp⃗Þ, respectively. Furthermore, we

defined the polarization vector ε̄ðþÞ
μ ¼ ffiffiffi

2
p

εðþÞ
μ in terms of

the one introduced in Eq. (25). It may be convenient to
make use of the property

ε̄ðþÞ
μ ε̄ðþÞ�

ν ¼ −TμνðpÞjp0¼Ωp
; ð53Þ

which is equivalent to Eq. (31). The relation p2 ¼ g−2 was
employed to arrive at the latter result. We impose the
following algebra on the annihilation and creation operators
for the photon and ghost field:

h
aðλÞp⃗ ; aðλ

0Þ†
k⃗

i
¼ −ð2πÞ2gλλ02ωpδ

ð2Þðp⃗ − k⃗Þ; ð54aÞ
h
bp⃗; b

†
k⃗

i
¼ −ð2πÞ22Ωpδ

ð2Þðp⃗ − k⃗Þ: ð54bÞ

Replacing the fields in Eq. (42a) by the field operators of
Eqs. (48) and (52) and using the algebra of Eqs. (54a)

and (54b) and the properties of the polarization vectors, we
find the following Hamiltonian:

H ¼ −
1

4

Z
d2p⃗
ð2πÞ2

�X
λ;λ0

gλλ0
�
aðλÞp⃗ aðλ

0Þ†
p⃗ þ aðλÞ†p⃗ aðλ

0Þ
p⃗

	

þ
�
bp⃗b

†
p⃗ þ b†p⃗bp⃗

	�
: ð55Þ

We give more details of this derivation in Appendix B.
By defining the vacuum as the state annihilated by the

operators,

aðλÞp⃗ j0i ¼ bp⃗j0i ¼ 0; ð56Þ

for all λ, we can define the number operators associated
with the photon and the ghost:

NĀ;λ ¼ −gλλa
ðλÞ†
p⃗ aðλÞp⃗ ; ð57aÞ

NG ¼ −b†p⃗bp⃗: ð57bÞ

Indeed, the above number operators satisfy the standard
relations

h
NĀ;λ; a

ðλ0Þ
p⃗

i
¼ −aðλÞp⃗ δλλ0 ;

h
NĀ;λ; a

ðλ0Þ†
p⃗

i
¼ aðλÞ†p⃗ δλλ0 ;

ð58aÞ

½NG; bp⃗� ¼ −bp⃗;
h
NG; b

†
p⃗

i
¼ b†p⃗: ð58bÞ

We define n-particle states as usual by subsequently
applying creation operators on the vacuum state:

jnĀ;λi ¼
1ffiffiffiffiffiffiffiffiffi
nĀ;λ!

p ðaðλÞ†p⃗ ÞnĀ;λ j0i; jnGi ¼
1ffiffiffiffiffiffiffi
nG!

p ðb†p⃗ÞnG j0i;

ð59Þ

where nĀ;λ is the eigenvalue of the number operator of
Eq. (57a) for a state of n photons of fixed polarization λ.
In an analog manner, nG is the eigenvalue of the number
operator of Eq. (57b) for a state of n ghosts. The metric η
in the state space is given by the scalar product of such n-
particle states [9,51]. For photons, hnĀ;0jnĀ;0i ¼ ð−1ÞnĀ;0
for the λ ¼ 0 mode and hnĀ;kjnĀ;ki ¼ 1 for the remaining
ones with k ¼ 1, 2. For ghosts, it holds that
hnGjnGi ¼ ð−1ÞnG . Thus, we see that the states with an
odd occupation number of ghosts have a negative norm.
The metric for the photon can be written as ηA;λ ¼
ð−gλλÞNĀ;λ with gλλ0 given under Eq. (26) and that for the
ghost reads ηG ¼ ð−1ÞNG . Hence, our theory exhibits an
indefinite metric in the Fock space of the ghost states. It is
clear that the same problem occurs for the λ ¼ 0 mode of
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the photon, but this behavior is expected and can be dealt
with by the usual Gupta-Bleuler method.
In order to remove the vacuum energy, the normal-

ordered Hamiltonian is introduced:

∶H∶ ¼ 1

2

Z
d2p⃗
ð2πÞ2

�X
λ;λ0

− gλλ0NĀ;λλ0 þ NG

�
: ð60Þ

The latter is positive definite, except for the usual λ ¼ 0
mode of the photon again, which must be treated with the
Gupta-Bleuler formalism. Note that the ghost does lead to
issues with the positive definiteness of the Hamiltonian.

B. Feynman propagator

The next step is to derive the Feynman propagator at the
level of field operators for the theory based on Eq. (2) with
ξ ¼ 1. We employ its definition as the vacuum expectation
value of the time-ordered product of field operators at
different spacetime points x and y. Hence,

DF
μνðx − yÞ ¼ θðx0 − y0ÞDðþÞ

μν ðx − yÞ
þ θðy0 − x0ÞDð−Þ

μν ðx − yÞ; ð61aÞ

with

DðþÞ
μν ðx − yÞ ¼ h0jAμðxÞAνðyÞj0i; ð61bÞ

Dð−Þ
μν ðx − yÞ ¼h0jAνðyÞAμðxÞj0i; ð61cÞ

and the Heaviside step function θðxÞ. Using the decom-
position of Eq. (45), we define

DF
μνðx − yÞ ¼ Dð1ÞF

μν ðx − yÞ þDð2ÞF
μν ðx − yÞ; ð62Þ

where the first part,

Dð1ÞF
μν ðx − yÞ ¼ θðx0 − y0ÞDð1ÞðþÞ

μν ðx − yÞ
þ θðy0 − x0ÞDð1Þð−Þ

μν ðx − yÞ; ð63aÞ

is the Feynman propagator for photons with

Dð1ÞðþÞ
μν ðx − yÞ ¼ h0jĀμðxÞĀνðyÞj0i; ð63bÞ

Dð1Þð−Þ
μν ðx − yÞ ¼h0jĀνðyÞĀμðxÞj0i: ð63cÞ

Furthermore, the second part is the Feynman propagator of
the ghost and it reads

Dð2ÞF
μν ðx − yÞ ¼ θðx0 − y0ÞDð2ÞðþÞ

μν ðx − yÞ
þ θðy0 − x0ÞDð2Þð−Þ

μν ðx − yÞ; ð64aÞ

where

Dð2ÞðþÞ
μν ðx − yÞ ¼ h0jGμðxÞGνðyÞj0i; ð64bÞ

Dð2Þð−Þ
μν ðx − yÞ ¼h0jGνðyÞGμðxÞj0i: ð64cÞ

Notice that crossed terms such as h0jĀμðxÞGνðyÞj0i have
been set to zero, since the corresponding field operators
commute.
Inserting the field operators of Eqs. (48) and (52), we

arrive at

Dð1ÞðþÞ
μν ðzÞ ¼ −

Z
d2p⃗

ð2πÞ22ωp

X
λ;λ0

gλλ0 ē
ðλÞ
μ ðpÞēðλ0Þ�ν ðpÞe−ip·z;

ð65aÞ

Dð1Þð−Þ
μν ðzÞ ¼ −

Z
d2p⃗

ð2πÞ22ωp

X
λ;λ0

gλλ0 ē
ðλÞ
ν ðpÞēðλ0Þ�μ ðpÞeip·z;

ð65bÞ

for the photon and

Dð2ÞðþÞ
μν ðzÞ ¼ −

Z
d2p⃗

ð2πÞ22Ωp
ε̄ðþÞ
μ ðpÞε̄ðþÞ�

ν ðpÞe−ip·z; ð66aÞ

Dð2Þð−Þ
μν ðzÞ ¼ −

Z
d2p⃗

ð2πÞ22Ωp
ε̄ðþÞ
ν ðpÞε̄ðþÞ�

μ ðpÞeip·z; ð66bÞ

for the ghost with zμ ¼ xμ − yμ. To obtain these results, we
have used the algebra of Eqs. (54a) and (54b).
In the photon sector, we apply Eq. (51a) to express the

sum over polarization tensors in terms of the tensor Tμν of
Eq. (51b). This leads to

Dð1ÞF
μν ðzÞ ¼ −

Z
d2p⃗

ð2πÞ22ωp
eip⃗·z⃗½θðz0ÞTμνðp⃗Þe−iωpz0

þ θð−z0ÞTνμð−p⃗Þeiωpz0 �: ð67Þ

Furthermore, in the ghost sector, we take advantage of
relation (53) to carry out the analogous steps:

Dð2ÞF
μν ðzÞ ¼

Z
d2p⃗

ð2πÞ22Ωp
eip⃗·z⃗½θðz0ÞTμνðp⃗Þe−iΩpz0

þ θð−z0ÞTνμð−p⃗ÞeiΩpz0 �: ð68Þ

Now, we consider the following representation of the
Heaviside function given by

θðz0Þ ¼
i
2π

Z
∞

−∞
dτ

e−iτz0

τ þ iϵ
; ð69Þ
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where ϵ ¼ 0þ is an infinitesimal, positive parameter. With
the latter representation, we can cast the photon propagator
into the form

Dð1ÞF
μν ðzÞ ¼ −

i
2π

Z
d2p⃗

ð2πÞ22ωp
eip⃗·z⃗

×

�Z
∞

−∞
dτ

e−iðωpþτÞz0

τ þ iϵ
Tμνðp⃗Þ

þ
Z

∞

−∞
dτ

eiðωpþτÞz0

τ þ iϵ
Tνμð−p⃗Þ

�
: ð70Þ

Making a change of variables p0 ¼ τ þ ωp and −p0 ¼
τ þ ωp in the first and second integral, respectively, we
have

Dð1ÞF
μν ðzÞ ¼−i

Z
d2p⃗

ð2πÞ32ωp
eip⃗·z⃗

×
Z

∞

−∞
dp0 e−ip0z0

�
Tμνðp⃗;p0Þ
p0−ωpþ iϵ

−
Tνμð−p⃗;−p0Þ
p0þωp − iϵ

�

¼−i
Z
CF

d3p
ð2πÞ3 e

−ip·z TμνðpÞ
p2þ iϵ

: ð71Þ

To formulate the final form of the photon propagator, we
benefited from the property Tνμð−p⃗;−p0Þ¼Tμνðp⃗;p0Þ.
Furthermore, we have written the integral over p0 as a
contour integral in the complex p0 plane. The contour CF is
closed in the lower half plane for positive energies and in
the upper half plane for negative energies. It is passed
through in counterclockwise direction. By evaluating the
ghost part in a similar way, we obtain

Dð2ÞF
μν ðzÞ ¼ i

Z
d2p⃗

ð2πÞ32Ωp
eip⃗·z⃗

×
Z

∞

−∞
dp0 e−ip0z0

�
Tμνðp⃗;p0Þ
p0−Ωpþ iϵ

−
Tνμð−p⃗;−p0Þ
p0þΩp− iϵ

�

¼ i
Z
CF

d3p
ð2πÞ2 e

−ip·z TμνðpÞ
p2 − g−2þ iϵ

; ð72Þ

by writing the integral over p0 as another contour integral
along the same contour CF introduced before. Adding the
contributions of Eqs. (71) and (72) results in

DF
μνðzÞ¼−i

Z
CF

d3p
ð2πÞ3

TμνðpÞ
ðp2þ iϵÞð1−g2p2− iϵÞe

−ip·z; ð73Þ

where the infinitesimal parameter ϵ is only kept at linear
order. In momentum space the Feynman propagator with
the iϵ prescription is

DF
μνðpÞ ¼ −

Gμνðξ ¼ 1; pÞ
ðp2 þ iϵÞð1 − g2p2 − iϵÞ ; ð74Þ

where we have used Eq. (51b). The latter can be gener-
alized to arbitrary ξ. By inserting M ¼ g−1, we reformulate
it as

DF
μνðξ; pÞ ¼

M2Gμνðξ; pÞ
ðp2 þ iϵÞðp2 −M2 þ iϵÞ ; ð75Þ

which corresponds to the inverse Pμν of Eq. (10) for ϵ ↦ 0.

