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The spin-dependent operators for heavy quarkonium hybrids have been recently obtained in a
nonrelativistic effective field theory approach up to next-to-leading order in the heavy-quark mass
expansion. In the effective field theory for hybrids several operators not found in standard quarkonia
appear, including an operator suppressed by only one power of the heavy-quark mass. We compute the
matching coefficients for these operators in the short heavy-quark-antiquark distance regime, r < 1/Aqcp,
by matching weakly coupled potential nonrelativistic QCD to the effective field theory for hybrids. In this
regime the perturbative and nonperturbative contributions to the matching coefficients factorize, and the
latter can be expressed in terms of purely gluonic correlators whose form we explicitly calculate with the
aid of the transformation properties of the gluon fields under discrete symmetries. We detail our previous
comparison with direct lattice computations of the charmonium hybrid spectrum, from which the unknown
nonperturbative contributions can be obtained, and extend it to datasets with different light-quark masses.
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I. INTRODUCTION

One of the long-standing, unconfirmed, predictions of
QCD is the existence of hadrons in which gluonic excitations
play an analogous role as constituent quarks in traditional
hadrons. These kinds of states are divided into two classes
depending on whether they contain quark degrees of free-
dom or not. In the case that the state is formed purely by
gluonic excitations it is called a glueball, while when the
state contains both quark and gluonic degrees of freedom it is
called a hybrid. The experimental identification of any of
such states has been up until now unsuccessful. In the case of
glueballs, this can be understood as owing to the fact that the
lowest-lying states, as predicted by lattice QCD calculations
[1,2], have quantum numbers coinciding with those of
standard isosinglet mesons, and therefore a strong mixing
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is expected. Glueballs with exotic J¥€, such as 0t~,2~F or
1=, are expected to appear at rather large masses.

For hybrid states the experimental identification may be
simpler since the interplay of quark and gluonic degrees of
freedom enlarges the range of possible quantum numbers
JPC, including exotic ones among its lowest mass states.
Nevertheless, if the quarks forming the hybrid state are
light, the hybrids are still expected to appear at the same
scale as conventional mesons, Aqcp, leading again to the

expected large mixings if the quantum numbers J€ of the
hybrids are not explicitly exotic. On the other hand, hybrids
containing heavy quarks, called heavy or quarkonium
hybrids, develop a gap of order Agcp with respect to the
respective states containing only the heavy-quark compo-
nent, i.e., the standard quarkonium states. Therefore, quar-
konium hybrids are expected to be the states including
gluonic excitations that are easier to identify experimentally.

It is precisely in the quarkonium spectrum, close and
above the open-flavor thresholds, that in the last decade tens
of exotic heavy quarkoniumlike states have been discovered
in experiments at B factories (BABAR, Belle, and CLEO),
7-charm facilities (CLEO-c and BESIII) and hadron colliders
(CDF, DO, LHCb, ATLAS, and CMS). These states are the
so-called XYZ mesons. Several interpretations of the XYZ
mesons have been proposed. In these interpretations, XYZ
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mesons are bound states of a heavy-quark-antiquark pair
with nontrivial light degrees of freedom. In the case that the
light degrees of freedom are light quarks, different tetraquark
pictures emerge depending on the spatial arrangement of the
light quarks with respect to the heavy quarks. If the light
degrees of freedom are gluonic, the picture that emerges is
that of a quarkonium hybrid. So far there is no conclusion on
which interpretation is the correct one, see Refs. [3-7] for
reviews of the experimental and theoretical status of the
subject.

Quarkonium hybrids are characterized by the separation
between the dynamical energy scales of the heavy quarks and
the gluonic degrees of freedom. The gluon dynamics is
nonperturbative and, therefore, happens at the scale Agep,
while the nonrelativistic heavy-quark-antiquark pair bind
together in the background potential created by the gluonic
excited state at a lower energy scale mv? < Aqcp, where mis
the heavy-quark mass and v their relative velocity. This
separation of energy scales is analogous to that of the electrons
and nuclei in molecules, and has led to the observation that
quarkonium hybrids can be treated in a framework inspired by
the Born-Oppenheimer approximation [8-14]. In recent
papers [15-18] an effective field theory (EFT) formulation
of the Born-Oppenheimer approximation, called the BOEFT,
has been developed and used to compute the quarkonium
hybrid spectrum. In this paper we will rely on the hierarchy
described above, i.e., Agcp > mv? and work under the
further assumption that mv > Agcp. The advantage of this
assumption is that the nonperturbative dynamics can be
factored out and its effects encoded in nonperturbative gluonic
correlators, allowing for a clear theoretical analysis of the
heavy hybrid spin contributions. In the case in which
mv ~ Agep, the potentials will be given by generalized
Wilson loops, however their spin structure will be the same.

The spin-dependent (SD) operators for the BOEFT have
been presented in Ref. [19] up to O(1/m?). The most
interesting feature, also pointed out in Ref. [20], is that
quarkonium hybrids, unlike standard quarkonium, receive
spin-dependent contributions already at order 1/m. At order
1/m? there are spin-dependent operators analogous to those
appearing in the case for standard quarkonium as well as
three new operators that are unique to quarkonium hybrids.
The matching coefficients of these operators, the spin-
dependent potentials, are generically characterized as the
sum of a perturbative contribution and a nonperturbative one.
The perturbative contribution corresponds to the spin-de-
pendent octet potentials and only appears in the operators
analogous to those of standard quarkonium. The nonpertur-
bative contributions can be written as a power series in 2
with coefficients encoding the nonperturbative dynamics of
the gluon fields. In this paper, we compute the spin-
dependent potentials by matching weakly coupled potential
NRQCD (pNRQCD) [21,22] to the BOEFT and obtain
the detailed expressions for the nonperturbative matching
coefficients in terms of gluonic correlators. To complete the

computation, it is necessary to use discrete symmetries to
reduce the pNRQCD two-point functions into the structures
matching the ones in the BOEFT. The values of the non-
perturbative contributions are unknown, nevertheless our
explicit formulas will allow a future direct lattice calculation
of these objects. Alternatively, the nonperturbative matching
coefficients can be obtained by comparing with lattice
calculations of the charmonium hybrid spectrum and the
values used to predict the spin splittings in the bottomonium
hybrid sector as shown in Ref. [19]. We provide in this paper
a detailed description of the fitting procedure and enlarge the
analysis to older lattice data with larger light-quark masses.

The paper is organized as follows: in Sec. II we review the
discussion on the relevant scales for quarkonium hybrid
systems and summarize weakly coupled pNRQCD and the
BOEFT for hybrid states. In Sec. III we demonstrate the
essential calculation steps and present the results for the
matching of the spin-dependent potentials, and give explicit
formulas for the gluonic correlators. In Sec. IV we compute
the mass shifts in the hybrid spectrum due to the spin-
dependent potentials and compare them with the charmonium
hybrid spectrum obtained from two different lattice QCD
calculations at different light-quark masses and fit the values
of the nonperturbative matching coefficients. We use these
values to give a prediction for the spin-dependent mass shifts
in the bottomonium sector. We give our summary and
conclusion in Sec. V. In the Appendix A, using discrete
symmetries, we obtain the relations between the gluonic
correlators that are needed to complete the matching calcu-
lation of the spin-dependent potentials. A detailed overview of
the matching of the spin-dependent terms of the two-point
functions in pNRQCD and the BOEFT is given in Sec. Il and
Appendix B. Finally, in Appendixes C and D we work out the
matrix elements of the spin-dependent operators.

II. SCALES AND EFFECTIVE FIELD
THEORY DESCRIPTION

In heavy quarkonium systems there are several well-
separated scales typical of nonrelativistic bound states: the
heavy-quark mass m (hard scale), the relative momentum
between the heavy quarks mwv ~ 1/r (soft scale), where
v < 1 is the relative velocity and r the relative distance, and
the heavy-quark binding energy muv? (ultrasoft scale).
Additionally, we also encounter the scale of the QCD
nonperturbative physics Agep.

Heavy quarkonium hybrids are bound states of a heavy-
quark-antiquark pair with a gluonic excitation. In quarko-
nium hybrids an interesting scale separation pattern appears
similar to the one of diatomic molecules bound by electro-
magnetic interactions. The heavy quarks play the role of the
nuclei and the gluons (and the light quarks) play the role of
the electrons. In a diatomic molecule the electrons are non-
relativistic and their energy levels can be studied in the nuclei
static limit due to the latter larger mass. These electronic
energy levels are called electronic static energies and are of

054040-2



QCD SPIN EFFECTS IN THE HEAVY HYBRID POTENTIALS ...

PHYS. REV. D 101, 054040 (2020)

order m,a?, with m, the electron mass and « the fine structure
constant. The nuclei vibrational (bound) states occur around
the minima of these electronic static energies and have
energies smaller than m, a’.

In quarkonium hybrids, the light degrees of freedom are
relativistic with a typical energy and momentum of order
Aqcp- This implies that the typical size of a hybrid state is
of the order of 1/Aqcp. The scaling of the typical distance
of the heavy-quark-antiquark pair, » ~ 1/(mv), depends on
the details of the full interquark potential, which has a long-
range nonperturbative part and a short-range Coulomb-like
interaction. Therefore, it may happen that the heavy-quark-
antiquark pair is more closely bound than the light degrees
of freedom. This situation is interesting because the hybrid
would present a hierarchy between the distance of the
quark-antiquark pair and the typical size of the light degrees
of freedom that does not exist in the case of diatomic
molecules, where the electron cloud and the distance
between the nuclei are of the same size. A consequence
of this is that while the molecules are characterized by a
cylindrical symmetry, the symmetry group for hybrids at
leading order in a (multipole) expansion in the distance of
the heavy-quark-antiquark pair is a much stronger spherical
symmetry. This modifies significantly the power counting
of the EFT for hybrids with respect to the case of diatomic

|

molecules, leading to new effects. In the following we
consider this case with the interquark distance of order
r < 1/Agcp- As in diatomic molecules, in order for a Born-
Oppenheimer picture to emerge it is crucial that the binding
energy of the heavy particles, mv?, is smaller than the energy
scale of the light degrees of freedom. In summary, we will
require the following hierarchy of energy scales to hold true:
m > mv > Agcp > mv?. We can then build an EFT to
describe quarkonium hybrids by sequentially integrating out
the scales above mv? [15,17]. In this paper we focus our
attention on the spin-dependent terms up to O(1/m?).

