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We canonically quantize (2 4 1)-dimensional electrodynamics including a higher-derivative Chern-
Simons term. The effective theory describes a standard photon and an additional degree of freedom
associated with a massive ghost. We find the Hamiltonian and the algebra satisfied by the field operators.
The theory is characterized by an indefinite metric in the Hilbert space that brings up questions on causality
and unitarity. We study both of the latter fundamental properties and show that microcausality as well as
perturbative unitarity up to one-loop order are conserved when the Lee-Wick prescription is employed.
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I. INTRODUCTION

The concept of an indefinite metric in a Hilbert space
plays a fundamental role in the formulation of relativistic
quantum field theory. Dirac was the first to show how an
indefinite metric arises in quantum electrodynamics and
proposed how to deal with its probability interpretation [1].
One can mention two reasons for Dirac’s suggestion. On
the one hand, any finite representation of a noncompact
group—the Lorentz group included—Ieads to a state space
endowed with an indefinite metric. On the other hand, the
commutator of two vector field operators reads

[Au(x), A (¥)] = i D(x = y), (1)

with the scalar commutator function D and the Minkowski
metric 7,,. The difference in the signs of the metric
components 7y, and #;; induces an indefinite metric in the
corresponding state space; see, in particular, Heisenberg’s
contribution in the list of references [2—4].

Gupta and Bleuler used this concept within the covariant
quantization of electrodynamics. The Gupta-Bleuler for-
malism shows that the unphysical degrees of freedom are
eliminated by imposing the weak Lorentz condition on the
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Hilbert space. Much of the motivation for studying indefi-
nite metric theories comes from the theory of gravitation,
where the nonrenormalizability of the Einstein-Hilbert
action forces one to consider the possibility of modified
gravity theories. Some of them also introduce indefinite
metrics in the Hilbert space [5-7].

The most notorious drawback of indefinite-metric the-
ories is the possibility of negative probabilities leading to
the loss of unitarity. Unitarity in this context has been
studied extensively for the past decades. In the 1960s, Lee
and Wick, being attracted by the idea of reconciling the
divergencies in quantum electrodynamics (QED) without
spoiling unitarity, constructed a modified electrodynamics
with an indefinite metric. Their theory, which is known as
the Lee-Wick model [8,9], is a modified electrodynamics
including a massive boson field associated with negative
metric components. One characteristic of the propagator of
their theory is that it contains complex conjugate pairs of
additional poles, which are called Lee-Wick poles.

The Lee-Wick model is also obtained by introducing a
higher-derivative term into the Lagrangian [10]. In this
model, perturbative unitarity of the S matrix has been
successfully implemented via the Cutkosky-Landshoft-
Olive-Polkinghorne prescription in which a pair of Lee-
Wick poles cancel each other out in cut diagrams [11].
Several approaches have provided a deeper understanding
of many physical aspects of Lee-Wick models in recent
years [12—15]. In fact, investigations aimed at providing
finiteness in quantum field theory have not stopped,
reaching diverse application within nonlocal quantum
gravity; see, e.g., [16-18] and higher-derivative gravity
extensions studied even earlier [5].

Basically, the loss of unitarity occurs due to the negative
contribution of the residue of the ghost field to scattering
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cross sections. In this case the cutting equations provided
by the optical theorem cannot be satisfied. It was demon-
strated that one can modify the definition of the internal
product in the Hilbert space in order to cope with the
unitarity problem. However, this approach leads to theories
characterized by non-Hermitian Hamiltonians, i.e., they
exhibit a nonstandard time evolution. However, Bender and
collaborators found that such Hamiltonians have real
eigenvalues when they are symmetric under PT trans-
formations [19]. Scenarios of this kind have attracted an
exceeding amount of interest, see, e.g., [20,21] where non-
Hermitian Hamiltonians are discussed, too.

Another motivation for the interest in indefinite-metric
theories originated from gravity where it was demon-
strated that adding higher-derivative terms allows for
gravity to be renormalizable [5]. This fact implied active
studies of renormalization of R? gravity and other higher-
derivative gravity theories (see, e.g., [22] and references
therein). Nevertheless, it was realized soon that this kind
of improvement of the renormalization behavior inevi-
tably leads to ghosts. From the formal viewpoint, their
presence can be explained as follows. Consider the
example of a propagator W occurring in a fourth-
derivative theory. A simple transformation shows that
this propagator describes two particles: a massless and a
massive one. The propagator of the latter carries a
negative sign, whereby the massive particle corresponds
to a free scalar field with possibly negative energy. Even
if the energy in the theory can be bounded from below
due to a redefinition of vacuum, unitarity, upon the
presence of interactions, is expected to be broken (see
[23,24] for more detailed explanations).

Furthermore, more problems related to the consistent
quantum description of higher-derivative theories were
discussed in [13,14,25]. In the latter papers, it was claimed
that these problems actually arise due to differences
between the behaviors of the theory in Minkowski space-
time and its counterpart in Euclidean space. At the same
time, it was argued in [26] that in certain cases the ghosts
are “benign” so that the theory turns out to be perturbatively
unitary, with the vacuum being perturbatively stable.
Therefore, the problem of ghosts must be considered
separately for any higher-derivative theory.

An interesting example of a higher-derivative extension
of QED containing dimension-5 operators was proposed
by Myers and Pospelov [27]. The higher-derivative term
in its Lagrangian, called the Myers-Pospelov term,
involves explicit Lorentz symmetry breaking, so that
for some special choice of the Lorentz-breaking preferred
four-vector, higher time derivatives do not arise, where-
upon unitarity breaking is avoided. In case an indefinite
metric occurs, one can apply the Lee-Wick prescription to
show that unitarity is conserved [28—30]. According to the
latter, all negative-norm states are removed from the
asymptotic Hilbert space. This procedure will turn out

to be fruitful in the analysis that we intend to carry out in
the current paper.

A further interesting Lorentz-breaking modification of
QED is the higher-derivative Carroll-Field-Jackiw-like
term exhibiting a similar behavior (both of these terms
were shown to be generated perturbatively at the one-loop
level, whereby the corresponding contributions are finite,
see [31]). In a different context, though, the possibility of
Lorentz violation due to an indefinite metric was pointed
out several years ago by Nakanishi [32,33].

Therefore, to understand the physical impact of effective
higher-derivative extensions of QED, it is important to
check how such terms affect unitarity. To do so, though,
it is reasonable to investigate a simplified model first, that
is, (2 4 1)-dimensional QED with an additive higher-
derivative Chern-Simons (CS) term, which does not involve
Lorentz symmetry breaking. Some classical issues related
to this theory such as the nature and behavior of degrees
of freedom were analyzed earlier in [34]. Its canonical
formulation was discussed in [35] and the perturbative
generation of the higher-derivative CS term was carried out
in [36]. Here, we intend to elaborate on the aspects of
microcausality and unitarity of this theory.

The structure of the paper looks as follows. In Sec. II,
we introduce the classical action and the propagator of
our theory and write down the classical field equations, the
dispersion equation, and its solutions. Furthermore, we
decompose the higher-derivative theory into a standard one
involving degrees of freedom associated with a three-
component photon field and a second contribution in terms
of a Proca ghost field. We then find the polarization vectors
for the photon and the massive ghost as well as their stress
tensors. In Sec. III, we canonically quantize the theory,
construct the field operators such that they satisfy the
expected algebra, and analyze the constraint structure in
combination with finding the Hamiltonian. In Sec. IV, we
verify tree-level unitarity of our theory and we also study
perturbative unitarity at one-loop level. Section V states a
final summary and discussion of our results. Appendix A
contains details of the derivation of Dirac brackets and the
Dirac formalism that reduces second-class constraints to
zero. Appendix B explains how to express the Hamiltonian
of the theory in terms of creation and annihilation oper-
ators. Appendix C delivers detailed computations of the
nonzero equal-time commutators satisfied by the field
operators. Finally, Appendix D provides a summary of
the most important properties of a Dirac theory in (2 + 1)
dimensions.

I1. HIGHER-DERIVATIVE
MAXWELL-CHERN-SIMONS THEORY

In this section, we present the higher-derivative CS term
coupled to the Maxwell Lagrangian in (2 + 1) dimensions.
The theory describes a standard photon and a massive mode
at high energies associated with a ghost. To show this,
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we apply a linear transformation to the higher-derivative
Lagrangian, decoupling it into a sum of two standard-
derivative parts. We find the polarization vectors and
connect their sum with the propagator, which simplifies
the study of unitarity in Sec. IV.

A. The (2 + 1)-dimensional model

Our starting point consists of a Lagrangian that is the
sum of the standard Maxwell term and the higher-derivative
CS extension in (2 + 1) dimensions [34], given by

L= Fub + Se(OA)0A) + Lar. ()
where [1= 00, is the d’Alembertian and g is a small
constant with inverse mass dimension. We will see that the
inverse of g is related to a mass scale. Thus, it is assumed
that g > 0. Furthermore, Lgr is a covariant gauge-fixing
term inversely proportional to the arbitrary gauge-fixing
parameter &,

1
Lor = ——(0,A")2. 3
We take the metric convention 7, = diag(+, -, —), and

our definition of the Levi-Civita symbol is based on
€2 = ¢y, = €'> = €, = 1. Hence, all Lorentz indices
run over 0,1,2.

In our study we do not consider the usual single-
derivative CS term for the sake of simplicity, since we
aim at keeping track of the higher-derivative contribution.
We note that the CS term is suppressed above some energy
scale in comparison to our higher-derivative term. In
principle, though, it is natural to expect that it would not
render the physics essentially different. Nevertheless,
the complete analysis of unitarity and, especially, of the
Dirac algebra of constraints would be much more
involved if the CS term were present. Therefore, we discard
it in our analysis.

We note in passing that a (2 4 1)-dimensional Lorentz-
violating electromagnetism involving higher-derivative
terms was derived in [37] from the electromagnetic sector
of the nonminimal Standard Model extension [38] via a
procedure known as dimensional reduction (see, e.g.,
[39,40]). The second contribution in Eq. (2) can be mapped
onto the third one in L£(; 5 of [37] via suitable partial
integrations.

