
 

Classical production of ’t Hooft–Polyakov monopoles from magnetic fields
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We show that in the SU(2) Georgi-Glashow model, ’t Hooft–Polyakov monopoles are produced by a
classical instability in magnetic fields above the Ambjørn-Olesen critical field, which coincides
approximately with the field at which Schwinger pair production becomes unsuppressed. Below it,
monopoles can be produced thermally, and we show that the rate is higher than for pointlike monopoles by
calculating the sphaleron energy as a function of the magnetic field. The results can be applied to
production of monopoles in heavy-ion collisions or in the early Universe.
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I. INTRODUCTION

Magnetic monopoles—hypothesized particles carrying
magnetic charge—arise as topological solutions to the field
equations of certain non-Abelian gauge theories [1,2]. It has
been proposed [3–5] that heavy-ion collisions may be the
most promising terrestrialmethod of creating these currently
undetected particles, because of the very strong magnetic
fields they generate. In order to gainmeaningful information
from past [6] and future [7] searches, an understanding of
monopole production mechanisms is vital.
Production of magnetic monopoles in a strong magnetic

field Bext is the electromagnetic dual of production of
electrically charged particle-antiparticle pairs in strong
electric fields. It occurs because in the presence of a uniform
magnetic field, the state with no monopoles is not the
true ground state and can therefore decay by producing
monopole-antimonopole pairs. In weak fields and at low
temperatures, this happens through Schwinger pair creation
[8,9],whichmeans quantum tunneling through theCoulomb
potential barrier. It can be described with four-dimensional
instanton solutions, and the rate Γ of the process is given by
the instanton action Sinst ¼ πM2=qmBext − q2m=4, where M
is the monopole mass and qm is the magnetic charge of the
monopole, through Γ ∝ expð−SinstÞ [10,11]. At higher
temperatures, there is sufficient energy available for the
monopoles to cross the potential barrier classically, and
then the rate is determined by the energy Esph of the
three-dimensional sphaleron configuration [12] through
its Boltzmann weight Γ ∝ expð−Esph=TÞ.

The instantons and sphalerons that describe production
of pointlike magnetic monopoles have been previously
studied in Refs. [4,5,11,13,14].1 In this paper we extend
these analyses to solitonic ’t Hooft–Polyakov monopoles,
which is important because that is the form in which
monopoles appear in many particle physics models and
because earlier results [4] have shown that the pointlike
approximation fails at relativistic collision energies. We
show that the sphaleron energies are lower than for pointlike
monopoles, and that in sufficiently strong magnetic fields,
the potential barrier disappears completely and therefore
monopole production takes place through a classical insta-
bility and is unsuppressed even at zero temperature.
In fact, this instability corresponds to the well-known

Ambjørn-Olesen instability in strongmagnetic fields [16,17],
which occurs above the critical field strength Bcrit ¼ m2

v=g,
where mv is the mass of the charged vector bosons and g is
the electric charge. Ambjørn and Olesen found that in the
electroweak theory the instability leads to the formation
of a lattice of vortex lines, but we demonstrate than in the
Georgi-Glashow model it, instead, leads to monopole pair
production.

II. THEORY

We work in the Georgi-Glashow model [18] consisting
of an SU(2) gauge field Aμ with an adjoint scalar field Φ:
the continuum Lagrangian is

L ¼ −
1

2
TrðFμνFμνÞ þ TrðDμΦDμΦÞ − VðΦÞ; ð1Þ

where
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1Monopole production in a non-Abelian gauge theory was also
discussed qualitatively in Ref. [15] in the context of Nambu
monopoles in electroweak theory.
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DμΦa ≔ ∂μΦa þ igεabcAb
μΦc; ð2Þ

Fa
μν ≔ ∂μAa

ν − ∂νAa
μ þ igεabcAb

μAc
ν; ð3Þ

VðΦÞ ≔ λðTrðΦ2Þ − v2Þ2: ð4Þ

The theory has two dimensionless parameters: the gauge
coupling g and the scalar field self-coupling λ, and the
scalar field vacuum expectation value (VEV)

ffiffiffi
2

p
v, which

sets the scale.
We focus on static solutions to the field equations, so we

are free to work in the 3D theory where all time derivatives,
along with the timelike components of the gauge field,
vanish. To perform numerical calculations we discretize the
action, restricting it to lattice points x⃗ ¼ ðnx; ny; nzÞa,
where nx, ny, nz are integers and a is the lattice spacing.
The scalar field Φðx⃗Þ is defined on lattice sites, while the
gauge field is defined via link variables Uiðx⃗Þ: in units
where a ¼ 1 the discretized energy density is

