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We numerically study the single-flavor Schwinger model with a topological #-term, which is practically
inaccessible by standard lattice Monte Carlo simulations due to the sign problem. By using numerical
methods based on tensor networks, especially the one-dimensional matrix product states, we explore the
nontrivial #-dependence of several lattice and continuum quantities in the Hamiltonian formulation. In
particular, we compute the ground-state energy, the electric field, the chiral fermion condensate, and the
topological vacuum susceptibility for positive, zero, and even negative fermion mass. In the chiral limit, we
demonstrate that the continuum model becomes independent of the vacuum angle @, thus respecting CP
invariance, while lattice artifacts still depend on 6. We also confirm that negative masses can be mapped to
positive masses by shifting § — € + 7 due to the axial anomaly in the continuum, while lattice artifacts
nontrivially distort this mapping. This mass regime is particularly interesting for the (3 + 1)-dimensional
QCD analog of the Schwinger model, the sign problem of which requires the development and testing of
new numerical techniques beyond the conventional Monte Carlo approach.
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I. INTRODUCTION

QED in 1 + 1 dimensions, also known as the Schwinger
model [1], is analytically solvable in the massless-
fermion limit and exhibits many properties similar to
QCD: confinement, chiral symmetry breaking, a U(1),
quantum anomaly, and a topologically nontrivial vacuum
leading to a 6-term. Therefore, the lattice-regularized
version of the Schwinger model has been adopted as a
benchmark model for developing and testing new numeri-
cal techniques. These comprise algorithms to tackle the
sign problem, new ideas for Markov chain Monte Carlo
(MCMCO) investigations, and tensor network approaches
(see, e.g., Refs. [2—4], respectively, and references therein).

Already since the seminal work by Coleman and collab-
orators [5,6], the role of topology in the Schwinger model
has been extensively discussed. The nontrivial topological
vacuum structure gives rise to a 8-dependent electric back-
ground field [5,6], which linearly depends on the fermion
mass and gets completely screened in the zero-mass
limit [7]. Similarly, the ground-state energy density, the
chiral fermion condensate, and the topological vacuum
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susceptibility of the Schwinger model are nontrivially
dependent on € and the mass parameter. In particular, the
topological vacuum susceptibility, which in the QCD analog
measures the strength of CP violation of the theory, vanishes
in the massless limit.

One well-studied regime in the parameter space of the
Schwinger model is the second-order phase transition that
occurs at @ = z [6] and a fermion mass of m ~ 0.33¢ [8,9],
where g is the dimensionful coupling. A less studied regime
is a vanishing or even negative fermion mass, which we
consider in the current paper.

The motivation for looking at this parameter range is
twofold. First, it is expected that a negative mass can be
trivially mapped to a positive mass by shifting  — 0 + =,
which is given in the continuum due to the axial quantum
anomaly [10-12]. However, as we demonstrate, lattice
artifacts distort this mapping, so that negative-mass results
only reproduce positive-mass results with 6 — 6 4 z after
the continuum extrapolation. The negative-mass scenario is
particularly interesting in the many-flavor case, where it
can give rise to the CP-violating Dashen phase and pion
condensation [13].

Second, the zero-mass regime is motivated by the
possibility of having a vanishing up-quark mass in the
QCD analog, which has been studied for several decades
because it provides a potential solution of the long-standing
strong CP problem [14—17]. The key point of this proposal
is that topological effects can give rise to an effective
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up-quark mass that does not spoil the solution to the strong
CP problem but nevertheless appears in the chiral
Lagrangian. There is currently no evidence that this
effective mass term is large enough to make the proposal
phenomenologically viable (see Ref. [18] for a review), but,
if feasible, it would be an elegant solution of the strong CP
problem. Both this solution and the alternative axion
solution of the strong CP problem [19-21] render the
theory independent of the vacuum angle # in the con-
tinuum. However, lattice artifacts still depend on 6, as we
show for the single-flavor Schwinger model.

Since all the above questions are of nonperturbative
nature, it would be natural to address them through numeri-
cal lattice calculations, e.g., by the successful MCMC
method. However, the Schwinger model has a sign problem
when a topological #-term is added to the action. This
renders the MCMC approach inapplicable, at least when the
value of the vacuum angle @ becomes too large.

In addition, as discussed above, we are also interested in
going to zero and even negative fermion mass. In this
case, the lattice Dirac operator D will develop zero modes.
This is problematic for standard MCMC methods which
use the operator DD to have a real and positive action and
then integrate out the fermions. The resulting determinant
of DD,

det(D'D) a/Dd)"'DCI)exp {-®T[D'D]"'®}, (1)

is estimated stochastically (see, e.g., Ref. [22]) with
appropriately chosen bosonic fields @' and ®. Thus, if a
zero mode appears in DD, the integral in Eq. (1) is ill
defined. If we also add a topological 6-term to study the
physics questions described above, we encounter a double
sign problem, thus ruling out a treatment with MCMC.

A possible way out are tensor network techniques and,
since we consider the (1 4 1)-dimensional Schwinger
model, in particular the matrix product state (MPS)
approach. Investigations of gauge theories in 1 + 1 dimen-
sions, especially of the Schwinger model, have progressed
substantially over the last years. There have been several
works concentrating on the spectrum of the Schwinger
model using MPS [4,9,23-32]. The model has also been
studied at nonzero temperature [4,33—37], nonzero chemi-
cal potential [30,31,38] and for real-time problems [27,39].
In addition, quantum link models [40,41], Z,-QED models
[42-44], and non-Abelian gauge models have been
explored with the MPS approach [45-50]. Besides MPS,
tensor network renormalization techniques [51-53] also
have been very successfully employed to study properties
of gauge theories in 1 + 1 dimensions and recently even in
a simple (2 + 1)-dimensional gauge theory [54].

An early work on the Schwinger model with a topo-
logical term using density matrix renormalization group
methods can be found in Ref. [8] and a more recent one

using MPS in Ref. [9]. However, in these papers the main
interest has been to explore the phase transition at a value of
the vacuum angle 8 = z. Reference [9] nicely demonstrated
the breaking of the CP symmetry happening at a first-order
phase transition.

In the present work, we are interested in a different
regime of the Schwinger model with a topological f-term,
namely at positive and negative fermion masses close to
zero, i.e., far away from the phase transition. We aim to
compute the O-dependence of the ground-state energy
density, the electric field, the chiral fermion condensate,
and the topological vacuum susceptibility in this regime, in
particular for the CP-conserving case of a vanishing mass.
This extended regime allows us to examine the full range of
validity of the mass-perturbation theory computations in
the Schwinger model [7], including its limitations on the
lattice. Our work also serves as a proof of concept that the
MPS approach works well even for negative masses, which
has not been explored before. The examination of this
regime is particularly important for the long-term goal of
applying such new numerical techniques to the above-
mentioned unresolved issues of QCD.