The treatment of systems in classical mechanics
described by higher-derivative Lagrangians was initiated
by Ostrogradsky in his seminal paper [41]. Subsequent
scientific papers reviewing and extending his original
ideas are [42-44], where this list is not claimed to be
exhaustive. One of the central results of these works is
that an application of the Hamilton principle leads to a
modified set of Euler-Lagrange equations. An analogous

development of the formalism in the context of higher-
derivative field theory can be found, e.g., in [45]. For the
particular field theory defined by Eq. (2), it is sufficient to
restrict these generalized Euler-Lagrange equations to

oL oL oL

= =0 (4
(aka/lArf) * 8/) a(a/)Ao') aAo- 0 ( )

-0,0
K /18
They lead to the modified Maxwell equations
1
0,F"° + ge"/’YD(?ﬂAy + E(‘)(’(c‘) -A) =0. (5)
Now, contracting Eq. (5) with 0, yields
1
ED(@-A) =0. (6)

Hence, by imposing suitable boundary conditions at
infinity it follows that @ - A = 0 can be set.
Now, let us rewrite the Lagrangian (2) as

1 1
E = iAl‘ |:|:|7’]/w - (1 — E) 6"5” =+ geﬂﬁ”ﬁﬁm} Ay, (7)
yielding the equations of motion for the gauge field:

|:|:|I1;w _ (1 — é) oLV + ggﬂ/ﬁ/aﬁlj] Ay(x) =0. (8)

Transforming the latter to the momentum representation
with 10, = p,, we write

§*(p)A,(p) =0, (9a)

with

1\ prp*
5 (p) = p? [nfw—(l—g) o —'geﬂﬁVpﬂ]- (9)

The propagator P, follows from inverting the operator $**,
giving

G p)

a1

P,.(p) =

where

PPy .
Gu(&.p) =y —[1—E(1 - g*p?)] ;2 + ige,p 0P

(10b)

The conventions have been chosen such that the propagator
satisfies
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Sﬂy(p)Pvp<p> = _5#/)’ (11)

Considering the pole structure of the propagator (10) and
defining g = M~!, we decompose the denominator as

M? 1 1

S — T
p(p*-m?)  p* pP-M?

(12)
where the second contribution has a residue whose sign
is opposite that of the first contribution. Hence, it can be
associated with a ghost. The dispersion relations are given
by the propagator poles with respect to p. Determining the
poles yields the modes corresponding to a photon and a
massive gauge field given by

o(p) = w, =|pl. (13a)

(13b)

respectively.

Let us write down the energy-momentum tensor of our
theory. It is clear that it is a sum of two contributions. The
first is the energy-momentum tensor for electrodynamics in
(2 + 1) dimensions whose symmetric form is the well-
known Belinfante tensor equal to

[

1
Tha = FUFY + i FopF. (14)

The second is connected to the higher-derivative Chern-
Simons (HDCS) theory, whose symmetric form was found
explicitly in [34]. So we merely quote the result, which is

Tiipes = 9l(e* P F* + EDQﬁF*”)aaFZ — e FL05F7),
(15)

where F), = %eaﬂ,,F/"’ is the dual of the field strength
tensor FH.

B. Decoupling the ghost

Here we make explicit the two types of fields described
by the Lagrangian (2). We define the new fields as

- 1 »

A, = \ﬁ(A” + gF;), (16a)
9

Gﬂ :%Fﬂ, (16b)

in terms of the dual tensor F}, defined under Eq. (15) and
the original photon field A,.

Considering Eqgs. (16a) and (16b), we find the identities

S
= —éFWF”” -2 <8ﬂAD + gaﬂF3> (OHF™ — F)
(17a)
and
1 I
— S FaF™ = — 2 Fu P, (17b)

where F w = B”A,, - GUA” is the field strength tensor
associated with the new field of Eq. (16a).

Now, by adding both equations, performing suitable
integrations by parts, and using the (unmodified) homo-
geneous Maxwell equation 0, F* =0 in (2 + 1) dimen-
sions, we can rewrite the first part of the Lagrangian (2) as

1
— 3 Fu P + ge"’ﬂV(DAa) (9,4,)

e (L in) e s
o4 47 M\ g '

Using the definition (16b) and J,A* = \/58”14” allows us
to write the higher-derivative Lagrangian as the sum

[ 1
£ == Fuf* =2 (0, +30,6,0G" =3 MG, 6",

(19)

where the higher derivatives have been absorbed into the
new fields. The first part of the new Lagrange density
describes a photon with a gauge-fixing term and the second
part corresponds to a Proca field theory involving a mass
scale of the order of M ~ g~!. As the coupling constant g
of the modification is assumed to be small, the latter mass
scale M is supposed to be large. The Proca field theory
presumably describes a ghost dominating the regime of
high energies.

C. Polarization vectors

Now that the theory has been decomposed into two
decoupled standard-derivative parts associated with the
fields of Eqgs. (16a) and (16b), our next step is to find
the polarization vectors. First, they are crucial for the
computation of the Hamiltonian in terms of creation and
annihilation operators. Second, they are needed to construct
the tensor structure in the equal-time commutation relations
of the field operators. Last but not least, the propagator can
be expressed in terms of the polarization vectors, which will
be helpful to prove the validity of the optical theorem.
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To begin with, consider the following orthogonal basis of
(2 + 1)-dimensional Minkowski spacetime that involves
the three real vectors

1

Vr?

e —

P, (20a)

e(l)l‘ = —gﬂﬂ?'pﬂny7 (ZOb)
G
en — _ 1 €ﬂ/”}’pﬁej(/1> — 1 (p*n* — p*(p - n)).
P VP’G

(20c¢)

where G = (p - n)?> — p?n® and n* is an auxiliary three-

(a)

vector. The three-vectors e, ’ are normalized according to

a)

e - o) = g, 1)
with @ =0, 1, 2 and g,, = diag(1,—1,—1). Although g,,
formally corresponds to the Minkowski metric in (2 + 1)
dimensions, we use another symbol here, as the indices of
this object are not Lorentz indices, but merely the labels of
the vectors introduced before. In order to ensure G > 0, we
will take p?> > 0 and choose n* as a timelike vector.

Furthermore, these vectors satisfy the completeness
relation

2
a) (b
E gabelg )el(/ ) = M- (22)
a,b=0

However, note that the above basis is not suitable to
describe the photon field due to the denominator depending

on 4/p>. To construct suitable polarization vectors for
photons we will proceed differently in Sec. IIT A.

Moreover, one can check that the e,(,“) fulfill the relations

eﬂ/}7pﬁ3§,2) = Q/pze(l)l" (23a)
e pgey)) = =/ prer. (23b)

With the real basis {e(®} at hand, we look for a complex
basis {¢#} diagonalizing the operator $*,(p) of Eq. (9b).
Our intention is to relate the propagator to the sum of
polarization tensors formed from the vectors of {&*)}. This
particular method was introduced in [46] and applied in the
context of the Maxwell-Chern-Simons-like theory in
(3 + 1) dimensions. We adopt it to the theory of Eq. (2),
as it turned out to be valuable for checking the validity of
the optical theorem. Hence, considering Eq. (9b) we
demand that these vectors fulfill

§*,(p)eW(p) = Ay(p)eWH (p), (24)

with the new label 1 € {0, 4, —} and the eigenvalue A;(p)
of the polarization mode A.
We now define the complex basis as follows:

eOn = (O, (25a)
@ 1 je(n

el = %’ (25b)
@p _ je(Dn

el = %. (25¢)

The + modes are orthogonal to the momentum, that is,
p- e® =0. By using Egs. (21) and (23a) one can show
that

ORI (26a)

¢hbo p/,»sgi) —Ti / ng(i)u’

with ¢, = diag(1,—1,-1). Note that the latter matrix
again corresponds to the Minkowski metric in (2 + 1)
dimensions. As its indices are the labels of the vectors
{e@}, we denote it by g;,.

Indeed, it is not difficult to show that the vectors of
Eq. (25) diagonalize S**, i.e.,

(26b)

4, (p)e® = No(p)er, (27a)
§,(p)el ™ = A (p)eln, (27b)
$*,(p)e™ = A_(p)er, (27¢)
where the eigenvalues are given by
2
P
No(p) = R (28a)
n = (1-afr) e
A(p)=p’ (1 +gv/ p2> : (28¢)

The dispersion relations of our theory follow from requir-
ing that the product of eigenvalues vanish,

[ M) =0 =g =0 (@)

A=0,%

giving the dispersion relations of Egs. (13a) and (13b) for
the photon and massive ghost mode, respectively. Hence,
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the vectors of the basis {¢*)} are solutions of the field
equations when they are evaluated on shell. Therefore, they
can be interpreted as polarization vectors.

From these relations, it is possible to show that

_ vy Cupl”
el = =3 (- TR 2L 0

2 P
or

(£) (£)x

e ey == (e, Tiey,), (31)

N =

where we have defined the tensors e, and €,, by

(0 (1) 2,2 _ PuPy

el“/ =e,'€ey + €y ey’ = _71,“, + p2 ) (323)
1
S . (32b)

7

Now, to make contact with the propagator P, of Eq. (10a)
via the relation [46]

el ey
Pm/ = - Z 9 £ ’ (33)

we consider the sum over two-tensors formed from the
polarization vectors.

First, we investigate the transverse part and perform the
sum over the + modes. Based on the eigenvalues of
Egs. (28a), (28b), and (28c) and the finding of Eq. (30),
we have

£ g N ) gl)

AL A
1

PuPy .
TP =4p) <’7’”_ ;2 9 ”pﬁ) (34)

Next, by adding the mode labeled with 2 = 0 we obtain

B0 ) Ol
Ao AL A
= 1 (;7 _p”p”+ig€ ﬂ>+%
21— Fpy ™2 upy P Tk
(35)

to finally arrive at

eﬂ(j)elgﬂ)*
9 T
AA=0+ 4

1
p*(1—¢*p?)

PuPv | .
X |:77;w - (1 - 5(1 - 92p2))# + lgey[ﬁ/pﬂ . (36)

The latter is just the propagator of Eq. (10). Hence, the
method introduced in [46,47] turns out to work in the
context of the (24 1)-dimensional theory defined by
Eq. (2), as well.

III. CANONICAL QUANTIZATION

In this section, we quantize the higher-derivative theory
starting from the extended symplectic structure provided
by the Ostrogradsky formalism [41-44] applied to the
context of higher-derivative field theories [45]. The theory
of Eq. (2) has constraints that modify the canonical Poisson
brackets rendering its quantization more involved. We
compute the Hamiltonian by choosing a particular vacuum
state and show that the theory is stable, but the associated
Hilbert space is endowed with an indefinite metric. We
prove that in spite of the presence of negative-norm states,
which can be interpreted as ghosts, causality is preserved
in the theory.

A. Constrained Hamiltonian formulation

We consider the Lagrangian (2) for £ = 1 and after some
integration by parts we arrive at

1 1
£ = —iaﬂAUE)"A” + Ege"/}VDAﬂa/;Ay. (37)
The variational methods of higher-derivative theories
[41-45] are applied to obtain the canonical conjugated

momenta to both A, and AM. They are given by

U
H o — 6_‘C — 827 (38a)
0A, ot
oc
H’u _ 38b
Y (38b)

respectively. The higher-order Hamiltonian follows from an
extended Legendre transformation,

H= / x(PH(x)A, (x) + T (A, (x) — £(x)).  (39)

and the canonical Poisson brackets for the extended phase
space are
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{A,(.3),P,(1.5)} = n,6P(F=F).  (40a)

{Au(6.3).1,(1,5)} = n,, 6P (F -5),  (40b)

where the remaining ones vanish.
Applying these formulas to the specific Lagrangian (37)
one finds

Pr = —AF - geﬂwﬂAy - geﬂﬂ?aﬂAy, (41a)

I =29y, (41b)

After one inserts them into Eq. (39), the Hamiltonian reads

H= /d2 ( A 0"A, +2A U N2A, +2€’/A DA)
(42a)
where we have defined the tensor operator

ow = 0" (0) = p + g . (42b)
Recall the Levi-Civita symbol in (24 1) dimensions
defined below Eq. (3).

