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We study the light quark-mass dependence of charmed baryon masses as measured by various QCD
lattice collaborations. A global fit to such data based on the chiral SU(3) Lagrangian is reported on. All low-
energy constants that are relevant at next-to-next-to-next-to-leading order are determined from the lattice
datasets where constraints from sum rules as they follow from large-Nc QCD at subleading order are
considered. The expected hierarchy for the low-energy constants in the 1=Nc expansion is confirmed by our
global fits to the lattice data. With our results, the low-energy interaction of the Goldstone bosons with the
charmed baryon ground states is well constrained and the path toward realistic coupled-channel
computations in this sector of QCD is prepared.
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I. INTRODUCTION

The challenge of modern particle physics is how to
connect the wealth of experimental data on hadron spec-
troscopy to the fundamental theory of strong interactions.
While lattice QCD approaches made significant advances
in the last decade, it is still a grand endeavor to compute the
hadronic excitation spectrum on QCD lattices directly. On
the one hand, the reliable determination of finite-box
energy levels requires the consideration of all open had-
ronic channels as it was demonstrated repeatedly that the
omission of some channels may distort the finite-box
spectrum significantly [1]. On the other hand, the trans-
lation of such finite-box spectra to the physics in the
laboratory requires extensive coupled-channel studies that
resemble to some extent the partial-wave analyses required
for the experimental datasets.
Given the complexity of this problem, it may be of

advantage to systematically combine the strength of lattice
QCD approaches with that of effective field theory (EFT).
While an EFT is quite efficient to work in symmetry aspects
of QCD and gets close to data taken in the laboratory, it is
a priori ignorant about various dynamical aspects of QCD.
This is reflected in the large number of low-energy
constants that arise at subleading orders. However, we
argue that this main drawback can be overcome by the use
of existing lattice datasets. Since the simulations are

performed at various unphysical quark masses, information
is generated that is instrumental in determining large sets of
low-energy constants.
Such programs have already been successfully set up for

masses of baryons and mesons in their ground states with
JP ¼ 1

2
þ; 3

2
þ and JP ¼ 0−; 1− quantum numbers [2–5].

Significant sets of low-energy parameters to be used in
flavor SU(3) chiral Lagrangians were established from the
available lattice data on such hadron masses. So far, results
are available for mesons and baryons composed of up,
down, and strange quarks [2,5,6]. In addition, a complete
set of relevant low-energy constants in the open-charm
sector of QCD was established in [3].
The purpose of this work is to present results for the low-

energy constants of the chiral Lagrangian formulated for
charmed baryons [7–10]. Like in the open-charm meson
sector, the coupled-channel dynamics of the leading order
chiral Lagrangian predicts the existence of various dynami-
cally generated states [9,11,12]. Such states carry JP ¼ 1

2
þ

and JP ¼ 3
2
þ quantum numbers and may be formed in

flavor exotic multiplets. Thus, it is an important challenge
to estimate the size of chiral correction terms from QCD
studies. At next-to-next-to-next-to-leading order (N3LO),
we count 54 parameters that need to be determined in
computations of the charmed baryon masses. Given the
limited dataset that is provided so far [13–19], it is
important to derive additional constraints from QCD that
further constrain a fit of the low-energy constants to such
data. A corresponding framework was worked out already
in [4,20]. From a systematic consideration of sum rules that
arise in the 1=Nc expansion of QCD at subleading order,
the number of independent low-energy constants was
reduced significantly down to 23 parameters only [20].
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II. CHIRAL LAGRANGIAN WITH CHARMED BARYON FIELDS

The chiral Lagrangian combined with appropriate counting rules leads to systematic results in low-energy hadron
physics. In the following, we recall the leading order (LO) terms in the open-charm baryon sector of QCD [7,8,10]. It is
convenient to decompose the fields into their isospin multiplets with

Φ ¼ τ · πð140Þ þ α† · Kð494Þ þ K†ð494Þ · αþ ηð547Þλ8;
ffiffiffi

2
p

B½3̄� ¼
1
ffiffiffi

2
p α† · Ξcð2470Þ −

1
ffiffiffi

2
p ΞT

c ð2470Þ · αþ iτ2Λcð2284Þ;
ffiffiffi

2
p

B½6� ¼
1
ffiffiffi

2
p α† · Ξ0

cð2580Þ þ
1
ffiffiffi

2
p Ξ0T

c ð2580Þ · αþ Σcð2455Þ · τiτ2 þ
ffiffiffi

2
p

3
ð1 −

ffiffiffi

3
p

λ8ÞΩcð2704Þ;
ffiffiffi

2
p

Bμ
½6� ¼

1
ffiffiffi

2
p α† · Ξμ

cð2645Þ þ 1
ffiffiffi

2
p ΞT;μ

c ð2645Þ · αþ Σμ
cð2520Þ · τiτ2 þ

ffiffiffi

2
p

3
ð1 −

ffiffiffi

3
p

λ8ÞΩμ
cð2770Þ;

