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The diquark is a strongly correlated quark pair that plays an important role in hadrons and hadronic
matter. In order to treat the diquark as a building block of hadrons, we formulate an effective theory of
diquark fields with SUð3ÞR × SUð3ÞL chiral symmetry. We concentrate on the scalar (0þ) and pseudoscalar
(0−) diquarks and construct a linear-sigma-model Lagrangian. It is found that the effective Lagrangian
contains a new type of chirally symmetric meson-diquark-diquark coupling that breaks axial UAð1Þ
symmetry. We discuss consequences of the UAð1Þ anomaly term to the diquark masses as well as to the
singly heavy baryon spectrum, which is directly related to the diquark spectrum. We find an inverse mass
ordering between strange and nonstrange diquarks. The parameters of the effective theory can be
determined by the help of lattice QCD calculations of diquarks and also from the mass spectrum of the
singly heavy baryons. We determine the strength of the UAð1Þ anomaly term, which is found to give a
significant portion of the diquark masses.
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I. INTRODUCTION

Recent developments of hadron spectroscopy has
brought a completely new picture of hadrons. In particular,
many unconventional hadron resonances have been found
and become candidates of multiquark exotic states, which
contain more than three quarks [1–4]. X(3872) is a
representative of such states. While it is found in the
charmonium (cc̄) spectrum, it may not simply be a cc̄, but
is dominantly a tetraquark state, or a DD̄� molecular
resonance. The other unconventional new resonances
include charged hidden-charm mesons and hidden-charm
pentaquark baryons. It is urgent and important to reveal the
composition and dynamics of these states.
In understanding their structures, we need a new dynam-

ics that gives a strong correlation among multiple quarks.
Various types of subsystems, or clusters, have been
proposed to form exotic multiquark states. A candidate
is color-singlet hadrons, which form a bound or resonance
states. Color-non-singlet clusters are more exotic and
interesting. The simplest one, except for a constituent
quark, is a diquark [5–7]. Various models with diquarks

as ingredients have been proposed for explaining masses
and structures of multiquark hadrons [8–10]. Among many
possible quantum numbers, it is known that the scalar (0þ)
diquark with color 3̄ and flavor 3̄ is strongly favored by
quantum chromodynamics (QCD) [11–15], while the axial-
vector (1þ) diquark with color 3̄ and flavor 6 also appear
frequently in hadrons. Color 6 diquarks are interesting also,
but they may appear only in the multiquark states.
We consider a diquark effective theory for light

quarks q ¼ ðu; d; sÞ. It is important to formulate their
dynamics based on the chiral symmetry and its spontaneous
breaking in QCD. Chiral symmetry plays key roles in
understanding the low-lying spectrum of mesons and
baryons. In particular, the pion (and the other ground-state
pseudoscalar mesons) and its properties have revealed
how chiral symmetry is broken in the QCD vacuum.
The symmetry constrains the low-energy effective theory
of the pion very strongly. In contrast, diquarks show
new features and dynamics under the chiral symmetry
[10,16–19]. Effective theories of diquarks were also
explored in the context of color superconductivity at high
density QCD [20,21], where it is shown that the axial
UAð1Þ anomaly plays an important role [22,23].
Chiral symmetry of diquarks is closely related to the

chiral representations of heavy-quark (Q) baryons (Qqq),
such as singly charmed (cqq) or bottomed (bqq) baryons.
In fact, the roles of diquarks are most prominently seen in
the singly heavy baryon system [24–27]. Chiral aspects of
heavy baryon masses and decays were studied in [28,29].
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In this paper, we propose a chiral effective theory of
scalar and pseudoscalar diquarks, based on linear repre-
sentations of SUð3ÞR × SUð3ÞL symmetry. Such an effec-
tive theory may be applied, once the parameters are
determined by the known experimental data, to not only
the heavy baryon systems, but also to tetraquarks, and the
other multiquark hadrons. We write down a general form of
the effective Lagrangian for the scalar diquarks in the form
of the linear sigma model. Then the masses of the diquarks
are identified at the tree level from the quadratic terms of
the Lagrangian.
It is shown that the leading meson-diquark-diquark