In order to quantize the theory, as usual, one postulates
equal-time commutation relations on the phase space
variables:

[Au (1. %), P (2. 5)]

[A,,(1.5%). 10, (1. 5)]

where all the others are defined to vanish.

However, for constrained systems, the above commuta-
tors are not always possible to satisfy [48]. For instance,
taking the derivative %’e"ﬁ@ﬁ of the first field of the
commutator

= i”;w6<2> (i - )_;)’ (4321)

=i, 6% (¥ ~7),  (43b)

[Au(2.%).A,(1,5)] = 0. (44)

producing II(#, x), gives a relation incompatible with the
commutator of Eq. (43b). Therefore, the canonical structure
of constraints has to be taken into consideration in order to
modify the Poisson brackets consistently. Some work in
this direction has already been carried out; see the formu-
lation of first- and second-class constraints for the higher-
derivative Maxwell-Chern-Simons theory in [35,49,50]. In
the latter papers, the Dirac approach has been implemented
and the reduced Hamiltonian has been obtained success-
fully with second-class constraints strongly imposed to
zero. The Dirac brackets together with the reduced
Hamiltonian neatly reproduce the equations of motion.

Here, in order to implement quantization we will follow
an alternative method. We will quantize the fields such that
they satisfy the second-class constraints automatically via
their expansion in terms of plane waves. That is, in addition
to requiring that the plane waves propagate with energy w,,
of Eq. (13a) and Q, of Eq. (13b), respectively, we choose
the polarization vectors such that the fields satisfy the
equations of motion and the second-class constraints in the
Dirac formalism; see Appendix A. Then, we expect the
fields A, (#,X) and AM(I, X) together with their canonical
conjugate momenta to reproduce the Dirac algebra. We
verify this property for each relevant field operator in
Appendix C. Notice, though, that the field A”(t, X) cannot
be considered physical in the sense of propagating degrees
of freedom independent of the gauge-fixing parameter &. In
Lorenz gauge, there is still the unphysical polarization
vector associated with the mode 1 = 0.

Let us consider the decomposition of our gauge field A,
in terms of the photon and massive ghost field of Egs. (16a)
and (16b) as follows:

A, (x) = Aﬂ(x) + G, (x). (45)
By inserting the decomposition into the equation of
motion (8) with £ =1 and considering the on-shell con-
dition for the photon, DAM = 0, we arrive at
(1" + ge"?0)G, = 0. (46)
By taking the derivative 9, of Eq. (46), one has
d-G=0. (47)

Considering all these conditions, we can write the photon
field operator as

. d*p LT a0y
A= [ L3 _{ () 5 ~ipx
ﬂ(x) /(2”)22_01220) Clp Cu (p>e

+a el (p)eir] (48)
Po= (UI,

with suitable annihilation and creation operators ag) =
(3 ()t
a(p) and a;

The polarization vectors are chosen as

= a7 (p), respectively, for the mode .

(4 392 lg v
el(l)(p) = <77/w _?pﬂpy +§€ﬂﬂvpﬁ> U(l) (p)a
Po=w,
(49a)
where
vO¥(p) = n*, (49b)
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¥;
v(l)ﬂ(p) — m , (49¢)
(p : Vl) Po=w,
! —nt(p-n)
vOu(p) = eV (p) = P (49d)
pUy "\ P ,
(p : Yl) Po=w,

with a timelike auxiliary vector n,. Note the bar on top of
the symbol in Eq. (49a) to distinguish these vectors from

the basis {ef,”)} introduced in Eq. (20). One can check that
the latter form an orthonormal basis, i.e.,

oW = g (50)

Also, they satisfy the relation

(A _(A)*
S 0we? ()8 (0) = T ()l pyew,.  (512)
2
where we defined
T;w(p) = Gﬂl/(f =1, P) =N — gzpﬂpl/ + igeﬂﬂypﬂ9
(51b)

using Eq. (10b). According to Eq. (46) and the orthogon-
ality condition of Eq. (47), we write the ghost field
operator as

d’p 1 () =\ i
— —F " |p.z —ip-x
Gﬂ(x) /(271_)2 Q«Qp [bpeﬂ (p)e

+ bj;ygﬂ(l-i—)*(ﬁ)eip.x} o (52)

with another set of annihilation and creation operators
bs = b(p) and b;ﬂ) = b'(p), respectively. Furthermore, we

defined the polarization vector Eff) = \/Eeff) in terms of
the one introduced in Eq. (25). It may be convenient to
make use of the property

—(+) =(+)*
ae" = T, (p)l o, - (53)
which is equivalent to Eq. (31). The relation p> = g~2 was
employed to arrive at the latter result. We impose the
following algebra on the annihilation and creation operators
for the photon and ghost field:

[ag),ag’)q - _(2”)29,1/1’20)1)5(2)(13 _Iz)’ (54a)

[b;,, bH = —(20)2Q,6P(p — k). (54b)

Replacing the fields in Eq. (42a) by the field operators of
Egs. (48) and (52) and using the algebra of Eqgs. (54a)

and (54b) and the properties of the polarization vectors, we
find the following Hamiltonian:

1 [ &p W @ . W @)
H“]/@[Z%’(aﬁ az ' tag ag )

A
+ (bsb+ b;bﬁ)] . (55)

We give more details of this derivation in Appendix B.
By defining the vacuum as the state annihilated by the
operators,

a'’10) = b5(0) =0, (56)

for all A, we can define the number operators associated
with the photon and the ghost:
()

+ @
Nij) = —9ua; a;), (57a)

Ng = =bibj. (57b)

Indeed, the above number operators satisfy the standard
relations

|:NAJ,’ a%’v)] = —a%’l)éﬂ/, |:NA./1’ a(;/)q = agﬁéﬂ/,
(58a)
N, b3) = —b;. [NG, b}] = b, (58b)

We define n-particle states as usual by subsequently
applying creation operators on the vacuum state:

1 Dtyns
n3.) = —— (a¥'")"3)0),

: Ing) = —— (b5)70),

ng! ng!

(59)

where nj; is the eigenvalue of the number operator of
Eq. (57a) for a state of n photons of fixed polarization A.
In an analog manner, ng is the eigenvalue of the number
operator of Eq. (57b) for a state of n ghosts. The metric 7
in the state space is given by the scalar product of such n-
particle states [9,51]. For photons, (njg|n;g) = (—1)"°
for the A = 0 mode and (n;;|nz,;) = 1 for the remaining
ones with k=1, 2. For ghosts, it holds that
(nglng) = (—1)"c. Thus, we see that the states with an
odd occupation number of ghosts have a negative norm.
The metric for the photon can be written as 14, =
(=g,,)Vi4 with g, given under Eq. (26) and that for the
ghost reads 5; = (—1)Ne. Hence, our theory exhibits an
indefinite metric in the Fock space of the ghost states. It is
clear that the same problem occurs for the 4 = 0 mode of
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the photon, but this behavior is expected and can be dealt
with by the usual Gupta-Bleuler method.

In order to remove the vacuum energy, the normal-
ordered Hamiltonian is introduced:

= %/ (gjrl; (Z = 9urNiuw + NG>‘ (60)

AN

The latter is positive definite, except for the usual 1 =0
mode of the photon again, which must be treated with the
Gupta-Bleuler formalism. Note that the ghost does lead to
issues with the positive definiteness of the Hamiltonian.

B. Feynman propagator

The next step is to derive the Feynman propagator at the
level of field operators for the theory based on Eq. (2) with
& = 1. We employ its definition as the vacuum expectation
value of the time-ordered product of field operators at
different spacetime points x and y. Hence,

DL, (x = y) = 0(x0 — yo) Dl (x = y)

+0(vo —x)D (x—y),  (61a)

with
Dy (x = y) = (0|4, (x)A, ()[0). (61b)
Dy (x = y) =(0/A4,(y)A,(x)|0)., (61c)

and the Heaviside step function (x). Using the decom-
position of Eq. (45), we define

Dh(x=y) =DW (x=y) + D (x=y), (62)

where the first part,

1 1
DL (x = y) = 6(xo — yo) D (x - y)

+ 800 = x0)Dl T (x =), (63a)

is the Feynman propagator for photons with
D™ (x = y) = (04, ()A,(5)[0).  (63D)
D7 (x = y) =(0A,(»)A,(x)[0).  (63c)

Furthermore, the second part is the Feynman propagator of
the ghost and it reads

DR (x = y) = 6(xo — yo) D (x — y)

+0(yo—x)DR 7 (x—y),  (64a)

where
D" (x —y) = (0/G,(x)G,(»)0).  (64b)
DR (x =) =(0|G,(y)G,(x)[0).  (64c)

Notice that crossed terms such as (0|4, (x)G,(y)|0) have
been set to zero, since the corresponding field operators
commute.

Inserting the field operators of Eqgs. (48) and (52), we
arrive at

d’n / .
1 14 —(2 (V)% —ip-
D) == [ 5 S el (e (p)e .

2
(27)2w, P
(65a)
. &5 o
1 —(4 _(A)* ip-
D) = - [ b S (p)el (p)er
P
(65b)
for the photon and
Q)4 — EB 0 remipr (66
Dy (z) = — 2n720, (p)&," " (p)e™=, (66a)
D
P PR (K. Y 5 PRRGE O  A,
o (2) rr20, (P&~ (p)e'r=,  (66b)
p

for the ghost with z# = x* — y*. To obtain these results, we
have used the algebra of Egs. (54a) and (54b).