α† ¼ 1
ffiffiffi

2
p ðλ4 þ iλ5; λ6 þ iλ7Þ; τ ¼ ðλ1; λ2; λ3Þ; ð1Þ

where the matrices λi are the standard Gell-Mann generators of the SU(3) algebra. The numbers in the brackets recall the
approximate masses of the particles in units of MeV. There are the kinetic terms,

Lð1Þ ¼ trB̄½6�ðγμiDμ −Mð1=2Þ
½6� ÞB½6� − trðB̄μ

½6�ð½i=D −Mð3=2Þ
½6� �gμν − iðγμDν þ γνDμÞ þ γμ½i=DþMð3=2Þ

½6� �γνÞBν
½6�Þ

þ trB̄½3̄�ðγμiDμ −Mð1=2Þ
½3̄� ÞB½3̄� þ F½66�trB̄½6�γμγ5iUμB½6� þ F½3̄3̄�trB̄½3̄�γμγ5iUμB½3̄� þ F½3̄6�trðB̄½6�γμγ5iUμB½3̄� þ H:c:Þ

þ C½66�trðB̄μ
½6�iUμB½6� þ H:c:Þ þ C½3̄6�trðB̄μ

½6�iUμB½3̄� þ H:c:Þ −H½66�trB̄α
½6�gαβγ

μγ5iUμB
β
½6�;

Uμ ¼
1

2
u†
�

∂μe
iΦf

�

u† −
i
2
u†ðvμ þ aμÞuþ i

2
uðvμ − aμÞu†;

DμB ¼ ∂μBþ ΓμBþ BΓ†
μ; u ¼ ei

Φ
2f;

Γμ ¼
1

2
u†½∂μ − iðvμ þ aμÞ�uþ 1

2
u½∂μ − iðvμ − aμÞ�u†; ð2Þ

and six structures which parametrize the three-point interactions of the Goldstone bosons with the charmed baryon fields
[7,8]. At leading order in a chiral expansion, the bare masses Mð1=2Þ

½6� , Mð3=2Þ
½6� , and Mð1=2Þ

½3̄� may be identified with the flavor
average of the sextet and antitriplet baryon masses.
At next-to-leading order (NLO), there are symmetry conserving and symmetry breaking terms [10,20]. A complete list of

chiral symmetry conserving Q2 counter terms was given in [10,20]. In these works, the Q2 counter terms are grouped
according to their Dirac structure. Here, we display the scalar and vector terms relevant for our study only,

LðSÞ ¼ −gðSÞ
0;½3̄3̄�trðB̄½3̄�B½3̄�ÞtrðUμUμÞ − gðSÞ

D;½3̄3̄�trðB̄½3̄�fUμ; UμgB½3̄�Þ − gðSÞ
0;½66�trðB̄½6�B½6�ÞtrðUμUμÞ − gðSÞ

1;½66�trðB̄½6�UμB½6�UT
μ Þ

− gðSÞD;½66�trðB̄½6�fUμ; UμgB½6�Þ − gðSÞ
D;½3̄6�trðB̄½6�fUμ; UμgB½3̄� þ H:c:Þ þ hðSÞ