Elat ¼
2

g2
X
i<j

½2 − TrUijðx⃗Þ�

þ 2
X
i

½TrΦðx⃗Þ2 − TrΦðx⃗ÞUiðx⃗ÞΦðx⃗þ {̂ÞU†
i ðx⃗Þ�

þ VðΦÞ; ð5Þ

usingUij to denote the standard Wilson plaquette. The sum
of this over all lattice sites Elat ¼

P
x⃗ Elat is the quantity we

extremize.
The magnetic field corresponding to the residual U(1)

symmetry is given through lattice projection operators [19]:
defining the projection operator Πþ ≔ 1

2
ð1þΦ=jΦjÞ, the

projected link variable is

uiðx⃗Þ ≔ Πþðx⃗ÞUiðx⃗ÞΠþðx⃗þ {̂Þ: ð6Þ

This gives an Abelian field strength tensor

αij ≔
2

g
arg Tr uiðx⃗Þujðx⃗þ {̂Þu†i ðx⃗þ |̂Þu†jðx⃗Þ; ð7Þ

from which the magnetic field strength may be obtained:
Bi ≔ ϵijkαjk=2a2.
It is defined modulo Bmax ≡ 2π=ga2, and therefore the

magnetic charge, defined by the magnetic field’s diver-
gence, is quantized in units of 4π=g.
The theory displays spontaneous symmetry breaking,

generating a scalar boson mass ms ¼ 2
ffiffiffi
λ

p
v and charged

vector boson masses mv ¼
ffiffiffi
2

p
gv; there remains an unbro-

ken U(1) symmetry giving a massless photon. It admits
’t Hooft–Polyakov monopole solutions [1,2] of magnetic
charge qm ¼ 4πn=g for n ∈ Z. The classical monopole
mass is

M ¼ 4πmv

g2
fðβÞ; ð8Þ

where β ≔ ms=mv ¼ ð2λ=g2Þ1=2, and the function fðβÞ ∼ 1
for all β [20]. The monopole has a characteristic radius
rm ∼m−1

v .
We look for a sphaleron configuration—an unstable

static solution with a single negative mode—in the pres-
ence of a nonzero magnetic field Bext, which corresponds to
the top of the barrier between the uniform field state and the
state with a monopole-antimonopole pair.2 The energy Esph

of this configuration gives the minimum energy that is
needed to move from the uniform field state to a state with a
monopole-antimonopole pair.
If the external field Bext is weak enough for the sphaleron

size to be large compared to the monopole size, a pointlike
monopole approximation is valid [5,13]. Accounting for
both the Coulomb force and short-range interactions due to
the charged vector bosons and scalar particles, the monop-
ole-antimonopole potential (for poles aligned in isospace)
can be estimated, in terms of pole separation r, as [22]

Vmm̄ ¼ −
1

4πr
½1þ 2e−mvr þ e−msrð1 − e−mvrÞ�: ð9Þ

The scalar and massive vector bosons result in a short-range
attractive force between an untwisted pair, lowering the
interaction energy compared to the Coulomb case.
Equation (9) is valid providing the monopole separation
is large compared to the core size: r ≫ rm. In this case the
sphaleron energy Esph is the maximum of the function

EðrÞ ¼ 2M − qmBextrþ Vmm̄ðrÞ; ð10Þ

and we denote by rsph the position of this maximum,
Esph ¼ EðrsphÞ. The pointlike approximation provides a
useful comparison to our results; it is expected to break
down when rsph ≈ rm.

III. NUMERICAL METHODS

We search for saddle points of the discretized energy
functional Elat ¼

P
x⃗ Elat. This is a considerably harder

computational task than finding a minimum-energy sol-
ution. We achieve this using a modified gradient flow
algorithm proposed by Chigusa et al. [23]. This converges
on saddle points by including a term in each flow iteration
that lifts the negative mode, and is summarized briefly
below; for full details consult the referenced paper.
If we denote the set of all field and link variables

by X, and an individual field or link variable by Xα, a
naive gradient flow update is

2Note that the theory also has the Taubes sphaleron solu-
tion [21], which is physically different and which we are therefore
not investigating in this work.
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Xαðτ þ δτÞ ¼ XαðτÞ − ∂αElatδτ; ð11Þ

where τ denotes “flow time” and

∂αElat ≔
∂Elat

∂Xα
: ð12Þ

Instead of this, Chigusa et al.’s algorithm [23] uses the
update

Xαðτ þ δτÞ

¼ XαðτÞ −
�
∂αElat − kGα

X
β

ð∂βElatÞGβ

�
δτ; ð13Þ

where k is a real constant, and G is a field on the lattice,
normalized such that