II. MODEL AND METHODS

A. The Schwinger model

The massive Schwinger model [1] describes (1 + 1)-
dimensional quantum electrodynamics coupled to a single
massive Dirac fermion, with the Lagrangian density

=i = gh—my —  Fu P + 2 vE,,  (2)
4 i¥s

Here, v denotes the two-component fermionic field with
bare mass m and A, is the U(1) gauge field with coupling
constant g and field strength F,, = 0,A, — 0,A, (Where p,
v =0, 1). The -term in Eq. (2) with 0 € [0, 2] is a total
derivative and therefore does not affect the classical
equations of motion, but it does affect the quantum
spectrum. In terms of the dimensionless parameter m/g
of the model, both the massless case m/g = 0 and the free
case m/g — oo can be solved analytically. Therefore, the
limits of very small or very large masses can be studied
within perturbation theory, while the intermediate regime
requires a nonperturbative treatment.

The Hamiltonian density of the massive single-flavor
Schwinger model in the temporal gauge, A, = 0, reads

1 0 2
H = =iy (0 = igAy )y + mypy + 3 (7: + g—ﬂ) (3)
plus an irrelevant constant. The electric field, F = —Al, is

fixed by the GauB constraint, 9;F = g@y’y, up to an
integration constant of ¢g8/2z, which corresponds to an
electric background field [6]. The 6@-parameter can be

054507-2



TOPOLOGICAL VACUUM STRUCTURE OF THE SCHWINGER ...

PHYS. REV. D 101, 054507 (2020)

shifted between the electric field and the fermion mass term
by performing an anomalous axial rotation of the fermionic
field (see Appendix A for details). The axial quantum
anomaly is also the reason why the Hamiltonian in Eq. (3)
contains a f-term at all, even though this term can be
stripped away on the classical level when the Hamiltonian
is formulated in terms of the electric field [55,56].

The dependence of several observables on the constant
electric background field gf/2x was computed in the
continuum Schwinger model for the limit m/g < 1 with
mass-perturbation theory [7]. The ground-state energy
density in units of the coupling was found to be [57]

Eo(m, 0) mx mX 2
P = e -x(5)

X (M€ 1 cos(20) + mgE-). (4)

where X = ge’/(27%/?), y is the Euler-Mascheroni con-
stant, and p3&, = —8.9139, u3€_ = 9.7384 are numerical
constants. Note that the topological cosine structure of the
ground-state energy density appears analogously in QCD
and axion physics, and plays an important role for axion
phenomenology (see, e.g., Ref. [59]).

From the energy density (4), one can obtain the electric
field density, which is (up to a factor) its derivative with
respect to 8. In units of the coupling, it is given by
F(m,0) d Ey(0,m)

=21 ————
9 00 g

mx

mx . 2 PP
=2m—5sin(0) + 7 7 usE.sin(20).  (5)
g

Thus, in the presence of massive fermions, the constant
electric background field density F(6) = gf/2x gets par-
tially screened due to vacuum polarization. In the massless
case, the field is completely screened, which can be
equivalently described by the elimination of the vacuum
f-angle by an axial fermion rotation.

The second derivative of the energy density with respect
to 6 corresponds (up to a sign) to the topological vacuum
susceptibility. In units of the coupling, it reads

Kop(m.0) & Ey(0.m)

g S0 &

p) I\?2
- 'Z_zcos(g) - ,z(”;_z) 12E, cos(20).  (6)

This quantity vanishes in the chiral limit where physics
becomes 6 independent, similar to the QCD case, where
the topological vacuum susceptibility is a measure for CP
violation. Note that the susceptibility in Eq. (6) as well as
the ground-state energy in Eq. (4) and the electric field
in Eq. (5) are invariant under the simultaneous shifts of
0 — 0 + 7 and m — —m. This is because the #-parameter

can be rotated from the electric field into the fermion
mass term, as explained above. Thus, a shift by A0 ==
gets compensated for by a change of the mass sign,
mexp(iAf) = —m.

Finally, one can also compute the chiral fermion con-
densate C = (py), which is given by the derivative of the
energy density with respect to the bare fermion mass,

C(m.0) 0 &(m.0)
g Jom ¢
by am (X\2
=——cos(d) —— [ —
g ©) 29 (g>
X (€, cos(20) +2E),  (7)

and which is independent of the fermion mass in first
order. The condensate transforms similarly to the fermion
mass under an axial transformation, therefore the above-
mentioned shift of § - 6+ 7 induces m — —m and
C(m,0) - —C(—m,0 + x), as can be seen in Eq. (7). In
the massless limit, the condensate still seems 6 dependent at
first sight, but this angular parameter becomes unphysical
as it can be rotated away by said axial rotation.
Equivalently, for m = 0 the phase of the condensate can
be absorbed by a shift in the Schwinger boson field and
becomes unobservable. Also note that the condensate itself
it not a physical quantity and only enters observable
quantities when multiplied by the fermion mass. Thus,
the model’s #-dependence still vanishes for m = 0.

B. Lattice formulation

Our goal is to numerically compute the #-dependence
of the quantities in Eqgs. (4)—(7) using the MPS approach,
for positive, zero, and negative fermion masses. For our
numerical simulations with MPS, we use a lattice formu-
lation of the Schwinger Hamiltonian. To distinguish lattice
from continuum quantities in our equations, we denote
lattice quantities with roman letters as opposed to the
calligraphic letters for continuum quantities.

A possible discretization of the continuum Schwinger
Hamiltonian in Eq. (3) on a lattice with spacing a is given
by the Kogut-Susskind Hamiltonian [60]

i .
H=—-—> (¢ne ¢, —Hc.)
2a ~

2
+mY (Db + D F(8)

In the expression above, ¢, is a single-component fer-
mionic field describing a fermion on site n, m is the bare
fermion mass, and g is the coupling constant. The operators
F, and 9, act on the gauge links in between the fermions,
and F, gives the quantized electric flux on link n. They
fulfill the commutation relation [8,,, F| = i5, , and hence
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e acts as rising operator for the electric flux. The angle 9,,
is restricted to [0, 27] since we use a compact formulation.
The GauB} constraint on the physical states translates to

F,-F,.,=0, VYon (9)
on the lattice, where Q, = ¢, — (1 —(=1)")/2 is the
staggered fermionic charge.

We choose to work with open boundary conditions, for
which we can use Eq. (9) to integrate out the gauge fields
[23,61]. After a residual gauge transformation, the dimen-
sionless lattice Hamiltonian reads

(phpns1 — He.)