0;½66�trðB̄μ
½6�gμνB

ν
½6�ÞtrðUαUαÞ

þ hðSÞ
1;½66�trðB̄μ

½6�B
ν
½6�ÞtrðUμUνÞ þ hðSÞ

2;½66�trðB̄μ
½6�gμνfUα; UαgBν

½6�Þ þ hðSÞ
3;½66�trðB̄μ

½6�fUμ; UνgBν
½6�Þ

þ hðSÞ
4;½66�trðB̄μ

½6�gμνU
αBν

½6�U
T
αÞ þ

1

2
hðSÞ
5;½66�trðB̄μ

½6�UνBν
½6�U

T
μ þ B̄μ

½6�UμBν
½6�U

T
ν Þ;
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LðVÞ ¼ −
1

2
gðVÞ
0;½3̄3̄�trðB̄½3̄�iγαðDβB½3̄�ÞtrðUβUαÞÞ −

1

2
gðVÞ
1;½3̄3̄�trðB̄½3̄�iγαUβðDβB½3̄�ÞUT

α þ B̄½3̄�iγαUαðDβB½3̄�ÞUT
β Þ

−
1

2
gðVÞ
D;½3̄3̄�trðB̄½3̄�iγαfUα; UβgðDβB½3̄�ÞÞ −

1

2
gðVÞ
D;½3̄6�trðB̄½6�iγαfUα; UβgðDβB½3̄�Þ − ðDβB̄½6�ÞiγαfUα; UβgB½3̄�Þ

−
1

2
gðVÞ
0;½66�ðtrðB̄½6�iγαðDβB½6�ÞÞtrðUβUαÞÞ −

1

4
gðVÞ
1;½66�trðB̄½6�iγαUβðDβB½6�ÞUT

α þ B̄½6�iγαUαðDβB½6�ÞUT
β Þ

−
1

2
gðVÞD;½66�trðB̄½6�iγαfUα; UβgðDβB½6�ÞÞ þ

1

2
hðVÞ
0;½66�trðB̄μ

½6�gμνiγ
αðDβBν

½6�ÞtrðUαUβÞÞ

þ 1

4
hðVÞ
1;½66�trðB̄μ

½6�gμνiγ
αUβðDβBν

½6�ÞUT
α þ B̄μ

½6�gμνiγ
αUαðDβBν

½6�ÞUT
β Þ þ

1

2
hðVÞ
2;½66�trðB̄μ

½6�gμνiγ
αfUα; UβgðDβBν

½6�ÞÞ þ H:c:;

ð3Þ

where further possible terms that are redundant owing to the on-shell conditions of spin-3
2
fields with γμB

μ
½6� ¼ 0 and

∂μB
μ
½6� ¼ 0 are eliminated systematically. We note that the terms in (3) imply contributions to the charmed baryon masses

that do depend on the choice of the renormalization scale. Such terms need to be balanced by a set of symmetry breaking
counter terms that render the charmed baryon masses renormalization scale independent.
We turn to the terms that break chiral symmetry explicitly. There are seven symmetry breaking counter terms at orderQ2

and 16 terms of order Q4. We recall from [10,20]

Lð2Þ
χ ¼ b1;½3̄3̄�trðB̄½3̄�B½3̄�ÞtrðχþÞ þ b2;½3̄3̄�trðB̄½3̄�χþB½3̄�Þ þ b1;½3̄6�trðB̄½6�χþB½3̄� þ H:c:Þ þ b1;½66�trðB̄½6�B½6�ÞtrðχþÞ

þ b2;½66�trðB̄½6�χþB½6�Þ − d1;½66�trðgμνB̄μ
½6�B

ν
½6�ÞtrðχþÞ − d2;½66�trðgμνB̄μ

½6�χþB
ν
½6�Þ;

Lð4Þ
χ ¼ c1;½3̄3̄�trðB̄½3̄�B½3̄�Þtrðχ2þÞ þ c2;½3̄3̄�trðB̄½3̄�B½3̄�ÞðtrχþÞ2 þ c3;½3̄3̄�trðB̄½3̄�χþB½3̄�ÞtrðχþÞ þ c4;½3̄3̄�trðB̄½3̄�χ2þB½3̄�Þ

þ c1;½66�trðB̄½6�B½6�Þtrðχ2þÞ þ c2;½66�trðB̄½6�B½6�ÞðtrχþÞ2 þ c3;½66�trðB̄½6�χþB½6�ÞtrðχþÞ þ c4;½66�trðB̄½6�χ2þB½6�Þ
þ c5;½66�trðB̄½6�χþB½6�χTþÞ þ c1;½3̄6�trðB̄½6�χþB½3̄� þ H:c:ÞtrðχþÞ þ c2;½3̄6�trðB̄½6�χ2þB½3̄� þ H:c:Þ
− e1;½66�trðB̄μ

½6�gμνB
ν
½6�Þtrðχ2þÞ − e2;½66�trðB̄μ

½6�gμνB
ν
½6�ÞðtrχþÞ2 − e3;½66�trðB̄μ

½6�gμνχþB
ν
½6�ÞtrðχþÞ − e4;½66�trðB̄μ

½6�gμνχ
2þBν

½6�Þ
− e5;½66�trðB̄μ

½6�gμνχþB
ν
½6�χ

TþÞ:

χþ ¼ 1

2
ðuχ0uþ u†χ0u†Þ; ð4Þ

with χ0 ¼ 2B0 diagðm;m;msÞ proportional to the
quark-mass matrix. We do not consider isospin violating
effects in this work. With Lð4Þ

χ , the 16 symmetry breaking
counter terms that contribute to the charm baryon masses at
N3LO are shown.
Altogether, we count 54 low-energy constants in this

section that have to be determined by the datasets. Clearly,
any additional constraints from heavy-quark spin-
symmetry or large-Nc QCD are desperately needed to arrive
at any significant result. Such constraints were derived in
[10,20,21] to subleading order in the 1=Nc expansion and
are summarized in Appendix A of [4]. At subleading order,
there remain 23 independent low-energy constants only.