C. Microcausality

Two spacetime points that cannot be connected by a light
signal (or a signal propagating with lower velocity) are
called causally disconnected. In a theory with Lorentz
symmetry intact, such a set of spacetime points is separated
by a spacelike interval. When Lorentz symmetry is vio-
lated, the causal structure is not simply determined by the
Minkowski metric, but directly by the propagation velocity
of the field operator under consideration, i.e., the interval
need not necessarily be spacelike. As Lorentz symmetry is
preserved for our theory, its causal structure is, indeed,
based on the Minkowski metric.
Now, field operators evaluated at such a set of spacetime

points can be considered independent of each other, i.e.,
they should commute. If the latter is the case, micro-
causality is guaranteed for the theory under investigation.
To prove microcausality for the theory defined by Eq. (2),
we start with the basic commutator of field operators at the
points x and y:

Dμνðx − yÞ ¼ ½AμðxÞ; AνðyÞ�: ð76Þ

A direct calculation starting from Eq. (45) provides

½ĀμðxÞ;ĀνðyÞ�

¼
Z

d2p⃗d2k⃗
ð2πÞ44ωpωk

X
λ;λ0

�
ēðλÞμ ðp⃗Þē�ðλ0Þν ðk⃗Þ

h
aðλÞp⃗ ;aðλ

0Þ†
k⃗

i
e−ip·xþik·y

þ ē�ðλÞμ ðp⃗Þēðλ0Þν ðk⃗Þ
h
aðλÞ†p⃗ ;aðλ

0Þ
k⃗

i
eip·x−ik·y

	
ð77Þ

and

½GμðxÞ; GνðyÞ�

¼
Z

d2p⃗d2k⃗
ð2πÞ44ΩpΩk

ðεðþÞ
μ ðp⃗ÞεðþÞ�

ν ðk⃗Þ½bp⃗; b†k⃗�e−ip·xþik·y

þ εðþÞ�
μ ðp⃗ÞεðþÞ

ν ðk⃗Þ½b†p⃗; bk⃗�eip·x−ik·yÞ: ð78Þ

Hence, it is important to study the commutator for the
photon and the ghost separately, as the corresponding
field operators are independent of each other. By using
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the algebra of Eq. (54) and the properties of the polarization vectors of Eqs. (51a) and (53), we arrive at

Dμνðx−yÞ¼−
Z

d2p⃗
ð2πÞ2

1

2ωp
ðTμνðp⃗;ωpÞe−ip·ðx−yÞ−Tνμðp⃗;ωpÞeip·ðx−yÞÞ

þ
Z

d2p⃗
ð2πÞ2

1

2Ωp
ðTμνðp⃗;ΩpÞe−ip·ðx−yÞ−Tνμðp⃗;ΩpÞeip·ðx−yÞÞ;

ð79Þ

where we employed the tensor Tμν of Eq. (51b). We define z ¼ x − y and perform a change of variables p⃗ → −p⃗ in the
second contribution above to obtain

DμνðzÞ¼−
Z

d2p⃗
ð2πÞ2

eip⃗·z⃗

2ωp
ðTμνðp⃗;ωpÞe−iωpz0 −Tνμð−p⃗;ωpÞeiωpz0Þþ

Z
d2p⃗
ð2πÞ2

eip⃗·z⃗

2Ωp
ðTμνðp⃗;ΩpÞe−iΩpz0 −Tνμð−p⃗;ΩpÞeiΩpz0Þ:

ð80Þ

Since Tνμð−p⃗; p0Þ ¼ Tμνðp⃗;−p0Þ, we can introduce an-
other contour integral in the complex p0 plane along a
contour C that encircles all poles in counterclockwise
direction:

DμνðzÞ ¼ i
Z

d2p⃗
ð2πÞ2

Z
C

dp0

2π

�
Tμνðp⃗; p0Þ

ðp0 þ ωpÞðp0 − ωpÞ

−
Tμνðp⃗; p0Þ

ðp0 þ ΩpÞðp0 −ΩpÞ
�
e−ip·z: ð81Þ

Note that the contour C is different from the contour CF
that we defined in the context of the Feynman propagator in
Sec. III B. Therefore,

DμνðzÞ ¼ i
Z
C

d3p
ð2πÞ3

TμνðpÞ
p2ð1 − g2p2Þ e

−ip·z: ð82Þ

To prove that this expression vanishes outside the light
cone, that is, for ðx − yÞ2 < 0, we can perform a Lorentz
transformation of the coordinates to a frame where x0 −
y0 ¼ 0 and compute the integral in this new frame. Thus,
we focus on the integral over p0,

Iμν¼
Z
C
dp0

TμνðpÞ
p2ð1−g2p2Þ

¼−
1

g2

Z
C
dp0

TμνðpÞ
ðp0−ωpÞðp0þωpÞðp0−ΩpÞðp0þΩpÞ

;

ð83Þ

whose result is given by

−g2Iμν ¼
�

Tμνðp⃗;ωpÞ
2ωpðω2

p −Ω2
pÞ

−
Tμνðp⃗;−ωpÞ
2ωpðω2

p −Ω2
pÞ
�

þ
�

Tμνðp⃗;ΩpÞ
2ΩpðΩ2

p − ω2
pÞ

−
Tμνðp⃗;−ΩpÞ
2ΩpðΩ2

p − ω2
pÞ
�
: ð84Þ

Now we employ the explicit form of the tensor Tμν in
Eq. (51b). The terms proportional to ημν cancel for each
contribution enclosed in parentheses as well as those
proportional to g2pipj and igϵ0ijpi. The only terms that
survive are proportional to g2p0pi and igϵi0jp0. However,
these cancel due to the identity

ωp

ωpðω2
p −Ω2

pÞ
þ Ωp

ΩpðΩ2
p − ω2

pÞ
¼ 0; ð85Þ

whereupon Iμν ¼ 0 and Dμν ¼ 0 in the particular frame
considered. Lorentz invariance allows us to generalize this
finding to an arbitrary frame. We conclude that the theory is
microcausal, since the commutator of two field operators
vanishes when they are evaluated at causally disconnected
spacetime points.

IV. PERTURBATIVE UNITARITY

In the previous sections we have seen that the theory
defined by (2) develops an indefinite metric in the Hilbert
space of states due to higher-time derivatives present in the
Lagrangian. This metric is responsible for negative-norm
states and could possibly induce a violation of unitarity. As
a consequence of this, the normal probabilistic interpreta-
tion of quantum theory would be undermined.
Unitarity can be investigated in various ways. A rea-

sonable method for a free theory is to study the condition of
reflection positivity [52]. However, in the presence of
interactions, computations based on the optical theorem
in perturbation theory [53] are better under control. In this
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context, imaginary parts of forward-scattering amplitudes
are compared to cross sections of processes corresponding
to cut Feynman diagrams. In the forthcoming subsections
we check the validity of unitarity of the theory via reflection
positivity and the optical theorem.

A. Reflection positivity

Reflection positivity is a property of a scalar two-point
function in Euclidean space that guarantees the validity of
unitarity of the corresponding free field theory in
Minkowski spacetime. It is primarily used in the context
of lattice gauge theory, but also found application in
proofs of unitarity for Lorentz-violating theories [see,
e.g., [54–56] for applications to Maxwell-Chern-Simons
theory in (3þ 1) dimensions, modified Maxwell theory,
and higher-derivative theories of fermions].
To check the validity of reflection positivity for our

theory, we will make some simplifications as follows. Let
us consider the combination of poles in the scalar propa-
gator function

Kðp0; p⃗Þ ¼
M2

p2ðp2 −M2Þ ; ð86Þ

whose form is taken from Eq. (10a). We can rearrange the
latter as

Kðp0; p⃗Þ ¼ −
1

p2
þ 1

p2 −M2
: ð87Þ

Nowwe go to Euclidean space by means of the replacement
p0 → ip3,

Kðp0; p⃗Þ ↦ KEðp3; p⃗Þ ¼
1

p2
E
−

1

p2
E þM2

: ð88Þ

The weak version of reflection positivity requires that the
one-dimensional Fourier transform of the latter Euclidean
propagator function with respect to p3 be non-negative.
Computing this Fourier transform leads to

KEðx3; jp⃗jÞ ¼
Z

∞

−∞
dp3KEðp3; jp⃗jÞe−ip3x3

¼
Z

∞

−∞
dp4

e−ip3x3

p2
3 þ p⃗2

−
Z

∞

−∞
dp3

e−ip3x3

p2
3 þ p⃗2 þM2

¼ π

�
expð−jx3jjp⃗jÞ

jp⃗j −
exp ð−jx3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p⃗2 þM2
p

�
:

ð89Þ

We see that the latter expression is non-negative for all
momentum magnitudes jp⃗j (see Fig. 1). However, it should
be noted that the condition of reflection positivity refers to
the scalar part of the two-point function only. Also, it does
not take into account interactions. Therefore, reflection

positivity does not provide a complete understanding of
unitarity when the tensor structure of the two-point function
and interactions are taken into consideration.
To check the validity of unitarity more thoroughly, it is

wise to go beyond this technique and, for instance, use the
optical theorem. In the next section, we give an example in
which a study of the optical theorem with the complete
structure of poles and polarization vectors is indispensable.