N-2 n 6 2
SIS (Z Octa). (0)
=0 n=0 \“Nk=0

n

where we have defined the dimensionless constants x =
1/(ag)? and u = \/xm/g. As in the continuum case, the
dimensionless integration constant 6/2x corresponds to a
constant electric background field. Hence, we see that the
model only has three independent parameters: the lattice
spacing and the bare fermion mass, both in units of the
coupling, and the vacuum angle 6.

We would like to make contact to the continuum
prediction with the results extracted from the dimensionless
lattice Hamiltonian. To this end, let E(m, 6) be the ground-
state energy of the dimensionless Hamiltonian W from
Eq. (10), which is related to the dimensionful energy
density Ey(m, ) from Eq. (4) by

ag g
Thus, starting from Ey(m, @), we find
E
Eo(m,0) = ¢ 22l0) (12)

2N

where we have used that the volume L in units of the
coupling is given by Lg = N/,/x. Consequently, the lattice
quantity that should correspond to the continuum energy
density (4) is Ey/2N. Note, however, that Ey/2N is UV
divergent [58]. In order to obtain a UV-finite quantity, we
can simply subtract the result for a fixed value of 6 = 6,
and look at AEy(m,0)/2N = [Eq(m,0) — Eq(m, 6y)]/2N.
For small enough bare fermion mass, we expect that toward
the continuum limit this UV-finite lattice ground-state
energy density becomes approximately equal to the per-
turbative continuum prediction AEy(m, @) [62],

AE()(m,H) NAEO(m,H) o 80(1’71,9) —go(m,eo) (13)
N ~ g2 - 92 :
After extrapolating our numerical lattice data for the
UV-finite ground-state energy density AEy(m,6) to the
continuum, we can numerically compute the derivatives to
obtain the continuum electric field density F (m, 6) and the
continuum topological vacuum susceptibility y(m, @). The
electric field density and the topological vacuum suscep-
tibility are already UV finite without subtracting their
values at 6,, which is why we denote them as F and y

instead of AF and Ay, respectively.

Alternatively, we can also directly measure the electric
field per unit volume with MPS and numerically compute
its derivative to get the continuum topological vacuum
susceptibility. As (F, + 68/2x)g approaches the electric
field F(x) in the continuum limit, we expect F,, + 6/2x to
follow Eq. (5) for small fermion masses toward the
continuum. Notice that we are using a staggered formu-
lation; thus, in order to compensate for staggering effects,
we average F, over the system and look at the quantity

(14)

In addition, we also have direct access to the chiral
condensate, which in our staggered formulation translates
to C = /x> N-1(=1)"¢}¢,/N. For nonvanishing bare
fermion mass, this quantity is UV divergent [24,27,37].
Thus, we again subtract the value for 8,, AC(m,0) =
C(m,0) — C(m,6,), and expect to find for small fermion
masses toward the continuum limit

AC(m, ) _ C(m,0) —C(m,6,)

AC(m,0) ~
) g g

(15)

C. Matrix product states

In order to obtain the ground state of the Hamiltonian in
Eq. (10), we use the MPS ansatz. For a system with N sites
and open boundary conditions, it reads

d

Z AUAL ..

iy, iy

lw) = AR ® |in) ® ... @ |iy). (16)

where A} are complex matrices of size D x D for 1 <

k<N and A} (A}) is a D-dimensional row (column)
vector. The size D of the matrices, called the bond
dimension of the MPS, determines the number of
variational parameters in the ansatz and limits the amount
of entanglement that can be present in the state (see
Refs. [63-65] for detailed reviews).

Given a Hamiltonian, the MPS approximation for the
ground state can be found in a standard manner by
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iteratively updating the tensors A;* one after another while
keeping the others fixed [66]. In each step, the optimal
tensor is determined by finding the ground state of an
effective Hamiltonian describing the interaction of the site
with its environment. The ground-state wave function is
obtained by repeating the updating procedure starting from
the left boundary and sweeping back and forth until the
relative change of the energy is below a certain tolerance 7.
After obtaining the MPS for the ground state, we can
measure all kinds of (local) quantities such as the electric
field and the chiral condensate.

For convenience in the simulations, we choose to
translate the fermionic degrees of freedom in Eq. (10) to
spins using a Jordan-Wigner transformation [23]. Although
tensor networks and in particular MPS can deal with
fermionic degrees of freedom with essentially no additional
cost in the algorithm [67-69], this allows us to avoid
dealing with anticommuting fermionic operators. In spin
language, Eq. (10) reads

N=2 u Y=
W=x)» (040, +Hc)+Z)» (=1)(1+0%)
2
n=0 n=0
N-=-2 n 0 2
+ +—1, 17
> (z 0c+5) (17)

where Q, = (6% + (—1)")/2 is the staggered charge and
6* = (6" +ic”) and o° are the usual Pauli matrices.

Although the Hamiltonian in Eq. (17) is nonlocal, we
expect MPS to be a suitable ansatz to describe its low-
energy spectrum. For one, the original Hamiltonian (8) is
local, and for bare fermion masses smaller than (m/g), =
0.33 the model is gapped with a unique ground state.
Moreover, as shown in Ref. [9], its low-energy states are
characterized by small values of the electric field. Hence,
the gauge links can be effectively considered as finite
dimensional and the ground state can be efficiently
described by a MPS [70]. Integrating the gauge degrees
of freedom out can be seen as projecting the ground state of
the original Hamiltonian locally on the gauge invariant
subspace. Such a projection increases the bond dimension
at maximum by a factor on the order of the effective
dimension of the gauge links. As a result, the ground state
of Hamiltonian (17) is expected to be well described by a
MPS with small bond dimension, too.