III. CHARMED BARYON MASSES FROM
QCD LATTICE SIMULATIONS

We recall our strategy how to make use of the available
QCD lattice datasets on hadron ground-state masses
[2,3,5,22]. Altogether, we consider 210 data points on

lattice QCD ensembles with pion and kaon masses smaller
than 600 MeV. On each ensemble, the baryon masses are
provided in units of the corresponding lattice scale together
with an estimate of their statistical error only. To actually
perform the fits is a computational challenge. For any set of
the low-energy parameters, ten coupled nonlinear equations
are to be solved on each lattice ensemble considered (see
[4]). We apply the evolutionary algorithm of GENEVA
1.9.0-GSI [23] with runs of a population size 2500 on 500
parallel CPU cores.
A subset of low-energy constants (LEC) is fixed by the

requirement that the isospin averaged charmed baryon
masses are reproduced as provided by the Particle Data
Group [24]. This amounts to a nonstandard scale setting for
the various lattice ensembles considered. In our work, we
assume that the lattice datasets are consistent with the
physical values of the charmed baryon masses. The purpose
of our analysis is to extract the low-energy constants, rather
than to estimate how well a dataset can be extrapolated
down to the physical point. For any given β value
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characterizing a lattice ensemble, we determine its asso-
ciated lattice scale separately. From any such ensemble, we
take its published pion and kaon masses as given in lattice
units and derive their associated quark masses. As in our
previous works [2,3], we do so at the one-loop level in
terms of the low-energy constants of Gasser and Leutwyler.
At the physical point, the products B0m;B0ms, and L8 þ
3L7 are set by the request to reproduce the empirical pion,
kaon, and eta masses. That leaves two particular combi-
nations 2L6 − L4 and 2L8 − L5 undetermined only. As
emphasized repeatedly, the lattice datasets on hadronmasses
are quite sensitive to the latter and permit an accurate
determination of their values [2,3]. Consistent results were
obtained from two independent analysis based on distinct
lattice datasets on the hadron masses. This suggests the
ranges 103ð2L6 − L4Þ ¼ 0.04–0.16 and 103ð2L8 − L5Þ ¼
0.02–0.11 at the renormalization scale μ ¼ 0.77 GeV. Such
values are compatible with the ranges from the FLAG
report [25].
Our analyses rest on the NLO large-Nc sum rules of

[4,20]. For instance, we recall

C½66� ¼
ffiffiffi

3
p

2
ðF½3̄3̄� − F½66�Þ; C½3̄6� ¼

ffiffiffi

3
p

F½3̄6�;

H½66� ¼
3

2
ðF½3̄3̄� þ F½66�Þ; b1;½66� ¼ d1;½66� ¼ b1;½3̄3̄�

b1;½3̄6� ¼
1
ffiffiffi

3
p ðb2;½66� − d2;½66�Þ: ð5Þ

While the magnitude jF½3̄6�j ¼ 0.753 was estimated from
empirical values of some hadronic decay widths parameters
[4], its sign (in our phase convention as used in the
derivation of the large-Nc sum rules) remained undeter-
mined. We will explore the implications of the two sign
choices. From a recent lattice computation of axial
charges of some charmed baryons [26], we may estimate
F½66� ∼ 0.7, where in this case the computation does
determine the sign of F½66� unambiguously. The condition
F½66� > 0.65 is imposed throughout our analysis.
Since we have a residual uncertainty in our one-loop

chiral extrapolation approach, we assign each baryon mass
a systematical error that is added to its statistical error in
quadrature in our various fits. Our chisquare function, χ2,
assumes a universal systematical error for the charmed
baryon masses. While such a universal ansatz for the
systematic error would not be well justified in a chiral
SU(2) extrapolation framework, we feel it to be quite
reasonable in the flavor SU(3) case. Note that the number of
independent chiral structures that characterize the neglected
higher-order correction terms is significantly larger in the
SU(3) than in a SU(2) case.

TABLE I. Results for LEC in (2), (4) based on three fit
scenarios. Further LEC are implied by the NLO large-Nc sum
rules of [20]. The low-energy constants Ln are at the renorm-
alization scale μ ¼ 0.77 GeV. We use f ¼ 92.4 MeV throughout
this work.