In the photon sector, we apply Eq. (51a) to express the
sum over polarization tensors in terms of the tensor 7', of
Eq. (51b). This leads to

2—)

(F d*p
D v = — _
H (Z) /(27[)22(1)1,

+0(=20) T,y (= P)e'r ™). (67)

e2[0(20) T (P)e

Furthermore, in the ghost sector, we take advantage of
relation (53) to carry out the analogous steps:

&5 o
Dl(g/)F(Z) — /Weq)-z[g(zo)]‘”y(p)e Q,,Zo
+0(=20)T,, (=P )e¥™]. (68)

Now, we consider the following representation of the
Heaviside function given by

i )
9(20) = Z/ dz

—irz
e 'rko

(69)

T+ie’
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where ¢ = 0" is an infinitesimal, positive parameter. With
the latter representation, we can cast the photon propagator
into the form

HF i dzﬁ in-7
D/(w) ( ):_% e

0 q e_i(“’pJFT)ZO
X —T,.(p
{ /_ )

(o8]

0o ei(wp+T)Zo
o [a
oo T+ 1€

Tuﬂ(_ﬁ) . (70)
Making a change of variables py =7+ w, and —p, =
7+ w, in the first and second integral, respectively, we
have

2=
(HF . d p .
D () =i [ 4P i
(271')32a)p
[amene[ 2520 _Licp
3
c, (2r) P +ie

To formulate the final form of the photon propagator, we
benefited from the property 7,,(—p.—po)=T,,(P.Po)-
Furthermore, we have written the integral over p, as a
contour integral in the complex p, plane. The contour Cr. is
closed in the lower half plane for positive energies and in
the upper half plane for negative energies. It is passed
through in counterclockwise direction. By evaluating the
ghost part in a similar way, we obtain

2—)
QF, \ - d&*p s
Dy (Z)_l/(zn)%g e’
P

x [Zapoerina | LedBero)._TuCRr)
- i€ po+Q,—ie

&p T,
:i/ D emive_Tulp) (72)
o 2apS g

2y

by writing the integral over p, as another contour integral
along the same contour Cy introduced before. Adding the
contributions of Egs. (71) and (72) results in

F d’p 7,,(p)
Du(2)= /C (27)3 (p?+ie) (1 - g*p* —ie)

eirz, (73)

where the infinitesimal parameter ¢ is only kept at linear
order. In momentum space the Feynman propagator with
the ie prescription is

G;w(é: = lvp)

DFu(p) = - . TN
g (p* +ie)(1 — g*p* —ie)

(74)

where we have used Eq. (51b). The latter can be gener-
alized to arbitrary & By inserting M = g~!, we reformulate
it as

M?G,, (& p)
(p* +ie)(p> — M? +ie)’

which corresponds to the inverse P, of Eq. (10) for € — 0.

C. Microcausality

Two spacetime points that cannot be connected by a light
signal (or a signal propagating with lower velocity) are
called causally disconnected. In a theory with Lorentz
symmetry intact, such a set of spacetime points is separated
by a spacelike interval. When Lorentz symmetry is vio-
lated, the causal structure is not simply determined by the
Minkowski metric, but directly by the propagation velocity
of the field operator under consideration, i.e., the interval
need not necessarily be spacelike. As Lorentz symmetry is
preserved for our theory, its causal structure is, indeed,
based on the Minkowski metric.

Now, field operators evaluated at such a set of spacetime
points can be considered independent of each other, i.e.,
they should commute. If the latter is the case, micro-
causality is guaranteed for the theory under investigation.
To prove microcausality for the theory defined by Eq. (2),
we start with the basic commutator of field operators at the
points x and y:

Dyy(x=y) = [Au(x), A ()]- (76)
A direct calculation starting from Eq. (45) provides
(A, (x).A, ()]

2 D 2 c ’ - i . .
_ [ 4ok Z(é;(f)(ﬁ)é:m(k) [ag),ag )q e ipxtiky

N (27:)44wpa)k —
+ é;(l) (ﬁ)é,(fl/) ( _') [ag)'l',ag/)} eip‘x—ik»y) (77)
and

G (%), G, ()]
CHLE (1) s 7 ipre
— = ) * k b*,bi —ip-x+ik-y
+e " (B)es” (k)b brler k), (78)
Hence, it is important to study the commutator for the

photon and the ghost separately, as the corresponding
field operators are independent of each other. By using
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the algebra of Eq. (54) and the properties of the polarization vectors of Egs. (51a) and (53), we arrive at

d2‘5 1 o —ip-(x— g ip-(x—y
Dulv=3)== [ (s T (50 Je ) =T (., )

@251
JE
(2720, *

(7, Qp)e—ilr(x—y) -T,, (p. Q, )eilr(x—y) ),

(79)

where we employed the tensor 7, of Eq. (51b). We define z = x — y and perform a change of variables p — — p in the

second contribution above to obtain

d2p elPz - ) - ) d2p elpz
DHU(Z):_/(——(T,uv(p’wp)e_lwpzo_Tvﬂ(_pawp)elwpzo)+/(——(Tﬂu

2m)* 2w,

Since Tyﬂ(—ﬁ,.po) = T.W(ﬁ, —po), we can introduce an-
other contour integral in the complex p, plane along a
contour C that encircles all poles in counterclockwise
direction:

. &5 [dpy T,,(P- Po)
Duu(z) - /(2”)2 c <(p0—|—a) )(p()_wp)

- (Po + Qp (Po - Qp)>e“1’z. (81)

Note that the contour C is different from the contour Cr
that we defined in the context of the Feynman propagator in
Sec. III B. Therefore,

. [ d&p  Tup)
Dulz) =i /c (27)* p*(1 = ¢*p?)

e Pz (82)

To prove that this expression vanishes outside the light
cone, that is, for (x —y)? < 0, we can perform a Lorentz
transformation of the coordinates to a frame where x° —
y? = 0 and compute the integral in this new frame. Thus,

we focus on the integral over p,

T,w(p)
f /cd PO (- g p)

7.
g Je O(Po—

7,,(p)
wp)(p0+wp)(p0

_Qp)(p() +Qp) ,
(83)

whose result is given by

(ﬁf Qp)e—iﬂ,,z() - Tw(_ﬁv Qp)eiﬂ,,z())‘

(80)

27)22Q,

_ 2] _
I = [2a)p(a),, Q2) 2a)p(a)
|: T/w(p’Qp) T uv —Q )

- P . (84)
2Q,(Q2 —wl) 2Q,(Q% - wf,)]

T;w(ﬁ @ ) T,uv( » —W) ) :|
» =)
(P

Now we employ the explicit form of the tensor T, in
Eq. (51b). The terms proportional to 7, cancel for each
contribution enclosed in parentheses as well as those
proportional to ¢’p;p; ; and 1g€0,, p'. The only terms that
survive are proportional to g% p,p; and ige;q; jPo- However,
these cancel due to the identity

. S (85)
w,(0;, Q) Q,(Q; — o) S
whereupon /,, =0 and D,, =0 in the particular frame

considered. Lorentz invariance allows us to generalize this
finding to an arbitrary frame. We conclude that the theory is
microcausal, since the commutator of two field operators
vanishes when they are evaluated at causally disconnected
spacetime points.

IV. PERTURBATIVE UNITARITY

In the previous sections we have seen that the theory
defined by (2) develops an indefinite metric in the Hilbert
space of states due to higher-time derivatives present in the
Lagrangian. This metric is responsible for negative-norm
states and could possibly induce a violation of unitarity. As
a consequence of this, the normal probabilistic interpreta-
tion of quantum theory would be undermined.

Unitarity can be investigated in various ways. A rea-
sonable method for a free theory is to study the condition of
reflection positivity [52]. However, in the presence of
interactions, computations based on the optical theorem
in perturbation theory [53] are better under control. In this
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context, imaginary parts of forward-scattering amplitudes
are compared to cross sections of processes corresponding
to cut Feynman diagrams. In the forthcoming subsections
we check the validity of unitarity of the theory via reflection
positivity and the optical theorem.

A. Reflection positivity

Reflection positivity is a property of a scalar two-point
function in Euclidean space that guarantees the validity of
unitarity of the corresponding free field theory in
Minkowski spacetime. It is primarily used in the context
of lattice gauge theory, but also found application in
proofs of unitarity for Lorentz-violating theories [see,
e.g., [54-56] for applications to Maxwell-Chern-Simons
theory in (3 4+ 1) dimensions, modified Maxwell theory,
and higher-derivative theories of fermions].

To check the validity of reflection positivity for our
theory, we will make some simplifications as follows. Let
us consider the combination of poles in the scalar propa-
gator function

M2
P (p* = M?)’
whose form is taken from Eq. (10a). We can rearrange the
latter as

K(po.p) = (86)

1 1

K(po,p)=—5+—5—77- (87)
0 pz pz—MZ

Now we go to Euclidean space by means of the replacement
Po = ips,

1 1

K(po.P) = Ki(p3.P) =5 ——5 -
: PE - PE+M

(88)
The weak version of reflection positivity requires that the
one-dimensional Fourier transform of the latter Euclidean
propagator function with respect to p; be non-negative.
Computing this Fourier transform leads to

KE(X37

Bl) = / dpsKp(ps. [Bl)e P

[e5]

© d e~ 1P3x3 © d e P33
_/-oo P 2 /-oo S N e e
. [eXP(—|X3||I3|) _exp (=[xl P+ M?)
D] VP4 M2

(89)

We see that the latter expression is non-negative for all
momentum magnitudes |p| (see Fig. 1). However, it should
be noted that the condition of reflection positivity refers to
the scalar part of the two-point function only. Also, it does
not take into account interactions. Therefore, reflection

1.0

087}

06}

047

0.2

0.0}

FIG. 1. Plot of the function Kg(x3,
and M = 2 as a function of |p|.

p|) of Eq. (89) for x3 =2

positivity does not provide a complete understanding of
unitarity when the tensor structure of the two-point function
and interactions are taken into consideration.

To check the validity of unitarity more thoroughly, it is
wise to go beyond this technique and, for instance, use the
optical theorem. In the next section, we give an example in
which a study of the optical theorem with the complete
structure of poles and polarization vectors is indispensable.

B. Electron-positron annihilation at tree level

Our intention is to check the perturbative validity of the
optical theorem for the theory defined by Eq. (2). To do so,
we have to couple the modified photon theory to standard
Dirac fermions in (2 + 1) dimensions, i.e., we will consider
a modified QED in three dimensions (QED3). A summary
on a theory of Dirac spinors in (2 4 1) dimensions is given
in Appendix D. We then write the total Lagrange density as

Liw=L+L,,, (90a)

L, , =wly*(i0, — eA,) + mly, (90Db)
with £ given by Eq. (2). Here, e is the electric charge, m the
fermion mass, y a four-component Dirac spinor, and y* the
set of three Dirac matrices of Eq. (D5). Note again that
Lorentz indices run over 0,1,2.