III. RESULTS

We examine the 6@-dependence of the ground-state
energy density, the electric field, the chiral condensate,
and the topological vacuum susceptibility for a wide range
of fermion masses, m/g € [—0.07,0.21], and lattice spac-
ings corresponding to x = 1/(ag)? € [80, 160]. In order to
systematically probe for finite-volume effects and to be
able to extrapolate our results to the thermodynamic limit,

LAl
000—1—(b) W
AA M LL]
AA....
0.002f Lt
A_m
an" 7n/g =0.0
N
0.000
0.0 0.2 0.4
0/2x
ah
0.04 @

m/g=0.14
I 1
0.0 0.2 0.4

0/2m

m/g =021
1 1

0.0 0.2 0.4

0/2m

FIG. 1. UV-finite ground-state energy density as a function of
the angle @ for (a) m/g = —0.07, (b) m/g = 0.0, (¢c) m/g = 0.07,
(d)m/g = 0.14, and (e) m/g = 0.21. The orange triangles (green
squares) correspond to finite-lattice data with x = 80 (x = 160).
The red dots represent the result obtained after extrapolating our
finite-lattice data to the continuum which can be compared to the
perturbative prediction from Eq. (13) (blue solid line). In all cases
the error bars are smaller than the markers.

we explore for each combination of (0, m/g,x) a large
range of system sizes corresponding to volumes N//x €
[4.5,45]. In addition, we have another truncation effect due
to the finite bond dimension present in our numerical
simulations. This error can be controlled by repeating the
calculation for every set of (6,m/g,x,N) for a range of
D € [20,140] and extrapolating to the limit D — oo
(details about the extrapolation procedure can be found
in Appendix B). In all our simulations, we stop as soon as
the relative change in the ground-state energy is below
n = 1071 Moreover, we focus on half a period of
0 € [0, 7], since all observable quantities are predicted to
be (point) symmetric around € = z [see Egs. (4)—(7) and
exemplary data of a full period of €€ [0,27] in
Appendix C].

A. Ground-state energy

Our results for the UV-finite ground-state energy density
are shown in Fig. 1, after subtracting the value for 8, = 0
and extrapolating to the limit N — oo. The figure contains
our data for the largest and smallest lattice spacing as well
as the continuum extrapolation. Note that the result for
0y = 0, which is subtracted in A&y(m, 0), is smaller than
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FIG. 2. Comparison between the finite-lattice and continuum
data of the ground-state energy density from Fig. 1 for m/g =
0.07 (filled markers) and for m/g = —0.07 after reflection with
respect to the x axis (open markers). The orange triangles (green
squares) correspond to x = 80 (x = 160), the red dots to the
continuum limit. (Inset) Absolute value of deviations between the
lattice and continuum data [see Eq. (18)] for m/g = 0.07 (filled
markers) and m/g = —0.07 (open markers) for x = 80 (orange
triangles) and x = 160 (green squares).

the results for @ > 0,. This is why the UV-finite ground-
state energy density in Fig. 1 is positive for m > 0, while
the UV-infinite expression in Eq. (4) is negative.

In general, we observe that we can reliably extrapolate to
the thermodynamic limit and control our errors due to the
finite bond dimension and system size (see Appendix B
for details). Independent of the fermion mass, we see that
finite-lattice effects are more pronounced around the
extremal values of the energy density at & = z. For small
masses, our data exhibit larger relative changes when going
to smaller lattice spacings, whereas there is hardly any shift
for the two largest masses m/g = 0.14 and 0.21, especially
for small 6.

With our finite-lattice data, we can extrapolate to the
limit ag — 0 and estimate the continuum values. As Fig. 1
reveals, the error bars resulting from this extrapolation are
negligible and we can obtain precise estimates for the
continuum limit. Comparing our results to the prediction
from mass-perturbation theory in Eq. (13), we observe
excellent agreement for m/g < 0.07 [see Figs. 1(a)-1(c)].
For the largest two masses, perturbation theory eventually
breaks down and fails to describe our data, as expected.
Even though m/g = 0.21 is still much smaller than unity,
the perturbative results become less reliable than our
numerical computations in this regime. This is illustrated
by comparing the perturbative prediction of the critical
mass of the phase transition, (m/g).~0.18 (based on
Ref. [71]), with the nonperturbative value (m/g).~
0.18 <« 0.33. Although the perturbative calculations in
Ref. [7] are still qualitatively correct and approximately
follow our numerical data even in the large-mass parameter
regime [see Figs. 1(d) and 1(e)], we can only obtain

quantitatively precise results with numerical techniques
beyond perturbation theory.

In particular, it is interesting to look at our continuum
data for vanishing bare fermion mass. As predicted by the
perturbative result in Eq. (13), we indeed observe that the
energy density becomes independent of @ once the extrapo-
lation to the continuum is performed. This elimination of
the @-parameter in the chiral limit is only given in the
continuum and does not apply to finite-lattice spacings, as
one can see in Fig. 1(b).

Moreover, it is instructive to compare our results for
m/g = —0.07 and 0.07. In the continuum, a negative bare
fermion mass can be mapped to the same positive mass
value by shifting the #-angle by z [see Eq. (13)]. Hence, a
negative mass yields the same ground-state energy for 6 €
[0, 7] as the corresponding positive mass for 6 € [r, 2x].
This can be seen when comparing Figs. 1(a) and 1(c),
keeping in mind that the mapping requires not only the shift
6 — 6 + x but also the shift 8, — 6, + x, i.e., the UV-finite
quantity is obtained by subtracting the value at ) =z
instead of 6, = 0.

Equivalently, the continuum data for m <0 can be
mapped to the continuum data for m > 0 by reflecting
the former with respect to the x axis. Even though this
mapping works well in the continuum, Fig. 2 reveals that it
is distorted for our finite-lattice data. This is expected due
to the difficulty to establish chiral symmetry and the
corresponding axial anomaly on the lattice [72].

The artifacts from the finite-lattice spacing enter with
opposite sign, breaking the reflection symmetry for neg-
ative and positive masses. Moreover, for a fixed value of the
lattice spacing, the deviations from the continuum result not
only differ in sign, but also their absolute value

AEy(m,0) 3 AEy(m,0) (18)
2N 7

AK(m,0) =

differs in magnitude, especially for intermediate values of 6
(see inset of Fig. 2). While the deviations for positive and
negative bare fermion masses are comparable for 6 =~ 0 and
0 ~ &, the data for positive m/g have smaller lattice effects
in the intermediate regime, even though the order of
magnitude is the same in both cases.

Looking at Figs. 1(a) and 1(c), we see that these
differences disappear when extrapolating to the limit of
vanishing lattice spacing. Thus, the reflection symmetry is
restored and our continuum data is in excellent agreement
with the perturbative prediction for small masses.

B. Electric field

With our MPS approach, we can directly measure the
electric field in the ground state. Performing the same
extrapolation procedure as for the energy density, we obtain
the data shown in Fig. 3. Again, the errors resulting from
the extrapolation in system size and bond dimension are
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FIG. 3. Electric field density as a function of the angle @ for
(@ym/g=-0.07,(b)m/g=0.0,(c)m/g = 0.07,(d) m/g = 0.14,
and (¢) m/g=0.21. The orange triangles (green squares)
correspond to finite-lattice data with x = 80 (x = 160). The
red dots represent the result obtained after extrapolating our
finite-lattice data to the continuum which can be compared to the
perturbative prediction from Eq. (5) (blue solid line). In addition,
we also show the results obtained by numerically computing the
derivative of our continuum estimate for the UV-finite ground-
state energy density (open black diamonds).

negligible, and finite-lattice effects are more pronounced
for smaller values of m/g. The lattice effects become
stronger for § = n/4 due to the sine dependence of the
electric field [see Eq. (5)], in contrast to the ground-state
energy in Fig. 1 whose cosine-dependent lattice effects
become more distinct for @ = = [see Eq. (4)].