Fit 1 Fit 2 Fit 3

Mð1=2Þ
½3̄� ½Gev� 2.468ðþ0

−1Þ 2.424ðþ0
−3Þ 2.415ðþ0

−0Þ
Mð1=2Þ

½6� ½Gev� 2.515ðþ1
−1Þ 2.468ðþ1

−4Þ 2.388ðþ4
−2Þ

Mð3=2Þ
½6� ½Gev� 2.594ðþ1

−1Þ 2.549ðþ1
−3Þ 2.586ðþ0

−0Þ

F½3̄6� 0.7530 0.7530 −0.7530
F½66� 0.6502ðþ6

−2Þ 0.6500ðþ5
−0Þ 0.6745ðþ2

−1Þ
F½3̄ 3̄� 0.0053ðþ45

−54Þ 0.0099ðþ73
−05Þ −0.0124ðþ1

−1Þ
b1;½66� [GeV−1] 0.3372ðþ101

−115Þ −0.2542ðþ096
−145Þ 0.1053ðþ46

−41Þ
b2;½66� [GeV−1] −0.3057ðþ188

−198Þ −0.2048ðþ377
−189Þ −0.5533ðþ89

−79Þ
b2;½3̄ 3̄� [GeV−1] −0.5048ðþ188

−198Þ −0.4048ðþ377
−189Þ −0.7513ðþ89

−79Þ
d2;½66� [GeV−1] −0.3330ðþ188

−198Þ −0.2249ðþ373
−179Þ −0.0624ðþ89

−79Þ
103 ð2L6 − L4Þ 0.0809ðþ15

−18Þ 0.0813ðþ29
−16Þ 0.0558ðþ3

−2Þ
103 ð2L8 − L5Þ 0.1098ðþ18

−18Þ 0.1498ðþ02
−22Þ 0.1500ðþ0

−2Þ
103 ðL8 þ 3L7Þ −0.5023ðþ9

−7Þ −0.5123ðþ09
−12Þ −0.5002ðþ1

−1Þ
ms=m 26.05ðþ1

−1Þ 25.82ðþ1
−0Þ 25.79ðþ0

−0Þ

TABLE II. Results for the LEC in (3), (4) based on three fit
scenarios. Further LEC are implied by the NLO large-Nc sum
rules of [20].

