
 

Roper state from overlap fermions

Mingyang Sun,1 Ying Chen,2 Gen Wang ,1 Andrei Alexandru,3 Shao-Jing Dong,1 Terrence Draper,1 Jacob Fallica,1

Ming Gong,2 Frank X. Lee,3 Anyi Li,4 Jian Liang ,1 Keh-Fei Liu ,1,* Nilmani Mathur,5 and Yi-Bo Yang 6

(χQCD Collaboration)

1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

3Department of Physics, The George Washington University, Washington, D.C. 20052, USA
4Institute for Nuclear Theory, University of Washington, Seattle, 98195, USA

5Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India
6Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China

(Received 1 November 2019; accepted 10 March 2020; published 30 March 2020)

The Roper state is extracted with valence overlap fermions on a 2þ 1-flavor domain-wall fermion lattice
(spacing a ¼ 0.114 fm and mπ ¼ 330 MeV) using both the sequential empirical Bayes (SEB) method and
the variational method. The results are consistent, provided that a large smearing-size interpolation operator
is included in the variational calculation to have better overlap with the lowest radial excitation. The SEB
and variational calculation with large smearing size are also carried out for an anisotropic clover lattice with
similar parameters (spatial lattice spacing as ¼ 0.12 fm and pion mass mπ ¼ 396 MeV) and obtain
consistent results. However, these calculations with clover fermions give a Roper mass of
mR ¼ 1.92ð6Þ GeV, while the same approach with overlap fermions finds the Roper ≈280 MeV lower,
at mR ¼ 1.64ð9Þ GeV, for identical valence pion mass. The fact that the prediction of the Roper state by
overlap fermions is consistently lower than those of clover fermions, chirally improved fermions, and
twisted-mass fermions over a wide range of pion masses has been dubbed a “Roper puzzle.” To understand
the origin of this difference, we study the hairpin Z-diagram in the isovector scalar meson (a0) correlator in
the quenched approximation. The lack of quark loops in the quenched approximation turns the a0 correlator
negative; giving rise to a ghost “would-be” ηπ state. Comparing the a0 correlators for valence clover and
overlap fermions, at a valence pion mass of 290 MeV, on three quenched Wilson-gauge lattices, we find
that the spectral weight of the ghost state with clover fermions is smaller than that of the overlap at
a ¼ 0.12 fm and 0.09 fm—the ratios of the Wilson ghost-state magnitudes (correlator minima) are about
half of those of overlap—whereas, the whole a0 correlators of clover and overlap at a ¼ 0.06 fm coincide
within errors. This suggests that chiral symmetry is restored for clover at a ≤ 0.06 fm and that the Roper
mass should agree between clover and overlap fermions toward the continuum limit. We conclude that the
present work supports a resolution of the “Roper puzzle” due to Z-graph type chiral dynamics. This entails
coupling to higher components in the Fock space (e.g., Nπ, Nππ states) to induce the effective flavor-spin
interaction between quarks as prescribed in the chiral quark model, resulting in the parity-reversal pattern as
observed in the experimental excited states of N, Δ and Λ.

DOI: 10.1103/PhysRevD.101.054511

I. INTRODUCTION

The nature of the lowest nucleon excited state, the Roper
N(1440) which appears in the πN scattering in the P11

channel at about 1370 MeV with a width of about
175 MeV, has been a controversial and intriguing subject
since its discovery. First of all, it is rather unusual to have
the first positive-parity excited state lower than the neg-

ative-parity excited state, which is the N
1
2
−ð1535Þ at

1510 MeV in the πNS11 scattering channel. This is contrary
to the excitation pattern in the meson sectors with either
light or heavy quarks. This parity reversal has caused
problems for the otherwise successful quark models based
on SUð6Þ symmetry with color-spin interaction between
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the quarks, which cannot accommodate such a pattern.
Realistic potential calculations with linear and Coulomb
potentials [1] and the relativistic quark model [2,3] all
predict the Roper to be ∼100–200 MeV above the exper-
imental value, and above the negative parity state. On the
other hand, the pattern of parity reversal was readily
obtained in a chiral soliton model, the Skyrme model,
via the small oscillation approximation to πN scattering.
Although the first calculations [4,5] of the original Skyrme
model gave rise to a breathing mode which is ∼200 MeV
lower than the Roper resonance, it was shown later [6] that
the introduction of the sixth-order term, which is the zero-
range approximation for theωmeson coupling, changes the
compression modulus and yields better agreement with
experiment for both the mass and width in πN scattering.
Since the quark potential model is based on SUð6Þ

symmetry with residual color-spin interaction between the
quarks, whereas the chiral soliton model is based on
spontaneous broken chiral symmetry, their distinct predic-
tions on the ordering of the positive- and negative-parity
excited states are most likely a reflection of different
dynamics derived from their respective symmetries. This
possibility has prompted the suggestion [7] that the parity
reversal in the excited nucleon and Δ, in contrast to that in
the excited Λ spectrum, is an indication that the interquark
interaction of the light quarks is mainly of the flavor-spin
nature rather than the color-spin nature (e.g., one-gluon
exchange type). This suggestion is supported in the lattice
QCD study of “valence QCD” [8] which finds that the
hyperfine splitting between the nucleon and Δ is greatly
diminished when the Z-graphs in the quark propagator are
eliminated by modifying the fermion action to prevent the
quarks from propagating backwards in time. This is an
indication that the color-magnetic interaction is not the
primary source of the interquark spin-spin interaction for
light quarks. (The color-magnetic part, being spatial in
origin, is unaffected by the truncation of Z-graphs in
Valence QCD, which only affects the temporal part.)
Yet, it is consistent with the flavor-spin interaction being
generated by the quark Z-graph in the Goldstone-boson-
exchange picture. This picture is enhanced by the extensive
dynamical coupled- channel (DCC) model analysis carried
out by the excited baryon analysis center [EBAC] at JLab
[9–11]. This DCC Hamiltonian approach involves a
nucleon core and the meson-baryon reactions in the πN,
ηN, and ππN channels which fits 22,348 independent data
points, representing the complete array of partial waves
below 2 GeV. In the πN P11 partial wave, it is found that
starting with a bare state at 1.763 GeV, two resonances
merge into the Roper resonance. They are at 1357 MeV
with Γ ¼ 152 MeV and 1364 MeV with Γ ¼ 210 MeV.
There is a third resonance at 1820MeVwith Γ ¼ 496 MeV
which may correspond to N�ð1710Þ. It is interesting to note
that the meson-baryon coupling brings down the bare state
by ≈400 MeV, to the Roper mass. The failure of the SUð6Þ