Just as before, we can estimate the continuum value of
the electric field by extrapolating our finite-lattice results to
the limit of vanishing lattice spacing. In general, we find
that we can reliably estimate the continuum limit, while the
errors are slightly larger compared to the energy density. In
particular, for the largest two masses we observe enhanced
error bars for a #-angle of z, which is likely caused by the
fact that the continuum extrapolation becomes increasingly
challenging as we approach the phase transition at
(m/g),~0.33 and 6 = 7.

When comparing our continuum results for the electric
field to the predictions from mass-perturbation theory [see
Eq. (5)], we observe a similar picture as for the ground-state
energy density. For bare fermion masses m/g < 0.07 [see
Figs. 3(a)-3(c)], the perturbative prediction is in excellent

agreement with our continuum results. In particular, for
m/g = 0 our data are compatible with zero, independent of
6. Hence, our results confirm that for vanishing mass, the
background field gets screened completely and the total
electric field vanishes. Moreover, our data for m/g =
—0.07 and m/g = 0.07 can be mapped in the continuum
by reflection with respect to the x axis, while finite-lattice
artifacts distort this mapping with opposite sign. Moving on
to larger fermion masses, perturbation theory eventually
breaks down and Eq. (5) does not reproduce the behavior of
our data for m/g > 0.14. In contrast to the energy density,
the perturbative result does not even qualitatively describe
our numerical data for the largest mass, m/g = 0.21. As
pointed out before, this mass regime cannot be accurately
captured by perturbation theory, which manifests itself in
predicting a wrong critical mass of the phase transition.

As a cross-check, we can also obtain data for the electric
field density by numerically computing the derivative of
our results for the continuum energy density, which we
show in Fig. 3 for comparison. In general, the values for the
electric field obtained in this way are in good agreement
with those from extrapolating the direct measurement of the
electric field to the continuum. Although numerically
computing the derivative enhances the errors by a factor
proportional to 1/A#, the results from our data for the
energy density are typically more precise than the extrapo-
lated electric field values. The reason for this is that the
electric field is in general more sensitive to finite-volume
and finite-lattice effects (see Appendix B), resulting in
larger error bars in the extrapolated values. For large
fermion masses, the errors increase in both cases around
0 =~ &, thus indicating that we get closer to the critical
value (m/g),.

C. Chiral condensate

The MPS approach also gives us access to the chiral
condensate in the ground state. Performing the same
extrapolation procedure as for the ground-state energy
density and the electric field, we obtain the results in
Fig. 4, where we have again subtracted the value for 6, = 0.
As before, the result for 6, = 0, which is subtracted in
ACy(m, 0), is smaller than the results for 8 > 6. This is
why the UV-finite chiral condensate in Fig. 4 is positive
for m > 0, while the UV-infinite expression in Eq. (7) is
negative.

Compared to the ground-state energy density and the
electric field, the chiral condensate is less susceptible to
finite-lattice effects and there is hardly any difference
between results for our coarsest and finest lattice spacing.
As a result, the error bars from extrapolating our finite-
lattice data to the limit ag — O are essentially negligible.

Notice that the chiral condensate corresponds to the
derivative of the energy density with respect to the bare
fermion mass [see Eq. (7)]. Thus, in leading order, mass-
perturbation theory predicts a behavior independent of the
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FIG. 4. UV-finite chiral condensate as a function of the
angle 0 for (a) m/g = —0.07, (b) m/g = 0.0, (c) m/g=0.07,
(d) m/g=0.14, and (e) m/g=0.21. The orange triangles
(green squares) correspond to finite-lattice data with x = 80
(x =160). The red dots represent the result obtained after
extrapolating our finite-lattice data to the continuum which can
be compared to the perturbative prediction from Eq. (15) (blue
solid line). Note that the sign of the data for positive and
negative masses does not change since the chiral condensate is
mass independent at leading order.

parameter m/g. Looking at our results for small masses in
Figs. 4(a)-4(c), we see that this indeed is the case, and
Eq. (15) is in excellent agreement with our data.

At next order in perturbation theory, we expect finite-
mass effects to become relevant, which becomes particu-
larly interesting when comparing our data for m/g = —0.07
and 0.07. Since the chiral condensate transforms similarly
to the fermion mass under an axial rotation, a shift of
0 — 0+ does not only induce m — —m but also
C(m,0) - —C(—m, 0 + r) [see Eq. (15)]. Hence, changing
the sign of the condensate for m < 0 in the range 6 € [0, 7]
reproduces the corresponding positive condensate for
m >0 in the range 6 € [r,2x]. This can be seen in
Figs. 4(a) and 4(c), keeping in mind that the shifted UV-
finite quantity is obtained by subtracting the value at 8y = #
instead of 6, = 0.

In the massless limit, our data for the chiral condensate
are still € dependent [see Fig. 4(b)], but 8 becomes an
unphysical parameter as it can be rotated away by the
above-mentioned axial rotation (see Appendix A). For

0.01
=
< 0.00fF
5
%
= —0.01F
m/g=—0.07
i 1 1
0.0 0.2 0.4
0/2m
0.01
= (©
~
%t 0.00f
£
g
= —0.01f
m/g = 0.07
1 1 1
0.0 0.2 0.4 0.0 0.2 0.4
/2 0/2m
- 0.0
~
=
E
0.1
=
m/g=0.21
1 1 1
0.0 0.2 0.4
0/2m
FIG. 5. Topological susceptibility as a function of the angle 6

for (a) m/g = —0.07, (b) m/g = 0.0, (¢) m/g = 0.07, (d) m/g =
0.14, and (e) m/g=0.21. The purple triangles (red dots)
correspond to the (second) derivative of the continuum data
for the electric field (energy density), the blue solid line
corresponds to the perturbative prediction from Eq. (6).

larger values of m/g, the data only change moderately
[see Figs. 4(d) and 4(e)], whereas perturbation theory
erroneously predicts new qualitative features that do not
occur in our numerical data, such as a dip around
0/27 ~0.19. Thus, similar to the electric field, the pre-
diction by mass-perturbation theory for the chiral conden-
sate in Eq. (7) breaks down for large masses m/g > 0.14 as
we approach the phase transition.