B. Electron-positron annihilation at tree level

Our intention is to check the perturbative validity of the
optical theorem for the theory defined by Eq. (2). To do so,
we have to couple the modified photon theory to standard
Dirac fermions in (2þ 1) dimensions, i.e., we will consider
a modified QED in three dimensions (QED3). A summary
on a theory of Dirac spinors in (2þ 1) dimensions is given
in Appendix D. We then write the total Lagrange density as

Ltot ¼ Lþ Lψ ;γ; ð90aÞ

Lψ ;γ ¼ ψ̄ ½γμði∂μ − eAμÞ þm�ψ ; ð90bÞ

with L given by Eq. (2). Here, e is the electric charge,m the
fermion mass, ψ a four-component Dirac spinor, and γμ the
set of three Dirac matrices of Eq. (D5). Note again that
Lorentz indices run over 0,1,2.
The optical theorem establishes a connection between

the forward-scattering amplitude of a particular particle
physics process and the decay rates or total cross sections of
processes that are obtained by cutting the Feynman diagram
of the forward-scattering amplitude into two pieces. We
will study processes at tree level and one-loop order that
involve the gauge-field propagator (10a) of the theory
[57,58]. Let us start with the polarized forward scattering
annihilation process of electron-positron pairs, eþe− →
eþe− of Fig. 2. The corresponding amplitude is given by

iMF¼ v̄ðp2Þð−ieγμÞuðp1ÞðiDF
μνðξ;qÞÞūðp1Þð−ieγνÞvðp2Þ;

ð91Þ

FIG. 1. Plot of the function KEðx3; jp⃗jÞ of Eq. (89) for x3 ¼ 2
and M ¼ 2 as a function of jp⃗j.
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with the Feynman propagator of Eq. (75) and q ¼ p1 þ p2.
Particle and antiparticle spinors of a particular spin pro-
jection are denoted as uðpÞ and vðpÞ, respectively, and
correspond to those of Eqs. (D14) and (D15). Considering
polarized scattering is not crucial for the verification of the
optical theorem, though. It just simplifies the expressions,
as the polarizations of the incoming and outgoing particles
need not be averaged or summed over. Note also that
we suppress the spin index for external spinors. Now, we
can write

MF ¼ −e2Mμðp1; p2ÞDF
μνðξ; qÞM†νðp1; p2Þ; ð92Þ

where

Mμðp1; p2Þ ¼ v̄ðp2Þγμuðp1Þ; ð93Þ

M†νðp1; p2Þ ¼ ūðp1Þγνvðp2Þ: ð94Þ

The process that results from cutting the diagram of the
forward-scattering amplitude into two pieces is the pro-
duction of a modified photon by an electron-positron pair.
In contrast to what happens in standard QED, the
cross section of this process is not necessarily equal to
zero due to energy-momentum conservation. The reason is
the presence of the massive ghost, which can render the
process possible. In this case, the condition of energy
conservation can be evaluated in the center-of-mass
frame: jp⃗1j ¼ jp⃗2j ¼ 1=2g. Therefore, it will be sufficient
to prove unitarity by considering the contributions to the
imaginary part (or discontinuity) of the amplitude for the
massive ghost.
In the forward-scattering amplitude of Eq. (92) an integral

over the three-momentum q of the intermediate state can be
introduced that is canceled again by the three-dimensional δ
function of total energy-momentum conservation (which
is equivalent to energy-momentum conservation at each
vertex):

MF ¼ −e2
Z

d3q
ð2πÞ3M

μDF
μνðξ; qÞ

×M†νð2πÞ3δð3Þðp1 þ p2 − qÞ: ð95Þ

By inserting the Feynman propagator of Eq. (75), we have

MF ¼ −e2M2

Z
d3q
ð2πÞ3

MμGμνðξ; qÞM†ν

ðq2 þ iϵÞðq2 −M2 þ iϵÞ
× ð2πÞ3δð3Þðp1 þ p2 − qÞ: ð96Þ

As the photon propagator is coupled to a conserved external
current and energy-momentum is conserved at the vertex, we
can use the Ward identity to get rid of all terms in the
propagator proportional to this momentum: qμMμ ¼ 0.
Doing so allows for instating the tensor Tμν of Eq. (51b).
It is valuable to recall that

M2

ðq2 þ iϵÞðq2 −M2 þ iϵÞ ¼ −
1

q2 þ iϵ
þ 1

q2 −M2 þ iϵ
:

ð97Þ

By making use of the latter, we can decompose the
denominator into two parts:

MF ¼ e2
Z

d3q
ð2πÞ3

�
MμTμνðqÞM†ν

q2 þ iϵ
−
MμTμνðqÞM†ν

q2 −M2 þ iϵ

�

× ð2πÞ3δð3Þðp1 þ p2 − qÞ: ð98Þ

Now we insert the expression for Tμν in terms of the
polarization vectors given in Eqs. (51a) and (53) and obtain

MF ¼ e2
Z

d3q
ð2πÞ3

�P
λ;λ0 ðMμēðλÞμ Þgλλ0 ðM†νēðλ

0Þ�
ν Þ

q2 þ iϵ

þ ðMμε̄ðþÞ
μ ÞðM†νε̄ðþÞ�

ν Þ
q2 −M2 þ iϵ

�

× ð2πÞ3δð3Þðp1 þ p2 − qÞ: ð99Þ

Since it is not possible to satisfy energy-momentum
conservation and the dispersion relation for the photon
at the same time, the first contribution is zero. We are then
left with

MF ¼ e2
Z

d3q
ð2πÞ3

jMμε̄ðþÞ
μ ðqÞj2

ðq0 þ Ωq − iϵÞðq0 −Ωq þ iϵÞ
× ð2πÞ3δð3Þðp1 þ p2 − qÞ: ð100Þ

We perform the integration over q0 by defining the center-
of-mass energy

ffiffiffi
s

p ¼ p0
1 þ p0

2 and exploit the property of
the δ function. This leads to

FIG. 2. Polarized forward-scattering electron-positron annihi-
lation where a cut of the gauge-field propagator is indicated by
the dashed line. The three-momenta of the incoming particles are
p1, p2, where the three-momentum of the intermediate modified
photon is denoted as q.
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MFðsÞ ¼ e2
Z

d2q⃗
ð2πÞ3

jMμε̄ðþÞ
μ ðΩq; q⃗Þj2

ð ffiffiffi
s

p þ Ωq − iϵÞð ffiffiffi
s

p
−Ωq þ iϵÞ

× ð2πÞ3δð2Þðp⃗1 þ p⃗2 − q⃗Þ: ð101Þ

The imaginary part of the amplitude can be evaluated based
on the identity

lim
ϵ→0þ

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ; ð102Þ

where P denotes the principal value. We also consider

2Ωq

ð ffiffiffi
s

p þΩq − iϵÞð ffiffiffi
s

p
−Ωq þ iϵÞ

¼ 1ffiffiffi
s

p
−Ωq þ iϵ

−
1ffiffiffi

s
p þ Ωq − iϵ

: ð103Þ

The result is

ImðMFðsÞÞ

¼−e2
Z

d2q⃗
ð2πÞ3 jM

με̄ðþÞ
μ ðΩq;q⃗Þj2ð2πÞ3δð2Þðp⃗1þ p⃗2− q⃗Þ

×
π

2Ωq
½δð ffiffiffi

s
p

−ΩpÞþδð ffiffiffi
s

p þΩqÞ�: ð104Þ

The second δ function in Eq. (104) involves a nonzero
contribution coming from the possibility of negative
energies. This can be seen in the following way. From
the definition of the Feynman propagator one has

DF
μνðz0; z⃗Þ ¼ θðz0ÞDðþÞ

μν ðz0; z⃗Þ þ θð−z0ÞDð−Þ
μν ðz0; z⃗Þ: ð105Þ

Performing a coordinate Poincaré transformation, for
instance, a constant time translation that adds a constant
purely timelike three-vector to z such that z0 → −z0, one
has

DF
μνð−z0; z⃗Þ ¼ θð−z0ÞDðþÞ

μν ð−z0; z⃗Þ þ θðz0ÞDð−Þ
μν ð−z0; z⃗Þ:

ð106Þ

The interpretation is that negative energies occur in the
opposite flow of time. This is precisely the reason why we
include the second δ function in Eq. (104). In the literature,
the latter is sometimes represented by a cut with a shaded
region indicating the corresponding direction of energy
flow [14].
Finally, we can write

2ImðMFðsÞÞ

¼ −e2
Z

d3q
ð2πÞ3 jM

με̄ðþÞ
μ ðqÞj2ð2πÞ3δð3Þðp1 þ p2 − qÞ

× ð2πÞδðq2 −M2Þ½θðq0Þ þ θð−q0Þ�; ð107Þ

which represents the sum of diagrams with energy flow
in the positive and negative direction as represented
in Fig. 3.
Now we come to the crucial point in the analysis where

we must introduce some of the ideas developed by Lee
and Wick. As a first observation, the negative global sign
in Eq. (107) may threaten unitarity since the left-hand
side of the latter equation, which is related to the cross
section, is positive definite. To overcome this problem,
we apply the Lee-Wick prescription that removes the
negative-metric states from the asymptotic Hilbert space.
Furthermore, as long as the energy of the incoming state
is low enough, the argument of δðq2 −M2Þ is impossibly
different from zero due to the large mass of the ghost. The
latter will simply not be excited under this condition.
Then unitarity is guaranteed in a direct way just as in the
standard case [8,9,11].

C. Compton scattering at one-loop level

Our next step is to study unitarity when virtual ghosts
arise in loop diagrams. We analyze the optical theorem
for the (polarized) Compton scattering process of Fig. 4.
The forward-scattering amplitude at one-loop level for
this process in the extended Maxwell-Chern-Simons
theory in (2þ 1) dimensions given by the Lagrangian
(2) reads

FIG. 4. Forward Compton scattering with one-loop correction
of the fermion propagator included. The cut of both propagators
is indicated by a dashed line. The external three-momenta are
given by k and p0.