P
β GβGβ ¼ 1. In Ref. [23], it is

shown that any fixed point of the flow (13) is also a
stationary point of Elat, and that for suitably chosen k and
G, this stationary point will be a saddle point.
The ideal choice for G would be directly proportional to

the negative mode of the saddle point field configuration—
then the modified gradient flow would descend along all
positive modes and ascend along the negative mode to the
sphaleron. However, the sphaleron and its negative mode
are obviously unknown. We thus use a heuristic prescrip-
tion to choose G as close as possible to the true negative
mode: starting from an initial configuration sufficiently
close to the sphaleron, standard gradient flow using
Eq. (12) will minimize along the positive modes while
continuing to flow the system along the negative mode. The
point along the flow closest to the saddle point may be
identified by considering the sum of the squares of the
gradients at all lattice points. When this point is reached,
the deviation from the true saddle point will be largely
along the negative mode, and thus the modified flow (13) is
likely to converge along the saddle point. The normalized
gradient at this point is used as G in our calculations:

Gα ¼
∂αElat

ðPβ∂βElat∂βElatÞ1=2
; ð14Þ

evaluated at the point along the standard gradient flow
trajectory closest to the saddle point. Using the technique
described above we have been able to find the solitonic
equivalent of the sphaleron studied in Refs. [5,13] on the
lattice.
Our calculations were carried out on a periodic 643 lattice

using the LATfield2 C++ library [24] for parallelization. A
Barzilai-Borwein adaptive step size [25] was used to speed
convergence. A nonzero magnetic field was introduced by
initial conditions with total magnetic flux 48π=g, giving a
uniform magnetic field strength Bext ≈ 0.037=ga2. As the
periodic boundary conditions quantize the flux through the
lattice in units of 4π=g, an iterative gradient flow evolution is

unable to change the flux through the boundary (without
movingmonopoles to the edges). This has the effect of fixing
the asymptotic magnetic field at the desired value. The
magnetic field in units of m2

v was varied incrementally by
changing the scalar VEV

ffiffiffi
2

p
v, keeping β constant. Three

values of β were investigated: β ¼ 0.5, β ¼ 1, and β ¼ 2.

IV. SPHALERON FOR ’T HOOFT–POLYAKOV
MONOPOLES

For weak magnetic fields the sphaleron bears a clear
resemblance to the pointlike approximation of a monopole
and an antimonopole separated along the direction of the
external field. The magnetic charge is nonzero in two cubes
lying on a line parallel to the field axis, and the magnitude
of the scalar field has two minima, at the same points (due
to discretization effects the scalar field does not vanish). An
example of a sphaleron solution with separated magnetic
charges is shown in Fig. 2(a).
Figure 1 shows the dependence of sphaleron energy on

external field strength. As the field strength increases, the
energy barrier to monopole production lowers. For fields
well below the critical field strength this fits well to the
sphaleron energy for pointlike charges (10). As the field
increases the calculated sphaleron energy dips below the
point particle prediction. This is likely due to the effects of
partial cancellation between the overlapping monopole
cores (as observed in Ref. [22]).
As the field increases further, the distance between the

positive and negative magnetic charges decreases and
eventually they cancel each other. We refer to this phe-
nomenon as “annihilation,” though it is not a dynamical
process. The higher the value of β, the stronger the field

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

FIG. 1. Plot of sphaleron energy against field strength for
different values of β ¼ ms=mv. The dashed lines indicate the
predicted sphaleron energy assuming pointlike monopoles
[Eq. (10)]. The solid circles indicate the field strength at which
the sphaleron ceases to contain separated magnetic charges.
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required to annihilate the monopoles (see Fig. 1). There is
no visible discontinuity in energy at annihilation.
Above the annihilation threshold, the scalar field has

only one minimum, and the magnetic charge is zero
everywhere. The sphaleron still has a nonzero magnetic
dipole moment, originating from an axisymmetric ring of
electric current density centered about the minimum of the
scalar field [see Figs. 2(b) and 2(c)]. For fields slightly
stronger than the annihilation field strength the energy
density contours of the sphaleron continue to define a
peanutlike shape with two separate maxima [Fig. 2(b)]. For
very high magnetic fields energy contours are pill shaped
[Fig. 2(c)].
The sphaleron energy decreases monotonically with

increasing Bext until it reaches zero, where it plateaus (see
Fig. 1). At this point the saddle point configuration tran-
sitions to the vacuum configuration with only the homo-
geneous background magnetic field present. From Fig. 1 it
can be seen that the field strength where this happened is
independent of β ¼ ms=mv, and appears to coincidewith the
Ambjørn-Olesen critical field [16], Bext ¼ Bcrit ¼ m2

v=g.
Above Bcrit there is no energy barrier to the creation

of monopole-antimonopole pairs, which suggests that
monopole-antimonopole pairs are produced by a classical
instability.
We investigated this hypothesis by performing standard