D. Topological vacuum susceptibility

Although we cannot directly measure the topological
vacuum susceptibility in our Hamiltonian framework, we
can obtain this quantity by either numerically differentiat-
ing our continuum estimates for the electric field or by
computing the second derivative from our data for the
ground-state energy [see Eq. (6) and Appendix B for
details]. Figure 5 shows our results for both approaches.

In general, both methods give remarkably consistent
results. The data obtained from the second derivative of the
energy density have noticeably smaller error bars, except
form/g > 0.14 and 6 ~ x. Already the electric field and the
ground-state energy density showed that the perturbative
result breaks down for our largest two values of m/g, and
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0.01
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—0.07 0.00 0.07 0.14 0.21

m/g

FIG. 6. Topological susceptibility as a function of the bare
fermion mass m/ g for various values of 8/2x, namely 0.0 (blue),
0.05 (orange), 0.1 (green), 0.15 (red), 0.2 (purple), 0.25 (brown),
and 0.3 (pink markers). The results were obtained from numeri-
cally computing the derivative of the electric field. As a guide for
the eye the markers are connected with dotted lines.

we see that in the topological vacuum susceptibility as well,
as expected [see Figs. 5(d) and 5(e)].

For small masses, our data are again in excellent
agreement with the predictions from mass-perturbation
theory, as Figs. 5(a)-5(c) reveal. In particular, Fig. 5(b)
shows that for vanishing fermion mass our data are
compatible with y,,/g =0, once more indicating that
the background field gets completely screened in that case
and @ is not a physical parameter. This becomes even more
apparent in Fig. 6, where we show our data for the
susceptibility as a function of the bare fermion mass for
various values of 8 [74]. The figure clearly shows that for
vanishing bare fermion mass, the different curves intersect
at yop/ g ~ 0, which demonstrates the CP invariance of the
Schwinger model for m/g = 0. Just as in QCD, where the
topological vacuum susceptibility is a measure of CP
violation, the presence of a massless fermion allows the
f-angle to be rotated away by an axial fermion rotation,
thus CP is preserved. The same rotation also maps our
results for negative and positive masses when shifting
0 — 0 + & [see Figs. 5(a) and 5(c)], as we already observed
for the ground-state energy and the electric field. Note that
Fig. 6 does not reveal this mapping, since the susceptibility
is only shown for small values of 6 < 7.

Finally, we point out that the topological susceptibility
at @ = 0 (corresponding to the blue markers in Fig. 6)
becomes negative for negative fermion masses and is
expected to diverge to negative infinity at m/g~ —0.33
(see Ref. [75] for a discussion of a similar effect in
two-flavor QCD). This is because the well-known phase
transition at m/g ~ 0.33 and € = 7 is equivalent to a phase
transition at m/g~ —0.33 and 6 = 0, due to the above-
mentioned mapping. Thus, the diverging susceptibility at
6 = 0 is associated with the diverging correlation length
as one approaches the critical point. This phase transition

would be nontrivial to study in the two-flavor Schwinger
model with two masses of opposite sign, giving rise to the
CP-violating Dashen phase [13].

IV. CONCLUSION

In this paper, we systematically explore the topological
vacuum structure of the Schwinger model with a §-term. In
particular, we study the #-dependence of the ground-state
energy density, the electric field, the chiral condensate, and
the topological vacuum susceptibility at zero and negative
fermion mass. This mass regime is especially interesting for
models with a sign problem, which require the develop-
ment and testing of new numerical techniques beyond the
conventional MCMC approach. The prime example would
be (3 + 1)-dimensional QCD, where the zero-mass case
was proposed as a possible solution to the strong CP
problem.

Addressing the Hamiltonian lattice formulation of the
Schwinger model with numerical methods based on MPS,
we show that we can reliably compute the ground state of the
model in a controlled manner with small errors. While at
very small masses we find excellent agreement with mass-
perturbation theory, thus scrutinizing our approach, we also
demonstrate the limitations of perturbative methods.

Our results provide us with a comprehensive picture of
the topological vacuum structure of QED in 1 + 1 dimen-
sions. For small masses, the 6-dependence follows the
perturbative analytical calculation from Ref. [7]. In the
chiral limit, our data confirm that the model becomes
CP invariant as the topological vacuum susceptibility
vanishes and the #-dependent electric background field
gets screened due to vacuum polarization. Thus, for
m/g =0, the O-parameter that labels the topologically
nontrivial vacua of the Schwinger model becomes an
unphysical parameter, just as in the (3 + 1)-dimensional
analog of QCD with a massless up quark [14—17] or with an
axion [19-21]. As we go to larger masses, the perturbative
prediction eventually breaks down and especially the chiral
condensate deviates significantly from it.

Comparing our finite-lattice and continuum data, we find
that lattice artifacts reintroduce the #-dependence of the
observables in the massless limit. Moreover, in the massive
regime, lattice artifacts enter inversely and with different
strengths for opposite mass sign, which renders the
negative-mass regime nontrivial on the lattice. In the
continuum, negative masses can be trivially mapped to
positive masses by shifting & — 6 + = due to the quantum
anomaly [10-12], which gets confirmed by our data. Our
results demonstrate that MPS work well even for negative
fermion masses, which has not been explored before and
becomes particularly relevant in the many-flavor case,
where a negative mass can generate a second-order phase
transition to the CP-violating Dashen phase [13].

Regarding the topological vacuum angle 6, there are
several interesting aspects that could be studied in the
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future. Generalizing our MPS setup for the Schwinger
model to multiple flavors would be straightforward [30,31],
allowing us to study the above-mentioned Dashen phase
[13]. Moreover, our MPS approach is not limited to the
Abelian case [4,45,47-50] and could offer the possibility to
explore non-Abelian gauge models in the presence of a
topological #-term.

ACKNOWLEDGMENTS

This research was supported in part by Perimeter
Institute for Theoretical Physics. Research at Perimeter
Institute is supported by the Government of Canada
through the Department of Innovation, Science and
Economic Development Canada and by the Province of
Ontario through the Ministry of Economic Development,
Job Creation and Trade. Computations were made on the
supercomputer Mammouth Parallele 2 from University of
Sherbrooke, managed by Calcul Québec and Compute
Canada. The operation of this supercomputer is funded by
the Canada Foundation for Innovation (CFI), the ministere
de I’Economie, de la science et de I'innovation du Québec
(MESI) and the Fonds de recherche du Québec—Nature et
technologies (FRQ-NT).