The optical theorem establishes a connection between
the forward-scattering amplitude of a particular particle
physics process and the decay rates or total cross sections of
processes that are obtained by cutting the Feynman diagram
of the forward-scattering amplitude into two pieces. We
will study processes at tree level and one-loop order that
involve the gauge-field propagator (10a) of the theory
[57,58]. Let us start with the polarized forward scattering
annihilation process of electron-positron pairs, ete™ —
ete of Fig. 2. The corresponding amplitude is given by

iIMp=1(p,)(—=iey")u(p,)(iD},(&.q))a(p1)(—iey”)v(ps).
(91)
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N

/];2 I D2

ot I ot

FIG. 2. Polarized forward-scattering electron-positron annihi-
lation where a cut of the gauge-field propagator is indicated by
the dashed line. The three-momenta of the incoming particles are
P1, P2, Where the three-momentum of the intermediate modified
photon is denoted as q.

with the Feynman propagator of Eq. (75) and ¢ = p; + p».
Particle and antiparticle spinors of a particular spin pro-
jection are denoted as u(p) and v(p), respectively, and
correspond to those of Egs. (D14) and (D15). Considering
polarized scattering is not crucial for the verification of the
optical theorem, though. It just simplifies the expressions,
as the polarizations of the incoming and outgoing particles
need not be averaged or summed over. Note also that
we suppress the spin index for external spinors. Now, we
can write

Mg == MH(py, p2)Dh,(E, ) M™(py1, p2),  (92)

where

MH(p1, p2) = 0(p2)r*u(py), (93)

M™(py. p2) = @(p1)r*v(pa). (94)

The process that results from cutting the diagram of the
forward-scattering amplitude into two pieces is the pro-
duction of a modified photon by an electron-positron pair.
In contrast to what happens in standard QED, the
cross section of this process is not necessarily equal to
zero due to energy-momentum conservation. The reason is
the presence of the massive ghost, which can render the
process possible. In this case, the condition of energy
conservation can be evaluated in the center-of-mass
frame: |p,| = |p,| = 1/2g. Therefore, it will be sufficient
to prove unitarity by considering the contributions to the
imaginary part (or discontinuity) of the amplitude for the
massive ghost.

In the forward-scattering amplitude of Eq. (92) an integral
over the three-momentum ¢ of the intermediate state can be
introduced that is canceled again by the three-dimensional &
function of total energy-momentum conservation (which
is equivalent to energy-momentum conservation at each
vertex):

My =& [ L9y,
F e (271_)3 ﬂl/(fﬂ ('I)

x M¥(2)8%) (py + pr—q). (95
By inserting the Feynman propagator of Eq. (75), we have

&g MG, (E gM™
o u
Mp = =M / (2r)? (g* +ie)(g* — M? +ie)
x (27)36%) (py + p2 — q). (96)

As the photon propagator is coupled to a conserved external

current and energy-momentum is conserved at the vertex, we

can use the Ward identity to get rid of all terms in the

propagator proportional to this momentum: g, M* = 0.

Doing so allows for instating the tensor 7', of Eq. (51b).
It is valuable to recall that

M? IR
(> +ie)(g* = M?> +ie)  ¢*+ie ¢ —M*+ie’
©7)

By making use of the latter, we can decompose the
denominator into two parts:

My = ez/ d3q M”Tﬂv(q)MW _ MﬂTﬂv(Q)MTU
B (273 q* +ie q* — M? +ie
x (27)*6%) (p; + p2 — q). (98)

Now we insert the expression for 7, in terms of the
polarization vectors given in Egs. (51a) and (53) and obtain

(

2r)3 q* +ie
vy me )
q* — M? +ie
x (27)*69) (py + p2 — q). (99)

Since it is not possible to satisfy energy-momentum
conservation and the dispersion relation for the photon
at the same time, the first contribution is zero. We are then
left with

My = €2 / &g (Mg ()
' (27)* (o + @, —i€) (g0 — Q, + i)
x (27)365) (py + pr = q).

(100)

We perform the integration over g, by defining the center-
of-mass energy /s = p(l) + pg and exploit the property of
the 6 function. This leads to
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RO (Mee (@, )1
M) = [ o5 (/5 + 9, —ie) (V5 -9, +i€)
X (22)%5) (B, + B> — 7). (101)

The imaginary part of the amplitude can be evaluated based
on the identity

1 1
li =P|- i7o(x),
o0t x £ ie P(x) T i76(x)

where P denotes the principal value. We also consider

(102)

2Q,

(Vs +Q, —ie) (/s — Q, + ic)
1 1

T i-Q e 5t Q,—ie (103)
The result is
m(MF(S))
== | o )3|M” Q. 9) 2276 (5 + 7~ )
xzigq[a(\/E—Qp)Jra(\/EJrQq)]. (104)

The second ¢ function in Eq. (104) involves a nonzero
contribution coming from the possibility of negative
energies. This can be seen in the following way. From
the definition of the Feynman propagator one has
Dfi(20.2) = 0(20) Dy (20.2) + 0(~20) D (20.7).(105)
Performing a coordinate Poincaré transformation, for
instance, a constant time translation that adds a constant
purely timelike three-vector to z such that zy = —z,, one
has

D}, (=20,%) = 0(=20) Dy ( Z07Z)+9(ZO)D}HJ( 20, 2)-

(106)

The interpretation is that negative energies occur in the
opposite flow of time. This is precisely the reason why we
include the second 6 function in Eq. (104). In the literature,
the latter is sometimes represented by a cut with a shaded
region indicating the corresponding direction of energy
flow [14].

Finally, we can write

2Im(M(s))

d3
- ‘ez/ (2;)13 (Mg (q)P2r) 6 (py + py = )

x (27)6(q* — M?)[0(q0) + 0(=q)],

(107)

P1 P1
\ /
X
= zb‘
et e’
qo <«

FIG. 3. After cutting the photon propagator in the diagram of
Fig. 2, the sum over intermediate states in both directions of the
energy flow is considered.

which represents the sum of diagrams with energy flow
in the positive and negative direction as represented
in Fig. 3.

Now we come to the crucial point in the analysis where
we must introduce some of the ideas developed by Lee
and Wick. As a first observation, the negative global sign
in Eq. (107) may threaten unitarity since the left-hand
side of the latter equation, which is related to the cross
section, is positive definite. To overcome this problem,
we apply the Lee-Wick prescription that removes the
negative-metric states from the asymptotic Hilbert space.
Furthermore, as long as the energy of the incoming state
is low enough, the argument of §(¢*> — M?) is impossibly
different from zero due to the large mass of the ghost. The
latter will simply not be excited under this condition.
Then unitarity is guaranteed in a direct way just as in the
standard case [8,9,11].

C. Compton scattering at one-loop level

Our next step is to study unitarity when virtual ghosts
arise in loop diagrams. We analyze the optical theorem
for the (polarized) Compton scattering process of Fig. 4.
The forward-scattering amplitude at one-loop level for
this process in the extended Maxwell-Chern-Simons
theory in (24 1) dimensions given by the Lagrangian
(2) reads

e | e
, |]€1:q ,
N A s
) M
—
|/€2:p—q
//; | k:\
Y ! Y

FIG. 4. Forward Compton scattering with one-loop correction
of the fermion propagator included. The cut of both propagators
is indicated by a dashed line. The external three-momenta are
given by k and p’.
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i m 3 i(f — m
M = e () (-ier’) (7P ey [ A

—m* +ie 27)3 (p — q)* —m* +ie
< (DL 0 (-ier) (3 L) e ut)el ) (108

where the external electrons and photons are considered polarized. The fermion propagator for the (2 + 1)-dimensional
Dirac theory of Eq. (D12) has been inserted. For simplicity, we choose the particular gauge-fixing parameter £ = 1 and
employ the Feynman propagator of Eq. (74). We introduce the following shorthand notation for expressions formed
from external spinors and polarization vectors:

1wk = Ra(p)r’. (109)
I (0 k) = reu(p)eld (k) (109b)
and rewrite the denominators of Eq. (108) in terms of the poles. We also work in the center-of-mass frame where =0
and use Eq. (97) to obtain
d3 -
iM_—€4J§A)(p/7k)( zﬁ—i_zm . )7”/ q’; ﬂ q—i_m p
p-—m-+1e (27)° (90 — po — E, +i€)(qo — po + E, — ie€)

1 1 y+m (2)
xT,, - — — . — |y —|J ' k). (110
”(Q)[<qo—wq+w><qo+wq—le> <qo—szq+le><qo+szq—le>]y<p2—m2+1e)2(” ). (110)

Let us decompose the amplitude into a sum of amplitudes via

M =MD + M), (111a)
with
. + d*gd -4+
AT Ny P
p*—m’ +ie (27)* (90 — po — Eq4 +i€)(qo — po + E, — i€)
T,.(q) y+m )
= g 5 (p'k 111b
X( - +1€)(o+wq—i€)y (pz—mz—l—ie 2 (P K) ( )
and
. + d*gd -+
iM®) = 641(1@(17’,@( 2—ﬂ zm i >7’”/ . %0 - g+ m .
p*—m* +ie (27)° (90— po — E, +i€)(qo — po + E, — i€)
T,.(q) < Z+m > @)
X £ — 7" I (p' k). 111c
(qo—Qq—l—le)(qO—l—Qq—le)y p*—m?+ie)"? (P 1) (I11c)

Our next step is to integrate over the complex variable g, by using the residue theorem and closing the contour in the
lower half plane of the complex ¢, plane. Each integrand has two contributing poles leading to four poles g, = z;
(i =1...4), in total. For the first integrand we have

71 = po + E, — e, (112a)
7 = wy — e, (112b)
where E, is the dispersion relation (D13) of a massive fermion in (2 + 1) dimensions. The poles of the second integrand

are given by
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3=pot+E; — (113a)  and
74 = Q, —ie. 113b -1
' ! | ) Res(z3):2E<p +E,—Q,)(po+E, +Q,—ie)’
We then arrive at o 1 /A0 ? ?
(117a)
M(]) — —84.](12)(17/, k) ﬁ"i_ m 7//4
P —m? .
22 Res(z4) = —,
X/ (21 qz (ﬂ_d+m)T'm,(q) ZQq(pg—I—Eq—a)q)(po—Eq—Qq—l—le)
(27) (117b)
+m
X (Res(z,) + Res(z2))7* ( y >12 (k)
p? where we have rescaled the parameter € and set ¢ — 0
(114)  where it is not important.
Our amplitude M of Eq. (110) considered as an analytic
and function of the complex variable ¢, has a branch cut along
the real axis. In order to extract the imaginary part of the
MO — gt gD (P, k) y+m y diagram we Will computg the imaginary parts of the
! ’ p>—m? residues by using the identity (102). We obtain
ST -+ Tl
- m)T,, (q o(po+w, +E
(27)? ! Im(Res(z;)) = 78(po + @) q), (118a)
pEm\ 4o E,
(Res(z3) + Res(z4))y g J> (p' k),
(115) Im(Res(z,)) = 2P0 =2 = Fa) g
m(Res(zy)) = HTEE, (11sh)
with the residues
-1 wo(po +Q, + E
Res(z;) = —, Im(Res(z3)) = (P L q), (118c)
2E,(po + E;— w,)(po + E; + @, —ie€) 4Q,E,
(116a)
o(po—Q,—E
-1 Im(Res(zy)) = 2P0 =2 = Ed) g
Res(z,) = . 4Q,E,
zwq(Po + Eq - a’q)(Po - Eq — Wy + 16)
(116b) We can then write the imaginary parts of the amplitudes as
|
d2
(M) = =20 (') (52 )y [ = m)T(a)
p*—m (27)?
(271')71’ y+m )
é(pg—w, —E 0 E )|y* J ' k), 119
X 4quq [ (pO a)p q) + (pO + 60[, + q)]y p2 _ mz 2 (p ) ( )
and in the same way
+ d’g
(M) = e 01, () [ S0 (= o miTuta)
p*—m (27)’°
(277 JPEm G
%2, OPo =% = E,) + 8o + &+ BN S5 95 (7.6 (120)