quark model to delineate the Roper and its photoproduction
has also prompted the speculation that the Roper resonance
may be a hybrid state with excited glue [12–14] or a qqqqq̄
five-quark state [15,16]. Thus, unraveling the nature of
Roper resonance has direct bearing on our understanding of
the quark structure and chiral dynamics of baryons, which
is one of the primary missions at experimental facilities
such as at Jefferson Lab [17]. At the moment, the nature of
Roper and why it is lower than the quark model prediction
as the radial excitation of the nucleon is unsettled.
Lattice QCD, being a first-principles approach, is

regarded as the most desirable tool to adjudicate the
theoretical controversy surrounding the issue and to discern
the nature of Roper. However, lattice calculations of the
Roper state are also shrouded in a puzzle which we shall
address and sort out in this manuscript. Studying the ghost
would-be ηπ state in the quenched approximation has
paved the way to better understand the chiral dynamics
and the origin of the difference due to fermion actions with
and without chiral symmetry at finite lattice spacing.
This manuscript is organized as follows. The status of

lattice calculations of Roper are reported in Sec. II where
the discrepancy between results fromWilson-type fermions
and those from the overlap fermions is pointed out. Sec. III
will see calculations of both the SEB and variational
methods for the clover and overlap fermions to check
the consistency of the two approaches in obtaining the
nucleon excited states. In an attempt to understand the
puzzling difference of the Roper between the two fermion
actions in terms of chiral dynamics, we calculate the ghost
would-be-ηπ state in the quenched approximation for the
overlap and Wilson fermions in Sec. IV. This is a sensible
and pertinent place to compare the coupling strength of
single-hadron interpolating fields to two-hadron states for
these fermion actions as a function of lattice spacing. We
finish in Sec. V with a summary and conclusion.

II. ROPER PUZZLE FROM LATTICE
CALCULATIONS

Lattice calculations of the positive-parity excitation of
the nucleon started out with the quenched approximation.
The first set of calculations used a nucleon interpolation
field which does not have a nonrelativistic limit to project to
the excited 1=2þ state [18–22] and found it to be much
higher than the Roper. Later, Bayesian methods [23,24] and
variational approaches with multiple interpolation opera-
tors [25–29] were introduced in the calculation of the
excited state. The results of the calculations are plotted in
Fig. 1 as a function of m2

π together with the corresponding
nucleon masses. The nucleon masses from different cal-
culations are all in agreement within errors. However, one
distinct feature stands out, i.e., the excited 1

2
þ states do not

approach the experimental Roper state at the physical pion
point upon chiral extrapolation. The only exception is
overlap fermions for which the Roper mass is consistently
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lower than in the other calculations at each value ofm2
π . The

situation with the dynamical fermion calculations is basi-
cally a replication of that of the quenched approximation.
As shown in Fig. 2, the variational calculations of Nf ¼
2þ 1 clover fermions from the CSSM Collaboration
[30,31], an anisotropic lattice calculation from the JLab
Collaboration [32], an Nf ¼ 2 clover and twisted-mass fer-
mions studies from the Cypress group [33], and a chirally
improved fermion study from the BGR Collaboration (N.B.
The result is from chiral extrapolation to the physical pion
mass) [34], all yield much higher Roper masses at the same
m2

π than those of the overlap calculation [35,36] which uses

the SEB method. Especially near the physical pion mass,
the results from the clover fermion [31,33], are ∼400 MeV
above the experimental Roper mass at 1370 MeV. The
twisted mass calculation from the Cypress group [33], with
large smearing sources in the variational approach, gives
lower Roper masses than those of the clover fermion and is
closer to that of the overlap fermion at mπ ∼ 300 MeV, but
higher at other pion masses, especially at mπ ¼ 270 MeV.
Recently, a calculation was made that used both q3 and q4q̄
(interpolation field in the form of Nπ and Nσ) operators on
a 2þ 1-flavor clover fermion lattice with a ¼ 0.0907 fm
and mπ ¼ 156 MeV to check if the Roper state could be
produced through the coupling of higher Fock space [37].
No Roper state was found below 1.65 GeV in this coupled-
channel scattering calculation. The same conclusion has
been drawn from a similar calculation on the same clover
fermion lattice except at mπ ¼ 411 MeV [38].
In contrast to the clover and twisted-mass results, it has

been shown [35,36] in Fig. 2 that the first positive-parity
excited nucleon state from overlap fermions with the SEB
method is consistently∼500 MeV above the corresponding
nucleon mass in the pion mass range up to ∼580 MeV.
This behavior is consistent with the typical size of the radial
excitation of ∼500 MeV for the nucleon, Δ, Λ and Σ as
well as heavy quarkoniums. The overlap calculation with
the SEB method is based on 2þ 1-flavor domain-wall
fermion configurations on the 243 × 64 lattice with a ¼
0.114 fm and sea pion mass at 330 MeV. Multiple overlap
valence quark masses are used in this partially-quenched
calculation to cover the valence pion mass range from
260 MeV to 580 MeV. We fit the available data for different
quark masses with the form
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FIG. 1. Quenched results of masses of the nucleon ground state
and first positive-parity excited state for a broad range of pion
masses. The green stars are results obtained from the overlap
fermion.

FIG. 2. Results with dynamical fermion configurations for the masses of the nucleon ground state and its first positive-parity excited
state across several pion masses. The magenta points and band are results obtained from valence overlap fermions on the domain-wall
sea with the SEB method. The brown points are from the variational results on the same lattice. The blue point is the SEB result on the
JLab clover configurations. The red/black point is the variational result on the JLab clover configurations with large/small interpolation
fields. Also listed are results from BGR Collaboration [34], Cyprus with twisted mass and clover fermions [33], CSSM with clover
fermions [30,31], and JLab with clover fermions on an anisotropic lattice [32].
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MN;R ¼ MN;Rð0Þ þ c2ðN;RÞm2
π;vv þ c3ðN;RÞm3

π;vs ð1Þ

where mπ;vv is the valence pion mass. The m3
π;vs term is

introduced to reflect the effects of partial quenching
between the valence and the sea quark mass. The partially
quenched pion mass mπ;vs is made of a combination of the
valence quark/antiquark and the sea antiquark/quark with
the relation m2