A. Weakly coupled pNRQCD

The first step in constructing the quarkonium hybrid
BOEFT is to integrate out the hard scale which produces the
well-known nonrelativistic QCD (NRQCD) [23-25]. The
next step is to integrate out the soft scale, i.e., expand in small
relative distances between the heavy quarks. In the short-
distance regime, r < 1/Aqcp, this step can be performed in
perturbation theory and one arrives at pPNRQCD [21,22,26],
which is the starting point of our discussion. The weakly
coupled pNRQCD Lagrangian ignoring light quarks' and
including the gluon interaction operators from Ref. [27] that
will be needed for the present work is

LpNRQCD = /d3R{/ d3r(Tr[S1(lao - hs)s + 01(lD0 - ho)O]

1 1 T g .
+gTr{STr-EO+OTr-ES+20Tr- {E,O} —§0Tr r[D E-’,O]} +@Tr[0 Lyp - (B, O]]

+ I Ty[ST(S, — S,) - BO + O (S, — S,) - BS + O'S, - BO — 0'S,0 - B]

m
gCs

+ 55 TrS'(S1 +82) - (Exp)O+0(S, +5,) - (Exp)S

| | 1
+0'S, - (Exp)O—0'S, - (pO xE)]) -1 GRG" + } (1)

S and O are the heavy-quark-antiquark singlet and octet
fields respectively, normalized with respect to color as S =
$1,/+/N, and O = 0°T“/\/Tr. They should be under-
stood as functions of #, the relative coordinates r, and the
center of mass coordinate R of the heavy quarks. All the
gluon fields in Eq. (1) are multipole expanded in r and
therefore evaluated at R and t: in particular the gluon field
strength G*** = G"*“(R, t), and the covariant derivatives
lD()O = 1800 - g[Ao(R, t), O] and lDEl = iVREi(R, t) +
glA(R, 1), E/(R,t)]. The momentum and orbital angular
momentum of the reduced mass of the heavy-quark-antiquark

'In this work we will not consider light quarks, see
Refs. [17,18] for a discussion on their inclusion and the use
of the BOEFT formalism for tetraquark states.

|

pair are respectively denoted by p = m% = —iV, and
Lyp =r xp. The spin vectors of the heavy quark and
heavy antiquark are S; and S, respectively. The terms
with explicit factors of the chromoelectric field E and
the chromomagnetic field B are obtained by matching
NRQCD to weakly coupled pNRQCD at tree level. The
coefficients ¢y and ¢, are matching coefficients of
NRQCD (see e.g., Ref. [25]), calculated in perturbation
theory, as «; is small at the scale m that characterizes these
coefficients. They are equal to 1 at leading order in a,. The
ellipsis denotes other spin-independent (SI) operators,
operators higher order in the multipole expansion or
1/m, and perturbative corrections of higher orders in «.
The Hamiltonian densities 4, and 4, of the singlet and octet
fields respectively read
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/’IYI—W—I—VS(V), 2
\&
By = =4 V,(r). ()

It is useful to organize V,(r)* as an expansion in 1/m and
separate the SI and SD terms:

(n 2)
v v

Vo(r) = V() + m(r> + m@ +o ()

VE(r) = Vi (r) + Vg (1), (5)

VO () = Vst (NLgg - S+ Vs (1S +Vys, (1) S1a, (6)

where § = Sl +S2 and S12 = 12<Sl i')(Sz i') —4S1 . Sz.
The octet-field spin-dependent potentials can be found in
Ref. [28].° They are given from the tree-level matching of
NRQCD to weakly coupled pNRQCD by

T(f(1S0) —f8<3sl>>} Fr). ()

V)= (- F)a % o

where Cp = (N]%,:])TF and Cy = 2N T are the Casimir
factors for the fundamental and adjoint representations of
the color gauge group SU(N,.) respectively. We define T
by Tr[T*T?] = T 5%, where T* are the color generators in
the fundamental representation. The renormalization scale,
v, is naturally of order mv ~ 1/r. The matching coefficients
fg’s originate in heavy-quark-antiquark annihilation dia-
grams. To O(a;) they read [24,29]

f3('Sp) =0, f5(81) = —ma,(m). (10)

At the accuracy of this work, we will use the tree-level
expressions of ¢y and cy, i.e., cp = ¢, = 1, for the spin-
dependent octet potentials in Egs. (7)—(9).

’An analogous expansion can be written for V(r), see [26].
We omit it here since we will not use it.

A contribution to Vs, proportional to the fg’s, which
originate in quark-antiquark annihilation diagrams, is missing
in Ref. [28]. Setting ¢z = ¢, = | and neglecting the contribution
from the quark-antiquark annihilation diagrams in Eqgs. (7)—(9)
would recover the corresponding expressions in Ref. [28].

B. The BOEFT

The final step is to build an EFT, which we call the
BOEFT, that describes the heavy-quark-antiquark pair
dynamics in the presence of a background gluonic excited
state by integrating out the scale Agcp. First, we have to
identify the degrees of freedom in the BOEFT.

In the short-interquark-distance limit » — 0 and the static
limit m — oo, quarkonium hybrids reduce to gluelumps,
which are color-singlet combinations of a local static octet
color source coupled to a gluonic field. The gluonic
excitations can be characterized by the so-called gluelump
operators [15,22]. The Hamiltonian for the gluons at
leading order in the 1/m- and multipole expansions,
corresponding to the Gy, G“-term in the Lagrangian in
Eq. (1), is given by

1
Hoz/mRE{Ea.EuBa-m]. (11)

We define the gluelump operators, G, as the Hermitian
color-octet operators that generate the eigenstates of H in
the presence of a local heavy-quark-antiquark octet source:

HyGi (R.1)[0) = AG (R, 1)[0), (12)

where a is the color index, x labels the quantum numbers
KPC€ of the gluonic degrees of freedom and i labels its spin
components. The spectrum of the mass eigenvalues, A,
called the gluelump mass, has been computed on the lattice
in Refs. [30-32].

At the next-to-leading order in the multipole expansion
the system is no longer spherically symmetric but acquires
instead a cylindrical symmetry4 around the heavy-quark-
antiquark axis. Therefore it is convenient to work with a
basis of states with good transformation properties under
D Such states can be constructed by projecting the
gluelump operators on various directions with respect to the
heavy-quark-antiquark axis:

k. A:r R, 1) = PLO“ (r,.R.{)Gi“(R,1)|0),  (13)

where summations over indices i and a are implied. P!, is a
projector that projects the gluelump operator to an eigen-
state of K -7 with eigenvalue A, where K is the angular
momentum operator for the gluonic degrees of freedom and
7 the unit vector along the heavy-quark-antiquark axis. It is
therefore natural to define the degrees of freedom of the

BOEFT as the operator ¥, (r, R, t) defined by

P0%(r.R.1)G(R.1) = Z* (r.R.p.P) ¥, (r.R.1). (14)

“The symmetry group is changing from O(3) x C to D,
with P replaced by CP.
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where P is the momentum operator conjugate to R, and Z is
a field renormalization factor, normalized such that the
following commutation relations hold:

[0%(r,R,1),0""(r',R',1)] =515 (r— )5’ (R—R’'), (15)

(¥ (r, R, 1), W (7 R 1)) = 805,,16° (r 1) 53 (R—R)),
(16)

where I is the identity matrix of the spin indices of the
heavy quark and antiquark. The BOEFT is obtained by
integrating out modes of scale Agcp, i.e., the gluonic
excitation. The Lagrangian of the BOEFT reads as

Lyogrr = / d%d%ZZTr{@L(r,R,z)

KX

V2.
X [i@,—VKM/(r)—I—P,’CEEP,’d,] ‘I‘,d/(r,R,t)} +...,

(17)

where the trace is over spin indices of the heavy quark and
antiquark, and the ellipsis stands for operators producing
transitions to standard quarkonium states and transitions
between hybrid states of different x. The former are beyond
the scope of this work’ and the latter are suppressed at least by
1/Aqep since the static energies for different  are separated
by a gap ~Aqcp. The potential V., can be organized into an
expansion in 1/m and a sum of SD and SI parts:

v ve

(0) KA KA
Vo =V S e 18
war () o (N8 + P + 2 + (18)
1 1 1
Vir(n) = Vilap(r) + Vigg (. (19)
2 2 2
V;(di'(r ) = V;(di'sz)(r ) + V;(czzvy(” )- (20)

In Ref. [15] the static potential Vig)(r) was matched to
the quark-antiquark hybrid static energies computed on the
lattice. In Fig. 1 we show the QCD static energies computed
using lattice NRQCD from Ref. [33]: they are plotted as a
function of the quark-antiquark distance r and only states
with excited glue are presented. The standard quarkonium
static energy, without gluonic excitations, would lie below
in energy and is not shown. Recently, a new comprehensive
lattice study of the hybrid static energies has appeared
in Ref. [34].

One of the major features of this spectrum is that in the
short-distance region the static energies can be organized in
quasidegenerate multiplets corresponding to the gluelump
spectrum. This is a direct consequence of the breaking of

>Transitions to standard quarkonium states are discussed in
Ref. [16].

r/ry

FIG. 1. The lowest hybrid static energies [33] and gluelump
masses [30,31] in units of ry ~ 0.5 fm. The absolute values have
been fixed such that the ground state X static energy (not
displayed) is zero at ry. The data points at » = 0, labeled with
k = KPC, are the gluelump masses. The gluelump spectrum has
been shifted by an arbitrary constant to adjust the 17~ state with
the I, and X potentials at short distances, with the dashed lines
indicating the expected extrapolation to degeneracy at r = 0. The
behavior of the static energies at short distances becomes rather
unreliable for some hybrids, especially the higher excited ones.
This is largely due to the difficulty in lattice calculations to
distinguish between states with the same quantum numbers,
which mix. The figure is taken from [31].

spherical symmetry into a cylindrical symmetry once the
subleading contributions in the multipole expansion are
included. Indeed, at leading order in the multipole expan-
sion V,Eg)(r) reads [15]
V) = A+ VI () 4 1)
That is, the potential in the short-distance limit only
depends on the quantum numbers of the gluelump x and
not on its projection A.
The lowest gluelump has quantum numbers x = 17, In

Ref. [15] the matrix elements of P,ﬂ %%wa were obtained
for k = 17~ and it was shown to contain off-diagonal terms
in A — A that lead to coupled Schrodinger equations. The
Schrodinger equations were solved numerically and the
spectrum and wave functions of hybrid states generated

the static energies labeled by X and II, were obtained.
III. MATCHING OF THE SPIN-DEPENDENT
POTENTIALS

We present now the results of the matching for the
spin-dependent potentials in Egs. (19) and (20) for the
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FIG. 2. Matching of two-point function in the hybrid BOEFT on the left-hand side to weakly coupled pPNRQCD on the right-hand side.
The diagrams are in coordinate space. The single, double, and curly lines represent the heavy-quark-antiquark singlet, heavy-quark-
antiquark octet, and gluon fields respectively. The black dots stand for vertices from the Lagrangian in Eq. (1) and the gray circles

represent the nonperturbative gluon dynamics.

lowest-lying gluelump (x = 177) in the short-distance
regime 1/r > Agcp. We will first write down the formu-
lation of the matching for general x and then focus on
the case k = 17—, for which we will demonstrate the
essential steps of the calculation and present the final
results, and leave the more involved details of calculation in
Appendix B.