coupling term breaks axial UAð1Þ symmetry, while it keeps
the chiral symmetry invariant. Such a term is supposed to
come from UAð1Þ anomaly in QCD. Namely the flavor
singlet axial-vector current for light quarks has a nonzero
divergence due to quantum anomaly effect. It is known that
this effect is connected to the coupling of light quarks to a
nontrivial topological configuration of gluon, i.e., instan-
ton. The UAð1Þ anomaly term with spontaneous chiral-
symmetry breaking, i.e., quark condensates, generates a
diquark mass term, which behaves differently from the
other mass terms. We discuss how we can identify and
determine the parameters of such a coupling term of the
diquark effective Lagrangian.
This paper is organized as follows. In Sec. II, we

introduce diquarks and their local operator representation,
and formulate chiral effective theory in the chiral-symmetry
limit. In Sec. III, explicit chiral-symmetry breaking due to
the quark masses is introduced and its consequences are
discussed. In Sec. IV, a numerical estimate is given for the
parameters of the effective theory. We use the diquark
masses calculated in lattice QCD and also the experimental
values of the singly heavy baryons. In Sec. V, a conclusion
is given.

II. DIQUARK EFFECTIVE THEORY

A. Diquark operators in flavor SUð3Þ symmetry

In order to study the transformation properties of the
diquark systems, we consider properties of QCD composite
operators made of two quark fields. We employ the flavor
SUð3Þ basis for the quark operators, qaα;i, where a is color, α
is Dirac, i is flavor index of the quark. Then local diquark
operators are defined by

ðqTi ΓqjÞ ¼ ðqaα;iðΓÞαβqbβ;jÞ; ð1Þ

where T denotes the transpose for the Dirac index and Γ is a
relevant combination of the Dirac gamma matrices.
Possible combinations satisfying the Lorentz covariance
and the Pauli principle for quarks are given in Table I.
The first five operators belong to the total color 3̄

representation, i.e., color antisymmetric combinations,
while the lower five are in the color symmetric 6

representation. The indices S (symmetric) and A (antisym-
metric) designate the flavor symmetry. In the last column,
the corresponding nonrelativistic quark model assignments
are given of the spin and orbital angular momentum.

B. Scalar and pseudoscalar diquarks
in chiral SU(3)R × SU(3)L symmetry

In this paper, we concentrate on the scalar and pseudo-
scalar diquarks from the viewpoint of chiral symmetry.
More specifically, we consider the first two states, Nos. 1
and 2, from Table I, which have spin 0, color 3̄ and flavor 3̄.
We here see that these two diquarks are chiral partners to
each other, i.e., they belong to the same chiral representa-
tion and therefore they would be degenerate if the chiral
symmetry is not broken.
To see this, using the chiral projection operators, PR;L ≡

ð1� γ5Þ=2, we define the right quark, qaR;i ¼ PRqai , as a
(3,1) representation of chiral SUð3ÞR × SUð3ÞL symmetry,
and the left quark, qaL;i ¼ PLqai , as a (1,3) representation.
Explicitly, they transform as

qaR;i → ðURÞijqaR;j; UR ∈ SUð3ÞR ð2Þ

qaL;i → ðULÞijqaL;j; UL ∈ SUð3ÞL: ð3Þ

Then we construct “right” and “left” spin-0 diquark
operators with color 3̄ as

daR;i ≡ ϵabcϵijkðqbTR;jCqcR;kÞ; ð4Þ

daL;i ≡ ϵabcϵijkðqbTL;jCqcL;kÞ: ð5Þ

It is straightforward to show that dR and dL belong to
chiral ð3̄; 1Þ and ð1; 3̄Þ representation, respectively, and
transform as

TABLE I. Local diquark operators. C ¼ iγ0γ2 is the charge
conjugation Dirac matrix. The rightmost column shows the
relevant quantum states for two (nonrelativistic) quarks.