π;vs ¼ 1=2ðm2
π;vv þm2

π;ssÞ þ Δmixa2, where
Δmix is a low-energy constant for the mixed action. Since
the overlap fermion action and the domain wall fermion
action are close to each other, we obtain a small Δmix [39].
The value Δmix ¼ 0.030ð6Þð5Þ GeV4 we obtained is calcu-
lated on lattices with two lattice spacings (0.014 fm
and 0.085 fm) and is an order of magnitude smaller than
those of DWF on staggered and overlap on clover [39]. It
gives a shift of only 16 MeV to the valence pion mass
at 300 MeV for the lattice we use in this work. At the
physical pion limit, we obtain MN ¼ 0.999ð46Þ GeV and
MR ¼ 1.40ð11Þ GeV, in good agreement with experiment.
In Fig. 2, the data points are from the SEB fit to the results
from the full gauge ensemble and the error bars are
obtained directly from the fit. We also carry out a single-
elimination jackknife analysis by performing the SEB fit to
each jackknive ensemble, and treat the jackknife error of each
data point as the statistical error to build the covariance error
matrix. Based on this jackknife analysis, the chiral extrapo-
lation was carried out using Eq. (1) in the manuscript, which
is illustrated in the figure by the error band.
Based on this observation, it has been speculated that the

difference could be due to the fact that the overlap fermion
is a chiral fermion which induces different dynamics for the
excited nucleon. However, there is a caveat in that the
overlap calculation employed the SEB method [40]. This
method, although successfully applied in calculating
S11ð1535Þ [24], a0ð1450Þ and σð600Þ [41], and the radially
excited 1P charmonium state [42], has not been tested by
other groups. The variational approach is considered a robust
and trustworthy algorithm for excited-state calculation.
Thus, there is no consensus on this puzzle and one needs
to sort out the issue regarding different algorithms first.

III. VARIATIONAL AND SEQUENTIAL
EMPIRICAL BAYES CALCULATIONS

The only sensible way to check if the discrepancy
between the overlap fermion results from the SEB method
and those of other fermions from the variational method is
due to the different algorithmic approaches is to apply both
methods for the same fermion action and on the same lattice
to see if they produce consistent results. To this end, we
choose to examine two cases: an ensemble using clover
fermions from JLab [43,44] and another using valence
overlap fermions on a domain-wall sea generated by RBC/
UKQCD [44,45]. The parameters of the clover [43] and the
domain-wall [44,45] lattices are tabulated in Table I.

We first applied the SEB method on the clover configu-
rations with the same clover fermion as used by the JLab
group, except that we worked with a larger 243 × 128

lattice instead of the 163 × 128 lattice used to calculate
Roper in Ref. [32] at the same quark mass. The result is
plotted in Fig. 2. We see that the nucleon mass (blue point)
is consistent with that from the JLab calculation [32], but
the first positive-parity state from SEB (blue point) at 1.87
(13) GeV is lower than that of the JLab calculation at
∼2.20ð10Þ GeV by ∼300 MeV with more than a 2.5σ
difference. To check if this difference is due to the fitting
algorithms, we performed variational calculations with
different gauge-invariant Gaussian smearing sizes for the
nucleon source and sink.
Before addressing the variational calculation, it is worth-

while noticing that, to the extent that the Roper is the radially
excited nucleon, its primary distinction from the nucleon is
its radial wave function. This will affect the smearing size of
the source and sink to be used in the variational calculation.
To this end, we show in Fig. 3 the Roper and nucleon wave
functionswhichwere obtained byplacing twou quarks of the
sink interpolation field for the proton at the same point and
the d quark at a distance R away on a Coulomb gauge-fixed
lattice. These were obtained from a quenched calculation
with the overlap fermion on a 163 × 28 lattice with a ¼
0.2 fm [46]. We note that for mπ at both 633 MeV and
438MeV, there is a node atR ¼ 0.76 and 0.9 fm respectively,
indicating that it is a radial excitation of the nucleon with
perhaps some higher Fock space components, such as Nπ,
Nη andNππ states. Avariational calculation with dynamical
clover fermions atmπ ¼ 156 MeV has also observed a node
at R ∼ 0.8 fm in the Roper wave function [47] in Landau
gauge.We note that each Roper wave function in Fig. 3 does
not damp off at R ¼ L=2 ¼ 1.6 fm in Fig. 3 which indicates
that there will be certain finite size effect for the wave
function. As far as the spectrum is concerned, however,
mπL ¼ 10 for mπ ¼ 633 MeV (upper panel) and 7 for
mπ ¼ 438 MeV (lower panel). Thus, we expect that the
Roper mass is not much affected. The purpose of Fig. 3 is to
reveal that the Roper is mainly a radial excitation with a node
in its radial wave function. The finite size effect of the wave
function is not a primary concern in this study.
The existence of a node in the Roper wave function

explains the observation that the spectral weight for the

TABLE I. Lattice parameters of the clover and domain-wall
fermion configurations including the lattice size, spatial lattice
spacing as, the anisotropic factor ξ, the pion mass from the light
sea quark mass, and the number of gauge configurationsNconf are
listed.

Fermion L3 × T as (fm) ξ L (fm) mπ (MeV) Nconf

Clover 243 × 128 0.123 3.5 2.95 396 761
Domain wall 243 × 64 0.114 1 2.74 330 203
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Roper from the Coulomb wall source and point sink is
negative, in contrast to that of the nucleon. Since the spectral
weight of the Roper with the Coulomb wall source is the
product of two factors, one of which is the positive matrix
element h0jPx χðx; x; xÞjRoperi for the sink, the sign of the
wall-source matrix element hRoperjPx;y;z χðx; y; zÞj0i con-
trols the overall sign. The extra spatial sums in this matrix
element involve an R2 measure which gives more weight to
positions with larger R, so the node in the Roper wave
function (seen in Fig. 3) turns the overall weight negative.
Thus, both the explicit calculation of the radial wave function
and thenegative spectralweight lend concrete evidence to the
fact that the Roper is primarily a radial excitation of the
nucleon with perhaps some higher Fock-space components.
These lattice results have ruled out that the Roper is a pure
pentaquark state, since such a state would have one quark or
anti-quark in the relative P-wave and the rest in the lowest
S-waves. This would not lead to a radial node in the Bethe-
Salpeter wave function, in contrast to observation.
In view of the fact that the node of the Roper occurs

at the radial distance of ∼0.9 fm for the light pion
(mπ ¼ 438 MeV) case, one would want to have a source

with a commensurate size so that it could differentiate the
nucleon from the Roper in the variational calculation. In
this regard, we have chosen 5 operators with different
Gaussian smearing sizes whose root-mean-square (rms)
radius ranges from 0 to 0.86 fm, which should be enough to
cover the expected Roper node at ∼0.8–0.9 fm. Values
chosen for the smearing parameter w [48] and the number
of iterations, and the corresponding rms radius are listed in
Table II. We solve the equation for the generalized
eigenvalue problem (GEVP) [49–51]