FIG. 3. After cutting the photon propagator in the diagram of
Fig. 2, the sum over intermediate states in both directions of the
energy flow is considered.
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iM ¼ ϵðλÞ�β ðkÞūðp0Þð−ieγβÞ
�

ið=pþmÞ
p2 −m2 þ iϵ

�
ð−ieγμÞ

Z
d3q
ð2πÞ3

ið=p − =qþmÞ
ðp − qÞ2 −m2 þ iϵ

× ðiDF
μνðqÞÞð−ieγνÞ

�
ið=pþmÞ

p2 −m2 þ iϵ

�
ð−ieγαÞuðp0ÞϵðλÞα ðkÞ; ð108Þ

where the external electrons and photons are considered polarized. The fermion propagator for the (2þ 1)-dimensional
Dirac theory of Eq. (D12) has been inserted. For simplicity, we choose the particular gauge-fixing parameter ξ ¼ 1 and
employ the Feynman propagator of Eq. (74). We introduce the following shorthand notation for expressions formed
from external spinors and polarization vectors:

JðλÞ1 ðp0; kÞ ¼ ϵ�ðλÞβ ðkÞūðp0Þγβ; ð109aÞ

JðλÞ2 ðp0; kÞ ¼ γαuðp0ÞϵðλÞα ðkÞ; ð109bÞ

and rewrite the denominators of Eq. (108) in terms of the poles. We also work in the center-of-mass frame where p⃗ ¼ 0⃗
and use Eq. (97) to obtain

iM ¼ −e4JðλÞ1 ðp0; kÞ
�

=pþm
p2 −m2 þ iϵ

�
γμ

Z
d3q
ð2πÞ3

=p − =qþm
ðq0 − p0 − Eq þ iϵÞðq0 − p0 þ Eq − iϵÞ

× TμνðqÞ
�

1

ðq0 − ωq þ iϵÞðq0 þ ωq − iϵÞ −
1

ðq0 −Ωq þ iϵÞðq0 þΩq − iϵÞ
�
γν
�

=pþm
p2 −m2 þ iϵ

�
JðλÞ2 ðp0; kÞ: ð110Þ

Let us decompose the amplitude into a sum of amplitudes via

M ¼ Mð1Þ þMð2Þ; ð111aÞ

with

iMð1Þ ¼ −e4JðλÞ1 ðp0; kÞ
�

=pþm
p2 −m2 þ iϵ

�
γμ

Z
d2q⃗dq0
ð2πÞ3

=p − =qþm
ðq0 − p0 − Eq þ iϵÞðq0 − p0 þ Eq − iϵÞ

×
TμνðqÞ

ðq0 − ωq þ iϵÞðq0 þ ωq − iϵÞ γ
ν

�
=pþm

p2 −m2 þ iϵ

�
JðλÞ2 ðp0; kÞ ð111bÞ

and

iMð2Þ ¼ e4JðλÞ1 ðp0; kÞ
�

=pþm
p2 −m2 þ iϵ

�
γμ

Z
d2q⃗dq0
ð2πÞ3

=p − =qþm
ðq0 − p0 − Eq þ iϵÞðq0 − p0 þ Eq − iϵÞ

×
TμνðqÞ

ðq0 − Ωq þ iϵÞðq0 þ Ωq − iϵÞ γ
ν

�
=pþm

p2 −m2 þ iϵ

�
JðλÞ2 ðp0; kÞ: ð111cÞ

Our next step is to integrate over the complex variable q0 by using the residue theorem and closing the contour in the
lower half plane of the complex q0 plane. Each integrand has two contributing poles leading to four poles q0 ¼ zi
(i ¼ 1…4), in total. For the first integrand we have

z1 ¼ p0 þ Eq − iϵ; ð112aÞ

z2 ¼ ωq − iϵ; ð112bÞ

where Eq is the dispersion relation (D13) of a massive fermion in (2þ 1) dimensions. The poles of the second integrand
are given by
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z3 ¼ p0 þ Eq − iϵ; ð113aÞ

z4 ¼ Ωq − iϵ: ð113bÞ

We then arrive at

Mð1Þ ¼ −e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

×
Z

d2q⃗
ð2πÞ2 ð=p − =qþmÞTμνðqÞ

× ðResðz1Þ þ Resðz2ÞÞγν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

ð114Þ

and

Mð2Þ ¼ e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

×
Z

d2q⃗
ð2πÞ2 ð=p − =qþmÞTμνðqÞ

× ðResðz3Þ þ Resðz4ÞÞγν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ;

ð115Þ

with the residues

Resðz1Þ ¼
−1

2Eqðp0 þ Eq − ωqÞðp0 þ Eq þ ωq − iϵÞ ;

ð116aÞ

Resðz2Þ ¼
−1

2ωqðp0 þ Eq − ωqÞðp0 − Eq − ωq þ iϵÞ
ð116bÞ

and

Resðz3Þ ¼
−1

2Eqðp0 þ Eq − ΩqÞðp0 þ Eq þΩq − iϵÞ ;

ð117aÞ

Resðz4Þ ¼
−1

2Ωqðp0 þ Eq − ωqÞðp0 − Eq − Ωq þ iϵÞ ;

ð117bÞ

where we have rescaled the parameter ϵ and set ϵ → 0
where it is not important.
Our amplitudeM of Eq. (110) considered as an analytic

function of the complex variable q0 has a branch cut along
the real axis. In order to extract the imaginary part of the
diagram we will compute the imaginary parts of the
residues by using the identity (102). We obtain

ImðResðz1ÞÞ ¼
πδðp0 þ ωp þ EqÞ

4ωqEq
; ð118aÞ

ImðResðz2ÞÞ ¼
πδðp0 − ωp − EqÞ

4ωqEq
; ð118bÞ

ImðResðz3ÞÞ ¼
πδðp0 þ Ωp þ EqÞ

4ΩqEq
; ð118cÞ

ImðResðz4ÞÞ ¼
πδðp0 − Ωp − EqÞ

4ΩqEq
: ð118dÞ

We can then write the imaginary parts of the amplitudes as

ImðMð1ÞÞ ¼ −e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

Z
d2q⃗
ð2πÞ3 ð=p − =qþmÞTμνðqÞ

×
ð2πÞπ
4ωqEq

½δðp0 − ωp − EqÞ þ δðp0 þ ωp þ EqÞ�γν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ; ð119Þ

and in the same way

ImðMð2ÞÞ ¼ e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

Z
d2q⃗
ð2πÞ3 ð=p − =qþmÞTμνðqÞ

×
ð2πÞπ
4ΩqEq

½δðp0 − Ωp − EqÞ þ δðp0 þ Ωp þ EqÞ�γν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ: ð120Þ

Now, we define
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q ¼ k1; ð121aÞ

p − q ¼ k2; ð121bÞ

and use energy conservation expressed by the δ functions δðp0 � Ωp � EqÞ and δðp0 � ωp � EqÞ. Furthermore, we employ
the relation

Z
d2q⃗
ð2πÞ3 ¼

Z
d2k⃗1
ð2πÞ3

Z
d2k⃗2
ð2πÞ3 ð2πÞ

3δð2Þðp⃗ − k⃗1 − k⃗2Þ; ð122Þ

to write the integrals over the spatial momentum components as integrals over three-momenta:

2ImðMð1ÞÞ ¼ −e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

Z

d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 ð=k2 þmÞTμνðk1Þ

�
2πδðk01 − ωk1Þ2πδðk02 − Ek2Þ

ð2ωk1Þð2Ek2Þ

þ 2πδðk01 þ ωk1Þ2πδðk02 þ Ek2Þ
ð2ωk1Þð2Ek2Þ

�
ð2πÞ3δð3Þðp − k1 − k2Þ

�
γν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ ð123Þ

and

2ImðMð2ÞÞ ¼ e4JðλÞ1 ðp0; kÞ
�
=pþm
p2 −m2

�
γμ

Z

d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 ð=k2 þmÞTμνðk1Þ

�
2πδðk01 −Ωk1Þ2πδðk02 − Ek2Þ

ð2Ωk1Þð2Ek2Þ

þ 2πδðk01 þΩk1Þ2πδðk02 þ Ek2Þ
ð2Ωk1Þð2Ek2Þ

�
ð2πÞ3δð3Þðp − k1 − k2Þ

�
γν
�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ: ð124Þ

Recall the relations (51a) and (53) for the gauge polarization vectors. Furthermore, we apply the completeness relation
(D17a) for standard particle spinors in (2þ 1) dimensions to this particular case, i.e.,

X
s

uðsÞðk2ÞūðsÞðk2Þ ¼ =k2 þm; ð125Þ

where the sum runs over the spin projection s of the fermion in the former loop. Note that this spinor index is kept explicitly.
We can then write

2ImðMð1ÞÞ ¼ −
X
s;λ0;λ00

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3



−ie2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
γμuðsÞðk2Þēðλ

0Þ
μ ðk1Þ

�

× gλ0λ00


ie2ēðλ

00Þ�
ν ðk1ÞūðsÞðk2Þγν

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�
2πδðk21Þ2πδðk22 −m2Þð2πÞ3δð3Þðp − k1 − k2Þ

× ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ� ð126Þ

and

2ImðMð2ÞÞ ¼
X
s

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3



ie2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
γμuðsÞðk2Þε̄ðþÞ

μ ðk1Þ
�

×



ie2ε̄ð−Þν ðk1ÞūðsÞðk2Þγν

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�
2πδðk21 −M2Þ2πδðk22 −m2Þð2πÞ3δð3Þðp − k1 − k2Þ

× ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ�: ð127Þ

In this way we obtain
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2ImðMð1ÞÞ ¼ −
X
s;λ0;λ00

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3



−ie2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
Jðλ

0Þ
2 ðk2; k1Þ

�

× gλ0λ00


ie2Jðλ

00Þ
1 ðk2; k1Þ

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�
2πδðk21 −M2Þ2πδðk22 −m2Þð2πÞ3δð3Þðp − k1 − k2Þ

× ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ� ð128Þ

and

2ImðMð2ÞÞ ¼
X
s

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3



ie2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
JðþÞ
2 ðk2; k1Þ

�

ie2Jð−Þ1 ðk2; k1Þ

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�

× 2πδðk21 −M2Þ2πδðk22 −m2Þð2πÞ3δð3Þðp − k1 − k2Þ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ�; ð129Þ

where

JðþÞ
2 ðk2; k1Þ ¼ γμuðsÞðk2Þε̄ðþÞ

μ ðk1Þ; ð130aÞ

Jð−Þ1 ðk2; k1Þ ¼ ε̄ð−Þν ðk1ÞūðsÞðk2Þγν: ð130bÞ

Let us define

gλ0λ00M
ðλ0Þ
1 Mðλ00Þ†

1 ¼ gλ0λ00
�
e2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
Jðλ

0Þ
2 ðk2; k1Þ

��
e2Jðλ

00Þ
1 ðk2; k1Þ

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�
ð131Þ

and

MðþÞ
2 Mð−Þ†

2 ¼
�
e2JðλÞ1 ðp0; kÞ

�
=pþm
p2 −m2

�
JðþÞ
2 ðk2; k1Þ

��
e2Jð−Þ1 ðk2; k1Þ

�
=pþm
p2 −m2

�
JðλÞ2 ðp0; kÞ

�
: ð132Þ

Thus, we can express both imaginary parts as

2ImðMð1ÞÞ ¼ −
X
s;λ0;λ00

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 gλ0λ00M

ðλ0Þ
1 Mðλ00Þ†

1 2πδðk21Þ2πδðk22 −m2Þ

× ð2πÞ3δð3Þðp − k1 − k2Þ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ� ð133Þ

and

2ImðMð2ÞÞ ¼ −
X
s

Z
d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3M

ðþÞ
2 Mð−Þ†

2 2πδðk21 −M2Þ2πδðk22 −m2Þ

× ð2πÞ3δð3Þðp − k1 − k2Þ½θðk01Þθðk02Þ þ θð−k01Þθð−k02Þ�: ð134Þ

The sum in Eq. (133) runs over the spin projection of the fermion and the polarization of the photon. Both particles were put
on shell by cutting the diagram of the forward-scattering amplitude (see Fig. 5) into two pieces. Note that the right-hand side
of Eq. (134) is zero, as the δ function does not provide a contribution due to the large mass scale M. This behavior is
precisely the effect of the Lee-Wick prescription according to which the negative-norm states are removed from the
asymptotic Hilbert space just as in the tree-level analysis [see Eq. (107) and the subsequent paragraph]. So, we conclude that
the optical theorem and, therefore, unitarity continue being valid at one-loop order, as well.