Jπ color flavor 2Sþ1LJ

1 ðqTCqÞ3̄A 0− 3̄ 3̄ 3P0

2 ðqTCγ5qÞ3̄A 0þ 3̄ 3̄ 1S0
3 ðqTCγμγ5qÞ3̄A 1− 3̄ 3̄ 3P1

4 ðqTCγμqÞ3̄S 1þ 3̄ 6 3S1
5 ðqTCσμνqÞ3̄S 1þ; 1− 3̄ 6 3D1; 1P1

6 ðqTCqÞ6S 0− 6 6 3P0

7 ðqTCγ5qÞ6S 0þ 6 6 1S0
8 ðqTCγμγ5qÞ6S 1− 6 6 3P1

9 ðqTCγμqÞ6A 1þ 6 3̄ 3S1
10 ðqTCσμνqÞ6A 1þ; 1− 6 3̄ 3D1; 1P1
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daR;i → daR;jðU†
RÞji; ð3̄; 1Þ; ð6Þ

daL;i → daL;jðU†
LÞji; ð1; 3̄Þ: ð7Þ

The other diquark operators are also decomposed in the
chiral basis similarly, as shown in Table II. First two of
them are the diquarks that we concern in this paper.
The diquarks given above are not eigenstates of

parity. Using the parity transform of the quark operators,
P∶ qaiRðt; xÞ → γ0qaiLðt;−xÞ, qaiLðt; xÞ → γ0qaiRðt;−xÞ, the
spin-0 diquarks are found to transform as

P∶ daR;i → −daL;i; daL;i → −daR;i: ð8Þ

Thus the Lorentz scalar, S (Jπ ¼ 0þ), and pseudoscalar, P
(0−), operators can be identified by

Sai ¼
1ffiffiffi
2

p ðdaR;i − daL;iÞ ¼
1ffiffiffi
2

p ϵabcϵijkðqbTj Cγ5qckÞ; ð9Þ

Pa
i ¼

1ffiffiffi
2

p ðdaR;i þ daL;iÞ ¼
1ffiffiffi
2

p ϵabcϵijkðqbTj CqckÞ: ð10Þ

These relations show that the scalar and pseudoscalar
diquarks, given as Nos. 1 and 2 of Table I, belong to
ð3̄; 1Þ and ð1; 3̄Þ representations of chiral symmetry. Thus,
we conclude that the scalar and pseudoscalar diquarks are
chiral partners.

C. Chiral Lagrangian in the chiral limit

We now introduce the chiral ð3̄; 3Þmeson fields Σ, which
contain nonet pseudoscalar and nonet scalar mesons. Their
chiral transform is given by

Σij ≡ σij þ iπij → UL;ikΣkmU
†
R;mjð3̄; 3Þ ð11Þ

where σ represents a scalar nonet, and π a pseudoscalar
nonet. Σ transforms under the spatial inversion as

P∶Σ → Σ†. Chiral symmetry is spontaneously broken by
the vacuum state, which is represented by the vacuum
expectation value (VEV) of the scalar field σ as

hΣiji ¼ hσiji ¼ fδij; hπiji ¼ 0 ð12Þ

where f is the pion decay constant. For this vacuum, πij is
the nonet of massless Nambu-Goldstone bosons. To read
off the conventional meson contents from Σ, one uses the
Gell-Mann matrices, λp, as

Σij ≡ ðλpÞijðσp þ iπpÞ ð13Þ

σp ¼ 1

4
Tr½λpðΣþ Σ†Þ�; ð14Þ

πp ¼ 1

4i
Tr½λpðΣ − Σ†Þ�: ð15Þ

Note that σ and π contain the flavor singlet components, for
which we use λ0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
1 with the unit matrix 1.

We are ready to present an effective Lagrangian in the
chiral limit as

L ¼ DμdR;iðDμdR;iÞ† þDμdL;iðDμdL;iÞ†
−m2

0ðdR;id†R;i þ dL;id
†
L;iÞ

−
m2

1

f
ðdR;iΣ†

ijd
†
L;j þ dL;iΣijd

†
R;jÞ

−
m2

2

2f2
ϵijkϵlmnðdR;kΣliΣmjd

†
L;n þ dL;kΣ

†
liΣ

†
mjd

†
R;nÞ

þ 1

4
Tr½∂μΣ†∂μΣ� þ VðΣÞ: ð16Þ

Here we truncate the interaction terms with more than two
Σ’s. We also omit ΣΣ†- and Σ†Σ-terms, since they do not
contribute to the mass difference between the 0þ and 0−