APPENDIX A: ORIGIN OF 6-TERM IN
CONTINUUM FORMULATION OF
SCHWINGER HAMILTONIAN

In this Appendix, we explain the origin of the #-term in
the Hamiltonian density of the continuum Schwinger
model (3). On the classical level, the -term can be stripped
away when the Hamiltonian is formulated in terms of the
electric field [55,56]. However, Coleman argued on physi-
cal grounds that the #-term can be understood as a back-
ground electric field in the quantized theory [6]. A rigorous
derivation was done in Ref. [76], which also showed there
are several technical subtleties. To make the paper self-
contained, we here present this computation, which gets
simplified in the bosonized formalism and addresses all
technical challenges arising in the Hamiltonian formu-
lation. Extensions to higher dimensions would be possible
following Ref. [77].

The bosozined version of the continuum Schwinger
Hamiltonian in Eq. (3) reads

fl 2 2 1 2
H—Zm ®(0) +2n(0)

F I (o)
205
2 2
g

=-L V(A
4ﬂ'dA2+ (4s)

22 I (p)II

p#0

+ (p* +m*)®* (p)@(p)]

+(p*+m?)@* (p)@(p)] (Al

plus an irrelevant constant. Here, m = g//z is the
Schwinger mass and ®(p) and II(p) are the bosonic
operators that satisfy canonical commutation relations
and hermeticity properties. In the following subsections,
we will discuss the properties of these bosonic operators for
p # 0 and p = 0 and compute the (non)conservation laws
of the corresponding bosonic currents. Finally, we will use
the anomaly equation (A18) obtained with the bosonized
Hamiltonian (A1) to demonstrate that a constant shift in
the electric field of the fermionic Schwinger Hamiltonian
is equivalent to an axial rotation of the massive fer-
mionic field.

1. Bosonic operators for nonzero momentum

The bosonic operators ®(p) and TI(p) of the
Hamiltonian density (A1) are defined for p # 0 as

®(p) = - lp1(p) + p2(p)]; (A2)

fp

M(p) = (p) = p2(p)]. (A3)

Qih

in terms of the bosonic chiral-charge density operators
— +
= E Qg k+pak:
k

Here, the index a = 1, 2 denotes the left-handed (¢ = 1)
and right-handed (o = 2) states, p,k € Z are the integer
momenta, and the momentum-space Fermi operators a,
are related to the real-space Fermi operators y,(x) via

(A4)

() w2 () @9

The bosonic currents for p # 0 are given by
/() = ji(p) = V2ip®(p), (A6)
j'(p) = j3(p) = V21(p). (A7)

In the Coulomb gauge, J,A, = 0, the bosonic operator
®(p) (A2) can be expressed in terms of the longitudinal
part of the electric field,

1

®(p) = - N (), (A8)
by using GauB’s law,

~0.0.A, = gw'w = 7", (A9)
and applying the relations 8, = —ip and 9,A, = —F " (»)

to the left-hand side of Eq. (A9) and the current-operator
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relation (A6) to the right-hand side. Since the total electric
charge is zero, the longitudinal part of the electric field

F kong( p) has no p = 0 component, which is the quantiza-
tion constraint in the Coulomb gauge.

2. Bosonic operators for zero momentum

The zero-momentum scalar field operators ®(0) and
I1(0) read

®0) =i =~ a0, (A1)
11(0) = V2V(A,), (A11)

where V(A,) is the potential and F(0) is the transverse
part of the electric field
B —ig?> d

tr

Y 27 dA)

(A12)

which is classically given by 0,A,. The transverse part of
the electric field (A12) only contains the constant p = 0
component, i.e., F{(0) = 2zF¥.

3. (Non)conservation laws of bosonic currents

The Hamiltonian density (Al) yields the following
equations of motion for the operators ®(p) and I1(p):

d OH(p)
—® = =T(p), Al3
5 20) a1 p) (p) (A13)
d OH(p)
—II(p) = - = (—=p? —m)®(p). Al4
5 1p) 95(p) (=p° —m*)®(p) (A14)
From Egs. (A6), (A7), and (A13) we obtain
d 1 d d
_¢ - H = — | — 0 —_— il = 0’
5 2) —1(p) Vaip (dﬂ (p)+ (p))

(A15)
where we used d/dx = —ip. This is the well-known
conservation law for the vector current,

d,j* = 0. (A16)
From Egs. (A6)—(A8), (A10), and (A14) we find
d 2 2
7 11p) + p*®(p) = —m*®(p),
L [/d , d , B 7 1
¢>\/§<dl‘]5(p) +dx.]5(p)> - T \/zngx ’
(A17)

where we used m = g/7 and F, = F " (p) + F(0).
This is the well-known quantum anomaly equation for the
axial current,

0,Js = F./x. (A18)
We note that p?>®(0) = —d>®(0)/dx? vanishes on the left-
hand side of Eq. (Al17), therefore the zero-momentum
contribution of ®(p) only shows up in the nonderivative
term on the right-hand side. For the nonderivative term, we

have to add up both the p # 0 and the p = 0 contributions
given by Egs. (A8) and (A10).

4. Axial rotation of fermionic fields

Using the quantum anomaly equation (A18) obtained
with the bosonized Hamiltonian, one can now consider the
fermionic Hamiltonian (3) to demonstrate that an axial
rotation of the massive fermionic field vy,

w — ey, (A19)
induces a constant shift in the electric field F . The rotation

(A19) by an infinitesimal angle 6 < 1 shifts the fermion
mass term by

myry — imOyysy (A20)
and analogously the chiral fermion condensate by
(pw) = i0(ysw). (A21)

Since the fermion mass perturbatively corrects the diver-
gence (A18) of the axial current j5 = yysy*y by

, . F
Ouls = =2imipysy +—. (A22)
the axial rotation of the fermionic field (A19) induces the
following shift in the Hamiltonian density:

0 F
M= W4 SO, = Mot iomipysw + 0%, (A23)

where we used 75y = —yys. Thus, the angular parameter
@ in the fermion mass term can be absorbed by a shift in
the electric field, F, - F,+ 6/2x, and vice versa. In
particular, for m = 0 the #-parameter becomes unphysical,
since it can be rotated away without affecting any mass
term, which corresponds to absorbing the phase of the
chiral condensate () in the Schwinger boson field.

APPENDIX B: DETAILS OF THE
EXTRAPOLATION PROCEDURE

Here we give some details how we control the errors in
our numerical simulations and how we extrapolate our data
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FIG. 7. Extrapolation to infinite bond dimension, 1/D — 0, for
(a) the ground-state energy, (b) the electric field, and (c) the chiral
condensate for exemplary values of x =160, m/g = 0.07,
N =354, and § = 0.2.

to obtain first the thermodynamic limit and finally the
continuum limit. Since the extrapolation procedure has to
be done independently for each combination of (m/g,0),
we suppress all arguments in the following and just refer to
Ey/2N, F,, and C, meaning that we look at these
quantities at a specific value of (m/g,9).