RICARDO AVILA et al. PHYS. REV. D 101, 055011 (2020)

055011-18



V. CONCLUSIONS AND OUTLOOK

In this paper, we considered a higher-derivative Chern-
Simons-type modification of electrodynamics in (2þ 1)
dimensions. We decomposed the Lagrangian of the model
into a physical and a ghost sector and obtained the
polarization vectors for the corresponding modes. In
addition, the propagator of the theory was computed and
it was demonstrated how it can be expressed in terms of the
polarization vectors. Based on these findings, we per-
formed the canonical quantization of the theory and studied
its perturbative unitarity at both tree level and one-loop
order by checking the validity of the optical theorem.
Throughout this paper, we explicitly demonstrated that

reflection positivity, known as a sufficient condition for
unitarity, is satisfied. As the latter requirement applies to a
free field theory only, we were interested in understanding
unitarity when taking interactions into account. Hence, we
coupled our theory to standard Dirac fermions in (2þ 1)
spacetime dimensions and evaluated the optical theorem for
particular scattering processes. This analysis of unitarity
revealed inconsistencies due to negative contributions at the
pole of the ghost, as one should expect. However, by using
the Lee-Wick prescription we demonstrated that unitarity
is conserved at both tree level and one-loop order. The
method of removing contributions from ghosts from the in-
and out-states clearly provided this result. We applied the
usual cutting rules of Feynman diagrams and amplitudes to
guarantee the validity of the optical theorem. It was
necessary to assume that the ghost mass is high enough,
perhaps of the order of the Planck mass. It is expected that
the situation at higher order in perturbation theory will not
be very different.
It is also reasonable to expect that these results can be

generalized naturally to the four-dimensional case where
the higher-derivative Chern-Simons-like term breaks
Lorentz symmetry. Some preliminary studies of unitarity
in this alternative theory have been carried out in [57]. They
are complemented by the analysis performed in our latest
work [59].
Moreover, our opinion is that the results obtained here

could serve as a base to explicitly define classes of higher-

derivative theories consistent with the requirement of
unitarity. In particular, our methodology could be useful
for studies of various higher-derivative extensions of
gravity including the Lorentz-breaking ones. We hope that
this methodology will help to solve the problem of
formulating a perturbatively consistent gravity model.
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APPENDIX A: DIRAC FORMALISM

We follow the Dirac procedure to reduce second-class
constraints from the higher-derivative theory based on the
Lagrangian (2) to zero [35] and to find the Dirac brackets.
From Eqs. (41a) and (41b), we have four primary second-
class constraints,

χ0ðt; x⃗Þ ¼ Π0ðt; x⃗Þ − g
2
ϵij∂iAjðt; x⃗Þ; ðA1aÞ

χ1ðt; x⃗Þ ¼ P0ðt; x⃗Þ þ _A0ðt; x⃗Þ þ
g
2
ϵij∂i

_Ajðt; x⃗Þ; ðA1bÞ

φiðt; x⃗Þ ¼ Πiðt; x⃗Þ þ g
2
ϵij _Ajðt; x⃗Þ −

g
2
ϵij∂jA0ðt; x⃗Þ: ðA1cÞ

The nonvanishing elements of the algebra are

fχ1ðt; x⃗Þ; χ0ðt; y⃗Þg ¼ δð2Þðx⃗ − y⃗Þ; ðA2aÞ

fφiðt; x⃗Þ; χ1ðt; y⃗Þg ¼ −gϵij∂jδ
ð2Þðx⃗ − y⃗Þ; ðA2bÞ

fφiðt; x⃗Þ;φjðt; y⃗Þg ¼ gϵijδð2Þðx⃗ − y⃗Þ: ðA2cÞ

The convention we use is that the derivatives act on the first
set of spatial variables named x⃗, in general. To begin, let us
introduce the notation φA ¼ ðχ0; χ1;φiÞ, with A ¼ 0̄; 1̄; 1; 2
and i ¼ 1, 2. The matrix of the second-class constraints will
be denoted by

CABðt; x⃗; y⃗Þ ¼ fφAðt; x⃗Þ;φBðt; y⃗Þg: ðA3Þ

From Eq. (A2c) we have

FIG. 5. Sum over intermediate states and energy flow in the cut
Compton diagram of Fig. 4.
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CAB ¼

2
6664
0 −1 0 0

1 0 −g∂2 g∂1

0 −g∂2 0 g

0 g∂1 −g 0

3
7775δð2Þðx⃗ − y⃗Þ: ðA4Þ

The inverse matrix is (where the δ function is not inverted)

C−1
AB ¼

2
6664

0 1 −∂1 −∂2

−1 0 0 0

−∂1 0 0 −1=g
−∂2 0 1=g 0

3
7775δð2Þðx⃗ − y⃗Þ: ðA5Þ

The nonzero components are

C−1
0̄ 1̄
ðx⃗; y⃗Þ ¼ −C−1

1̄ 0̄
ðx⃗; y⃗Þ ¼ δð2Þðx⃗ − y⃗Þ; ðA6aÞ

C−1
0̄i ðx⃗; y⃗Þ ¼ C−1

i0̄ ðx⃗; y⃗Þ ¼ −∂iδ
ð2Þðx⃗ − y⃗Þ; ðA6bÞ

C−1
ij ðx⃗; y⃗Þ ¼ −

1

g
ϵijδð2Þðx⃗ − y⃗Þ; i; j ¼ 1; 2: ðA6cÞ

The Dirac brackets are defined by

fX; Yg� ¼ fX; Yg − fX;φAgC−1
ABfφB; Yg: ðA7Þ

We promote the Dirac algebra to the equal-time commu-
tators satisfied by the fields and obtain

½A0ðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ −iδð2Þðx⃗ − y⃗Þ; ðA8aÞ

½A0ðt; x⃗Þ; P0ðt; y⃗Þ� ¼ iδð2Þðx⃗ − y⃗Þ; ðA8bÞ

½A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ ig
2
ϵij∂jδ

ð2Þðx⃗ − y⃗Þ; ðA8cÞ

½ _Aiðt; x⃗Þ; _Ajðt; y⃗Þ� ¼ −
i
g
ϵijδð2Þðx⃗ − y⃗Þ; ðA8dÞ

½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ −i∂iδ
ð2Þðx⃗ − y⃗Þ; ðA8eÞ

½ _Aiðt; x⃗Þ; P0ðt; y⃗Þ� ¼
i
2
∂iδ

ð2Þðx⃗ − y⃗Þ; ðA8fÞ

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ� ¼ ig
2
ϵjk∂i∂kδ

ð2Þðx⃗ − y⃗Þ; ðA8gÞ

½ _Aiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ i
2
δijδ

ð2Þðx⃗ − y⃗Þ; ðA8hÞ

½P0ðt; x⃗Þ;Πiðt; y⃗Þ� ¼ ig
4
ϵij∂jδ

ð2Þðx⃗ − y⃗Þ; ðA8iÞ

½Π0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
ig
2
ϵij∂jδ

ð2Þðx⃗ − y⃗Þ; ðA8jÞ

½Πiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ −
ig
4
ϵijδð2Þðx⃗ − y⃗Þ: ðA8kÞ

Note that the momentum Pμ has been changed in com-
parison to that employed in Ref. [35] and, consequently, we
have obtained a different algebra.

APPENDIX B: THE HAMILTONIAN

The current section delivers a detailed demonstration on
how the Hamiltonian of the theory given by Eq. (2) can be
expressed in terms of creation and annihilation operators.
We consider the Hamiltonian (42a) written as

H ¼ HĀ þHG; ðB1Þ

where by using the decomposition (45) we have

HĀ ¼
Z

d2x

�
−
1

2
_̄AμðÛμνÞ _̄Aν þ

1

2
ĀμðÛμνÞ∇2Āν

�
; ðB2Þ

HG ¼ g
2

Z
d2xϵij _Gi□Gj: ðB3Þ

Above, we have applied the equation of motion (46) for the
ghost and □Āμ ¼ 0 for the photon.
Let us define

Hkin
Ā ¼ −

1

2

Z
d2x _̄AμÛ

μν _̄Aν; ðB4Þ

Hpot
Ā

¼ 1

2

Z
d2xĀμÛ

μν∇2Āν: ðB5Þ

Inserting the photon field operator of Eq. (48), the first
contribution reads

Hkin
Ā ¼ 1

8

Z
d2p⃗
ð2πÞ2

X
λ;λ0

h
aðλÞp⃗ aðλ

0Þ
−p⃗ ē

ðλÞ
μ ðp⃗ÞUμν

−p⃗ē
ðλ0Þ
ν ð−p⃗Þe−2iωp⃗x0 − aðλÞp⃗ aðλ

0Þ†
p⃗ ēðλÞμ ðp⃗ÞUμν�

p⃗ ēðλ
0Þ�

ν ðp⃗Þ − aðλÞ†p⃗ aðλ
0Þ

p⃗ ēðλÞ�μ ðp⃗ÞUμν
p⃗ ēðλ

0Þ
ν ðp⃗Þ

þ aðλÞ†p⃗ aðλ
0Þ†

−p⃗ ēðλÞ�μ ðp⃗ÞUμν�
−p⃗ ē

ðλ0Þ�
ν ð−p⃗Þe2iωp⃗x0

i
; ðB6Þ

where Uμν
p⃗ ¼ ðημν − igϵμβνpβÞp0¼ωp

corresponds to Eq. (42b) in momentum space.
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In the same way,