CðtÞvnðt; t0Þ ¼ λðt; t0ÞCðt0Þvnðt; t0Þ; ð2Þ

where CðtÞ is the N × N correlator matrix for N interpo-
lation field operators Oi with matrix element defined as

CijðtÞ ¼ hOiðtÞO�
jð0Þi; ð3Þ

and the nth eigenvalue is expected to be [52]

λnðt; t0Þ ¼ e−Enðt−t0Þð1þOðe−jδEjðt−t0ÞÞ; ð4Þ

where δE is the energy gap between Enþ1 and En. We have
used 761 configurations of the isotropic clover action, on
each of which we chose 36 time slices to place the source,
resulting in 27,396 measurements in total. Spatially, the
sources are randomly placed. With the smearing parameters
w ¼ 0, 4, 7 and 11, we find the first nucleon excited state at
1.92(6) GeVas shown in Fig. 4(a) for the case t0 ¼ 2. This
(red point in Fig. 2) is quite consistent with that from SEB
method at 1.87(13) GeV (blue point in Fig. 2). On the other
hand, when a set of interpolation fields with only small
smearing sizes (w ¼ 0, 2 and 4) are used, we find the first
excited state at 2.19(11) GeV as shown in Fig. 4(b) (black
point in Fig. 2), which agrees with the JLab results.
This suggests that there are two radially excited states of

the nucleon. The lower one is mainly the 2S state with a
radial node at 0.8–0.9 fm as illustrated in Fig. 3, while the
higher one could be the 3S state with the first radial node
smaller than that of the 2S as evidenced in the wave
function study of Ref. [53], which is characteristic of the
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FIG. 3. Nucleon and Roper wave functions in the Coulomb
gauge for two different pion masses.

TABLE II. Values used for the smearing parameter w for the
clover and overlap variational calculations, the number of
iterations used for the Gaussian smearing, and the measured
root-mean-square (rms) radius.

Clover Overlap

w Iterations hr2i1=2 (fm) w Iterations hr2i1=2 (fm)

0 0 0 0 0 0
2 50 0.19 2 50 0.16
4 100 0.39 4 100 0.34
7 200 0.63 8 100 0.63
11 400 0.86 12 800 0.85
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Airy function as the solution of a linear potential. As a
result, it has better overlap onto the interpolating source and
sink with a smaller size. The second excited state may well
be the Nð1710Þ1=2þ at 1700 MeV which is ∼330 MeV
above the Roper, which is about the same gap we see
between the two excited states in the clover case. Since the
variational method with large smeared operators agrees with
the SEBmethod, it shows that both approaches are feasible in
obtaining the first excited state, namely the Roper.

A. Variational calculation with the overlap fermion

Next, we move on to performing variational calculations
for the DWF configurations with valence overlap fermions
to check the validity of the results from the SEB method as
alluded to earlier. We shall first consider the set of 4
smearing sizes in Table II with w ¼ 0, 2, 4 and 8. Before
solving Eq. (2), we first determine the combination of
interpolation operators which can lead to well-separated
nondegenerate states as is carried out in Ref. [33]. To do so,
we solve for the eigenvalues and eigenvectors of the 4 × 4
correlation matrix CðtÞ in Eq. (3)

CðtÞunðtÞ ¼ EnðtÞunðtÞ: ð5Þ

Note that EnðtÞ here is not the same as λðt; t0Þ in Eg. (2).
We plot the eigenvalues ofCðtÞ in Fig. 5(a) and their signal-
to-noise (S/N) ratios in Fig. 5(b) as a function of t for the
case mπ ¼ 343 MeV. We see from Fig. 5(b) that the S/N
ratios of the two lower eigenvalues fall below S=N ¼ 2
beyond t ¼ 8. This is where the first excited state starts to
level off. Thus, we are only able to resolve two states from
this set of smeared operators with the projected matrix

C̃ðtÞ ¼ UTCðtÞU; ð6Þ

where U ¼ ½u1; u2� is the 4 × 2 matrix spanned by the first
two eigenvectors with acceptable S/N ratios (i.e., ≥ 10), for

(a)

(b)

FIG. 4. Effective mass of the states extracted from the variation
study. Some states are painted faintly for clarity. The blue
horizontal line and band shows the fit of Roper mass.

(a)

(b)

FIG. 5. Eigenvalues and the signal-to-noise ratio S/N as a
function of time for mπ ¼ 343 MeV.
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their eigenvalues at t ¼ 8. We then solve the projected
GEVP for the projected 2 × 2 C̃ðtÞ

C̃ðtÞvnðt; t0Þ ¼ λðt; t0ÞC̃ðt0Þvnðt; t0Þ; ð7Þ

at the projection time tpro ¼ 8 and initial t0 ¼ 2. The
effective mass is defined as

MnðtÞ¼ ln½ðvTnðt−1ÞC̃ðt−1Þvnðt−1ÞÞ=ðvTnðtÞC̃ðtÞvnðtÞÞ�
ð8Þ

where M1 is the nucleon mass and M2 is that of the first
excited state and they are plotted in Fig. 6(a) for mπ ¼
343 MeV and in Fig. 6(b) for the partially quenched

valence mπ ¼ 511 MeV. The bands in these figures show
the errors of the fit of ðvTnðtÞC̃ðtÞvnðtÞÞ with a single
exponential e−Mnðt−t0Þ in the chosen windows which start at
t ¼ 8. It is gratifying to see that the Roper mass MR ¼
1.55ð10Þ GeV at mπ ¼ 343 MeV is in good agreement
with the corresponding value of 1.60(12) GeV from the
SEB method.
To check the sensitivity of the excited state to the

smearing size and the related issue of a possible second
excited state, as alluded to in the study of the anisotropic
clover lattice discussed in Sec. III, we employ additional
variational calculations with different smearing sizes for the
nucleon source. We consider a combination of a Coulomb
wall and a Gaussian smeared source and gauge-invariant
box smeared sinks [54] in the variational calculation. The
gauge-invariant box smearing is more economical than
Gaussian smearing, especially when the smearing size is
large [54]. We shall use multiple box sizes for the sink. This
entails variational calculations with asymmetric correlation
matrices. Variational approach with asymmetric correlation
matrices has been applied to the excitation spectrum of
baryons, particularly the positive- and negative-parity
excited states of the nucleon [21,55,56]. The size of the
smeared box BN is N lattice spacings and the physical
length is LBN