Fit 1 Fit 2 Fit 3

c1;½66� [GeV−3] −0.5363ðþ131
−128Þ −0.2786ðþ280

−174Þ −0.3466ðþ66
−45Þ

c2;½66� [GeV−3] 0.0605ðþ65
−74Þ 0.1210ðþ06

−55Þ −0.0179ðþ36
−31Þ

c3;½66� [GeV−3] −0.3833ðþ68
−60Þ −0.3114ðþ192

−085Þ 0.1812ðþ34
−71Þ

c4;½66� [GeV−3] 0.9850ðþ150
−220Þ 0.8346ðþ027

−682Þ 0.6941ðþ134
−087Þ

c5;½66� [GeV−3] −0.3653ðþ15
−20Þ −0.3609ðþ11

−42Þ −0.4535ðþ15
−07Þ

c1;½3̄ 3̄� [GeV−3] −0.7947ðþ202
−101Þ −0.5741ðþ484

−189Þ −0.9674ðþ66
−45Þ

c2;½3̄ 3̄� [GeV−3] 0.1936ðþ65
−74Þ 0.2848ðþ023

−158Þ 0.3489ðþ36
−31Þ

c3;½3̄ 3̄� [GeV−3] −0.9100ðþ146
−060Þ −0.8093ðþ333

−217Þ −0.9759ðþ34
−71Þ

e1;½66� [GeV−3] −0.4842ðþ136
−122Þ −0.2223ðþ260

−174Þ −0.0643ðþ66
−45Þ

e3;½66� [GeV−3] −0.4048ðþ75
−71Þ −0.3347ðþ160

−107Þ −0.2180ðþ84
−60Þ

e4;½66� [GeV−3] 0.9637ðþ142
−210Þ 0.8012ðþ065

−633Þ 0.0444ðþ134
−087Þ

gðSÞ
0;½66� [GeV

−1] 0.5332ðþ413
−216Þ −1.7697ðþ1538

−0860Þ −1.3105ðþ44
−28Þ

gðSÞ
1;½66� [GeV

−1] 0.2072ðþ1339
−0571Þ 0.4406ðþ925

−936Þ 3.9737ðþ567
−115Þ

gðVÞD;½66� [GeV
−2] 0.4138ðþ0635

−1109Þ 1.2902ðþ1282
−1794Þ −2.9384ðþ268

−316Þ
gðSÞ
0;½3̄ 3̄� [GeV

−1] 1.0740ðþ614
−377Þ −2.4883ðþ1758

−0670Þ 2.6536ðþ033
−158Þ

gðVÞ
0;½3̄ 3̄� [GeV

−2] −1.7557ðþ368
−388Þ −1.3281ðþ0551

−1111Þ −5.2841ðþ59
−38Þ

hðSÞ
1;½66� [GeV

−1] −0.0716ðþ030
−100Þ −0.3608ðþ234

−545Þ −0.4656ðþ2
−5Þ

hðSÞ
2;½66� [GeV

−1] 1.0721ðþ1397
−1581Þ 1.0279ðþ1312

−1699Þ −0.0508ðþ785
−703Þ

hðSÞ
4;½66� [GeV

−1] 2.3125ðþ093
−168Þ 1.0016ðþ0143

−1478Þ 6.1835ðþ00
−33Þ

hðSÞ
5;½66� [GeV

−1] −2.0747ðþ525
−297Þ −0.2665ðþ2305

−0250Þ −0.8207ðþ67
−58Þ

hðVÞ
1;½66� [GeV

−2] −0.5500ðþ356
−552Þ 0.6440ðþ1568

−0335Þ −6.7926ðþ117
−076Þ

hðVÞ
2;½66� [GeV

−2] 0.2754ðþ151
−261Þ 1.1689ðþ1255

−0603Þ 0.8839ðþ07
−41Þ
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In addition, we introduce a universal parameter Δc of the
form

aMH → aMH þ ð1þ ϵHÞaΔc; with ϵH ≃ 0; ð6Þ

with which the choice of the charm-quark mass can be fine-
tuned [3]. The values of ϵH depend not only on the light
quark masses and the type of charmed baryon considered,
but also on the βQCD value of the ensemble considered.
Given the charmed baryon masses at two distinct values of
the charm-quark mass, Δc and ϵH can be determined [3]. If
such data are not available, we can access the parameters
Δc only, i.e., we assume ϵH ¼ 0 in this case. Nonvanishing
values for Δc hint at a possible mismatch of the chosen
charm-quark mass in a given lattice ensemble or a leading-
order discretization effect as it may be implied by our
nonstandard scale setting approach.
In Tables I and II, we collect the values of the LEC

according to three fit scenarios. Sets of independent LEC
are shown only. The remaining ones follow from the NLO
large-Nc sum rules. Our Fit 1 is our most reasonable
scenario with an excellent reproduction of the lattice
datasets. It rests on a systematical error of 10 MeV which
was chosen such as to arrive at about χ2=N ∼ 1, with
N ¼ 210 the number of fitted baryon masses. We find
χ2=d:o:f: ≃ 1.01 and χ2=d:o:f: ≃ 2.44 in the presence and
absence of that systematical error, respectively. Similar
results are observed for the Fit 2 scenario which rely on a
systematical error ansatz of 5 MeV instead. Here we have

χ2=d:o:f: ≃ 1.55 and χ2=d:o:f: ≃ 2.14. In Fit 3, we explore
a parameter set which does not quite match the success of
Fit 1 and Fit 2 in the reproduction of the lattice data with
χ2=d:o:f: ≃ 1.14 and χ2=d:o:f: ≃ 2.77. Fit 3 is based on a
negative value of F½3̄6� ¼ −0.753.
For all three scenarios, we find a variation of about 5% in

χ2=N if a subset of lattice data with mπ < 300 MeV,
mπ < 400 MeV, or mπ < 500 MeV is considered only.
This is consistent with the expectation that in a flavor SU(3)
framework results should not turn more accurate as we
lower the pion mass only. This is so since the available
lattice dataset rests on strange-quark masses around its
physical value. Therefore, fits to the current lattice dataset
at different chiral orders cannot be well justified at this
stage. We investigated further partial χ2=N values that arise
if different species of the baryons are considered only. Here
we find a variation of less than 20% for Fit 1 and Fit 3, but
significantly larger values up to 50% for Fit 2.
We wish to emphasize an important finding. For the LEC

in Fit 1 and Fit 2, we observe that the hierarchy of the large-
Nc sum rules is well followed. This is not the case for the
Fit 3 scenario. For instance, at LO, we expect F½3̄3̄� ¼ 0,
b1;½3̄6� ¼ cn;½3̄6� ¼ 0, and cn;½66� ¼ en;½66�. Further such rela-
tions can be traced in [4]. Our values for the low-energy
constants, Li, in Fit 1 and Fit 2 are compatible with our
previous estimates [2,3], but also with the ranges from the
FLAG report [25].
In Fig. 1, we confront the implications of Fit 1 on the