Hpot
Ā

¼ −
1

8

Z
d2p⃗
ð2πÞ2

X
λ;λ0

p⃗2

ω2
p⃗

h
aðλÞp⃗ aðλ

0Þ
−p⃗ ē

ðλÞ
μ ðp⃗ÞUμν

−p⃗ē
ðλ0Þ
ν ð−p⃗Þe−2iωp⃗x0 þ aðλÞp⃗ aðλ

0Þ†
p⃗ ēðλÞμ ðp⃗ÞUμν�

p⃗ ēðλ
0Þ�

ν ðp⃗Þ

þ aðλÞ†p⃗ aðλ
0Þ

p⃗ ēðλÞ�μ ðp⃗ÞUμν
p⃗ ēðλ

0Þ
ν ðp⃗Þ þ aðλÞ†p⃗ aðλ

0Þ†
−p⃗ ēðλÞ�μ ðp⃗ÞUμν�

−p⃗ ē
ðλ0Þ�
ν ð−p⃗Þe2iωp⃗x0

i
: ðB7Þ

We see that the first and last terms vanish due to the global
factor 1 − p⃗2=ω2

p, while the other terms pick up a factor of
1þ p⃗2=ω2

p ¼ 2. We arrive at

HĀ ¼ −
1

4

Z
d2p⃗
ð2πÞ2

X
λ;λ0

ηλλ0 ðaðλÞp⃗ aðλ
0Þ†

p⃗ þ aðλÞ†p⃗ aðλ
0Þ

p⃗ Þ; ðB8Þ

where we have used

ēðλÞμ Uμν�
p⃗ ē�ðλ

0Þ
ν ¼ gλλ

0 ðB9Þ

and its complex conjugate.
For the ghost part we insert the ghost field operator of

Eq. (52) and obtain

HG ¼ g
8

Z
d2p⃗
ð2πÞ2

iϵij

g2Ωp

h
bp⃗b

†
p⃗ε̄

ðþÞ
i ðp⃗Þε̄ðþÞ�

j ðp⃗Þ

− b†p⃗bp⃗ε̄
ðþÞ�
i ðp⃗Þε̄ðþÞ

j ðp⃗Þ
i
; ðB10Þ

where we have used that p2 ¼ 1=g2 as well as

ϵijε̄ðþÞ
i ðp⃗Þε̄ðþÞ

j ð−p⃗Þ ¼ 0; ðB11aÞ

since

ε̄ðþÞ
k ð−p⃗Þ ¼ −ε̄ðþÞ

k ðp⃗Þ; ðB11bÞ

for k ¼ 1, 2. We then arrive at

HG ¼ −
1

4

Z
d2p⃗
ð2πÞ2 ðbp⃗b

†
p⃗ þ b†p⃗bp⃗Þ; ðB12Þ

where we have also employed

ϵijε̄ð�Þ
i ε̄ð�Þ�

j jp0¼Ωp
¼ �2igΩp: ðB13Þ

This proves our expression (55).

APPENDIX C: EXTENDED EQUAL-TIME
COMMUTATORS

In this section we intend to compute the equal-time
commutators for the field operators that emerge from field
theory of higher derivatives defined by Eq. (2). Consider
the basic commutator

½AμðxÞ; AνðyÞ� ¼ ½ĀμðxÞ; ĀνðyÞ� þ ½GμðxÞ; GνðyÞ�; ðC1aÞ

with

½ĀμðxÞ; ĀνðyÞ� ¼ −
Z

d2p⃗
ð2πÞ2

1

2ωp
ðTμνðpÞe−ip·ðx−yÞ

−TνμðpÞeip·ðx−yÞÞp0¼ωp
; ðC1bÞ

½GμðxÞ; GνðyÞ� ¼
Z

d2p⃗
ð2πÞ2

1

2Ωp
ðTμνðpÞe−ip·ðx−yÞ

−TνμðpÞeip·ðx−yÞÞp0¼Ωp
: ðC1cÞ

To derive the Dirac commutators we work directly with the
field operators of Eqs. (48) and (52). Our strategy will be as
follows:
(a) We consider the basic commutator (C1a) and construct

the various elements in phase space by applying the
different operators on the fields.

(b) For a commutator containing □Aμðt; x⃗Þ we use the
identities□Āμðt; x⃗Þ¼0 and□Gμðt; x⃗Þ ¼ − 1

g2 Gμðt; x⃗Þ.
(c) Whenever an integral involves momentum variables

we use the relation pμ ¼ i∂μ, whereupon derivatives
can be extracted from the integral.

(d) To treat derivatives for the second variable ∂y
i , we

integrate by parts to produce ∂x
i , whereby an additional

minus sign occurs.
(e) We assume that the spatial derivatives ∂i act on the

first variable x⃗ of δ functions in all final expressions.

1. Commutator ½A0ðt;x⃗Þ; _A0ðt;y⃗Þ�
With the previous rules in mind and to demonstrate our

technique explicitly we apply a first time derivative ∂y0 to
the basic commutator (C1a):
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½AμðxÞ; ∂y0AνðyÞ�

¼ −
Z

d2p⃗
ð2πÞ2

i
2
ðTμνe−ip·ðx−yÞ þ Tνμeip·ðx−yÞÞp0¼ωp

þ
Z

d2p⃗
ð2πÞ2

i
2
ðTμνe−ip·ðx−yÞ þ Tνμeip·ðx−yÞÞp0¼Ωp

: ðC2Þ

We set both times equal, x0 ¼ y0 ¼ t, and change p⃗ → −p⃗
in the second term of each contribution. We then obtain

½Aμðt; x⃗Þ; _Aνðt; y⃗Þ�

¼ −
Z

d2p⃗
ð2πÞ2

i
2
ðTμνðp⃗Þ þ Tνμð−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2

i
2
ðTμνðp⃗Þ þ Tνμð−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ: ðC3Þ

In the following calculations we implicitly consider the
dependence on ωp andΩp of the expressions in parentheses
above. For the indices μ ¼ 0 and ν ¼ 0, we have

½A0ðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ −
Z

d2p⃗
ð2πÞ2

i
2
ð2 − 2g2ω2

pÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2

i
2
ð2 − 2g2Ω2

pÞeip⃗·ðx⃗−y⃗Þ;

ðC4Þ

where we have used T00ðp⃗ÞþT00ð−p⃗Þ¼2−2g2p0. Adding
both terms yields

½A0ðt; x⃗Þ; _A0ðt; y⃗Þ�¼
Z

d2p⃗
ð2πÞ2 ig

2ðω2
p−Ω2

pÞeip⃗·ðx⃗−y⃗Þ; ðC5Þ

and since

ω2
p −Ω2

p ¼ −
1

g2
; ðC6Þ

one arrives at the first commutator (A8a):

½A0ðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ −iδð2Þðx⃗ − y⃗Þ: ðC7Þ

2. Commutator ½A0ðt;x⃗Þ; P0ðt;y⃗Þ�
Here we compute an unmodified commutator by using

our method. Recall Eq. (41a) and write

P0ðt; y⃗Þ ¼ − _A0ðt; y⃗Þ −
g
2
ϵij∂i

_Ajðt; y⃗Þ: ðC8Þ

We get

½A0ðt; x⃗Þ; P0ðt; y⃗Þ� ¼ ½A0ðt; x⃗Þ;− _A0ðt; y⃗Þ −
g
2
ϵij∂i

_Ajðt; y⃗Þ�:
ðC9Þ

The second commutator is zero, i.e.,

½A0ðt; x⃗Þ; _Ajðt; y⃗Þ� ¼ 0; ðC10Þ

and using the result (C7) we arrive at

½A0ðt; x⃗Þ; P0ðt; y⃗Þ� ¼ iδð2Þðx⃗ − y⃗Þ; ðC11Þ

which gives Eq. (A8b).

3. Commutator ½A0ðt;x⃗Þ; Piðt;y⃗Þ�
It follows from (41a) that the spatial momentum com-

ponents read

Pi ¼ − _Ai þ g
2
ϵik□Ak þ

g
2
ϵikÄk −

g
2
ϵik∂k

_A0: ðC12Þ

Then

½A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼
�
A0ðt; x⃗Þ;− _Aiðt; y⃗Þ þ g

2
ϵik□Akðt; y⃗Þ

þ g
2
ϵikÄkðt; y⃗Þ −

g
2
ϵik∂k

_A0ðt; y⃗Þ
�
:

ðC13Þ

We take into account that the first commutator is zero;
see Eq. (C10). Furthermore, we employ□Ākðt; y⃗Þ ¼ 0 and
□Gkðt; y⃗Þ ¼ − 1

g2 Gjðt; y⃗Þ in the second to arrive at

½A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
1

2g
ϵik½G0ðt; x⃗Þ; Gkðt; y⃗Þ�

þ g
2
ϵik½A0ðt; x⃗Þ; Äkðt; y⃗Þ�

þ g
2
ϵik∂k½A0ðt; x⃗Þ; _A0ðt; y⃗Þ�; ðC14Þ

where the final spatial derivative has been integrated
by parts.
One can show that

½G0ðt; x⃗Þ; Gkðt; y⃗Þ� ¼ −ig2∂kδ
ð2Þðx⃗ − y⃗Þ; ðC15Þ

and also

½A0ðt; x⃗Þ; Äkðt; y⃗Þ� ¼ i∂kδ
ð2Þðx⃗ − y⃗Þ: ðC16Þ

Substituting these expressions into Eq. (C14), we obtain
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½A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
1

2g
ϵikð−ig2∂kδ

ð2Þðx⃗ − y⃗ÞÞ

þ g
2
ϵikði∂kδ

ð2Þðx⃗ − y⃗ÞÞ

þ g
2
ϵik∂kð−iδð2Þðx⃗ − y⃗ÞÞ: ðC17Þ

The last two terms cancel and we arrive at

½A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ ig
2
ϵik∂kδ

ð2Þðx⃗ − y⃗Þ; ðC18Þ

which is Eq. (A8c).