Now, we define
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q = ki, (121a)
p—q=k, (121b)

and use energy conservation expressed by the 6 functions §(py + Q, & E,) and 6(py £+ o, & E,). Furthermore, we employ
the relation

2= 2% 2% -~ o
/ (2733 - / (d27f)13 / ((;:)23 (27)*8(p — ky — ky), (122)

to write the integrals over the spatial momentum components as integrals over three-momenta:

" 3 3 78(KY — wy )27 (kS —
2Am(M D) = —*1 D (p' k) (%)yﬂ{/%/ (d k)z (Ko +m)T,, (k, ){2 ot (24,23?22;(5) =

271'5(]((1) + (l)kl)Zﬂ(s(kg + Ekz) 3503) ) ﬂ+ m @,
+ (2ax,)2Ey) }(271) 89 (p -k —kz)}Y (pz—m2>J2 (p', k) (123)

and

3 3 0 _ 0 _
2tm(M®) = o407 (1) (A2 Yed [ [0 by ) [P P B = )

p*—m (2n)* ) (2x) " (29, ) (2EL,)

278k + Q) 2n8(kS + Ey,) s Jtm /
" (29,)(2E,,) ](2)5 (P = ki kz)} <p - ) (v k). (124)

Recall the relations (51a) and (53) for the gauge polarization vectors. Furthermore, we apply the completeness relation
(D17a) for standard particle spinors in (2 4 1) dimensions to this particular case, i.e.,

Z”(S)(kz)ﬁ<s)(k2) =k +m, (125)

N

where the sum runs over the spin projection s of the fermion in the former loop. Note that this spinor index is kept explicitly.
We can then write

d’k &k . , +m 7y
2Im(M(l)) — _Z /@/ (271.)23 {—162J§A)(p ,k) <pIZ_mz)yﬂu(&)(kz)e/(jl)(kl)}
s A A

g { e )i ) (B2 ) 9001 0) 2031200008 = ) 2509 (p = by = o)

x [O(kY)0(k3) + O(=k})O(=KJ)] (126)

and

atm(a®) = 32 [ G5 [58 {ier a0 () etk |

P

. {iezg£—><k1>a<f><k2>yv (A )00 25083 = M2)23003 = ) 20 — ko — k)
X [0(R)0(RK) + O(—kD)O(—KD)]. (127)

In this way we obtain
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3 3
2Im(M(l)):_Z/dk1 dk2 { <ﬁ+ ) )(kz,kl)}
522 -
7+
2

Xgl/ﬂ//{le Jl (kz, 1)(

— > '(p' k)}zms(k% - M?)275(k3 — m?)(27)36%) (p — ky — k)

x [0(k)O(KS) + O(=kY)0(~k3)] (128)
and
3 3 m
2Im(M) = 3 / b / J :)23 {ieZJ( (P k) (p” p—— > (k) {iEZJE‘)(kz,kl)(p'Z fm2>J§”(p’,k)}
x 2m8(k3 — M?)275(k3 — m?)(27)363) (p — ky — ko) [0(K)O(K9) + O(=k2)O(=KY)], (129)
where
ko k1) = pul) (k)& (k1) (130a)
17 (ke ky) = &7 (k) (k). (130b)

Let us define

’ "+ ﬂ—'— m ’ " p + m
9,1'/1”/\45/1)/\4(11 = gax (ezjgl)(l?/’ k) <m> Jg)(kb kl)) (6215/1 >(k2’ k1) (W) Jgj) (r'. k)) (131)

and

)t + - +
MOME = (a0 (B2 )0 b)) (0 ) (25 ) 00 ). ()

-m p-—m

Thus, we can express both imaginary parts as

' &Sk [ Pk, )i > 2
2Am(MD) = =3 282y MO M 225(k3)226 (1 — m?)
j’/ l//

(2n)* ) (2x)
x (2)*6%) (p = ki = ky)[0(K))O(KS) + O(=k7)O(~KI)] (133)
and
2Im(M Z / ¢ kl d k2 /\/12 M 278(k2 — M2)275(k2 — m?)
x (27)*80 >(p —ky = kz)[e(k?)e(kg) +0(=k)O(=K3)]. (134)

The sum in Eq. (133) runs over the spin projection of the fermion and the polarization of the photon. Both particles were put
on shell by cutting the diagram of the forward-scattering amplitude (see Fig. 5) into two pieces. Note that the right-hand side
of Eq. (134) is zero, as the § function does not provide a contribution due to the large mass scale M. This behavior is
precisely the effect of the Lee-Wick prescription according to which the negative-norm states are removed from the
asymptotic Hilbert space just as in the tree-level analysis [see Eq. (107) and the subsequent paragraph]. So, we conclude that
the optical theorem and, therefore, unitarity continue being valid at one-loop order, as well.
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_ ki=q
Ie n |

Ry [ | ]
ky=p—q
B ——
do
FIG.5. Sum over intermediate states and energy flow in the cut

Compton diagram of Fig. 4.

V. CONCLUSIONS AND OUTLOOK

In this paper, we considered a higher-derivative Chern-
Simons-type modification of electrodynamics in (2 + 1)
dimensions. We decomposed the Lagrangian of the model
into a physical and a ghost sector and obtained the
polarization vectors for the corresponding modes. In
addition, the propagator of the theory was computed and
it was demonstrated how it can be expressed in terms of the
polarization vectors. Based on these findings, we per-
formed the canonical quantization of the theory and studied
its perturbative unitarity at both tree level and one-loop
order by checking the validity of the optical theorem.

Throughout this paper, we explicitly demonstrated that
reflection positivity, known as a sufficient condition for
unitarity, is satisfied. As the latter requirement applies to a
free field theory only, we were interested in understanding
unitarity when taking interactions into account. Hence, we
coupled our theory to standard Dirac fermions in (2 + 1)
spacetime dimensions and evaluated the optical theorem for
particular scattering processes. This analysis of unitarity
revealed inconsistencies due to negative contributions at the
pole of the ghost, as one should expect. However, by using
the Lee-Wick prescription we demonstrated that unitarity
is conserved at both tree level and one-loop order. The
method of removing contributions from ghosts from the in-
and out-states clearly provided this result. We applied the
usual cutting rules of Feynman diagrams and amplitudes to
guarantee the validity of the optical theorem. It was
necessary to assume that the ghost mass is high enough,
perhaps of the order of the Planck mass. It is expected that
the situation at higher order in perturbation theory will not
be very different.

It is also reasonable to expect that these results can be
generalized naturally to the four-dimensional case where
the higher-derivative Chern-Simons-like term breaks
Lorentz symmetry. Some preliminary studies of unitarity
in this alternative theory have been carried out in [57]. They
are complemented by the analysis performed in our latest
work [59].

Moreover, our opinion is that the results obtained here
could serve as a base to explicitly define classes of higher-

derivative theories consistent with the requirement of
unitarity. In particular, our methodology could be useful
for studies of various higher-derivative extensions of
gravity including the Lorentz-breaking ones. We hope that
this methodology will help to solve the problem of
formulating a perturbatively consistent gravity model.
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APPENDIX A: DIRAC FORMALISM

We follow the Dirac procedure to reduce second-class
constraints from the higher-derivative theory based on the
Lagrangian (2) to zero [35] and to find the Dirac brackets.
From Egs. (41a) and (41b), we have four primary second-
class constraints,

2o(t, %) = T1°(1, %) — geifﬁ,»A (t5), (Ala)

1 (6.7) = Po(t.%) + Ag(1.3) + geijﬁiA J(LF),  (Alb)

iz ite o9 i e 9 >
@'(t,X) =TI'(t,X) +§€JAJ-(I, X) —5€ 10;Ao(t.X). (Alc)

The nonvanishing elements of the algebra are

I (6.3) .00t 5)} = 623 - 3), (A2a)
{0/ (1.3).001(1.5)} = —ge"0;6P (X =5).  (A2b)
{¢/(1.3).¢/(1.5)} = geV6) (3 - 7). (A2¢)

The convention we use is that the derivatives act on the first
set of spatial variables named X, in general. To begin, let us
introduce the notation ¢, = (yo. 1. ¢'), withA = 0,1,1,2
and i = 1, 2. The matrix of the second-class constraints will
be denoted by

Cap(t:X.5) = {pa(t.X), @p(1.5)}. (A3)

From Eq. (A2c) we have
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0 -1 0 0 ) ; (
(0. TV (1Y) ==6,.60 (X =¥ A8h)
T R N [Ai(2.X), TV (1, ¥)] = 56,617 (X = ). (
Can = I s0E-5). () ’
0 -9, 0 g i
0 g9, =-g O [Po(2,%), 11 (1, 5)] = Ze"-/'ajé@) (X-5). (A8i)
The inverse matrix is (where the 6 function is not inverted) _ ig ..
[ (2, %), (1, 5)] = =€ 9,62 (x - 3), (A8j)
0 1 -9, -0,
-1 0 O 0 . : ig ..
C7l = sD(F-5). (A5 (1, %), TV(1, 5)] = —2eiis® (3 - §). A8k
B0 0 0 i ED @9 (). 10 (15) = -2 eisd(F-5).  (ASK)
—0, 0 1/g 0 Note that the momentum P* has been changed in com-

parison to that employed in Ref. [35] and, consequently, we

The nonzero components are . .
p have obtained a different algebra.

C51(E.5) = —Cr5(3.5) = 6¥ (3 - 7). (A6a)
C-1(%,§) = Ci_ﬁl (£.5) = 0,60 (% ), (AGD) APPENDIX B: THE HAMILTONIAN
The current section delivers a detailed demonstration on
P, 1. o - .. how the Hamiltonian of the theory given by Eq. (2) can be
Cij1 (%.5) = _5615(2) (¥-¥), ij=12 (Ac) expressed in terms of creation and annihilation operators.
We consider the Hamiltonian (42a) written as
The Dirac brackets are defined by
H=H;+ Hg, (B1)
{X. 7} ={X.Y} - {X. 04} Ciplon. Y}. (A7)
where by using the decomposition (45) we have
We promote the Dirac algebra to the equal-time commu-

tators satisfied by the fields and obtain s 1: . - 1- . -
Hy = /d x(—EAﬂ(U’“’)AV 5 A, (09 AD>, (B2)

[Ao (2. %), Ao (1.5)] = =16@ ( - ), (A8a)
[Ao(1.3). Po(1.5)] = 16O (% - 5). (A8D) Ho = [ &xei606, (B3)
[Ao(2,X), PI(1,¥)] = l_geijaj5(2> (X - 7). (A8c)  Above, we have applied the equation of motion (46) for the
2 ghost and [JA, = 0O for the photon.