baryon masses as computed by the QCDSF-UKQCD

FIG. 1. Our results from Fit 1 for the charmed baryon masses on the QCDSF-UKQCD ensembles [19]. The lattice results are given by
blue (243 lattice) and red (323 lattice) filled symbols, where statistical errors are shown only. They are compared to the chiral
extrapolation results in open symbols, which are always displayed on top of the lattice points.
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Collaboration [19]. Further results are shown in Figs. 2
and 3 for the baryon masses based on RBC-UKQCD [17]
and ETMC [18] ensembles. Additional results from [13,14]
we label by LHPC and MILC in the figures. While [13]
uses the MILC-Asqtad ensembles, [14] uses the MILC-
HISQ ensembles for the sea quarks. Both studies rely on a

domain-wall formalism for the valence quarks. We use the
label LHPC for [13] since it is based on the lattice setup of
that collaboration. All such lattice data are well reproduced.
In Table III, we present the results for the offset

parameters, Δc, as introduced in (6), on ensembles of
QCDSF-UKQCD, LHPC, and RBC-UKQCD as they

FIG. 3. Continuation of Fig. 2.

FIG. 2. Our results Fit 1 for the charmed baryon masses on the LHPC [13], RBC-UKQCD [17], MILC-HISQ [14], and ETMC [18]
lattice setup. The extrapolation results in open symbols are always displayed on top of the colored lattice points.
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follow in our fit scenarios. In addition, the lattice scales and
the quality of the data reproduction are quantified. We find
significant sizes for the offset parameters. Note, however,
that from those results we cannot infer a mismatch of the
chosen charm-quark mass. This is so since we cannot
exclude the presence of discretization effects which may be
parametrized by a contribution to Δc ∼ a proportional to

the lattice scale. A minimal model to discriminate an offset
in the charm-quark mass from the presence of discretization
effects is

aMH → aMH þ aΔ̄c þ a2Δ̄d; ð7Þ
where the parameters Δ̄c and Δ̄d should not depend on the
chosen ensemble for a given lattice setup. While the term

TABLE IV. Continuation of Table III.

Fit 1 Fit 2 Fit 3 Lattice

aβ¼6.00
c;MILC ½fm� 0.1234ðþ2

−3Þ 0.1210ðþ4
−2Þ 0.1230ðþ1

−1Þ 0.1193(9)[14]

aΔβ¼6.00
c;MILC

0.0493ðþ30
−70Þ 0.0285ðþ186

−166Þ 0.0461ðþ4
−8Þ

χ2=N 1.41 2.11 0.78

aβ¼6.30
MILC ½fm� 0.0903ðþ1

−4Þ 0.0885ðþ5
−1Þ 0.0904ðþ0

−0Þ 0.0871(11)[14]

aΔβ¼6.30
c;MILC

0.0295ðþ17
−47Þ 0.0147ðþ134

−093Þ 0.0332ðþ3
−6Þ

χ2=N 1.96 2.90 1.50

aβ¼6.72
MILC ½fm� 0.0603ðþ1

−3Þ 0.0592ðþ4
−1Þ 0.0607ðþ0

−2Þ 0.0578(23)[14]

aΔβ¼6.72
c;MILC

0.0157ðþ09
−29Þ 0.0061ðþ89

−45Þ 0.0218ðþ2
−3Þ

χ2=N 0.44 0.64 0.47

aβ¼1.90
c;ETMC ½fm� 0.0956ðþ1

−1Þ 0.0959ðþ2
−4Þ 0.0965ðþ1

−1Þ 0.0936(13)[18]

aΔβ¼1.90
c;ETMC

−0.0497ðþ11
−11Þ −0.0400ðþ11

−50Þ −0.0347ðþ11
−09Þ

χ2=N 1.06 1.50 1.19

aβ¼1.95
ETMC ½fm� 0.0832ðþ1

−0Þ 0.0834ðþ1
−3Þ 0.0838ðþ0

−0Þ 0.0823(10)[18]

aΔβ¼1.95
c;ETMC

−0.0406ðþ9
−9Þ −0.0331ðþ09

−43Þ −0.0301ðþ9
−8Þ

χ2=N 1.18 1.70 1.46

aβ¼2.10
ETMC ½fm� 0.0643ðþ1

−1Þ 0.0644ðþ1
−2Þ 0.0646ðþ0

−1Þ 0.0646(7)[18]

aΔβ¼2.10
c;ETMC

−0.0283ðþ7
−7Þ −0.0236ðþ06

−32Þ −0.0232ðþ6
−6Þ

χ2=N 0.53 0.78 0.74

TABLE III. Specifics for Fits 1–3. The offset parameter aΔc is introduced in (6). While Fit 1 and Fit 3 are based on
a systematical error ansatz of 10 MeV, Fit 2 rests on 5 MeV.