states. VðΣÞ, which is not shown explicitly, denotes the
interaction potential terms for the meson fields that cause
the spontaneous symmetry breaking, Eq. (12). Hereafter,
we will omit the kinetic and potential parts of the mesons,
because we consider only the mean fields of the mesons.
As the diquark is not a color-singlet state, we have

introduced a color-gauge-covariant derivative in Eq. (16),
Dμ ¼ ∂μ þ igTαGα

μ, with Gμ being the gluon field, and Tα

the color SUð3Þ generator for the 3̄ representation. All the
color indices are contracted and not explicitly written. The
kinetic energy term of the gluons fields is also omitted.
It is easy to check that the Lagrangian, Eq. (16), is chiral

invariant and parity conserving. We may rewrite the
Lagrangian in terms of the parity eigenstates, Eqs. (9)
and (10), as

TABLE II. Local diquark operators in the chiral basis.

spin color chiral

daR;i ¼ ϵabcϵijkðqbTR;jCqcR;kÞ 0 3̄ ð3̄; 1Þ
daL;i ¼ ϵabcϵijkðqbTL;jCqcL;kÞ 0 3̄ ð1; 3̄Þ
da;μði;jÞ ¼ ϵabcðqbTL;iCγμqcR;jÞ 1 3̄ (3,3)

da;μνRfijg ¼ ϵabcðqbTR;iCσμνqcR;jÞ 1 3̄ (6,1)

da;μνLfijg ¼ ϵabcðqbTL;iCσμνqcL;jÞ 1 3̄ (1,6)

d̃fabgRfijg ¼ ðqaTR;iCqbR;j þ qaTR;jCq
b
R;iÞ 0 6 (6,1)

d̃fabgLfijg ¼ ðqaTL;iCqbL;j þ qaTL;jCq
b
L;iÞ 0 6 (1,6)

d̃fabg;μði;jÞ ¼ ðqaTL;iCγμqbR;j þ qbTL;iCγ
μqaR;jÞ 1 6 (3,3)

d̃fabg;μνR;i ¼ ϵijkðqaTR;jCσμνqbR;kÞ 1 6 ð3̄; 1Þ
d̃fabg;μνL;i ¼ ϵijkðqaTL;jCσμνqbL;kÞ 1 6 ð1; 3̄Þ
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L ¼ DμSiðDμSiÞ† þDμPiðDμPiÞ†
−m2

0ðSiS†i þ PiP
†
i Þ

−
m2

1

f
ð−SiσijS†j þ PiσijP

†
j − iSiπijP

†
j þ iPiπijS

†
jÞ

−
m2

2

2f2
ϵijkϵlmn½−Skðσliσmj − πliπmjÞS†n

þ Pkðσliσmj − πliπmjÞP†
n þ iSkðπliσmj þ σliπmjÞP†

n

− iPkðπliσmj þ σliπmjÞS†n�: ð17Þ

D. Masses of the diquarks and generalized
Goldberger-Treiman relation

In the mean field approximation, keeping the SUð3Þ
symmetry, hΣiji ¼ fδij, the masses of the diquarks are
read from

Lmass ¼ −m2
0ðdR;id†R;i þ dL;id

†
L;iÞ

− ðm2
1 þm2

2ÞðdR;id†L;i þ dL;id
†
R;iÞ; ð18Þ

which leads to the mass matrix for ðdR;i; dL;iÞ as

M2 ¼
�

m2
0 m2

1 þm2
2

m2
1 þm2

2 m2
0

�
ð19Þ

Diagonalizing the mass matrix, we obtain the mass
eigenstates,

Sai ¼
1ffiffiffi
2

p ðdaR;i − daL;iÞ

⟶ Mð0þÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
1 −m2

2

q
; ð20Þ

Pa
i ¼

1ffiffiffi
2

p ðdaR;i þ daL;iÞ

⟶ Mð0−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
1 þm2

2

q
; ð21Þ

which are also the eigenstates of the parity.
Now it is clear how the diquark masses are generated

from the spontaneous chiral-symmetry breaking (SCSB).
In the regime of complete chiral restoration, the 0þ and 0−

diquarks are degenerate with the mass m0. This is the limit
where all the hadrons are subjected to belong to a parity
doublet. In the ordinary vacuum of QCD, the SCSB
resolves their degeneracies. In the present case, the mass
splitting is given by the m2

1- and m2
2-terms.