The matching between weakly coupled pNRQCD and
the BOEFT at the scale Agcp is performed by considering
the following gauge-invariant two-point Green’s function
defined in terms of the fields in pNRQCD:

IKML/(",R,'J,R/)
= lim (O|PE G (R, T/2)0%(r,R, T/2)

x 0" (¥, R',=T/2)P.,GI’(R',-T/2)|0),

" (22)

where only the repeated color indices a, b and spin indices
i, j are summed. In the BOEFT, with Eq. (14), the two-
point Green’s function is given by
Ly (r,R, 7, R')

= limZ/*(r.R.p. P)

V2 .
< exp {—i(vm»f) - P:;’P;d/) T] 12 R.p.P)
m

x183(r—r)5*(R-R'). (23)
The Green’s function in pPNRQCD [Eq. (22)] has the form

Loy (r.R, ¥\ R') = Th_lfgo exp {=i[(h,)pr + Ax +Viu]T}

x18(r—r)8*(R - R'), (24)

where

- (25)

; : ; V2\ .
(ho)ar = nghopfw - PK;. <V0 - _r> P
and the gluelump mass A, is related to a gluonic
correlator by

"M = (0|GI*(R, T/2)¢p* (T /2,-T/2)G*(R', =T /2)|0),
(26)

with ¢ (t, ) the adjoint static Wilson line defined by

$(1,7) = Pexp {—ig /I 'thgdf'(R, t)]. (27)

In Eq. (24), 6V, is obtained from the contributions
to Eq. (22) from insertions of singlet-octet- and octet-
octet-gluon coupling operators from the Lagrangian in
Eq. (1). Comparing Egs. (24) and (23), we obtain
Z(r,R,p,P) =1 and
Vew = PEVPL + A+ 8V, (28)
which reduces to Eq. (21) at leading order in 1/m and
the multipole expansion. The matching condition is
schematically depicted in Fig. 2. In Fig. 2, the left-hand
side and the right-hand side correspond to the two-point
Green’s function computed in the BOEFT and pNRQCD
respectively. Diagram (a) gives the perturbative term
P,’;EVOP,’;” in Eq. (28), which is inherited from the octet
potential in Eq. (4), as well as a nonperturbative term A,,
the gluelump mass. Diagrams like (b), (c), (d), (e), (f),
and (g), with black dots, which denote the singlet-octet-
and octet-octet-gluon coupling operators in the pNRQCD
Lagrangian Eq. (1), give another nonperturbative contri-
bution oV,,;. All diagrams in pNRQCD are computed in
coordinate space, similar to what is done in Ref. [22].
Now we focus on the case x = 177. To simplify the
notation we will drop the subscript x for the rest of the
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manuscript and it should be understood that we are always
referring to x = 177, and so A takes the values 0, =1. The
spin-dependent potentials in Egs. (19) and (20) forx = 17~
read as follows:

(1)
Vs (r)

= Vsx(r)(PIKTP) - S
+ Vg (r)[(r - P})(FKYP),) - S

— (FKYP]) - S(r-Py)]. (29)

2 i i
VEM’)SD(r) :VSLa(r)(P;LQQPA’) S
+ Vs (r) Py (Ll p ST+ 5L, )P
+ Vs (D[ P))(pxS)-Py+P} - (pxS)(r-Py)]
+V2(r)S26, 4+ Vs,,a(r)S1260
+ V5 (r)PY P (S} S5+ 85S]), (30)

where (K'/)k = ie*/ is the angular momentum operator for
the spin-1 gluonic excitation. The projectors Pj‘1 read

Pl =3 =¥, (31)
T (0 +id)/V2. (32)

i Al
Py, = r

7 = (sin(0) cos(¢), sin(8) sin(¢h), cos(h)),
0 = (cos(0) cos(¢), cos(0) sin(¢p), —sin(0)),
(—sin(¢), cos(¢),0). (33)

<=
I

The 1/m operators in Eq. (29), with coefficients Vg (r)
and Vg, (r).° couple the angular momentum of the gluonic
excitation with the total spin of the heavy-quark-antiquark
pair. These operators are characteristic of the hybrid states
and are absent for standard quarkonia. Among the 1/m?
operators in Eq. (30), the operators with coefficients
Vsra(r), Ve(r), and Vg , are the standard spin-orbit,
total spin squared, and tensor spin operators respectively,
which appear for standard quarkonia also. In addition
to them, three novel operators appear at order 1/m?.
The operators with coefficients V;,(r) and Vg .(r) are

®The operator with coefficient V g, () contains the tensor ' r/
contracted to other vectors. In the case of standard quarkonia, for
which the symmetry group is SO(3), it is natural to decompose
the tensor 77/ into a sum of a trace part and a traceless symmetric
part, each of which corresponds to an irreducible representation
of SO(3). This is done for the operators with coefficients Vg (r)
and Vg ,(r), since they also appear in the case of standard
quarkonia. In the case of hybrid states here, since the symmetry
group is D, instead of SO(3), this decomposition is not of
particular relevance and we decided to write the Vg, (r) operator
without substracting the trace part.

generalizations of the spin-orbit operator to the hybrid
states. Similarly, the operator with coefficient Vg ,(r) is
generalization of the tensor spin operator to the hybrid
states. It should be noted that there are contributions from
the operators with coefficients Vg (r) and Vg, (r) at order
1/m?. For conciseness of presentation, we choose to treat
these contributions as 1/m-terms in Vg (r) and Vg, (r),
instead of showing the Vi and Vg, operators again
in Eq. (30).

The coefficients V;(r) on the right-hand side of Egs. (29)
and (30) have the form V;(r) = V,;(r) + Vi*(r), where
V,i(r) is the perturbative octet potential and V7 (r) is the
nonperturbative contribution. From the multipole expan-

sion, V'?(r) is a power series in r2, V'7(r) = V*0 4
VP2 4 ... We will work at next-to-leading order in the
multipole expansion for the 1/m potentials and leading

order in the multipole expansion for the 1/m? potentials.
Therefore, up to the precision we work at, we have

Vnp(O)

Ve(r) = Vg + =52y vigin - (34)
Vsin(r) = Vi - (35)
Vsia(r) = Vst (r) + Vi, (36)
Viiy(r) = Very. (37)
Viio(r) = Ve, (38)
Va(r) = Voa(r) + ViE, (39)
Vs, (r) = Vs, (1), (40)

Vo (r) = Vi, (41)

In Egs. (36), (39), and (40), V ,51.(7), V,52(r), and V5 (7)
are the perturbative tree-level spin-dependent octet poten-

tials given by Egs. (7)—~(9). The constants Vir <0), ng(zo),
VIR VO O 0 0 A0 gyl

obtained from diagrams (b), (c), (d), (e), (f), and (g) in Flg. 2
with insertions of spin-dependent operators with a chromo-
magnetic field or a chromoelectric field in the pNRQCD
Lagrangian Eq. (1), and are expressed as nonperturbative
purely gluonic correlators. It should be emphasized that the
expressions of Vsx (r), Vsxs (r), Vsra(r), Visro(r)s Vsre(r),
Vg (r), Vs,a(r), and Vg ,(r) in Egs. (34)—(41) are valid
only for 1/r > Agcp. For arbitrary values of r, they are
given by generalized Wilson loops.

To demonstrate the essential steps for obtaining the

V"5 in terms of purely gluonic correlators, here we will
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go through the derivation for the simplest one, Vgl”(w), and

leave the details of the derivations for the remaining ones in
Appendix B. In these derivations, relations among gluonic
correlators derived from transformation properties of the
gluonic operators under C, P, T are used, which are
summarized in Appendix A.

Consider diagram (b) in Fig. 2, with an insertion of the
cp-term in Eq. (1). Its contribution to 6V, is given by
8VSs, = izl HH (Ui (hes] = hesh). (42)

where

ijk = leiAT /2 ia ab jc de ke (_
sy = Jim o ["7 ant01GH (T 2)e (12, )98 (1 (72,06 (~T/2)0) (43)

T/2

and h*¢ = 2 Te[T*T’T¢]. In Eq. (43), repeated color
indices are summed and all fields are understood as
evaluated at R. The structure of the gluonic correlator in
Eq. (43) can be read off from diagram (b) in Fig. 2. The
gluelump operators create and destroy the gluonic excita-
tion at times —7/2 and T/2 respectively. The adjoint
Wilson lines correspond to the propagation of the octet
fields due to the covariant derivative in the first line of
Eq. (1). The insertion of B corresponds to the emission
vertex in diagram (b) of Fig. 2 denoted by a solid black dot.
All possible times of insertion must be taken into account
and therefore the time of insertion is integrated over from
—T/2 to T/2. The exponential factor ¢*” in front of the
correlator is the result of factoring out the gluelump mass A
in the potential as indicated in Eq. (28). The expression on
the right-hand side of Eq. (43) is finite in the limit 7 — oo,
since the large 7 behavior of the time integral is compen-
sated by the factor 1/T and the exponential factor /A"
compensates for the time evolution of the gluelump
operator from —7/2 to T/2.

Using Eq. (A27), which is derived from the charge
conjugation properties of the gluon fields, Eq. (42)
becomes

OV = iSERI US4

The color combination

Uss ijkl — lim
( EE) T1—>oo T -T/2

iAT T/2

Uss ijkl — lim
( ) T—oo T _T/z

(Up)* = (Up) s e, (45)

being a rotationally invariant tensor, can be written as

(Up)i* = Upe'it. (46)
Therefore, Eq. (44) becomes
sV = 12—?;' U peliksy, (47)
from which it follows that
vig? =L 0y (48)

The detailed derivations of V2, vkl y2p(0) yyap(0)

a b
Vi, v, v

correlators are shown in Appendix B. Here we list the
final results. Similar to Eq. (43), we have to define the
relevant gluonic correlators that appear in the matching
calculation of the two-point function. All of these gluonic
correlators involve a gluelump operator at r = —7'/2 and
another gluelump operator at = —7/2. The relevant
gluonic correlators that correspond to diagram (c) in
Fig. 2 are

, and V" f) in terms of gluonic

/ P [ G T 2T 2,09 g () <TG T /20, (49
-T2

dt / LA (0|G (T/2)¢ (T/2, 1)gB™ (1) gB* (#) (¢, ~T/2)GH(~T/2)[0).  (50)
T/2

The correlator (U3%;) V¥ in Eq. (49) arises from insertions of two singlet-octet vertices with a chromoelectric field from the
pNRQCD Lagrangian Eq. (1). The adjoint Wilson lines connecting the gluelump operators to the chromoelectric fields arise
from the two propagators of the octet field in diagram (c) of Fig. 2. Similarly, (U4, )* in Eq. (50) is defined like (U3) "%
with the chromoelectric field replaced by the chromomagnetic field. The relevant gluonic correlators that correspond to
diagram (d) in Fig. 2 are
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. l/\T t ) )
(U%%)Zféefg—}gm T / . / mdt’<0|Gm(T/2)¢“b(T/z,z)gEJv(z)qsde(z,ﬂ)gEkf(ﬂ)gbyh(ﬂ,—T/z)Glh(—T/z)|o>,
(51)
00 \ijkl e/ ! / ia ab jc de (4 4 Kf () pgh (4 Ih
Uity = Jim = [ [ dr QIGH(X /2007 (12,0008 ()9 1.)gB () 4.1 /2)G=1/2)0),
(52)
ijklm elAT /2 ! / ia a jc e /
(Usbe)iedero = Jim = / m‘”/_m‘” (0IG™(T/2) (T/2.1)gB" (1)p* (1.1
x[D*GE!(¢))f o (¢ =T /2)G™ (=T /2)[0), (53)
ijklm lAT T2 ! / ia a j c pde
Uity = Jim 5 [ [ a6 T2 20D W) g )
x gBI (1) (', ~T/2)G"™(~T/2)|0). (54)