P N i L. Let us define

[Ai(1. %), 4;(1.5)] = =~ €6 (3 - ), (A8d)
g
. ] A v =

e i s = Hy __E/dzxAuU” Au. (B4)
[Ai(1.X), Ag(2.y)] = —i0;6%) (X - ). (A8e)
A1, 5), Po(1.3)] = 50,60 (3 - 5), (A8 ' = [ @, 000, (B3)

C oy pire 9 Q) (=_ 3 Inserting the photon field operator of Eq. (48), the first
A;(1,X), P/(t = =¢/0,0,6 - A8
[Ailr. %), P(2, 3)] 2 ¢ 010,07 (% =), (A8g) contribution reads
|

1 [ d3p ' ' _ N (D))o e (Vg N D% o ey () 1
HNn =2 / > [afa W el (pyusel) (=preon - af ol e (B U el (5) - o el (vl ()

A 8 (271.)2 ¥ P p p
DT ()T (A)x = vx (A )k =\ iy
+aa") g (pyurs e (— p)eder 0}, (B6)

where U’Ii’” = (g —ige"? Pp) o=, corresponds to Eq. (42b) in momentum space.
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In the same way,

0 1 d’p BT &) () -), = v (X —2iwsx ) ()T SA) (= g S(X)% =
Hgt—_g/(wzw_[a;)aige,s><p>vﬁp &) (=pleon + alal e (YU e ()

DF (V) =A% 7o o —(A) /= DT T (W) =y g s ()% 1 =\ Diwex
Tl e (U el (B) + ) el (p)urs el (<p) el

We see that the first and last terms vanish due to the global
factor 1 — p?/ a) , while the other terms pick up a factor of
1+ p?/o? —2 We arrive at

1 [ d&p 3 Vo Dt @)
H_ - _4/ (27T)2 AN 77/1/1 (aﬁ aﬁ + “ 9 )’ (BS)
where we have used
(2 Uk _* /
el v e = g (BY)

and its complex conjugate.
For the ghost part we insert the ghost field operator of
Eq. (52) and obtain

d’p ie’j
Ho =3 | Garg
=(+

—~ bibe () ﬁ“(ﬁ)}, (B10)
where we have used that p?> = 1/¢> as well as
eie (e (=) = 0, (Blla)
since
& (-p) = & (). (BI1b)
for k = 1, 2. We then arrive at
HG:—I/ ¢p 5 (bsbh +biby),  (B12)
4) 2z
where we have also employed
e, Lo = 42igQ,. (B13)

This proves our expression (55).

(B7)

APPENDIX C: EXTENDED EQUAL-TIME
COMMUTATORS

In this section we intend to compute the equal-time
commutators for the field operators that emerge from field
theory of higher derivatives defined by Eq. (2). Consider
the basic commutator

[A4,(x),A,()] = [A,(x),A4,()] + [G,(x),G,(y)], (Cla)

with

A0 4,00 = - [ é—ﬁ%(rﬂme—w—w
~Tyu(p)e?), _, . (Clb)

G- G = [ gﬂfzzgz(rw(,,)e—ip-u—y)
~Tyu(p)e? ™), o . (Cle)

To derive the Dirac commutators we work directly with the
field operators of Eqs. (48) and (52). Our strategy will be as
follows:

(a) We consider the basic commutator (Cla) and construct
the various elements in phase space by applying the
different operators on the fields.

(b) For a commutator containing [JA,(#,X) we use the
identities CJA ,(#,X) =0 and (JG,, (2, x) = g—Gﬂ(t, X).

(c) Whenever an integral involves momentum variables
we use the relation p, = id,, whereupon derivatives
can be extracted from the integral.

(d) To treat derivatives for the second variable 9}, we
integrate by parts to produce 07, whereby an additional
minus sign occurs.

(e) We assume that the spatial derivatives J; act on the

first variable X of & functions in all final expressions.

1. Commutator [Ay(t.%), Ay(ty)]

With the previous rules in mind and to demonstrate our
technique explicitly we apply a first time derivative 9, to
the basic commutator (Cla):
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[A,(x), 0,4, ()]
d’p i . .
= | —=_ —ip-(x=y) ip-(x=y)
== [ Gapa Twe o £ Tyt

&?p i —ip-(x=y) ip-(x=y)
+ WE(T””e + Tyﬂe 7 )POZQ . (C2)

P

We set both times equal, x, = y, = 7, and change p - —p
in the second term of each contribution. We then obtain

[A,(1.%). A, (1. 5)]

d’p i . g
= _/@T)ZE(T"”(IJ) + T, (=p))e?P )

25 i NP
+ [ G5 TP+ TF)eP . (c3)

In the following calculations we implicitly consider the
dependence on w,, and €2, of the expressions in parentheses
above. For the indices 4 = 0 and v = 0, we have

=\ A bed d21_5 ! 2 2N\ ,ip-(¥-Y)
[Ao(t, )C),A()(t,y)] = - (277)25(2 29 wp)ep Y
d’p
T

where we have used Ty (p) + Too(—P) =2 —29* po. Adding
both terms yields

2—)

. d i
(Ao(r2).Ao(0. 7)) = [ e @ =D, (C3)
b4
and since
1
wf,—Q%,:——z, (Co)
g
one arrives at the first commutator (A8a):
[Ao (1, %), Ao (1, 5)] = —i16@ (3 - ). (C7)

2. Commutator [A(¢.X), Py(t.y)]

Here we compute an unmodified commutator by using
our method. Recall Eq. (41a) and write

Po(1.5) = =Ao(1.5) = 5 104 (1.5).  (C8)

We get

[Ag (. %), Po(1.7)] = [Ag(t. %), —Ag(1.5) —geifaiAj(;,y)].

(C9)
The second commutator is zero, i.e.,
[Ao (2. %), A, (1. 5)] = 0, (C10)
and using the result (C7) we arrive at
[Ao(1.%). Po(1.5)] = 16®) (3 - 3), (C11)

which gives Eq. (A8b).

3. Commutator [A,(¢,X), Pi(ty)]

It follows from (41a) that the spatial momentum com-
ponents read

Pi — —Ai —|— geikDAk + g(:'ikAk - gé‘ikakAo. (C12)

Then
[Ao(t. %), P/ (1.5)] = [Ao(r. 7). =A(1.5) + T DAL (1.5)
g - g . 5
+ §€'kAk(t, y) - §€'kakAo(f, Y|
(C13)
We take into account that the first commutator is zero;

see Eq. (C10). Furthermore, we employ [1A,(t,¥) = 0 and
OG(2,5) = —g%Gj(t, y) in the second to arrive at

Aolt.5). P(1.5)] = —2ige"k[c;0<r, 2).Gi(1.5)
+ 5401 7). Ay(1.5)]

+ et alA (D). Ag(r I (C14)

where the final spatial derivative has been integrated
by parts.
One can show that

[Go(1.%). Gi(1.5)] = —if? 08P (X = §).  (C15)
and also
[Ag (1, %), A (1,5)] = 10,6 (X - §). (C16)

Substituting these expressions into Eq. (C14), we obtain
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o 1 . . I Usin
[Ao(1, %), Pi(1,7)] = —2—gelk<—1g26m<2> 7)) g

+ ggik(iakgﬁ) *-7)) [Ti0(P) = Toi(=P)] py—, = —2°@ppis  (C24)

+ geikak(—ﬁ(z) (X-9)). (C17)  we can write
. 5=
The last two terms cancel and we arrive at [Ai(t7 }),AO(I, y)] = _/ ((21 1)72% (_292a)ppi)eiﬁ'(f‘§’)
. b3
= pif =1 -
[40(1, %), P'(1,5)] = T €062 (¥ - §),  (C18) P Qe e
+ (2”)27(_ g ppt)e
which is Eq. (AS8c).
(C25)
4. Commutator [4;(tX), A;(t)]
) ] Therefore,
To derive Eq. (A8d), it follows from Eq. (Cla) that
[A(1.7), A (1, 5)] D A (e EP 5o oy i)
i) A ;y [Ai(1.%). Ay (2. 5)] = 2n7? pi(wp — Q)e'"
d*p o, - R
== | 5535 (Ti(p) = Tji(=p))e? ) d2p
/ (2z)* 2 Y ! =- / (27[];2[7,»6'1"()‘_”. (C26)
d’p Q - I
- /2—p2 2p (Tij(P) = Tji(=p))eP=,  (C19)
(27) By employing p; = i0;, we arrive at
and applying the definition (51b) we find ) _
[Ai(1.3). Ag(1.5)] = 10,69 (¥ = 5). (€27
T;;(p) = T,i(=P) = —2ige;; po. (C20)
Thus, we have
Co p . s 6. tator [A;(t.X). Py(ty
(1.2 4,0.) = = [ 5 (igeyo3 )9 Lo Commutator [ Pl
e have
+/ <5 (—ige; Q2 )elP ) .
(27)? r [A; (2. %), Po (1. 5)]
=i &P 2 i p-(¥=5) Fe 2y A e kg A3
=19 | a2 (0, — Qp)e ; = |Ai(1.3). ~Ao(1.5) = 5™ 0, AL(1.5)
C21 Ve A= L9 m W
(U A0 ), Aol )] + Lm0, A1, 7). Ag(2, ).
and finally, (CZS)

- - L.
[Ai(1,X),A;(1.5)] = —;e,-jé( E-¥). (C22) These commutators have been found in Appendixes C 4
and C5 and after inserting their results we obtain

. 5. Commuta.tor [A,-(t,x), Ao(t,y)] . [Ai(t, .7_6:), Po(t, 5)»)]
Repeating the calculations performed in Appendix C 1

we find = 0,60 (% -5) + e, <‘1 €260 (% — §)> _
g

(C29)
__/ &?p o, '

Therefore,

A1) Po(t. )] = 2050 -5, (C30)
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7. Commutator [A;(t
Consider

X). P(ty)]

(Ai(1.3). PI(1.5)] = |Ai(1.3). ~A/(1.5) + S DA 5)

g - - g . .
+ §€jkAk(f,y) - §€jkakAo<t, Y)] :

(C31)
Hence,
[Ai(1,%), PI(1,5)] = =[A;(1.3), A (1, 5)]
+ [A, t,X) —eﬂ‘DAk(t y)]
+ [A, (1,X), —ef KA (1, y)}
{A, t,X) —€f DA (1, y)} (C32)
We get
A6, 5), PI(19)] = e/62(3 - 3)
1
5 G (1., Gy(1.9)
+ 5 A1 7). Ag(1.5)]
+ el A1 B Ao ). (C33)
where we have also used Eq. (C22).
Since
[Gi(1.%), Gi(1. 5)] = =i(ni + §?0:0,)8?) (X = 7).
. e . i Lo
[Ai(1,X), A(1,5)] = 7 (i + F0:0,)8P (X =7), (C34)
and with Eq. (C27), we write
[Ai(1,%), PI(1,5)]
1. N 1 -
= 56#5@ (¥ = 3) =5 e [=iln + ¢0:0,)5) (3 - )]
9 il 2 Q)(z_=
+ €% = ik + 70:0,)8 (X = §)
2 g
+ gefkak —i0,62) (% = 7). (C35)