In a first step, for every combination of (N, x,m/g,0),
we estimate the numerical error due to the finite matrix size
in our MPS ansatz. To this end, we plot the observables O
that we measure as a function of 1/D, and we use the three
data points with the largest values for D to linearly
extrapolate to the limit D — oo (see Fig. 7 for an example).
We proceed in a standard manner: the central value is taken
to be the mean value of our data point with the largest bond
dimension, Op_ , and the extrapolated value Op_,. The
error is estimated as half of the absolute value of their
difference, 60p = |Op_ — Op_s|/2. In general, we find
that our bond dimensions are large enough to avoid
noticeable truncation effects due to the finite matrix size.
In addition, we have another error due to the finite
convergence tolerance # in our simulations which results
in 6E,, = nkEy p_  for the ground-state energy and 60, =
VnOp, . for other local observables [78]. The total error is
then estimated as the square root of the sum of squares,
50 = \/(50p)* + (50,)>.

After estimating the numerical errors due to the finite
matrix size, we extrapolate our data for each combination
of (x,m/g,0) to the infinite-volume limit N — oo, where
we propagate our errors from the extrapolation in D. In
general, we observe strong finite-volume effects for vol-
umes N/y/x < 15, thus for the extrapolation we only
consider volumes larger than that. To estimate the infin-
ite-volume limit, we fit our data to polynomials in 1/N up
to degree 3 (see Fig. 8 for an example). For each

(a)
= —50.4f
<
= 5061
1
0.00 0.01
1/N
/—0.2—
©
&}
—0.3F N °
|
0.00 0.01
1/N
FIG. 8. Extrapolation to infinite system size, 1/N — 0, for

(a) the ground-state energy, (b) the electric field, and (c) the chiral
condensate for exemplary values of x = 160, m/g = 0.07, and
6 = 0.2. In all panels the red triangles correspond to the data used
to extrapolate to the thermodynamic limit, the blue solid lines to
the best linear fit, the orange dashed lines to the best quadratic fit,
and the green dotted lines to the best cubic fit in 1/N.

polynomial, we try every fitting interval of consecutive
data points, which contains at least two more data points
than the degree of the polynomial. To obtain the central
value, we choose the fit with the lowest value of y3 ;.
In case we have several fits with y5 ; < 1, we choose the
polynomial of smallest degree in 1/N that achieves this
value. In most cases, we find that a linear fit in 1/N is
enough to describe our data well. In addition to the error of
the fitting coefficient, we estimate our systematic error. To
this end, we compare our central value to the value obtained
from the next best fit using the same degree polynomial or
to the one obtained with the next highest order. The total
error is then estimated, analogously to the extrapolation in
D, as the square root of the sum of squares.

In a final step, we extrapolate our data to the continuum
corresponding to ag — 0. To this end, we fit our finite-
lattice data again to polynomials in ag. In general, we
observe that a linear function or sometimes even a constant
is enough to describe our data well (see Fig. 9 for an
example). We again propagate the errors from the extrapo-
lation in N to estimate the final error of our data.

To obtain the electric field from our continuum estimates
for the energy density, we follow Eq. (5) and compute
the derivative numerically using second-order finite
differences [79]

F(m, 0+ A0)2)
g
”ASO(m, 0+ A0)/g> — AEy(m,0)/ g

~72
AO

(B1)

For all the data we show, the distance between two different
points is A@ = 0.025. The error of the electric field is then
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FIG. 9. Extrapolation to the continuum, ag — 0, for (a) the
ground-state energy, (b) the electric field, (c) and the chiral
condensate for exemplary values of m/g = 0.07, and 6 = 0.2.
The blue dots show the data obtained after extrapolating to the
thermodynamic limit, the solid line a linear fit, and the dashed
line a quadratic fit in ag.

estimated by propagating the error in the UV-finite energy
density as a systematic error.

The topological vacuum susceptibility can be calculated
in a similar fashion, we can either numerically differentiate
our results for the UV-finite energy density twice with
respect to 6,

g AP 7 7

AEy(m,0 — AO
+ o(m )>’

Yop(m.0) 1 (AEO(m, 0+4A0) 5 AEy(m,0)

7 (B2)

or compute the derivative of our results for the electric field,

Xiop(m, 0+ A60/2)  F(m.0+ A) — F(m.0)
g - 27A0 ’

(B3)

where again the distance between two different angles is
A0 = 0.025 and we propagate the errors in the UV-finite
energy density and in the electric field values as systematic
errors to obtain an error estimate for the topological
susceptibility.

APPENDIX C: DATA FOR A FULL PERIOD OF 6

In the main text, we focused on the regime 0 < 0 < x,
since all quantities studied are (point) symmetric around 7.
Figure 10 shows an explicit example of a full period for
m/g = 0.21 after extrapolating to the thermodynamic limit.
We restrict ourselves to a single lattice spacing

= (@)
< 0.05
=
£
]

0.00

0.0
0.0 0.5 1.0
0/2m

FIG. 10. (a) Energy density, (b) electric field, and (c) chiral

condensate after extrapolating to the thermodynamic limit over a
full period for m/g = 0.21 and x = 80.

corresponding to x = 80, since this value is already very
close to the continuum limit for such large masses, as
demonstrated by the data in the main text. Looking at
Fig. 10, we see that the data for the ground-state energy
density, the electric field, and the chiral condensate are
indeed symmetric around € = z, and we can obtain precise
estimates throughout the entire period of 6 € [0, 2z].

As theoretically predicted in Ref. [6] and numerically
demonstrated in Refs. [8,9], the continuum model exhibits
a first-order transition at @ = z for bare fermion masses
larger than the critical value (m/g).~0.33. This is
accompanied by a spontaneous breaking of the CP sym-
metry, and the critical line ends in a second-order quantum
phase transition exactly at (m/g),. Since our value for the
largest bare fermion mass is still smaller than the critical
one, we do not expect a transition to happen at § = z.

At first sight, our data for the chiral condensate in
Fig. 10(c) give the impression that there could never-
theless be a transition, as we observe a sharp peak at that
value of 6. However, due to the large slope of this quantity,
our resolution in @ is limited. Taking a closer look at
Fig. 10(b), we see that the electric field at § = z vanishes,
thus indicating that the CP symmetry is not broken [6]
and there is no phase transition. Our data for the
energy density [Fig. 10(a)] corroborates this picture.
Although for 0 = 7z there is a noticeable peak, we do
not observe a cusp in the data, thus giving another
indication that for m/g = 0.21 there is no transition.
Nevertheless, the features in the energy density, the
electric field, and the chiral condensate hint toward an
upcoming phase transition at (m/g),. ~ 0.33.
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