The correlator (U %%)Zfée o N Eq. (51) arises from insertions of two octet-octet vertices with a chromoelectric field from the

pNRQCD Lagrangian. The three adjoint Wilson lines arise from the three propagators of the octet field in diagram (d) of
Fig. 2. The correlator (U437, E)Zfi'; , In Eq. (53) arises from insertions of two octet-octet vertices, one with a chromomagnetic
field at time # and another with a covariant derivative of the chromoelectric field at time ' < t. (U ,‘;‘g);fféef , in Eq. (52) and

(U 7)‘%3)2%2} , in Eq. (54) are similarly defined. The relevant gluonic correlators that correspond to diagram (e) in Fig. 2 are

ikl ielAT [1/2 ¢ r ) .
(U147 = 1im a [ ar [\ ariGer gm0
‘ T/2 7/2

T—-o0 T —T/2

x GES () (¢ ") gE" (") (1", =T /2)G™(~T/2)|0), (55)

ieiAT T/2

. t r . .
(Uife)dey " = lim dt / dr / dr"(0|G* (T /2)p* (T /2. 1)gE™ 1)
T=o T J_rpp Jorp2 -T2
x gB (1) (¢, ") gE" (1" )¢/ 9(¢", =T /2)G™(~T/2)|0), (56)

l'eiAT T/2

. t v . .
(Ugs) " = lim dt / dr / dr"(0|G™(T/2) (T /2, 1)gE™ (1)
T T J_rpp  Jorp2 -7/2
x gEX(£) (¢, 1) gB"* (") !9 (¢", =T /2)G"I(~T /2)0). (57)

The relevant gluonic correlators that correspond to diagram (f) in Fig. 2 are

ijkim e [T/ ! A j b j
(UBEE)ped = hm dt dt dt”(0|G"(T/2)¢**(T /2, 1)gB’(1)
-T2 /2

T—-o0 T T/2
x ¢l (t, 1) gE* (1) gE" (") 9(1", =T /2)G"I(~T/2)|0). (58)
oss \ijklm __ . ieiAT /2 ! / 2 1" ia ab ic
(U%se) i = lim dt dt dt"{(0|G"™(T/2)p*"(T/2,t)gE’“ (1)
T-o T J_rp2 Jorp2 -7/2
x ¢l (, 1) gB* (¢ )gEY (") 9(1", =T /2)G"I(~T/2)0). (59)

T/2

B IAT t 7 ) .
gz = gim o [Ca [0 ar [0 aroiGer e e
Tseo T J_rpo  Jorp2 -7/2

x (. 1) gE* (1) gB (1")p/9(¢", =T /2)G"(~T/2)|0). (60)
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The relevant gluonic correlators that correspond to diagram (g) in Fig. 2 are

ijklm . lelAT /2 4 4 ; ;
(Ugge )ik = lim / di / ar / dr'(0|G™ (T /2)¢ (T /2, £)gBF (1)
-T/2 -T2

T—o0 T —T/2
X (1, 1) gEN (1)t (¢ 1")gEP (") (", =T /2)G™ (~T/2)|0), (61)
i = gim [P [ [T a6y 2)g (12 9B (1
EBE bcdefghpq_TgEo _r / ¢ /v g )
/2 -T/2 -T/2
X (1, 1) gBY (1) (¢ 1")gEP (") (1", =T /2)G™ (=T /2)|0), (62)
zAT T/2

t 7 . .
dt/ dr / dt"(0|G(T/2)¢pb (T /2, t)gE/“(t)
T—’°° -T)2 T/2 T/2

><¢de(f,f) gEY ()" (¢ .1")gB' (") (¢". =T /2)G™ (=T /2)|0). (63)

0oo \ijklm —
(UEEB)bcdefghpq —

In Egs. (55) to (63), the correlators arise from insertions of three vertices, each being a singlet-octet or an octet-octet vertex,
with a chromoelectric field or a chromomagnetic field. Analogous to Eq. (45), we define the color combinations

. . y 4T
(Uge) ™ = (Ug) pter, deder? t I (U” )V, (64)
Y [kl
(Usga)"™ = (Ugs) federof 17, (65)
(0 )z]kl (Uoo )likl pbed pesf _|_4 F (Uss )ijkl (66)
BBb BB/bcdefg N BB ’
C
7 i ijklm
(UBDE)Uklm = (U%%E)bjcdefghbaifefg’ (67)
. m ikl
(Upes) ™™ = (Uen) jegeryf 07, (68)
N g y 4T ;
(Uppp) ™ = (U pedeganpg " d//d" + 5 (U eq"h*, (69)
C
A .. H 'kl
(Ugpe) ™M™ = (UZEE) jede rgnpgd” h7d"1, (70)

(O 7 = (U gt 450

ikl
bedefghpq ( SSEOB)iijgfmhdef (71)
c

where 79 is as defined below Eq. (43), d**¢ =1(h®¢ + ho?) and f®¢ = —i(h° — h*"). The tensors defined in
Eqs. (64)—(71) have the form U7 or U7 which being rotationally invariant, have the tensor decompositions given by
Uukl Ulﬁllékl Ulléikéjl + UIIIéilajk’ (72)

l"]ijklm — Uigikméjl + 0ii€jlm5ik + f]iiiejkl(sim + fjiveijl(skm + (7v€klm5ij
+ Oviejkm(sil 4 f]viieikléjm 4 Uviiieijk5lm 4 Uixeijm(skl + fjxeilm(sjk' (73)

The nonperturbative coefficients Viay, Veb!) yipl0) yup0) yyup() -yup(©) 1459 © and vy ) are then given by

np(0 Cs ~
Viks =7 Uke. (74)
np(l ¢ r7i r7iX r7i T 7iX 77X r7i [ 7ix 77X
VS? )= §F [—(Ukpe +2Ufge) = 2(Upge + Upge + Ugge) + (Uppe + Upe + Ukpr)], (75)
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0
V;Z(b /= 16[2(U1VEBE_UEBE+2UEBE)

+2Us g+ U g — U+ Upp— Ugip+2U% k)

—Usp e+ Ubpp—U8p+ Uhpe—Unp+20%p5)],

(76)
ViR = 2 ler Ut — e, U], (77)
Vit = Uy (78)
Vip! = =5 Ul (79)
v Loy, )
v =, 1)

In the derivation of Egs. (74)—(81), identities for the gluonic
correlators in Egs. (49)—(63) derived from discrete sym-
metries are used, which are summarized in Appendix A.
Note that some of the components in Egs. (72)—(73) do not
appear in Eqgs. (74)—(81) since they can be related to the
other components through the discrete symmetry relations
of Appendix A. From Eqgs. (48) and (74)—(81), we see that

the V" (s are products of a perturbative NRQCD match-
ing coefficient ¢ or cg, for which we know the dependence
on the heavy-quark flavor, and a nonperturbative purely
gluonic correlator, which is independent of the heavy-quark
flavor.

IV. SPIN SPLITTINGS IN THE
HYBRID SPECTRA

We obtain the spin-dependent contributions to the
quarkonium hybrid spectrum by applying time-indepen-
dent perturbation theory to the spin-dependent potentials in
Egs. (29)—(30). We carry out perturbation theory to second

el 0)
()—l— 55“ in Egs. (29) and (34), and

to first order for the Vib\! >—term and the V2 term in
Egs. (29), (34) and (35) and the 1/m?-suppressed operators
in Egs. (30), (36)—(41).

The zeroth-order wave functions are obtained following
the procedure described in Ref. [15], by solving the
coupled Schrodinger equations involving the potentials
Vg)_) (r) and VSJL ) (r) generated by the 17~ gluelump at short
distances. The Schrodinger wave functions (WYN/"%) , (r, 1)
are related to the field operator ¥,(r,R. ) by

order for the terms V

(PNImi) (r 1) = (O], (r,R = 0,1)|Njm;ls).  (82)

There are two types of solutions corresponding to states

with opposite parity (lP]ijle)l and ( liljmjls)/

" (n)), (6.9)
y M (0L 0.9) | xom.

Njm;ls jm ;
‘.PJrJ ! (r) = E:C?m,]sm_y %
L5 ()0}, 0.9)

mymg

(83)
0
\I‘]ijjh( ) chmlsm, \/L— ( )(r)vlmz (9 ¢) Ksmg>
" ~ 5w (r) v, (6.4)
(84)

where the components from top to bottom correspond to
A=0,+1,—1. We define L =Lyp + K, the sum of the
orbital angular momentum of the heavy-quark-antiquark
pair and the angular momentum of the gluelump, and
J=L+S, the spin of the quarkonium hybrid. The
quantum numbers are as follows: /(I 4 1) is the eigen-
value of L?, j(j + 1) and m; the eigenvalues of J* and J;

respectively, and s(s + 1) the eigenvalue of S2. Cf::l’m

the Clebsch-Gordan coefficients. The angular elgenfunc—
tions vfm, are generalizations of the spherical harmonics
for systems with cylindrical symmetry. Their derivation
can be found in textbooks such as Ref. [35]. The y,,, are
the spin wave functions. The radial wave functions

l/féN),l//(iv), wW) are obtained numerically by solving the

coupled Schrodinger equations, with N labeling the
radially excited states.

The angular wave functions v
and not of L2

elements of operators involving Ly is not totally straight-
forward. The details of the calculation of these matrix
elements can be found in Appendix C. We will present the
results for the four lowest-lying spin multiplets shown in
Table I. Matrix elements of the spin-dependent operators in
Egs. (29) and (30) for the angular part of the wave functions
of the states in Table I are listed in Appendix D. The eight

3 Y0
nonperturbative parameters Vin ) = Vo 4 s e,

Vipl0) yap0) yyupl0) yyup(0) V'Slfm), and VS‘;(b) that appear
in the spin-dependent potentials Eqs. (34)—(41) are
obtained by fitting the spin splittings to corresponding
splittings from the lattice determinations of the charmo-
nium hybrid spectrum. Two sets of lattice data from the

I, are eigenfunctions of L?

. As a result, the evaluation of matrix

"Note that the sign in the subindex refers to relative sign of the
A= +1and 1 = —1 components and not to the parity of the state
which depends also on [ [15].
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Spectrum of the four lowest-lying charmonium hybrid multiplets. The lattice results from Ref. [36] with m, ~ 400 MeV are

plotted in purple. In green we plotted the perturbative contributions to the spin-dependent operators in Eq. (30) added to the spin average
of the lattice results (red dashed line). In blue we show the full result of the spin-dependent operators of Egs. (29)—(30) including
perturbative and nonperturbative contributions. The unknown nonperturbative matching coefficients are fitted to reproduce the lattice
data. The height of the boxes indicate the uncertainty as detailed in the text.