gradient flow from a uniform supercritical background

field with small random white noise perturbations in the
gauge fields. The results are summarized in Fig. 3. A clear
instability is seen, as predicted in Ref. [16], but rather
than stabilizing to the Ambjørn-Olesen vortex lattice
solution presented in Ref. [16], the magnetic field continues
to become increasingly more localized. The local field
strength at the center of the vortex grows exponentially
until it reaches Bmax, which is the maximum value allowed
on the lattice. At this time (≈42050 flow time units in
Fig. 3), a monopole-antimonopole pair is produced. This
may be interpreted as the breaking of the vortex.
At the time of the pair production, both the magnetic

field and the energy density are highly localized in a vortex
line aligned with the external field. Inside the vortex line,
the scalar field vanishes (see Fig. 3), which restores the
SU(2) symmetry locally, and therefore the energy
density remains finite ∼Vð0Þ ¼ λv4, in spite of the local
magnetic field reaching nominally cutoff-scale values.
When the local magnetic field crosses Bmax, it flips sign,
and the vortex line breaks forming monopoles, which
quickly move to the edges of the lattice and annihilate,
lowering the magnetic flux by 4π=g.
It is interesting to note that the critical field strength

we have found for classical monopole pair production
agrees almost exactly with the field strength at which
quantum Schwinger pair production of pointlike monop-
oles becomes unsuppressed [10,11],

(a) (b) (c)

FIG. 2. Visualizations of sphaleron solutions for (a) subannihilating and (b),(c) superannihilating magnetic field strengths. Top plots
show energy density contours in units of m4

v in 3D space. Bottom plots show slices in a plane parallel to the magnetic field intersecting
the sphaleron at its center: the surface gives the scalar field magnitude in units of its VEV, while the vector plots give the direction of the
magnetic field (with the background subtracted) through the same slice. All plots shown have mv ¼ ms. Spatial axes have units of m−1

v .

DAVID L.-J. HO and ARTTU RAJANTIE PHYS. REV. D 101, 055003 (2020)

055003-4



BSchwinger ≈
4πM2

q3m
¼ fðβÞ2Bcrit; ð15Þ

where we have used Eq. (8). Though this may seem like an
unlikely coincidence, it is not entirely unexpected because
this is the natural field strength given by dimensional
analysis. It suggests that the Schwinger process turns
continuously to the classical instability when the field
exceeds the critical value.
For comparison, we also carried out a similar calculation

in the electroweak theory, where we do find the stable
vortex lattice predicted in Ref. [17]. In future work it may
be interesting to consider modifications of the electroweak
theory that contain monopole solutions [26,27]. If a similar
phenomenon to ours occurs in these theories at obtainable
magnetic fields, future heavy-ion collision data could be
used to further constrain these models.
It is also worth considering if the classical production of

monopoles could ever be observed in a laboratory.
Electroweak theory does not permit solitonic monopoles,
so the relevant mass mv is not the electroweak W boson
mass, but the mass of the charged gauge bosons associated
with the ’t Hooft–Polyakov monopole. Experimental
searches for heavy charged bosons give a lower-bound
mass of 5200 GeV [28], which implies a lower bound on
the magnetic field strength required to produce monopoles
of 9 × 107 GeV2 ≈ 4.5 × 1023 T. As the fields in current
LHC heavy-ion collisions are of order 1 GeV2 [29],

classical monopole production is impossible to achieve
with current technology. However, sufficiently strong
magnetic fields may have been present in the early
Universe [30].
Furthermore, even if such field strengths could be reached

in experiments, onewould expectmonopoles to be produced
by Schwinger pair creation at lower field strengths. Our
results show that at those fields, the thermal Schwinger
production rate is higher than for pointlike monopoles,
because the sphaleron energy is somewhat lower (see Fig. 1).
The lower-bound mass for solitonic monopoles is therefore
stronger than the ð2þ 2.6n3=2D Þ GeV value (nD denotes the
number of Dirac charge quanta) obtained in Ref. [14]. A key
question is whether this enhancement of production rate still
holds in spacetime dependent cases such as that investigated
in Ref. [4], thought to be valid for ultrarelativistic heavy-ion
collisions.
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FIG. 3. Standard gradient flow evolution of the magnetic field component in the direction of (left panel) the external field Bx and (right
panel) the scalar field magnitude jΦj, starting from a supercritical homogeneous magnetic field with a stochastic perturbation and
leading to the production of a monopole-antimonopole pair at flow time 42050. Values are taken along a line parallel to the field axis,
passing through the cores of the produced monopoles. The magnetic field is given in units of Bmax, the scalar field magnitude in units of
its VEV, and spatial distance in units ofm−1

v . The colors indicate the magnitude of the quantity plotted as shown in the color bar. Note the
uneven scale on the flow time axis. The plot shows the magnetic field strength Bx increasing exponentially due to the instability until it
reaches Bmax, at which time the monopoles (seen as discontinuities in the magnetic field) form. Once formed, the monopoles rapidly
move to the boundary where they annihilate, allowing the system to settle in the new equilibrium state with lower magnetic field.
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