¼ Na, where a ¼ 0.1105 fm for this lattice.
Besides the wall source, we have another Gaussian smeared
source with w ¼ 5.5, 8 or 12. The rms radii for the sources
with w ¼ 8 and 12 are 0.63 fm and 0.85 fm, respectively, as
listed in Table II, and that of w ¼ 5.5 is 0.46 fm. In each
case, we used two box sources (BN) to solve the generalized
eigenvalue problem (GEVP) for the 2 × 2 asymmetric
correlation matrix for each t > t0. The specifics of the
source and sink, and t0; tref are given for a total of 9
different setups in Table III. The eigenvalues e−mit and
eigenvectors are real for the asymmetric correlation matrix
so defined. The effective mass and ðvTnðtÞC̃ðtÞvnðtÞÞ are
defined from the eigenvectors at tref as specified in
Table III. It turns out that all the methods with different

TABLE III. Test of sensitivity to the size of the Gaussian
source. A Coulomb and a Gaussian source with three sizes are
tested. Gauge-invariant box sinks BN (N ¼ 2, 4, 6, 8, 12) are
listed for each of the three combined Coulomb and smeared
sources.

Method Source Sink t0 tref

1 Wall, ω12 B2, B6 5 6
2 Wall, ω12 B4, B8 5 6
3 Wall, ω12 B8, B12 4 6
4 Wall, ω8 B2, B6 4 6
5 Wall, ω8 B4, B8 4 6
6 Wall, ω8 B8, B12 4 6
7 Wall, ω5.5 B2, B6 3 6
8 Wall, ω5.5 B4, B8 3 6
9 Wall, ω5.5 B8, B12 3 6

(a)

(b)

FIG. 6. Results of the variational calculations of overlap
fermion on 2þ 1 fermion DWF configurations for two valence
pion masses. These are from the eigenvector-projected variation
with w ¼ 0, 2, 4 and 8 smearing.
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source sizes produce the same nucleon mass for mπ ¼
343 MeV, but a range of Roper masses from 1.63(8) GeV
for method 1 to 1.92(2) GeV for method 9. The effective
masses for the nucleon and Roper for methods 1 and 9 are
plotted in Fig. 7, similar to those in Fig. 6. We present the
nucleon and the Roper results in Fig. 8 for the 9 methods in
Table III together with that with 4 sources and 4 sinks from
Fig. 6(a). We see that, again, the sources with large
smearing (w ¼ 12 for method 1, 2 and 3) (colored green)
have lower masses than those with smaller smearing (red
points with w ¼ 8) and still smaller smearing (cyan points
with w ¼ 5.5). This is basically the same as we found with
the anisotropic clover lattice in Sec. III, i.e., the use of
the smaller smearing sources results in a higher value for
the measured excited-state mass. This is consistent with the

picture that there are two radially excited states, namely the
Roper and Nð1710Þ1=2þ at 1700 MeV, which is
∼330 MeV above the Roper. The latter, being 3S radial
excitation with a smaller node position overlaps better with
a source of a smaller size. In Fig. 8, an almost monotonic
increase of the measured value of the excited-state mass as
the source size decreases. This suggests that the small 2 × 2
correlation matrix results in a contamination between the
first and second excited states in the windows amenable to
fits with reasonable errors. The clear signal in Fig. 7(b)
suggests that it is the pure second excited state. With the
present setup and statistics, we are not able to resolve 3
separated states with the chosen set of operators. Otherwise,
it would have been easier to verify the picture that we infer.
We add the results of the variational calculation with

w ¼ 0, 2, 4 or 8 on Fig. 2 (brown points) for several pion
masses to show that they are consistent with those from the
SEB method. The upshot of the variational calculation with
large smearing size is that its results are consistent with
those from the SEB method for both the clover and overlap
fermions. This removes the uncertainty regarding the fitting
algorithms. The remaining challenge is to understand why
the Roper with overlap fermion is lower than that from the
clover fermion by ∼300 MeV on lattices with similar
lattice spacing and sea quark mass.
We have not studied the source-size dependence of SEB,

but we presume the size will have an effect, similar to what
is found in the variational approach. In this work, we used
the Coulomb wall source for the overlap data on the 243 ×
64 lattice in Sec. II which are shown in Fig. 2 as the pink
points. The wall source is known to suppress the higher
excited states so that the first excited state can be extracted

(a)

(b)

FIG. 7. Results from variational calculation of overlap fermion
on 2þ 1 fermion DWF configurations at mπ ¼ 343 MeV with
different sources and sinks whose specifics are given in Table III.

FIG. 8. The nucleon and first excited state in the 1=2þ channel
for 9 methods with various sources and sinks listed in Table III.
Method 0 is the case with eigenvector-projected variation with
w ¼ 0, 2, 4 and 8 smearing. These are for the case
mπ ¼ 343 MeV.
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more readily in the fitting algorithm, such as SEB. Had we
used a point source, the SEB would have given a high first
excited state, similar to that of the variational approach with
small smearing sources. This is so because all the nS
radially excited states would have contributed coherently to
the spectral weights for the point source and the present
lattice spacing at 0.114 fm is not fine enough to isolate the
2S state from the 3S and higher excited states. It is
conceivable that varying the size of the source in SEB
may well result in a mixture of 2S and 3S states as shown in
the variational approach in Fig. 8. We will study this in the
future.
We should mention that the Roper is a resonance which

decays to Nπ; Nππ;Δπ � � �… To find its pole mass and
width on the lattice, one should do the scattering phase shift
calculation including the Nπ channel with the Luscher
method, such as those that have been done in Refs. [37,38].
The Luscher method relates the interaction energy shift of
the two hadrons to the phase shift. In the case of the Roper,
this energy shift is a reflection of the mixing between the
confined would-be Roper from the 3-quark interpolation
field and the πN P-wave scattering state at a particular
relative momentum. As the two states approach each other
when the relative momentum between the π andN changes,
there is level repulsion to avoid crossing. The maximum
repulsion occurs at maximum mixing of the two states and
they are positioned at the half maxima of the scattering
cross section (or phase shift δ ¼ 90 degrees) sandwiching
the maximum point for a Breit-Wigner resonance cross
section, which reflects the full-width-at-half-maximum
(FWHM). When the width of the resonance is relatively
narrow (e.g., the Roper width is ∼175 MeV) compared to
its mass, the maximum repulsion occurs close to the would-
be crossing point between the noninteracting two hadron
state (i.e., πN) and the confined would-be Roper from the
3-quark interpolation field. When the lattice volume is large
enough so that the would-be Roper does not change
appreciably with increasing volume, the would-be crossing
point is just the mass of the would-be Roper. In this case,
the Roper mass from the 3-quark interpolation field in this
work should be close to the resonance pole calculated from
the πN scattering study à la Luscher. The shift of the pole
position from the would-be Roper mass is related to the
deviation from the Breit-Wigner form and is bounded by
half of the width Γ=2 which is ∼88 MeV for the Roper.
This is much smaller than the ∼600 MeV discrepancy
between the Roper states calculated from the clover and
overlap fermions, which is what we try to resolve in this
study. We can find evidence for the above argument from
the lattice calculations of the ρ resonance from ππ scatter-
ing. One is aNf ¼ 2 calculation of the ρ resonance from ππ
scattering in the elongated lattice to change the pion
momentum [57]. The resonance mass amres ¼ 0.4878ð4Þ
turns out to be very close to the would-be ρ mass of amρ ¼
0.4800ð30Þ [58] from the q̄γiq interpolation field at a