Hadron Spectrum Collaboration have been used, one set
from Ref. [36] with a pion mass of m, ~ 400 MeV and a
more recent set from Ref. [37] with a pion mass of
m, ~240 MeV. We take the values mRS(1 GeV) =
1.477 GeV [38] and «a, at 4-loops with three light flavors,
a,(2.6 GeV) = 0.26. In the fit the lattice data is weighed
by (Afice T Afigheorder) /% Where Ajee is the uncer-
tainty of the lattice data and Apgnorder = (Miatice —

Miyice spin-average) X Agcp/M is the estimated error due to

higher-order terms in the potential. The V” ) in units of
their natural size as powers of Agcp are introduced to the fit
through a prior. We take Agcp = 0.5 GeV. The results of
the fit are shown in Figs. 3 and 4 for the lattice data
of Refs. [36,37] respectively, and the obtained values
of the nonperturbative matching coefficients are shown

in Table II. Each panel in Figs. 3 and 4 corresponds to one
of the multiplets of Table I. The purple boxes indicate the
lattice results: the middle line corresponds to the mass of
the state obtained from the lattice and the height of the box
corresponds to the uncertainty. The red dashed line indi-
cates the spin average mass of the lattice results. The green
boxes correspond to the contribution to the spin splittings
from the perturbative contributions to Egs. (34)—(41), i.e,
the contributions from the spin-dependent terms of the
octet potential in Eqs. (7)—(9). The height of the green box
(Ap) is an estimate on the uncertainty given by the

parametric size of higher order corrections, O(ma)), to
the potentials in Egs. (7)—(9). The blue boxes are the full
results including the nonperturbative contributions after
fitting the eight nonperturbative parameters to the lattice
data. The height of the blue box corresponds to the
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FIG. 4. Spectrum of the four lowest-lying charmonium hybrid multiplets. Same as in Fig. 3, except using the lattice results from

Ref. [37] with m, ~ 240 MeV.

uncertainty of the full result. This uncertainty is given
by Apy = (A2+ A2, + A})"/? where the uncertainty
of the nonperturbative contribution A, is estimated to
be of parametric size of higher order corrections,
O(Agep(Agep/m)?), to the matching coefficients. Ag, is
the statistical error of the fit. For the fits to both sets of
lattice data, the resulting »?/d.o.f. for the eight V"5 is
0.999. It should be noted that the leading contribution

VSK( ) has the most dominant effect.

TABLE I. Lowest-lying quarkonium hybrid multiplets.
Multiplet [ JPC (s =0) JPC(s=1)
H, 1 1 (0,1,2)~F
H, 1 1 (0,1,2)*
H, 0 0t 1

H, 2 2+ (1,2,3)

TABLE II. Nonperturbative matching coefficients determined by
fitting charmonium hybrid spectrum obtained from the hybrid
BOEFT to the lattice spectrum from the Hadron Spectrum Col-
laboration data of Refs. [36,37] with pion masses of m, = 400 MeV
and m, ~ 240 MeV respectively. The matching coefficients are
normalized to their parametric natural size. We take the value
AQCD =0.5 GeV.

Ref. [36] Ref. [37]

7100 A3y +1.50 +1.03
np<1 [N -0.65 -0.51
gg{f /Aen +0.22 +0.28
Vil /Al e +0.81 -1.32
Very [ Aden +1.18 +2.44
v, Ny +0.75 +0.87
vIrO /A3 -0.26 -0.33
+0.69 -0.39

np(()
Vsub /AQCD
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Spectrum of the four lowest-lying bottomonium hybrids computed by adding the spin-dependent contributions from

Egs. (34)—(41) to the spectrum obtained in Ref. [15]. The values of nonperturbative contribution to the matching coefficients are
determined from the fit of the charmonium hybrids spectrum obtained from the BOEFT to the lattice data of Ref. [36] shown in Fig. 3.
The average mass for each multiplet is shown as a red dashed line. The results with only the perturbative contributions and the full results
for the matching coefficients are shown as green and blue boxes respectively. The height of the boxes indicates the uncertainty as

detailed in the text.

An interesting feature is that for the spin triplets, the
value of the perturbative contributions decreases with J.
This trend is opposite to that of the lattice results. This
discrepancy can be reconciled thanks to the nonperturbative
contributions, in particular due to the contribution from

V;Z(O), which is only suppressed by 1/m, and has no
perturbative counterpart. A consequence of the countervail
of the perturbative contribution is a relatively large uncer-
tainty on the full result with respect to its absolute value
caused by a large nonperturbative contribution. Due to this
uncertainty the mass hierarchies among the spin-triplet
states of the multiplets H, and H, are not firmly deter-
mined. This is reflected on the change of the mass
hierarchies for the central values of the lattice data from
Ref. [36] to Ref. [37].

All the dependence on the heavy-quark mass of the

v'?Us in Eqs. (48) and (74)-(81) is encoded in the
NRQCD matching coefficients ¢y and c,. At leading order
in a; these coefficients are known to be equal to 1 and the
dependence on the heavy-quark mass only appears when
the next-to-leading order is considered [25]. Hence, at the
order we are working, only the heavy-quark mass depend-
ence of cr in Eq. (48) is relevant. We use the one-loop
expression of ¢y in Eq. (48), with the renormalization scale
set as the heavy-quark mass. Taking this mass dependence
into account, we can use the set of nonperturbative
parameters to predict the spin contributions in the botto-
monium hybrid sector, for which lattice determinations are
yet not available due to their larger difficulty compared to
the charm sector.
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FIG. 6. Spectrum of the four lowest-lying bottomonium hybrids computed by adding the spin-dependent contributions from
Egs. (34)—(41) to the spectrum obtained in Ref. [15]. Same as in Fig. 5, except using the result of the fit in Fig. 4 with the lattice data from

Ref. [37].

We compute the bottomonium hybrids spectrum by adding
the spin-dependent contributions from Egs. (34)—(41) to the
spectrum obtained in Ref. [15]. We show the results thus
obtained in Figs. 5 and 6 for the values in the second and third
columns of Table II respectively. We use the value of the
bottom mass mX5(1GeV) = 4.863 GeV.

V. CONCLUSIONS

The spin-dependent operators for heavy quarkonium
hybrids up to order 1/m* were presented in Ref. [19].
The most prominent feature is the appearance of two spin-
dependent operators already at order 1/m, unlike standard
quarkonia, in which case the spin-dependent operators
appear at order 1/m?. These operators, in Eq. (29), couple
the total spin of the heavy-quark-antiquark pair with the
spin of the gluonic degrees of freedom that generates the
hybrid state. At order 1/m?, we have the spin-orbit, total

spin squared, and tensor spin operators familiar in the
studies of standard quarkonia. In addition, three new
operators appear at order 1/m?, which involve the projec-
tion operators that project the gluonic degrees of freedom
onto representations of D, and can be viewed as
generalizations of the spin-orbit and tensor spin operators
to hybrid states. All the 1/m? spin-dependent operators are
shown in Eq. (30). The structure of the spin-dependent
operators is valid for both r < 1/Agep and r ~ 1/Agcp,
however the power counting and the form of the potentials
are different in these two regimes. Here we have explicitly
worked out the case r < 1/Aqcp.

In the short heavy-quark-antiquark distance regime,
r < 1/Aqcp, the matching coefficients, i.e., the potentials,
of the spin-dependent operators of the BOEFT, the EFT for
hybrids, are obtained by matching the two-point functions
for the hybrid states in weakly coupled pNRQCD and the
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BOEFT. Two types of contributions arise. The perturbative
one correspond to the spin-dependent terms of the octet
potential, Egs. (7)—(9), and are generated when the soft
scale is integrated out and NRQCD matched to pNRQCD,
which we review in Sec. Il A. The nonperturbative con-
tribution can be organized as a polynomial series in 7> with
coefficients encoding the gluon dynamics. In this paper,
we present the expressions for these coefficients, Egs. (48)
and (74)—(81), in terms of integrals over the insertion time
of chromoelectric or chromomagnetic fields in gauge
invariant correlators of the gluonic degrees of freedom,
Egs. (43) and (49)—(63). In these nonperturbative contri-
butions, the dependence on heavy-quark mass appears only
in NRQCD matching coefficients, such as ¢y and ¢, and is
factored out from the gluonic correlators. The details of the
calculation can be found in Sec. III and Appendix B. To
reduce the two-point function in pNRQCD to a form
matching the one in the BOEFT, it is necessary to use
relations between different gluonic correlators derived from
the transformation properties of the gluon fields under C, P
and 7. These relations can be found in Appendix A.

The values of the nonperturbative contributions can be
obtained by evaluating on the lattice the gluonic correlators
we provide. These computations are at the moment not
available. Nevertheless, these values can be estimated by
comparing with direct lattice computations of the hybrid
charmonium spectrum. To do so, we compute the contri-
butions of the spin-dependent operators to the hybrid
spectrum to O(A%CD /m?) using standard time-independent
perturbation theory in Sec. IV. We have used the charmo-
nium hybrid spectrum computed on the lattice by the
Hadron Spectrum Collaboration in Refs. [36,37] and fit the
values of the nonperturbative contributions to the matching
coefficients to reproduce the lattice spectrum. The results
are shown in Figs. 3 and 4 and Table II. We found that it is
possible to reproduce the lattice data of the charmonium
hybrid spectrum with nonperturbative matching coeffi-
cients of natural sizes. The values of the pion mass utilized
in Refs. [36,37] are m, ~ 400 MeV and m, ~ 240 MeV
respectively. The variation of the values of the nonpertur-
bative matching coefficients obtained by the fits for the
two lattice datasets can be tentatively attributed to the
light-quark mass dependence of the gluon correlators, in
particular for the matching coefficient of the leading spin-

dependent operator V7).

Finally, we have taken advantage of the fact that the
gluonic correlators are independent of the heavy-quark
flavor to compute the mass spin splittings for the botto-
monium hybrid spectrum. The results are shown in Figs. 6
and 5. The bottomonium hybrid spectrum including spin-
dependent contributions has not yet been computed on the
lattice.® Calculations of the bottomonium hybrid spectrum
on the lattice are difficult due to the widely separated scales

8In Ref. [39] three states were identified as hybrids.

of the system, i.e., the bottom-quark mass being much
larger than Aqgcp. Therefore, precision calculations of the
bottomonium hybrid spectrum on the lattice would require
both large volume and small lattice spacing, which is
computationally challenging. On the other hand, an EFT
approach can take advantage of the same wide separation of
scales and is, like lattice QCD, a model-independent
approach rooted in QCD. Combining both approaches
opens a promising path towards the understanding of exotic
quarkonia.

The impact of this calculation is manifold. First, as
observed above, the spin dependence of the operators for
quarkonium hybrids is significantly different from that for
standard quarkonia. This has an important impact on the
phenomenological calculation. Second, we have obtained
for the first time the expressions of the nonperturbative
contributions to the spin-dependent potential for quarko-
nium hybrids in terms of gauge-invariant correlators
depending only on the gluonic degrees of freedom, which
are suitable for computation on the lattice or evaluation in
QCD vacuum models. The technology to calculate these
correlators in lattice QCD already exists [34,40—43] and
could be readily applied. Third, we emphasize that the
obtained nonperturbative correlators depend only on the
gluonic degrees of freedom and not on the heavy-quark
flavor. This allows us to extract the unknown nonpertur-
bative parameters in the spin-dependent potential from the
charmonium hybrid spectrum and use them for bottomo-
nium hybrids. Finally, since the BOEFT can be generalized
to considering also light quarks as the light degrees of
freedom [18], the spin-dependent operators will likely have
similar characteristics also in that case. Therefore, we
supply the full list of matrix elements of the spin-dependent
operators in Appendix D to facilitate applications to the
spectrum of XYZ states for phenomenologists and model
builders. Since most of the phenomenological applications
for XYZ states up to date either do not contain such spin-
dependent terms or construct them in a way inspired by the
traditional quarkonium case, we believe that this result can
prove to be very useful.