Fit 1 Fit 2 Fit 3 Lattice

aQCDSF−UKQCD ½fm� 0.0727ðþ1
−0Þ 0.0734ðþ1

−4Þ 0.0738ðþ1
−1Þ 0.072(4)[19]

aΔc;QCDSF−UKQCD −0.0198ðþ9
−2Þ −0.0064ðþ09

−47Þ −0.0032ðþ6
−4Þ

χ2=N 0.40 0.63 0.62

aLHPC ½fm� 0.1282ðþ1
−1Þ 0.1273ðþ1

−4Þ 0.1276ðþ2
−4Þ 0.1243(25)[13]

aΔc;LHPC 0.0200ðþ00
−10Þ 0.0200ðþ00

−34Þ −0.0200ðþ00
−32Þ

χ2=N 0.28 0.75 0.68

aβ≃6.76c;RBC−UKQCD ½fm� 0.1179ðþ1
−1Þ 0.1186ðþ0

−2Þ 0.1186ðþ0
−1Þ 0.1119(17)[17]

aΔβ≃6.76
c;RBC−UKQCD 0.0320ðþ22

−36Þ 0.0493ðþ88
−83Þ 0.0443ðþ65

−14Þ
χ2=N 0.42 0.78 0.80

aβ≃7.09c;RBC−UKQCD ½fm� 0.0885ðþ0
−1Þ 0.0890ðþ1

−2Þ 0.0888ðþ1
−1Þ 0.0849(17)[17]

aΔβ≃7.09
c;RBC−UKQCD 0.0267ðþ14

−26Þ 0.0384ðþ52
−61Þ 0.0335ðþ58

−09Þ
χ2=N 0.48 1.00 0.61
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proportional to Δ̄c accounts for fine-tuning of the charm-
quark mass, the Δ̄d term models discretization effects. All
results of our current work are based on the ansatz (7). In
particular, the lattice data as shown in Figs. 2 and 3 do
consider such correction terms. The values of Δ̄c and Δ̄d can
be derived from the values of the lattice scale a and the
offset parameters Δc as given in Tables III and IV. We
find Δ̄RBC−UKQCD

c ¼ 77þ1
−5 MeV and 95þ2

−13 MeV from Fit 1
and Fit 2, respectively. We turn to the ensembles of ETMC
and MILC, both of which are available at three distinct beta
values. In Table IV, our results for the offset parameters,
lattice scales, and chisquarevalues are presented. FromFit 1,
we find Δ̄MILC

c ¼ 25þ1
−8 MeV and Δ̄ETMC

c ¼ −55þ2
−2 MeV.

Corresponding values from Fit 2 are −5þ29
−4 and

−52þ1
−9 MeV.

In Fig. 4, we show the Ξc − Ξ0
c mixing angles evaluated

on all considered lattice ensembles in Fit 1. Given our
approach, the mixing angle acquires a mass dependence,
and therefore two distinct values are implied. At the
physical point, the mixing angles reach ϵΞ ≃ 0.103ðþ3

−4Þ
and ϵΞ0

c
≃ 0.117ðþ2

−2Þ at the Ξc and Ξ0
c masses, respectively.

We find rather small values for the mixing angles on all
considered lattice ensembles.
We wish to comment on the uncertainties in the LEC of

Tables I–II. We derived the one-sigma statistical errors.
Corresponding errors in Tables III and IVare derived for the
various lattice scales and offset parameters. Since a quite
large set of data points is fitted in terms of a significantly
smaller number of LEC, any derived statistical error is of
almost no physical relevance. Uncertainties are largely
dominated by the systematic uncertainties, which can be

made quantitative only after a better control of discretiza-
tion effects and the generic form of two-loop contributions
are available.
To conclude, the size of the errors in the LEC as obtained

in our study is indicative only since it reflects an ad hoc
assumption on the form of the systematic error. Further
lattice data and detailed studies are required. Once lattice
data are available at small pion and kaon masses, the
convergence properties of the chiral flavor SU(3) expansion
can be scrutinized in significant depth.

IV. SUMMARY AND OUTLOOK

In this work, we documented a first chiral extrapolation
fit to the world data on charmed baryon masses on QCD
lattices. The set of low-energy constants that determine the
baryon masses at N3LO was obtained. Given the latter, the
way is paved to explore the coupled-channel systems of
Goldstone bosons and charmed baryon ground states. Such
systems are of particular importance in QCD since, like in
the open-charm meson sector, flavor exotic multiplets are
expected here.
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