volume where the ππ P-wave state is far above the would-
be ρ. The other ππ þ KK̄ calculation [59] is carried out on
an isotropic lattice for the Nf ¼ 2þ 1 case; the resonance
mass is again very close to that from the q̄Γq interpolators.
Since the width of the Roper at 175 MeV is close to that of
the ρ at 150 MeV, we think that using 3-quark interpolation
field to calculate the Roper mass in this work should be a
good approximation to that of the Roper resonance.

IV. MULTIHADRON STATE FROM SINGLE-
HADRON INTERPOLATION FIELD

To track down the origin of the difference in the
prediction of the Roper mass in clover and overlap
fermions, we note that chiral effective theory hints toward
substantial mixtures of higher Fock-space components,
involving Nπ, and Nππ states, as the reason why the quark
model’s Roper prediction is too high. As mentioned in the
introduction in Sec. I, the most sophisticated dynamical
coupled-channel (DCC) model [9–11] shows that the
coupling to πN, ηN and ππN brings down the uncoupled
bare Roper state by ∼400 MeV to the experimental value.
The experimental electroexcitation amplitudes of the Roper
resonance provides evidence for it to be primarily the radial
excitation of a three-quark core, while higher Fock space
components are needed to describe the low Q2 behavior of
the amplitudes [60].
To study the implication of the higher Fock space and the

difference between the clover and overlap fermions, we
note that there is a well-documented would-be ηπ ghost
state in the isovector scalar meson channel (i.e., the a0
channel) in the quenched approximation with overlap
fermion [41]. This is caused by the “hairpin” diagram as
illustrated in Fig. 9 with the ψ̄ψ interpolation field.
It is clearly observed that the a0 correlator starts to

develop a negative tail when the pion mass is less than
∼600 MeV, and it is progressively more negative at earlier
time slices for smaller quark masses. This is a clear
indication that at least one of the ghost ηπ states, being
lightest in mass, is dominating the correlator over the
physical a0 at larger times. This has been reported in the
literature for the quenched [61–63] and partially quenched
[64] calculations. This ghost ηπ contribution in the a0
correlator has been studied in the chiral perturbation theory
[41,61,64]. The Fourier transform of the one-loop hairpin

FIG. 9. Hairpin diagram in the quenched isovector scalar meson
(a0) correlator. When the pion mass is lower than ∼600 MeV, it
produces a ghost would-be-ηπ state which shows up as a negative
tail at large time separation for the overlap fermion.
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diagram gives the following contribution to the isovector
scalar meson propagator in Euclidean time [41]

GSðp⃗¼ 0Þ¼FTfa2Δhðp⃗¼ 0Þg

¼−
r20m

2
0

2N3
S

ð1þmπtÞ
2m4

π
e−2mπ tþðt→NT − tÞ; ð9Þ

where the ð1þmπtÞ factor is due to the double pole of the
would-be η ghost propagator in the loop. r0 is the coupling
between the scalar interpolation field and the η and π or the
matrix element h0jψ̄ψ jηπi and m2

0 ¼ 2Nfχt=f2π is the
hairpin insertion mass which is related to the topological
susceptibility χt in the pure gauge theory. Note this ghost
state contribution is negative due to the coupling between
two annihilating pseudoscalar propagators in the unfinished
η channel without the presence of quark loops as in Fig. 10.
In a full dynamical fermion situation, the quark loops

from the fermion determinant give rise to a geometrical
series to lift the would-be Goldstone boson to η and η0 in the
Witten-Veneziano formalism to resolve the Uð1Þ anomaly
[65,66]. This is illustrated in the cartoon picture in Fig. 10.
In the quenched approximation, there are no quark loops.
This results in the hairpin diagram from the double
annihilation of the would-be η in Fig. 9 and gives the
negative ghost ηπ behavior in the quenched a0 correlator
[41,61,64]. The existence of this ghost propagator is a
prelude to revealing the fact that the ηπ type multihadron
states can be produced by the one-hadron q̄q interpolation
field in a full dynamical fermion calculation. Even though
this ghost ηπ behavior is well documented in a quenched
calculation with the overlap fermion for a range of pion
mass from 600 MeV down to 180 MeV, there has not been
such clear evidence for the Wilson-type fermion. We shall
make a comparison between the overlap fermion and the
clover fermion.
Plotted in Fig. 11 are the a0 correlators on three

quenched Wilson-gauge lattices with lattice size/spacing
of 243 × 48=0.12 fm (upper panel), 283 × 48=0.09 fm
(middle panel), and 323 × 64=0.06 fm (lower panel),
respectively. The a0 correlators are calculated at
∼296 MeV pion mass for the overlap and clover fermions
with the mean-field clover term. Both of them are HYP-
smeared. To take into account the fact that the renormal-
ization factors ZS are different in the two actions, we
compare their a0 correlators for the heavy pion case

(∼1 GeV) where there are no ghost states. To normalize
the correlators for comparison in Fig. 13, we divide the
clover a0 correlator by a factor which is the ratio of the
clover to overlap correlator values at large time separation

FIG. 10. The isovector scalar meson (a0) correlator with
dynamical fermion configurations. The quark loops in the
vacuum are responsible for producing full ηπ and η0π propagators
in the 2þ 1-flavor case.