The next step forward in the BOEFT framework will
be to release the assumption mv > Agcp we used in this
paper, and work out the spin-dependent corrections using
only the hierarchy Aqcp > mv? underlying the Born-
Oppenheimer approximation [20]. In this case the spin
decomposition of the potential will be the same as
obtained here but the actual form of the r-dependent
potentials will be given in terms of generalized Wilson
loops. This is analogous to the computation of the spin-
dependent potential for traditional quarkonia as gener-
alized Wilson loops in strongly coupled pNRQCD [44-
46] which was later used by lattice groups to obtain the
form of the nonperturbative spin-dependent potentials
[47-49] and can be addressed with the technology
developed in [9,33,34].
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APPENDIX A: IDENTITIES FOR GLUONIC
CORRELATORS FROM C, P, T

In this Appendix, we list the identities derived from the
transformation properties of the fields in the correlators in
Egs. (43) and (49)—(63) under C, P, T that have been used
in the matching calculation of the spin-dependent BOEFT
potentials, shown in detail in Sec. III and Appendix B.

Under C, P, T, the operators E“(R,t), B"(R,t), and
¢ (R;1,1') transform as

CE“(R.1)C™! = —(=)"E"(R.1), (A1)
CB*“(R.1)C™" = —(=)“B“(R. 1), (A2)

Cop® (R;1.4)C™" = (=)™ (R:1.1)(=)".  (A3)
PE“(R,1)P~' = —E"(-R,1), (A4)
PBa(R,1)P~! = Bi“(—R, 1), (AS)

Py (R 1. 1)P~! = ¢*"(-R; 1. 1), (A6)
TE“(R.)T™ = (=)“E*(R. 1), (A7)

TB(R, )T~ = —(=)9B(R,—1),  (AS8)

T¢® (Rt )T~ = (=)"¢" (Ri =", —1)(=)",  (A9)

where (—=)*=1fora=1, 3,4, 6, 8 and (—)? = -1 for
a=2,5,7.For k = 1", the gluelump operator G'“(R, 1)
transforms under C, P, T as

CGU“R.1)C™" = —(=)*G“(R.1),  (Al10)
PG (R, 1)P~' = G'“(=R. 1), (Al1)
TG“(R. T = —(=)*G“(R.—1).  (Al2)

Inserting the identity operator C~'C between the fields in
the correlators in Egs. (43) and (51)—(63) and assuming C
invariance of the vacuum give

(Up) s Th TS T, = —(Up) it (T (T) (T, (A13)

(U35 ieder Top oo ToaTie Tion T = (U35 iteaero (T g (T) S5 (T 3 (T (T ) (T, (A14)
(U3 iederg TopToToa i T T = (U)o (T g (T) L (T) (T E(TF)D (T, (A15)
(U mmderg TosTooToaToe TonTio = (Usie)ieanro (T by (T) (T B (T (T L (TO)E,, (A16)
(USn) ey Top TesTaaTe T Tl = (Usieg) poory (T0) g (TE) (T2 (T L (TN (T9)E,, (A17)
(Ugge)tt T4 TesThe = =(Ussgp) i (T, (1) (T (A18)

(U ay TasTSsThe = =(Usge) gl (T L (T (T, (A19)

(U i T, T The = —(Uisgy )y (T L (T (T, (A20)

(UGsE) by Th TS T, = —(Uge )y a (T (T T(TD]E, (A21)

(ULE) by Th T T, = —(Ugge)yn (T (T T(TE,. (A22)
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iljmk iljmk
(UZEs)bed TapTssThe = —(Uip)hea (T")ap(T)5(T)50 (A23)

( UI(;DEOE) Zggekfgh Pq Tgﬂ T;(; Tgﬁ T’?T T{’K Tﬁ” T?ﬁ Tff Tl‘ll/)(
iljmk
- _(U?}%}f Zi:inefghpq (Tb)gﬁ(Tc);%(Td)[{ﬁ(Te);T(Tf)aT)K<Tg);];v(Th)eTé(Tp){f(Tq)g;)(’ (A24)
000 \iljmk c
( EBE) ;defghpq Ti/} Ty(‘iTgG TZT Té’( TZ” Tg(s Tff Tl(’ll)(

000 \iljmk c e
= —(UgFe)bedesgnpg (T ap(T)75(T) o (T) e (T7) 0y (T9) 1 (T 5 (TP) 1 (T) (A25)

iljmk b Tc Td S 19 Th q
( U%%}% ) lbi:lle fghpg Taﬂ T}Llé T/M T'(;T T Tzl’ Te(S T}Zj TW)(

000 \iljmk ’
= —(U¥s)bedesrgnpg (T g (T 5(T) o (T€) e (T7) 6 (T9) 1 (T 5(TP) [ (T) - (A26)

|
From Eqs. (A13)-(A26), taking appropriate summations on
the fundamental color indices, and utilizing the cyclic
symmetry and the total symmetry of indices of h“*¢ and y .
d?"¢ respectively, we have (U SBSEE)%;mddef =0, (A34)

ijkl - jjkl
(USen)iederal "1 = (Uep)peaergf " h, (A33)

ik 1 bed ik 1 bde N
(UB)}]Jthb d _ _(UB)chdhbd , (A27) (U%VEE)i;j;mddef =0, (A35)

00 \ijkl bed _ 0 \ijkl bdc
(U )ederh" 17 = (Ugiiederg 1. (A28) (U aree = o, (A36)

00 \ijkl hbedpeaf — (goo ijkl  pbdepefy A29 B
( EE)bcdefg ( EE)bcdefg ( ) (U%SEB Zg’mdde —=0. (A37)

oo ijkl hbedpefg — (goo ij]fl hbdche-qf, A30 N . N .
( BB)bcdefg ( BB)deefg ( ) ( SESEB)gf;mhdef:_( SESEB)g:;mhdfe, (A38)

00 \ijkl cdpe 00 \ijkl cpe
( BB) ) hPedpesl = ( BB)b]cdefghbd h fg’ (A31)

bedefg ijklm 1 p, s \ijklm g p
( %SESE)Lchmh “d = _( %SEYE)chmh dC’ (A39)
jjkl i jkl
( U%%E) lbjcd;nfgthdfefg = ( U%UDE)Ib]chfghhdcfeyf ’ (A32)
|
ijkl ijkl
( UIOB?:%S) lb]cdznfghpqthddefgdhpq == ( U%%(}E) lbjcdznfghpqhbdc de19dre ’ (A40)
ijkl ijkl
( U%%OE) ch:’nfghpqdbaihefgdhpq =~ ( UZ"%OE) chznfghpqdbwzhegfdhpq ’ (A4 1 )
ijkl ijkl
( U%(I)S% ) ;chd’er}ghpqddedEfghhpq == ( U%OE(% ) ;Jch’enfghpqddedefghhqp . (A42)

Inserting the identity operator T~! T between the fields in the correlators in Eqgs. (53), (58), (61), and (62) and assuming T
invariance of the vacuum give

(Ushe) B To TS T Te TheThy = —(Ugi )it (T7) Ly (T T (T (T) (T D (T, (A43)
(Ul Ta,TesThy = —(Usigg)yed (T (T 5 (TN)], (A44)

(U555 s ghpa Top TooToa Ty T T THTETY,
= (U et e (TO) Ly (T (T (T) L (T L (T9)T, (T (TP (T (A45)

iljmk b d S 79 Th TP T4
( U%%(}S) bedefghpq Taﬁ T;(S szf Tg-t T le T€§ Tié T'//)(

ooo \kmjli c e
= = (U5E) gphgfedcs T ap(T) 15 (T 5 (T e (T ) (T (TM) E5(TP (T (A46)
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From Eqs. (A43)—(A46), taking appropriate summations on
the fundamental color indices, and utilizing the cyclic
symmetry and the total symmetry of indices of h“¢ and
d*’¢ respectively, we have

( oo )ijklm hbcdfﬁfgz_( 00 )mklji fbcdhefg

BDE/bcdefg DEB/bcdefg (A47)

ijkl c lkji
(U%A}:EE)b]cdmhb 4= (U?]?B);nef] thf (A48)

000 \ijkim bed jefq jhpq
(UBEE)bcdefghpqh delvd

lk ]
_( %EB)?cdélfghpqddedefghhpq’ (A49)
(U%”B(}g)ng}-thqdb”jhef"’dhpq
(UOOOE)Zﬁsi}ghpqddehefgdhpq’ (ASO)

which imply that the tensor components [Eq. (73)] of

2 ijklm (' ijkim  (F ijklm (' ijkim
(Uppe)”™™, (Upep)”™™, (Uggp)”*™, (Ugpg)”*™, and
(Ugeg)7 ™ in Egs. (67)~(71) satisfy

P frix  frii . pyvii
Uspe = Upes- Uspe = Upgs-
Friii _ friii friv. . fyv
Uspe = Upes- Ugpe = Upgs-
r7v __ __Jviii F7vi __ J7iv
BDE — pEB> YBpE =~ YUbDEB:
Frvii . fvi poviii o i
spe = ~Upes Ugpe = Upgs.
7 7ix _ JTIX 77X 77
spe = Upes: Ugpe = Upgp: (AS1)
F7ii __ JTiv F7v __ fyviii
EBE — UEBE’ Ukpr = Ugge:
1 X
EBE — = Uy EBE> YEBE = =0 EBE> (A52)
and
ce B _ __CF it (pj00 ikl [gipk (pbedpefg
6VM’ - 16m2 A (UBB)bcdefg[SlLQQ(h he9 —

+ SéLgQ(/’lbdchegf _ hbdchefg) + LJ'QQSIE(hbdchegf _ ,,lbcd/,legf)];.éL

Similar to Egs. (72) and (A58), rotational invariance and parity imply that the coefficients (U% )/, g (RPUReT9 —

r7i _ i Frii __ Friv
BEE — UEEB’ UBEE - UEEB’
f]iii __ friii Friv. il
BEE — Y EEB> ¥ BEE — Y EEB>
r7v __ qyvii vi  __ pyvil
UBEE - UEEB’ BEE — UEEB’
vii  __ pvi Frviii v
UBEE - UEEB’ UBEE - UEEB’
[ 7ix __JTIX [ 7X __ JTiX
BEE — UEEB’ UBEE - UEEB' (A53)

Inserting the identity operator P~!P between the fields in
the correlators (U%y)*, (U%%)Zféefg, (Ussz)UM, and
(U4 B);,’Ck ée 74> and assuming P invariance of the vacuum give

AIT # (Uss )z/’kl fi l/kl

HHL(U3S A54
PP (U3 peers = PIPL (U

L

R

ijkl A55

) (A54)

)bcdefq’ ( )