We see that the first, second, and fourth terms cancel and
are left with the result

Ai(1.3). Pi(1.5)) = T 0,000 (- 5. (C36)
8. Commutator [A;(t.%), IF(ty)]
Inserting the field operators, we have
A0 2. 10(15)] = 40,7~ Jer g1
9 .
+ 56/ 8kA0(t, y>:| . (C37)
which is equal to
A1, 3). 0 (1.5)] = =2 A (1.3). (1. 5)]
g . . o -
5 HOL[Ai(1.X), Ao(1.7)].  (C38)

The second commutator is zero and after using Eq. (C22)
we find

A 0. 0(5) = ~Ze| - Leuo®G-7)]. (€39
Therefore, our result is
At 3). V(1. 3)] = 38960 (R-5). (C40)

9. Commutator [A,(t.x), Pi(ty)]

Here we compute one commutator which gives zero. We
start with

. o nif = . N Yoo 9 N
[Ao(1.%). P'(1.3)] = |Ao(1.%), —A'(1,5) + 5 €VDIA;(1.5)
g ik A — g i 1 —
+§€kAk(t7)’) —EekﬁkAO(t,y) ,
(C41)
which yields
[Ag(t.X). PI(1.5)]
N IR -
—[Ao(,X), A'(t, ¥)] —2—g€k[Go(f7x),Gk(W)]
q kA N N g i . . . -
+§€k[A0(f,x)’Ak(f, )] +§€k5k[Ao(t’ X), Ao(t, )]
(C42)

The last term is zero and so
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[Ao(1.3). PI(1. 5)] = ~[Ao(1.%). A'(1.5)]

1 . . - .
- 2—g€’k[Go(1» X), Gi(1,5)]

+ M Ay (1) Ak F). (C43)
We need the three elements
[Ao(1,%), Ai(1,5)] = =19,6) (% - §), (C44a)
[Go(1.%), Gi(1.5)] = —iger,, 0"6® (X —F),  (C44b)
Ao(1. ) A(1.5)] =~ @6 (F ~F).  (Cdde)
g
Inserting the latter results gives
[Ag(2.%), P(1.5)] = —[i0;6®) (% - J)]
| R - o
- 2—g€’k[—1g€km8m§(2) ()C - y)]
9 il ms(2) (2 _ =
+Ze*|—€, 0"5W (X =) |. (C45)
2 |y
Therefore, our result is
[Ag(1.%), Pi(1.5)] = 0. (C46)
10. Commutator [Py(¢.X), IT(2.y)]
We start with
[Po(2,X),TT'(1,5)]
_ A bvd 9 mr A byd 9 ik A e
- _AO(I’ X) - 56 amAr(l: )C), _56 Ak(t’ y)
+ geikakAo(t, y)] (C47)
or, which is the same,
— i - g i M - . —
[Po(.%). I (1.5)] = Je Ao (7, X), Ar(2,5)]
g i A = =
—|—§€k8k[A0(l‘,x),A0(t,y)]
gz mr ikl A = A =
+Z€ ame [Ar(t’y)“Ak(t?y)}'
(C48)

Hence, from the previous results of Egs. (C27), (C7), and
(C22) one has

[Po(1.3). 10 (1.5)]
= €[00 (3 = 5)] + 5 e yfi6 (7 - )
2

4 L gy ik F €82 (% — i)] . (C49)
g

4

The first and second terms cancel each other and we
arrive at

[Po(t.3). T (1.5)] = Z 0,67 (). (C50)
11. Commutator [I1y(¢,X), P(2.y)]
We have
Mo (2, X), P'(2. 5)]
_ |9 m 2 ALy 3 9 ij 3
= 7€ 0)A,(1.%), A (1, 5) +§€JDAJ(L y)
9 ki o3y _9ikg i (4%
+8A(15) - D7) (cs1)
The only nonzero contributions are
PN 1 - . .
[HO(L -x)v Pl<t7 )’)} = _Zelmaleu |:Gm(t7 'x)’ Gj(t’ y)]
92 . .
0, 1.5) Aul0.5)|
(C52)
We need
[G(1.%), G,(1,5)] = ~ige,, ;67 (X ~F),  (C53a)
An(t.3), A1, 9)] = - 6ud® (F=5).  (CS3b)
g

Inserting the previous commutators results in

bvd i bed 1 m ijl_3 Y —3
(Mo (£, %), P'(1, §)] = =7 € 01"l [—ige,;62) (3 - )]
2 .
9~ im ik|:1 2)(= ~}
+ 2 €™M0 |- €8 (X =) |,
n €7 ( )
(C54)

and so

L ig .. N
Mo(1,%), Pi(1.5)] = =3/ ei0,6P (5. (CS5)
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12. Commutator [P'(¢.X), P/(1.y)]

Now we compute a difficult commutator, which we
prove to be zero in accordance with the classical result
using the constraints and the Dirac approach. We take
advantage of the previous findings. Consider

[P/(1.%). PI(1.5)] = |P(t.%). ~A'(1.5) + g4, (1.5)

~Ir VA, (1.5) - L 0,A(1.5) |
2 2
(C56)
We rewrite the latter commutator as follows:
[P(1.X). P/(1.5)] = —[P'(1.X).A/(1.5))]
+ ge/" [P (1,X),A,(1,)]
L P(1,5).A,(1.5)
+ 260, [Pi(1.3). Ao(1.5)). (CST)
The individual commutators read
[Pi(1,X),A,(1,5)] = =i ,62 (X = 3), (CS8a)
[Pi(1.3). Al (1.5)] = —gel‘kafak(ﬂz) (F-7). (C58b)
[Pi(1,%), A(1.5)] = 0. (C58¢)

After some calculation we also find

P03, (0] = =i (590, +,5 )80 ).

(C39)
Inserting all the previous contributions leads to
P(1,3), PI(1.5) = 2ei0,50)(F - )
- %gef'kafak(S@) =)
+ %geif V26 (% = 7). (C60)

Indeed, considering each case for i, j separately, one can
check that

[Pi(1.5), PI(1,5)] = 0. (C61)

13. Commutator [IT(zx), I¥(2.y)]

For this last commutator we have
[T (1,3). TV (1, 5)] = [—gefmAmu, %) + 5 €m0, Ao(1,%),
9 i =
- §€’kAk(f, y)

+ gefkakAo(t, y)] : (C62)

Due to Eq. (C10), the only contribution different from
Zero 18
2

9

[IT(2,%), TV (2, §)] = - e™elt [An(1.3), Ac(t,5)],  (C63)

and we have

2 .
(19,017 = & el | - o3 -5)]. (con
g

Finally, we find

[T (2, %), T (1, 5)] = = €6 (F-5).  (C63)
With this final result at hand, we conclude the computation
of the equal-time commutators.

APPENDIX D: DIRAC THEORY
IN (2+1) DIMENSIONS

In the current section we would like to review the
properties of a Dirac theory in (2 4 1) dimensions that
are important for our work. The latter is based on the
Lorentz algebra 8o(1,2), which involves three generators:
two boosts K!, K? and a single rotation L3. We obtain the
corresponding generators as

01 0 0 0 1
K'=il1 0o 0/, K2=il0 0 0],
0 0 O 1 00
0 0 O
L*=il0 0 -1 (D1)
01 0
The latter satisfy the algebra
[L3,K'=iK?,  [L3,K*}=-iK', [K',K*=-iL’

(D2)

By forming appropriate linear combinations of these
generators,
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X=K'+ik?, Y=—(K'-iK?), Z=2L%  (D3)
we obtain the Lie algebra 8[(2,R):
Z.X]=2X, [z.Y]=-2v, [X.Y]=2Z  (D4)

Therefore, we conclude that 3o0(1,2) ~ 8[(2,R).

The first possibility of constructing a Dirac theory in
(2 + 1) dimensions is to work with an irreducible spinor
representation for which the Dirac matrices correspond to
the Pauli matrices (multiplied by appropriate factors) and
the spinors have two components only. An alternative is to
propose a reducible spinor representation with three (4 x 4)
Dirac matrices and four-component spinors. We follow the
latter possibility and choose the Dirac matrices as

0 <63 0 ) | <—i61 0 >
Vv = ) V= . )
0 -o° 0 ic!

—ic?
e < g’ 122>' (D5)
Note that we can define generators
z=y, X =%(71 +ip?), V= —%(71 —iy?).  (D6)
which satisfy
[Z,X] = 2X, [Z,Y] = =27, X,Y] =2, (D7)

showing that these new generators also form a representa-
tion of 3I(2,R). Furthermore, the Dirac matrices of
Eq. (D5) obey the Clifford algebra in (2 + 1) dimensions,
{r.r =2, (D8)
where #** is the (2 4 1)-dimensional Minkowski metric. It
is clear that all Lorentz indices run from 0...2. The Dirac
equation is now given by
D)y =0, D(0) =id, " —m =i —m, (D9)
with the Dirac operator D(0) acting on a four-component
spinor w = y(x). Transforming the Dirac equation to
momentum space provides

D(p)y =0, (D10)

D(p) = p—m,
with the Fourier-transformed spinor {# = w(p). The inverse
S(p) of the Dirac operator in momentum space (multiplied
by i) corresponds to the propagator:

(g +m)

iS(p)= P S(p)D(p)=D(p)S(p)=1.

The Feynman propagator for fermions is obtained as usual
by means of the ie prescription:

i(f+m)

isf(p) = —5—5——.
() p>—m? +ie

(D12)

Requiring that the determinant of the Dirac operator vanish
for nontrivial solutions leads to the positive fermion energy

E(p)=E, =\/p*+m.

Solving the Dirac equation subsequently provides the
following particle spinors:

1/\/JE,—m
. i/E, - L —ip?
u<1):(p1—|—1p2) WE) m(/)(p ip?)

(D13)

’

0
0

u? = (D14)

0
(pl_ip2)/\/ Ep+m ’
iWE,+m

On the other hand, the antiparticle spinors are given by

1/\/E, +m
o = (p' +ip?) i\/E, +m/(p' —ip?)
0

3

0
0
@) 0
v\ = . . D15
(0 ~ip?)/\JE, = (B13)
iWE,—m
These spinors are normalized such that
u ) =2E,5%, o) =2E,5.  (DI6)
We define the Dirac conjugated spinors as () = u(9)7y0
and 7 = p()7y% and derive the completeness relations
> O (p)a(p) = p+m, (D17a)
> v (p)a)(p) = p—m (D17b)

They formally correspond to those in (3 + 1)-dimensional
Dirac theory.
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