FIG. 11. Comparing the isovector scalar meson (a0) correlators
between clover and overlap fermions for pion masses at
∼296 MeV for lattice spacings a ¼ 0.12 fm (upper panel), a ¼
0.09 fm (middle panel) and a ¼ 0.06 fm (lower panel). The lines
connecting the points are there to guide the eyes.
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with the a0 mass at ∼1.6–1.9 GeV. The factors are
0.847(43), 0.980(67), 1.111(43) for the lattices with spac-
ings 0.12,0.09 and 0.06 fm, respectively.
The ηπ ghost states are clearly seen in all three lattices

where the correlators turn negative beyond t ∼ 0.25 fm.The
conspicuous feature of the comparison is that the negative
parts of the clover correlators for the cases of a ¼ 0.12 fm
(upper panel) and a ¼ 0.09 fm (middle panel) are shal-
lower than those of the overlap, whereas they are about the
same at a ¼ 0.06 fm (lower panel). The existence of the
minimum is the result of a positive exponential term from
the physical a0ð1236Þ and a negative exponential term from
the ηπ ghost in Eq. (9). Since we have taken the relative
renormalization of the clover and the overlap into account
from comparison of the a0 correlator at large pion mass
where there is no ghost state, the physical a0 exponential
should be the same for the cases in Fig. 11. Their
differences should reflect the couplings to the ηπ ghost
state. Therefore, we take the correlator at the minimum to
serve as an approximate yet meaningful indicator for the
strength of coupling to the ηπ state. To see the quark mass
dependence, we calculate the ratio of the a0 correlator
between the clover and overlap fermions at their respective
minimum in the pion mass range between 250 MeV and
450 MeV and plot in Fig. 12. We see that for a ¼ 0.12 fm
and 0.09 fm the ratios are about 0.4–0.6 and the pion mass
dependence in this range is not strong. On the other hand,
the ratio is close to unity for the a ¼ 0.06 fm case across
the same mass range. This basically reflects what we have
seen in Fig. 11. It is commonly believed that chiral
symmetry is recovered for the Wilson-type fermion in
the continuum limit; we interpret our results to imply that
the chiral symmetry breaking effect of the clover fermion is

indeed observable at a ¼ 0.12 fm and a ¼ 0.09 fm,
whereas the chiral symmetry is likely recovered for the
clover at a ¼ 0.06 fm, by virtue of the fact that its a0
correlator, including the coupling to the ηπ ghost state,
seems to coincide with that of the overlap fermion. These
can be considered discretization error. However, it is not
clear if what we observe is a simpleOða2Þ error. In view of
the fact that the ratios are at ∼0.5 for both the a ¼ 0.12 fm
and a ¼ 0.09 fm cases and they jump to unity at
a ¼ 0.06 fm, the possibility that chiral symmetry restora-
tion may set in abruptly near the latter lattice spacing
should be considered.
We have also compared Wilson and overlap fermions to

explore the discretization errors related to chiral dynamics.
Plotted in Fig. 13 are the a0 correlators from theWilson and
overlap fermions (without HYP smearing) on the same
three quenched Wilson-gauge lattices with a pion mass
around 290 MeV. As in the case of the above clover/overlap
comparison, we divide the Wilson a0 correlator by a factor
which is the ratio of the Wilson to overlap correlator values
at large time separation with the a0 mass at ∼1.7 GeV. The
factors are 2.43(52), 2.20(20), 2.20(16) for the lattices with
spacings 0.12, 0.09 and 0.06 fm, respectively. To put results
from all three lattices in the same figure, we have multiplied
the N3

S factor from Eq. (9) to scale out the volume
dependence as far as the ghost state is concerned. We
see from Fig. 13 that the ghost states in theWilson fermions
are much shallower than those the overlap. They are
shallower than those of the clover fermion in Fig. 11.
When the ratios of the minima are plotted in Fig. 14 for the
pion mass range of 280 to 330 MeV, we see that the Wilson
minima is only ∼10% of that of the overlap for the a ¼
0.12 and 0.09 fm cases. At a ¼ 0.06 frm, the ratio is still
only ∼40%. This clearly demonstrates that Wilson fermion

FIG. 12. The ratios of the minima of the quenched a0 correlator
of the clover fermion to that of overlap fermion for a range of pion
masses in three lattice spacings.

FIG. 13. The isovector scalar meson (a0) correlator with
quenched configurations for Wilson and overlap fermions for
a valence pion mass of ∼290 MeV at three lattice spacings are
plotted for comparison.
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at these lattice spacings, due to a lack of chiral symmetry,
does not produce the full Z-graphs in the hairpin diagram,
as does the overlap fermion. Its coupling to the ηπ ghost is
still weaker than that of the clover. This is to be expected
since Wilson has OðaÞ error, whereas clover has Oða2Þ
error and is chirally improved from the Wilson fermion.
How is the above observation of the ghost state in the a0

channel related to the fact that the Roper state is∼300 MeV
lower than that of the clover fermion that we studied in
Sec. III? As we mentioned in the Introduction: the finding
in the extensive dynamical coupled-channel (DCC) study
[9–11], the need of higher Fock space in the electro-
excitation experiment [60], and the pattern of parity
reversal of the excited N, Δ in contrast to those of Λ,
all lead to the suggestion that there is a large higher Fock
space component in the Roper state. It is shown explicitly
in a chiral constituent quark model that the flavor-spin
interaction, due to the pseudoscalar meson exchange
between the quarks, is responsible for the parity pattern
in N, Δ, and Λ and the lowering of Roper from the SUð6Þ
quark model with the color-spin interaction [67].
For the baryons, there are quark loop diagrams leading to

πN and ηN states which are depicted in Fig. 15. They are
analogous to the ηπ state in the a0 correlator in Fig. 10.
In order to study the impact of the higher Fock-space

components on the Roper, lattice calculations with clover
fermions at mπ ¼ 156 MeV are carried out with the
inclusion of the Nπ and Nσ type 5-quark (i.e., qqqqq̄)
interpolation fields in addition to the 3-quark interpolation
field. Even though the expected Nππ and Nπ scattering
states are observed, no additional state is found below
1.65 GeV [37,68]. It is concluded that the Roper does not
come down from the value calculated with the 3-quark
interpolation field alone in this πN scattering calculation.