A:T P (USs,) ik = Ussy) ik (A56)
%) (A57)

ijkl

U B/bcdefg®

it jkl
rljrlﬂL( BB);yjcdefg A57
Then, using that 7, = —7 and &7 = 3, 71’7}, together
with Eqs. (A54)-(A57), we can derive that the tensor
components in Eq. (72) satisfy

UEE - UEE’ UBBu UBBa’ UBBh - U%Bh‘ (A58)

APPENDIX B: MATCHING WEAKLY COUPLED
pNRQCD TO THE BOEFT

In this Appendix, we show the derivations of Eqs. (74)—
(81) in detail. Consider diagram (d) in Fig. 2, with insertion
of one ¢ vertex and one L - B vertex. Its contribution to
oV, is given by

hhcdhegf) + L.ggsllc(hbcdhefg _ hbdchefg)
(B1)

hhdchefq)

and (U;;%);,’;’.jem(hbd‘he"f hb<4pedl) in Eq. (B1) have tensor decomposition of the form UK =0 (5484 +5*s/)+
UM§ls/*, and thus is symmetric in the indices jk. Therefore, Eq. (B1) becomes

LB __
6‘/;5’ - 16 T720

which with Egs. (A30) and (65) is simplified to

’Note that in deriving Eq. (B2), exponential factors of the form e

—ih,(T/2=1)  ,=ih,(t=1")
>

Cr AIT(UBB>;7Jc](dlefg[S{LgQ (Zhbcdhefg _ pbedpeaf _ hbdchefg)+SéLgQ (Zhbdchegf — pbedpeaf _ hbdchefg)];.jL

(B2)

, and e~ ('+T/2) originating from the octet-field

propagators are approximated by 1, as justified by the fact that , ~ mv?, T ~ 1/ Ageps and Agep > mv?. Similar approximations are

used in deriving Egs. (B5), (B8), (B12) and (B18)-(B26).
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LB CF it/ i o
svin —mr’f(UBB JIMSILE 7. (B3)

With the tensor decomposition Eq. (72) and Eq. (A58), Eq. (B3) becomes

LB _ CF N ai CF » i TIERYY
6‘/52’ - 4m2 Ug}.’?a(rjl LQer’) S+ 4m }BBa ?(L A8+ SIL]QQ)’J’ (B4)

Consider diagrams (c) and (d) in Fig. 2, with insertion of one ¢, vertex and one r - E vertex. Its contribution to 6V, is
given by

Lo )ikl , :
(Miw [(p > S1)/rkhPeddels 4 (p x S, )i rkhbdeders

Cys Cs Li ss i
ViE = e A Rl S+ o xS+
+ 71 (p x 8))kd"?het9 + ri(p x Sz)kdbc‘ihegf]}?ﬁ/, (B5)

which with Egs. (A28) and (A29) is simplified to

coE Cs it i . R
OV = = s (Oe) M Ir (p < )+ (p x S)Ir]R (B6)

where (Ugg)* is defined in Eq. (64).
With the tensor decomposition Eq. (72) and Eq. (A58) and using the commutation relation [r', p/] = 6", Eq. (B6)
becomes

oVt =~ z{UEE[ri (pxS)(r-#y) + () 1) (p x S) -7y +i(F} x7y) - S|+HUGEH, Log - SP, ). (BT)

Adding up Egs. (B4) and (B7), we obtain Eqgs. (74) and (77)—(79).
Consider diagrams (c) and (d) in Fig. 2, with insertion of two ¢ vertices. Its contribution to 6V, is given by

2
sviger = = Ly N Vi) (81 = 52)/(5) = 5:)*

A AL . . .
+ 7( Bgimf 9(S]Sknbedne 4 ShSkRbdchess — §)Sknbedhess — §isknbdcpels)|, (BS)

which with Egs. (A30), (A31), and (66) is simplified to
M

2
Cr.C C Al A l . . A l . .
OV T = = LR (D) (SISE + 58) = (D) (515 + $354), (B9)

where

~ . . 4T
1 — 00 l C e
(UBBC) = (UBB)Z]L{Cdefghh dh 19 + -

Cc

(Ug). (B10)

Similar to Egs. (72) and (A58), rotational invariance and parity imply that (0 s5e) ¥ also has tensor decomposition of the
form UK =Y (8164 4 5% 81) 4 UM s 8/ In Eq. (BY), the terms 8/ S¥ and $}S% can be rewritten using o'c/ = ie'/*o* 4 5,
the first term of which gives zero when contracted with (U g, )", since (U BBC)’Jkl = (Upp. ). Therefore, after applying
the tensor decomposition of (g, )% and (Upgg,) ¥, the spin-dependent terms in Eq. (B9) are given by
el 2 ‘ ‘
VS5t = U S0+ U 175151+ 5351 1)

which gives Egs. (80) and (81).
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Consider diagram (d) in Fig. 2 with insertion of one ¢ vertex and one r'7/D'E/ vertex. Its contribution to 8V, is
given by

cp . riD'E] lcF AT Am c j c ijklm  pe i e e ijkim c
oV ~ 16m ; Fo [r*r (S]hb ¢~ S5 h )(UBDE)b]cdefgf 941 P (S he19 — Shh gf)(UDEB)bjcdefgfb 9, (BI2)

which with the help of Eqgs. (A32), (A33), (67), and (68) becomes

5V;‘;r "WD'E _ llg; ?f"?[r r SJ( BDE )ijklm + r,/’rkSl(UDEB)ijklm]_ (B13)

Consider diagrams (e), (f), and (g) in Fig. 2, with insertion of one ¢ vertex and two r - E vertices. Its contribution to 6V, is
given by

SVETETE = 5V, + 8V + 6V, (B14)

where each term is the sum of the three possible diagrams with the insertion of ¢y vertex in a different location

OV, =(0V.)per + (6Ve)ppe + (0Ve) pEps (B15)
8V = (6Vy)pge + (Vi) ese + (6V¢) £gps (B16)
5Vg = (5Vg)BEE + (5Vg)EBE + (5Vg)EEB’ (B17)
with
iCF TF ~itam sso \ijklm jde
(0Ve)per = “om (N) r; P rk”l( S])(UBEE>a{ef d®el, (B18)
iCF TF PN sso \Ljklm jde
(6Ve)ppe = “om (N) T’",v rir (S} - SIZC)(UEBE)Jef d'e’, (B19)
ic T ~l e e sso \ijkim
OV, s = = (12 ) P S, = 1) Uty (B20)
(5‘/ ) iCF TF All m rk l(hbcdsj hbdcsj)(Uass )ijklm (BZI)
f)BEE = Tom N. LT 2)\YUBEE)bca -
ic T Al oss KM jhc,
(5Vf)EBE =-L(L T’”,v rir (S]f - Slzc)(UEBE)bjcké dbed, (B22)
2m \N,
ic T M oss \ijklm jpc
(5Vf)EEB =-L(L T /vrjr (Sll - SZZ)(UEEB)bjcd d"?, (B23)
2m \ N,
ic AT Am cd QJ cQJ 000 \ijkim e h
(6V‘1)BEE = _8_1’}: r; Ty rkrl(hb dSi - hbd Sé)(UBEE)bjcdefghpqd fgdl P4, (B24)
ic T am . e e 0oo \ijklm c
(5V!])EBE = _8_m r;r}/ rjrl(h fgsllc —h ng]2c)( EBE)chdefghpqdb ddhpq’ (BZS)
i ooo \ijkim cd Jef
(8V ) = =g o P4 PP (HPOS] = WP S5) (U )i 1 0. (B26)
From Eqgs. (A34)-(A37),
(5Ve)BEE = (5Ve)EBE =0, (B27)
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(5Vf)EBE = (5Vf)EEB =0. (st)

Using Eqgs. (A38)—(A42) and (69)—(71), we have

lCF AltAm ijklm
(0V¢)pee + (6Vy)per = BT P SI(U pgg) 7K, (B29)
ICp i N .
(5Vg)EBE = —8—n1;rjrﬂ,r1r’S’<(UEBE) Jkm (B30)
ic ~itam 2 ijklm
6V )ges + (0Vy)ppp = “%m — /IT Prr kS (Uggg) k™. (B31)

Adding up Egs. (B13) and (B29)-(B31), applying the tensor decomposition Eq. (73) and using Eqgs. (A51), (A52) and
(A53), we have

VTP E | gyerrErE IZ—Fm (20 — 4TS + 20, P (FK ) - S
+ 2(Uypg = U + Ulgpp — U + Ugpre — Ue) — (Upe — Ugpe + Ugpe — Ugpe)]
<[ F) (KU - = (FKVE) - S(r-7,)
+ [=4(03p + Uppr + Up) + 2(Upp + Uppp)](S - r)(’A"?Kij’A”ﬁ') T} (B32)
We can eliminate the last term on the right-hand side of Eq. (B32) using the relation
(S-r)(KIF) - r = P(FKU#,) -8 = (r-#]) (FKU#,) - S + (FKYF) - S(r - 7). (B33)
Therefore, we have
- g VR ypl0) o o
sV sVt — %"2(?’;1@’%) S+ (- B)(FKT#,) -8 = (FKT#) - S(r-#y)),  (B34)

where ng;((l) and V;i(bo) are given by Egs. (75) and (76).

APPENDIX C: MATRIX ELEMENTS OF OPERATORS INVOLVING L,

In this Appendix, we rewrite the operators for Vg; ., V15, and Vg . in Eq. (30) in a way such that the matrix elements of
them sandwiched by the wave functions in Eqs. (83) and (84) can be readily computed.

The angular momentum operator in spherical coordinates is

Lop = (C1)

Let us compute the commutators of the angular momentum operator and the unit vectors in spherical coordinates

[Lig B = FPL = LR, (C2)
(L. '] = id'# + i cot(0)0' . (C3)
(Lo @] = =il (% + cot()#), (C4)
from which one can obtain
[Li 7] = +(F# + cot(9)0'F,). (C5)

00’

Therefore, for any 4
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o AG=1) FIVER N
(LD, ] = Acot(0)#0 + \/:—(T_—)?JH%; - \/@%ﬂ?’_. (C6)

To compute the matrix elements of the V¢, operator, we rewrite the operator in the following way (for a matrix in A1/,
indices run as 0,41, —1 from left to right and top to bottom):

M Lopt) S = (LopSuy + M [Lop. 7)) -S= | #1  Lygp + cotod 0 .S
A700 00 A 000 Ty 00
—7t 0 Lyp — cot 00
= 812[Logp + A(cot 00 +7g)] - S + i(F x #y) - S = 6L - S — (#KU#,) - S
O,y e .
= % (J? - L* - 8%) — (#K#,) - S, (C7)
where we have used that
A a2 2 2 cos9 2

which is the operator whose eigenfunctions are our angular wave functions,

2
(LQQ+ A L /ICOSH 8¢>Ulm(9 ¢) = I(1+ 1)v7,(0, ), (C9)
with
(= 2041 (I—m)! s
vn(0.9) =1 \/ 4r I+ m)! (1—,1)!(1+,1)!P?m(°086)e ?, (C10)
P (x) = (1= x)"T (1 4+ x)"70km (x — 1) (x 4 1), (C11)

with |m| </ and |4] < L
Next, we consider the Vg;; operator,

“’( oS +S8'Lip)75 (C12)