4. Commutator ½ _Aiðt;x⃗Þ; _Ajðt;y⃗Þ�
To derive Eq. (A8d), it follows from Eq. (C1a) that

½ _Aiðt; x⃗Þ; _Ajðt; y⃗Þ�

¼ −
Z

d2p⃗
ð2πÞ2

ωp

2
ðTijðp⃗Þ − Tjið−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2

Ωp

2
ðTijðp⃗Þ − Tjið−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ; ðC19Þ

and applying the definition (51b) we find

Tijðp⃗Þ − Tjið−p⃗Þ ¼ −2igϵijp0: ðC20Þ
Thus, we have

½ _Aiðt; x⃗Þ; _Ajðt; y⃗Þ� ¼ −
Z

d2p⃗
ð2πÞ2 ð−igϵijω

2
pÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2 ð−igϵijΩ

2
pÞeip⃗·ðx⃗−y⃗Þ

¼ igϵij

Z
d2p⃗
ð2πÞ2 ðω

2
p −Ω2

pÞeip⃗·ðx⃗−y⃗Þ;

ðC21Þ
and finally,

½ _Aiðt; x⃗Þ; _Ajðt; y⃗Þ� ¼ −
i
g
ϵijδ

ð2Þðx⃗ − y⃗Þ: ðC22Þ

5. Commutator ½ _Aiðt;x⃗Þ; _A0ðt;y⃗Þ�
Repeating the calculations performed in Appendix C 1

we find

½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ�

¼ −
Z

d2p⃗
ð2πÞ2

ωp

2
ðTi0ðp⃗Þ − T0ið−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2

Ωp

2
ðTi0ðp⃗Þ − T0ið−p⃗ÞÞeip⃗·ðx⃗−y⃗Þ: ðC23Þ

Using

½Ti0ðp⃗Þ − T0ið−p⃗Þ�p0¼ωp
¼ −2g2ωppi; ðC24Þ

we can write

½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ −
Z

d2p⃗
ð2πÞ2

ωp

2
ð−2g2ωppiÞeip⃗·ðx⃗−y⃗Þ

þ
Z

d2p⃗
ð2πÞ2

Ωp

2
ð−2g2ΩppiÞeip⃗·ðx⃗−y⃗Þ:

ðC25Þ

Therefore,

½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ� ¼
Z

d2p⃗
ð2πÞ2 g

2piðω2
p −Ω2

pÞeip⃗·ðx⃗−y⃗Þ

¼ −
Z

d2p⃗
ð2πÞ2 pieip⃗·ðx⃗−y⃗Þ: ðC26Þ

By employing pi ¼ i∂i, we arrive at

½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ i∂iδ
ð2Þðx⃗ − y⃗Þ: ðC27Þ

6. Commutator ½ _Aiðt;x⃗Þ; P0ðt;y⃗Þ�
We have

½ _Aiðt; x⃗Þ; P0ðt; y⃗Þ�

¼
�
_Aiðt; x⃗Þ;− _A0ðt; y⃗Þ −

g
2
ϵmk∂m

_Akðt; y⃗Þ
�

¼ −½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ� þ
g
2
ϵmk∂m½ _Aiðt; x⃗Þ; _Akðt; y⃗Þ�:

ðC28Þ

These commutators have been found in Appendixes C 4
and C 5 and after inserting their results we obtain

½ _Aiðt; x⃗Þ; P0ðt; y⃗Þ�

¼ i∂iδ
ð2Þðx⃗ − y⃗Þ þ g

2
ϵmk∂m

�
−i
g
ϵikδ

ð2Þðx⃗ − y⃗Þ
�
:

ðC29Þ

Therefore,

½ _Aiðt; x⃗Þ; P0ðt; y⃗Þ� ¼
i
2
∂iδ

ð2Þðx⃗ − y⃗Þ: ðC30Þ
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7. Commutator ½ _Aiðt;x⃗Þ; Pjðt;y⃗Þ�
Consider

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ� ¼
�
_Aiðt; x⃗Þ;− _Ajðt; y⃗Þ þ g

2
ϵjk□Akðt; y⃗Þ

þ g
2
ϵjkÄkðt; y⃗Þ −

g
2
ϵjk∂k

_A0ðt; y⃗Þ
�
:

ðC31Þ

Hence,

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ� ¼ −½ _Aiðt; x⃗Þ; _Ajðt; y⃗Þ�

þ
�
_Aiðt; x⃗Þ;

g
2
ϵjk□Akðt; y⃗Þ

�

þ
�
_Aiðt; x⃗Þ;

g
2
ϵjkÄkðt; y⃗Þ

�

−
�
_Aiðt; x⃗Þ;

g
2
ϵjk∂k

_A0ðt; y⃗Þ
�
: ðC32Þ

We get

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ� ¼ i
g
ϵi

jδð2Þðx⃗ − y⃗Þ

−
1

2g
ϵjk½ _Giðt; x⃗Þ; Gkðt; y⃗Þ�

þ g
2
ϵjk½ _Aiðt; x⃗Þ; Äkðt; y⃗Þ�

þ g
2
ϵjk∂k½ _Aiðt; x⃗Þ; _A0ðt; y⃗Þ�; ðC33Þ

where we have also used Eq. (C22).
Since

½ _Giðt; x⃗Þ; Gkðt; y⃗Þ� ¼ −iðηik þ g2∂i∂kÞδð2Þðx⃗ − y⃗Þ;

½ _Aiðt; x⃗Þ; Äkðt; y⃗Þ� ¼
i
g2

ðηik þ g2∂i∂kÞδð2Þðx⃗ − y⃗Þ; ðC34Þ

and with Eq. (C27), we write

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ�

¼ i
g
ϵi

jδð2Þðx⃗ − y⃗Þ − 1

2g
ϵjk½−iðηik þ g2∂i∂kÞδð2Þðx⃗ − y⃗Þ�

þ g
2
ϵjk

�
i
g2

ðηik þ g2∂i∂kÞδð2Þðx⃗ − y⃗Þ
�

þ g
2
ϵjk∂k½−i∂iδ

ð2Þðx⃗ − y⃗Þ�: ðC35Þ

We see that the first, second, and fourth terms cancel and
are left with the result

½ _Aiðt; x⃗Þ; Pjðt; y⃗Þ� ¼ ig
2
ϵjk∂i∂kδ

ð2Þðx⃗ − y⃗Þ: ðC36Þ

8. Commutator ½ _Aiðt;x⃗Þ; Πjðt;y⃗Þ�
Inserting the field operators, we have

½ _Aiðt; x⃗Þ;Πjðt; y⃗Þ� ¼
�
_Aiðt; x⃗Þ;−

g
2
ϵjk _Akðt; y⃗Þ

þ g
2
ϵjk∂kA0ðt; y⃗Þ

�
; ðC37Þ

which is equal to

½ _Aiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ −
g
2
ϵjk½ _Aiðt; x⃗Þ; _Akðt; y⃗Þ�

−
g
2
ϵjk∂k½ _Aiðt; x⃗Þ; A0ðt; y⃗Þ�: ðC38Þ

The second commutator is zero and after using Eq. (C22)
we find

½ _Aiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ −
g
2
ϵjk

�
−
i
g
ϵikδ

ð2Þðx⃗ − y⃗Þ
�
: ðC39Þ

Therefore, our result is

½ _Aiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ i
2
δijδð2Þðx⃗ − y⃗Þ: ðC40Þ

9. Commutator ½ _A0ðt;x⃗Þ; Piðt;y⃗Þ�
Here we compute one commutator which gives zero. We

start with

½ _A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼
�
_A0ðt; x⃗Þ;− _Aiðt; y⃗Þ þ g

2
ϵij□Ajðt; y⃗Þ

þ g
2
ϵikÄkðt; y⃗Þ −

g
2
ϵik∂k

_A0ðt; y⃗Þ
�
;

ðC41Þ

which yields

½ _A0ðt; x⃗Þ; Piðt; y⃗Þ�

¼ −½ _A0ðt; x⃗Þ; _Aiðt; y⃗Þ� − 1

2g
ϵik½ _G0ðt; x⃗Þ; Gkðt; y⃗Þ�

þ g
2
ϵik½ _A0ðt; x⃗Þ; Äkðt; y⃗Þ� þ

g
2
ϵik∂k½ _A0ðt; x⃗Þ; _A0ðt; y⃗Þ�:

ðC42Þ

The last term is zero and so
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½ _A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −½ _A0ðt; x⃗Þ; _Aiðt; y⃗Þ�

−
1

2g
ϵik½ _G0ðt; x⃗Þ; Gkðt; y⃗Þ�

þ g
2
ϵik½ _A0ðt; x⃗Þ; Äkðt; y⃗Þ�: ðC43Þ

We need the three elements

½ _A0ðt; x⃗Þ; _Aiðt; y⃗Þ� ¼ −i∂iδ
ð2Þðx⃗ − y⃗Þ; ðC44aÞ

½ _G0ðt; x⃗Þ; Gkðt; y⃗Þ� ¼ −igϵkm∂mδð2Þðx⃗ − y⃗Þ; ðC44bÞ

½ _A0ðt; x⃗Þ; Äkðt; y⃗ÞÞ� ¼
i
g
ϵkm∂mδð2Þðx⃗ − y⃗Þ: ðC44cÞ

Inserting the latter results gives

½ _A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −½i∂iδ
ð2Þðx⃗ − y⃗Þ�

−
1

2g
ϵik½−igϵkm∂mδð2Þðx⃗ − y⃗Þ�

þ g
2
ϵik

�
i
g
ϵkm∂mδð2Þðx⃗ − y⃗Þ

�
: ðC45Þ

Therefore, our result is

½ _A0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ 0: ðC46Þ

10. Commutator ½P0ðt;x⃗Þ; Πiðt;y⃗Þ�
We start with

½P0ðt; x⃗Þ;Πiðt; y⃗Þ�

¼
�
− _A0ðt; x⃗Þ −

g
2
ϵmr∂m

_Arðt; x⃗Þ;−
g
2
ϵik _Akðt; y⃗Þ

þ g
2
ϵik∂kA0ðt; y⃗Þ

�
ðC47Þ

or, which is the same,

½P0ðt; x⃗Þ;Πiðt; y⃗Þ� ¼ g
2
ϵik½ _A0ðt; x⃗Þ; _Akðt; y⃗Þ�

þ g
2
ϵik∂k½ _A0ðt; x⃗Þ; A0ðt; y⃗Þ�

þ g2

4
ϵmr∂mϵ

ik½ _Arðt; y⃗Þ; _Akðt; y⃗Þ�:
ðC48Þ

Hence, from the previous results of Eqs. (C27), (C7), and
(C22) one has

½P0ðt; x⃗Þ;Πiðt; y⃗Þ�
¼ g

2
ϵik½−i∂kδ

ð2Þðx⃗ − y⃗Þ� þ g
2
ϵik∂k½iδð2Þðx⃗ − y⃗Þ�

þ g2

4
ϵmr∂mϵ

ik

�
−i
g
ϵrkδ

ð2Þðx⃗ − y⃗Þ
�
: ðC49Þ

The first and second terms cancel each other and we
arrive at

½P0ðt; x⃗Þ;Πiðt; y⃗Þ� ¼ ig
4
ϵim∂mδ

ð2Þðx⃗ − y⃗Þ: ðC50Þ

11. Commutator ½Π0ðt;x⃗Þ; Piðt;y⃗Þ�
We have

½Π0ðt; x⃗Þ; Piðt; y⃗Þ�

¼
�
g
2
ϵlm∂lAmðt; x⃗Þ;− _Aiðt; y⃗Þ þ g

2
ϵij□Ajðt; y⃗Þ

þ g
2
ϵikÄkðt; y⃗Þ −

g
2
ϵik∂k

_A0ðt; y⃗Þ
�
: ðC51Þ

The only nonzero contributions are

½Π0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
1

4
ϵlm∂lϵ

ij

�
Gmðt; x⃗Þ; Gjðt; y⃗Þ�

þ g2

4
ϵlm∂lϵ

ik½Amðt; x⃗Þ; Äkðt; y⃗Þ
�
:

ðC52Þ

We need

½Gmðt; x⃗Þ; Gjðt; y⃗Þ� ¼ −igϵmjδ
ð2Þðx⃗ − y⃗Þ; ðC53aÞ

½Amðt; x⃗Þ; Äkðt; y⃗Þ� ¼
i
g
ϵmkδ

ð2Þðx⃗ − y⃗Þ: ðC53bÞ

Inserting the previous commutators results in

½Π0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
1

4
ϵlm∂lϵ

ij½−igϵmjδ
ð2Þðx⃗ − y⃗Þ�

þ g2

4
ϵlm∂lϵ

ik

�
i
g
ϵmkδ

ð2Þðx⃗ − y⃗Þ
�
;

ðC54Þ

and so

½Π0ðt; x⃗Þ; Piðt; y⃗Þ� ¼ −
ig
2
ϵij∂jδ

ð2Þðx⃗ − y⃗Þ: ðC55Þ
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12. Commutator ½Piðt;x⃗Þ; Pjðt;y⃗Þ�
Now we compute a difficult commutator, which we

prove to be zero in accordance with the classical result
using the constraints and the Dirac approach. We take
advantage of the previous findings. Consider

½Piðt; x⃗Þ; Pjðt; y⃗Þ� ¼
�
Piðt; x⃗Þ;− _Ajðt; y⃗Þ þ gϵjrÄrðt; y⃗Þ

−
g
2
ϵjr∇⃗2Arðt; y⃗Þ −

g
2
ϵjr∂r

_A0ðt; y⃗Þ
�
:

ðC56Þ

We rewrite the latter commutator as follows:

½Piðt; x⃗Þ; Pjðt; y⃗Þ� ¼ −½Piðt; x⃗Þ; _Ajðt; y⃗Þ�
þ gϵjr½Piðt; x⃗Þ; Ärðt; y⃗Þ�
−
g
2
ϵjr∇⃗2½Piðt; x⃗Þ; Arðt; y⃗Þ�

þ g
2
ϵjr∂r½Piðt; x⃗Þ; _A0ðt; y⃗Þ�: ðC57Þ

The individual commutators read

½Piðt; x⃗Þ; Arðt; y⃗Þ� ¼ −iηirδð2Þðx⃗ − y⃗Þ; ðC58aÞ

½Piðt; x⃗Þ; _Ajðt; y⃗Þ� ¼ −
ig
2
ϵik∂j∂kδ

ð2Þðx⃗ − y⃗Þ; ðC58bÞ

½Piðt; x⃗Þ; _A0ðt; y⃗Þ� ¼ 0: ðC58cÞ

After some calculation we also find

½Piðt; x⃗Þ; Ärðt; y⃗Þ� ¼ −i
�
1

2
∂i∂r þ ηir∇⃗2

�
δð2Þðx⃗ − y⃗Þ:

ðC59Þ

Inserting all the previous contributions leads to

½Piðt; x⃗Þ; Pjðt; y⃗Þ� ¼ ig
2
ϵik∂j∂kδ

ð2Þðx⃗ − y⃗Þ

−
ig
2
ϵjk∂i∂kδ

ð2Þðx⃗ − y⃗Þ

þ ig
2
ϵij∇⃗2

δð2Þðx⃗ − y⃗Þ: ðC60Þ

Indeed, considering each case for i, j separately, one can
check that

½Piðt; x⃗Þ; Pjðt; y⃗Þ� ¼ 0: ðC61Þ

13. Commutator ½Πiðt;x⃗Þ; Πjðt;y⃗Þ�
For this last commutator we have

½Πiðt; x⃗Þ;Πjðt; y⃗Þ� ¼
�
−
g
2
ϵim _Amðt; x⃗Þ þ

g
2
ϵim∂mA0ðt; x⃗Þ;

−
g
2
ϵjk _Akðt; y⃗Þ

þ g
2
ϵjk∂kA0ðt; y⃗Þ

�
: ðC62Þ

Due to Eq. (C10), the only contribution different from
zero is

½Πiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ g2

4
ϵimϵjk½ _Amðt; x⃗Þ; _Akðt; y⃗Þ�; ðC63Þ

and we have

½Πiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ g2

4
ϵimϵjk

�
−
i
g
ϵmkδ

ð2Þðx⃗ − y⃗Þ
�
: ðC64Þ

Finally, we find

½Πiðt; x⃗Þ;Πjðt; y⃗Þ� ¼ −
ig
4
ϵijδð2Þðx⃗ − y⃗Þ: ðC65Þ

With this final result at hand, we conclude the computation
of the equal-time commutators.

APPENDIX D: DIRAC THEORY
IN (2 + 1) DIMENSIONS

In the current section we would like to review the
properties of a Dirac theory in (2þ 1) dimensions that
are important for our work. The latter is based on the
Lorentz algebra soð1; 2Þ, which involves three generators:
two boosts K1, K2 and a single rotation L3. We obtain the
corresponding generators as

K1 ¼ i

0
B@

0 1 0

1 0 0

0 0 0

1
CA; K2 ¼ i

0
B@

0 0 1

0 0 0

1 0 0

1
CA;

L3 ¼ i

0
B@

0 0 0

0 0 −1
0 1 0

1
CA: ðD1Þ

The latter satisfy the algebra

½L3;K1� ¼ iK2; ½L3;K2� ¼ −iK1; ½K1;K2� ¼ −iL3:

ðD2Þ

By forming appropriate linear combinations of these
generators,
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X ¼ K1 þ iK2; Y ¼ −ðK1 − iK2Þ; Z ¼ 2L3; ðD3Þ

we obtain the Lie algebra slð2;RÞ:

½Z; X� ¼ 2X; ½Z; Y� ¼ −2Y; ½X; Y� ¼ Z: ðD4Þ

Therefore, we conclude that soð1; 2Þ ≃ slð2;RÞ.
The first possibility of constructing a Dirac theory in

(2þ 1) dimensions is to work with an irreducible spinor
representation for which the Dirac matrices correspond to
the Pauli matrices (multiplied by appropriate factors) and
the spinors have two components only. An alternative is to
propose a reducible spinor representation with three (4 × 4)
Dirac matrices and four-component spinors. We follow the
latter possibility and choose the Dirac matrices as

γ0 ¼
�
σ3 0

0 −σ3

�
; γ1 ¼

�
−iσ1 0

0 iσ1

�
;

γ2 ¼
�
−iσ2 0

0 iσ2

�
: ðD5Þ

Note that we can define generators

Z̃ ¼ γ0; X̃ ¼ 1

2
ðγ1 þ iγ2Þ; Ỹ ¼ −

1

2
ðγ1 − iγ2Þ; ðD6Þ

which satisfy

½Z̃; X̃� ¼ 2X̃; ½Z̃; Ỹ� ¼ −2Ỹ; ½X̃; Ỹ� ¼ Z̃; ðD7Þ

showing that these new generators also form a representa-
tion of slð2;RÞ. Furthermore, the Dirac matrices of
Eq. (D5) obey the Clifford algebra in (2þ 1) dimensions,

fγμ; γνg ¼ 2ημν; ðD8Þ

where ημν is the (2þ 1)-dimensional Minkowski metric. It
is clear that all Lorentz indices run from 0…2. The Dirac
equation is now given by

Dð∂Þψ ¼ 0; Dð∂Þ ¼ i∂μγ
μ −m ¼ i=∂ −m; ðD9Þ

with the Dirac operator Dð∂Þ acting on a four-component
spinor ψ ¼ ψðxÞ. Transforming the Dirac equation to
momentum space provides

DðpÞψ̃ ¼ 0; DðpÞ ¼ =p −m; ðD10Þ

with the Fourier-transformed spinor ψ̃ ¼ ψðpÞ. The inverse
SðpÞ of the Dirac operator in momentum space (multiplied
by i) corresponds to the propagator:

iSðpÞ¼ ið=pþmÞ
p2−m2

; SðpÞDðpÞ¼DðpÞSðpÞ¼1: ðD11Þ

The Feynman propagator for fermions is obtained as usual
by means of the iϵ prescription:

iSFðpÞ ¼ ið=pþmÞ
p2 −m2 þ iϵ

: ðD12Þ

Requiring that the determinant of the Dirac operator vanish
for nontrivial solutions leads to the positive fermion energy

Eðp⃗Þ ¼ Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

q
: ðD13Þ

Solving the Dirac equation subsequently provides the
following particle spinors:

uð1Þ ¼ ðp1 þ ip2Þ

0
BBBBB@

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −m

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −m

p
=ðp1 − ip2Þ
0

0

1
CCCCCA
;

uð2Þ ¼

0
BBB@

0

0

ðp1 − ip2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

p

1
CCCA: ðD14Þ

On the other hand, the antiparticle spinors are given by

vð1Þ ¼ ðp1 þ ip2Þ

0
BBB@

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep þm

p
=ðp1 − ip2Þ
0

0

1
CCCA;

vð2Þ ¼

0
BBB@

0

0

ðp1 − ip2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −m

p
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep −m

p

1
CCCA: ðD15Þ

These spinors are normalized such that

uðsÞ†uðtÞ ¼ 2Epδ
s;t; vðsÞ†vðtÞ ¼ 2Epδ

s;t: ðD16Þ

We define the Dirac conjugated spinors as ūðsÞ ¼ uðsÞ†γ0

and v̄ðsÞ ¼ vðsÞ†γ0 and derive the completeness relations

X
s

uðsÞðpÞūðsÞðpÞ ¼ =pþm; ðD17aÞ

X
s

vðsÞðpÞv̄ðsÞðpÞ ¼ =p −m: ðD17bÞ

They formally correspond to those in (3þ 1)-dimensional
Dirac theory.
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