A similar conclusion is reached with mixed 3-quark and
5-quark interpolation fields for the clover fermion at
mπ ¼ 411 MeV [69].
To understand the results of these πN scattering calcu-

lations, we point out that there are other classes of diagrams
that will lead to higher Fock space components. These are
depicted in Fig. 16 as Z-graphs. This can happen when
there is more than one valence quark (or more than one
valence antiquark) in the interpolation field, such as for
baryons. The back-bending of the valence quark in the
Z-graph results in an antiquark propagating forward in
time. It can combine with another forward propagating
valence quark to form a meson propagating between the
two valence quarks as depicted in Fig. 16. It is worthwhile
to note that this mechanism does not exist for the nonsinglet
mesons with q̄Γq-type interpolation fields [70]. This is
because the forward propagating antiquark from the
Z-graph due to the valence quark and the other forward
propagating antiquark from the interpolation field do not
form a meson. To do so, it would require one quark and one
antiquark. Thus additional Z-graphs in the baryon can be
cast effectively as the origin of meson exchanges between
the valence quarks in the chiral quark model [71]. It is the
flavor-spin interaction from the Goldstone boson exchange
that produces the parity-reversal pattern in N and Δ and
lowers the Roper state to its experimental value in the chiral
constituent quark model [67]. Including a 5-quark inter-
polation field will entail coupling to higher Fock-space
components, as illustrated in Fig. 15, but not through the
Z-graphs in Fig. 16, if the fermion action does not have a
tendency to generate Z-graphs dynamically at the given
lattice spacing. The lattice calculations in this study, the πN
scattering calculations [37,68,69], the Roper calculation in
DCC [9–11], and the chiral quark model [67], all together
hint strongly that it is the Z-graphs in Fig. 16, innate to
chiral dynamics, that are responsible for lowering the Roper
state and resulting in the parity reversal in N and Δ excited
states. Therefore, only a lattice action with a good chiral
symmetry on the lattice will be able to capture the correct

FIG. 14. The ratios of the minima of the quenched a0 correlator
of the Wilson fermion to that of overlap fermion for a range of
pion masses at three lattice spacings.

FIG. 15. Quark loop contribution to the πN and ηN inter-
mediate states from a three-quark nucleon interpolation field.

FIG. 16. Z-graphs which lead to πN and ππN intermediate
states from a three-quark nucleon interpolation field.
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dynamics of the Roper resonance and aid in the correct
extraction of its energy level. Using the overlap fermion
action, which has exact chiral symmetry at finite lattice
spacing, we are able to extract the energy of the Roper
resonance on fairly coarse lattices. On the other hand, at
a ¼ 0.06 fm or smaller lattice spacing, the clover fermion
may become chiral, in which case the calculated Roper
state should come down to its experimental value.

V. SUMMARY AND CONCLUSION

We have calculated the Roper state on the lattice from the
valence overlap fermions with both the sequential empirical
Bayes (SEB) method and the variational method with large
smeared sources and found consistent results. The calcu-
lations were carried out on the 2þ 1-flavor domain-wall
fermion gauge configurations on a 243 × 64 lattice with the
lattice spacing a ¼ 0.114 fm and light sea quark mass
which corresponds to a pion mass of 330 MeV. The chirally
extrapolated Roper mass is consistent with the experimen-
tal result of N(1440).
The Roper masses for pion masses in the range 260–

570 MeV are consistently lower than those from the cal-
culation with Wilson-type fermions by ∼300–600 MeV. To
further check the fitting algorithms, we applied both SEB
and variational approaches to the 2þ 1-flavor clover
fermion configurations on an anisotropic 243 × 128 lattice
with comparable spatial lattice spacing and pion mass, i.e.,
with as ¼ 0.123 fm, ξ ¼ 3.5, and mπ ¼ 390 MeV. Again,
we find that the SEB and variational calculations agree
when a large smearing-sized interpolation field is included
in the variation calculation. The Roper mass on this clover
lattice is ≈280 MeV higher than the value found on the
previous lattice with overlap fermions at the same pion
mass. It is clear that the difference is not due to the fitting
algorithm.
To understand the definite difference between the two

fermion actions, we examine the coupling of single-hadron
interpolating fields to two hadron states. This explores the
idea that the three-quark core couples to the higher Fock
space Nπ; Nη and Nππ states which brings down the Roper
mass from the quark model’s uncoupled-three-quark-state
value. To this end, we studied the would-be-ηπ ghost state
with the isovector scalar ψ̄ψ interpolation field in the
quenched approximation. In this channel, it is well known
that the would-be-ηπ ghost state dominates at pion masses
lower than ≈600 MeV for the overlap fermion. This
indicates that the one-hadron ψ̄ψ interpolation field will
couple strongly to the physical ηπ and η0π two-hadron
states in the dynamical fermion setting.
We compare the a0 correlators between the clover

fermion and overlap fermion, both with HYP smearing.
It is found that while the ηπ ghost state shows up
prominently with the overlap fermion on all three lattices
at lattice spacings a ¼ 0.12, 0.09 and 0.06 fm, the coupling
to the ghost state are not as strong in the clover cases for

a ¼ 0.12, 0.09 fm; the minima of their a0 correlator which
characterize the strength of the coupling to the ηπ in the
hairpin diagram are only half as strong as those of their
corresponding overlap case. On the other hand, the a0
correlators of the clover and overlap coincide within errors
at a ¼ 0.06 fm. We take this as an indication that chiral
symmetry is restored for the clover fermion at this lattice
spacing. It is not clear, at this stage, if this is due to the
simple Oða2Þ discretization error, or perhaps the chiral
symmetry sets in abruptly near a ¼ 0.06 fm. In any case,
one would expect that the Roper will come down to the
experimental value with the clover fermion at a ≤ 0.06 fm.
We also compared Wilson and overlap fermions. The
minima of the a0 Wilson correlators are much shallower
than those of the overlap for the above three lattices,
reflecting the large OðaÞ error of the Wilson fermion. That
the Wilson fermion is worse than the clover as far as the
hairpin Z-graph is concerned is consistent with the fact that
clover is chirally improved from the Wilson fermion.
We surmise that the different lattice results, described in

this work, for the Roper state from the Wilson-type fermion
versus overlap fermion and their associated chiral behaviors
for the quenched ghost would-be-ηπ state supports a
resolution of the “Roper puzzle” due to Z-graph type
chiral dynamics. This entails coupling to higher Fock-space
components (e.g., Nπ, Nππ states) to induce the effective
flavor-spin interaction between quarks prescribed in the
chiral quark model, resulting in the parity-reversal pattern
as observed in the excited states of N, Δ and Λ. This work
is also consistent with the conclusion about the existence of
higher Fock-space components in the Roper when exper-
imental information on the nucleon to Roper transition
form factors is examined [17].
In this study, we concentrate on comparing the Roper

state calculated from the 3-quark interpolation field and try
to reconcile the difference between the results from the
clover fermion and the overlap fermion. Since the width of
the Roper is small compared to its mass, we believe that the
mass calculated from the 3-quark interpolation field should
be close to the resonance mass from the πN scattering,
much like the case of the ρ resonance from the ππ
scattering. In the future, when the pion mass is close to
the physical one, it would be important to carry out a lattice
calculation which includes the Nπ and Nππ channels to
locate the pole position of the Roper and its width from the
phase shift.
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