The first term in Eq. (C12) can be manipulated as follows:

pligi - A N o cotd
FISLL oM = (7] - S)(Fy - Log + [Lbp. #4]) = (7] - S) <ry Lo — () \/§> (C13)

This expression vanishes for ' = 0. In the case A’ = +1,

AT . ~F
stigipl sl i . cot9> (r/l's)< ! ) (72-5) 1or
rSL r—rS Fo-Lop——— | = +09 +——0, Lt cotl | = KL Cl4
A L= )(i 00 V2 V2 " sing ? V2 ¥ ( )
The operators K, defined by
i
= —_— 1
Ki F 39 + smea{/, F cotd, (C 5)
act as the A-raising and -lowering operators for the angular wave functions v;lml,
K, (0.¢) = VI +1) =20 £ D)o} 1 (0, ¢), (C16)
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in Eq. (C14) indicates that the operator lowers the index A’ according to the value of ' = +1. The
second piece of the operator in Eq. (C12) can be written in a similar way,

l . R cot(f)\ .
FLLRS' = (1 L) + Log - F)(S - ) = (LQQ - ())(”’ )

C17
In this case the operator vanishes for 4 = 0. For 1 = 1 we have

7y -8 (72 - S)
dy+cotd) A= =F kL2220 (C18
gyt Eend) g RS @

iy . . cotd\ .
PilppS'ty = (("i "Lyp)' —W> (Fy-8) = <i(99 + =

Adding up both contributions gives

I ; . 7y-S
r:{ (L Sl + S Ll ) ! =F }C—r ( i/j )5/1:t1 F ( \/_ )IC/ 5ﬂ/i1 (Clg)
Finally, we consider the Vg, . operator, which is written as a matrix in 4" as
2Lp5-S  r(pxS8)-Fy r(pxS)-i
(r-#)pxS) -Fy+# -(pxS)r-ty)=|# -(pxS)r 0 0 (C20)
Foo(pxS)r 0 0
The entry 2Lgp - S can be rewritten using Eq. (C7) as
2Lyp S =J* - L* - §%. (C21)
For the entry r(p x S) - 7., we have
1
r(pxS8)-F . =—r(pxry) -S——r[(—if@,——i'xLQQ> xi-J S=[irF x0,#, +(FxLpp) X, ]S
r
[(PxLpp)x#]-S= [?/Li -?J —M(Lgg-7)]S = {#[L! Q,r’+] +r/r/ Ll o~ T [L’QQ,?’ |—#i - Lop}S
. 1 1
=[# +—=7 cot9+ 8,+8 )] < —i‘lC’_) -S. C22
757 - v 2)
The other entries can be manipulated similarly. The result is
2Lyp - S (Fi+5PKL) S —(F-+57K) S
(rF)pxS) Py +# - (pxS)(r-#y) = | FL+5KF)-S 0 0 (C23)
—(FL + 5 KLF) - S 0 0

APPENDIX D: LIST OF MATRIX ELEMENTS OF SPIN-DEPENDENT OPERATORS

In this Appendix, we list the angular part of the matrix elements of the spin-dependent operators in Egs. (29) and (30)
which are required when applying perturbation theory. Let us write the angular wave functions in Eqgs. (83) and (84) as

m;ls
(1)2 ! (9 ¢) Z lm,\m lm,(a’qb))(smy'

mymyg

(D1)
Define the angular matrix elements of the Vgg-term by
jm;lst N ik akT mjls
MSK(j.1s) = / Q0" (0. 4) (KM - SO (0. ), (D2)

054040-24



QCD SPIN EFFECTS IN THE HEAVY HYBRID POTENTIALS ... PHYS. REV. D 101, 054040 (2020)

where there is no sum on j,m;, [, s, 4, A'. Note that M ff (j,1,s) is independent of m ; owing to rotational invariance. For

s =0, we have M35 (j.j,0)=0. For s =1 and [ =0, 1, 2, M§K(j,1,1) are given by

MK (1,0,1): MK (0,1,1): MK (1, 1,1): MK (2,1,1):
N N N N
0|+| — 0|+|— 0|+|— 0|+|—
A A A A
0[0]|0 0 |-1|-1 0|0 |-%-3 0/3]3
+ |ofofo + |-1]|-1] 0 + |-3|-3] 0 + |3l5]0
— |0jo] o0 — |-1/0|-1 — |-3l0|-3 R
MK (1,2,1): MK (2,2,1): MK (3,2,1):
N N N
0|+ | — 0| + | — 0|+|—
A A A
V3|_V3 B U B 4|1
0 =% |—% 019 |=53"24 0 |9135]v3
_V3| 1 1|1 11
+ 2l —21 0 + -5 "5 0 + | 530
B BV 1 N I 1 _ | 1
3] 0 2 23 0 6 /3 013

For the Vgg,-term, we define the corresponding angular matrix elements by

AN

For s = 0, we have M3%"(j,j,0)=0. For s =1 and [ =0, 1, 2, M3K(j. 1, 1) are given by

MJEY(1,0,1): MK (0,1,1): MSEY1,1,1): M (2,1,1):
N N\ \ \
O[+| — 0+ |- 0+ - 0l+|-
A A A A
0 |0[0] 0 0|0 |—r2|—2 0o |-Z|-% 0 [0|Z|z
+ Jofo] 0 + =2l oo +-Zlo]o + [Z]ofo
2 7.2
— |0j0] 0 — |=r* 0|0 - =%l 0|0 - |5|0]0
MGP(1,2,1): MEe(2,2,1): MSKY(3,2,1):
N N N
0 + — 0 + — 0|+|—
A A A
V3.2 V3,2 2| 2|t
0 =T ST 0 N BN 0|0 NaNG
7£ 2 _ 7‘2 ﬁ
+ 2 " 0 0 + 23 0 0 + NG 010
_ _ﬁ 2 _ o r2 o i
B2l 0 0 2=l 0] 0 =00
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The matrix elements of J2, L? and S? are trivial:

'm,lsT 'm_,ls .

[ 400 0.00P8,0)" (0.8) = il + D (D4)
jm;lst jm;ls

/ dQ®)"" (0, )L,y @), (0, ) = I(1+ 1)5,y, (D5)
jm;lst jm;ls

/ QD" (0, $)825,, D" (0. ) = s(s + 1)8,5. (D6)

The Vg, ,-term can be reduced to the sum of Eqs. (D4)—(D6) and the V gx-term using Eq. (C7). The V g2-term corresponds to
Eq. (D6). For the V¢;,-term, we define the corresponding angular matrix elements by

. jm;lsT APt i i N jmls
ijb(],l,s):/dﬂtbj (9, ¢) /1(LQQS"+SL"QQ)r§,d>j, 0, 9). (D7)

ijb.(j, 1, s) is calculated using Eq. (C19). For s = 0, we have M55(j, j,0) =0.For s = 1and [ =0, 1,2, M§5°(j,1,1)
are given by

MPEr(1,0,1): MJER 0,1, 1): MEv(1,1,1): MJEb(2,1,1):

N X X N
0|+| — 0| + | - 0|+ |- of + | -

+ 10(0]| 0 + 10|—=2| 2 + |0|—-1] 1 + [0 1|-1

— |0]0] O — 0] 2 |2 — 0] 1]-1 — |0|—-1] 1

MER(1,2,1): ML (2,2,1): ML (3,2,1):

X X N
0| + | - 1] I 0|+ |-

For the V; .-term, we define the corresponding angular matrix elements by
ol jm;lst AF ~ AF ~ jmjls
M35 (j.l.s) = /dﬁﬂbﬁ (0.9)[(r-7)(p x S) - Py +7; - (p x S)(r - #,)]@y"" (6. ). (D8)

M3Ee(j, 1, s) is calculated using Eq. (C23). For s = 0, we have M55(j,j,0) = 0. For s = 1and [ =0, 1, 2, M55¢(j, 1. 1)
are given by
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MZEe(1,0,1): MEe(0,1,1): MSLe(1,1,1): MSEe(2,1,1):
)\/ )\/ /\/ )\/
0|+| — 0 |+|— 0 |+|— 0]+ |-
A A A A
0(0] 0 —4111 —-2|%(3 2 |11
+ |0jo| 0 + [ 1]0]0 + |31]0]0 + |=3] 010
— |ojo| o0 —|1/0/0 — | ilol0 — |-3/ 010
M(1,2,1): MPLe(2,2,1): MSEe(3,2,1):
N N N
0]+ |— 0|+ | — 0 4 _
A A A
RV 3 VE] _o| | L 4 |- L|_L
212 2v/3 123 NG
V3 1 _1
+ |%2lo]0 + |55 0] 0 + =% 0] 0
B V) B S
100 55 0] 0 =l 0] 0

For the Vg ,-term, we define the corresponding angular matrix elements by

jmls

nay - 'm_,-ls'[‘ ]
Ml s) = / dQ®"" (0, )S 1,8, (6. ¢).

For s=0, M}»(j,j,0)=0. For s=1 and [=0, 1, 2, MP(,L,1)=0 are

MP3e(1,0,1):  MYP2*0,1,1):  M%(1,1,1): M2(2,1,1):
N N N N
0l+| — 0 [+|- 0+ |- 0 |+|-
A A A A
0[0] 0 —4/01(0 2000 —-210/0
+ |0j0] 0 +10(2/0 + |0]-1] 0 + 1 01]£l0
— |0jo] 0 - ]0/0|2 — 0] 0 |-1 AR
Me(1,2,1): M3"(2,2,1): M3(3,2,1):
Y N N
0f+|— Ol+| — 0|+|-
A A A
0 [-2/0]0 0 |20 0 0 |-2/0]0
+ 10 |-1]0 + |0[1] 0 +10]-2%0
— 0|0 |1 — |ojo| 1 —J0]o0|-2
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For the V ,-term, we define the corresponding angular matrix elements by

For s = 0, M32"(j, j,0) = —=8,;/2. For s = L and [ = 0, 1, 2, M}

A

M2P(1,0,1): M32%(0,1,1):

MJ2b(1,1,1):

i . jm ;Ist APt A i i jm;ls
M0 (L s) = / dQ®,""" (0, )i #,(S7.S5 + SLSH)D) (0, ).

(D10)

S‘zb(j, [,1) are given by

MJ2%(2,1,1):

N N N N
Of+| — 0|+~ 0|+ - 0+ |-
A A A A
1 1 1 1 1(1] 1 1 1 1
0 15]0]0 0 |—3|732| 3 0 |2]a| 1 0 |10 |~20| 2
1 1(1] 1 1 1
+ [o]o] 0 + =101 + |43l + -5l S -5
1 1(1] 1 1 1 3
— |0/0] 0 i — |1|3| 1 — | 73| "10] %
M (1,2,1): M3(2,2,1): M#(3,2,1)
N N N
0| + | - 0|+ |- o | + | -
A A A
SO N U A 0 1|1 1|1 |
6 43| 43 2 |4v3]4V3 14 14v3 | 144/3
1 1 1 1 1 1 1 4 1
T lTnal 1 | T2 T a1 2 S v I
S (S N R U B¢ B U A B S R U B B '
43 2 4 4/3| 2 | 12 14/3 7 21
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