It should be noted that the diquarks are bosons and their
chiral behaviors are different from fermions. In the linear
sigma model for baryons, if we assign the chirality of the
baryon according to the chirality of quarks (naive choice),
then the baryon mass should vanish in the chiral-symmetric

limit. In this case, the baryon mass comes only from
SCSB. It was, however, shown that the mirror assignment
of chirality (L ↔ R reversed) of the baryon is possible,
and then the chiral symmetric mass term is allowed.
Realistic baryons may be a mixing of these two assign-
ments [30–32].
In contrast, the chiral representation of the spin-0

diquarks allows both the chiral symmetric and SCSB mass
terms simultaneously. Namely, the m2

0-term is independent
from SCSB, while the m2

1- and m2
2-terms contribute to the

baryon masses only when the chiral symmetry is sponta-
neously broken.
As is shown in Eq. (17), the m2

1- and m2
2-terms of the

Lagrangian describe the meson-diquark interactions. The
π − S − P vertex terms are given by

LπSP ¼ im2
1

f
ðSiπijP†

j − PiπijS
†
jÞ

−
im2

2

f2
ϵijkϵlmnðSkπlihσmjiP†

n − PkπlihσmjiS†nÞ

¼ iðm2
1 þm2

2Þ
f

ðSiπijP†
j − PiπijS

†
jÞ

−
im2

2

f
Tr½π�ðSiP†

i − PiS
†
i Þ

¼ iðm2
1 þm2

2Þ
f

πpðSλpP† − PλpS†Þ

−
3im2

2

f
π0ðSλ0P† − Pλ0S†Þ ð22Þ

where π0 ¼ η1 ¼
ffiffiffi
6

p
Tr½π� is the singlet pseudoscalar

meson.
We then obtain the relation between the octet-meson-

diquark couplings and the mass differences of diquarks, as
a generalized Goldberger-Treiman (GT) relation,

gπSP ≡m2
1 þm2

2

f
¼ M2ð0−Þ −M2ð0þÞ

2f
: ð23Þ

This relation can also be derived from the conservation of
the flavor-octet axial-vector currents and the existence of
the massless Nambu-Goldstone bosons, πp (p ¼ 1;…8).
Note that this coupling is a nonderivative, S-wave, coupling
that describes the mesonic decay of the negative-parity
excited heavy baryon into the positive-parity ground states.
On the other hand, the coupling constant of the singlet

(eta) meson π0 ¼ η1 is given by

gπ0SP ¼ m2
1 − 2m2

2

f
: ð24Þ

This relation is not a GT relation and is not directly derived
from the symmetry because the axial UAð1Þ is explicitly
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broken and the singlet η1 is not a massless Nambu-
Goldstone boson as is discussed in the next section.

E. UAð1Þ anomaly

So far, we have considered the chiral SUð3ÞR × SUð3ÞL
symmetry. The given Lagrangian, Eq. (16), is invariant
under the SUð3ÞR × SUð3ÞL transform. However, the QCD
Lagrangian for massless quarks has another axial sym-
metry, UAð1Þ symmetry, which counts the difference of
right and left quarks, regardless of flavor. In fact, this
symmetry is not realized in the hadron spectrum due to
anomaly. It is known that the instanton, a topologically
nontrivial configuration of the gluon field in the Euclidean
4-dimensional space-time, plays a leading role in theUAð1Þ
breaking. There the light quarks, ðu; d; sÞ couples to the
instanton in an axial-symmetry breaking manner [33,34].
In low-energy effective field theories, the UAð1Þ

anomaly can be taken into account as an effective sym-
metry-breaking term. For instance, for the light meson
sector, it is given as an extra term like gD detðΣþ Σ†Þ
(Kobayashi-Maskawa-’t Hooft term).1 It makes the flavor
singlet η1ð¼ π0Þ massive, while the octet η8ð¼ π8Þ is
massless in the chiral limit [35–37].
We similarly consider theUAð1Þ anomaly for the diquark

effective theory. It happens that the m2
1-term of Eq. (16),

Lm1 ¼ −
m2

1

f
ðdR;iΣ†

ijd
†
L;j þ dL;iΣijd

†
R;iÞ ð25Þ

breaks UAð1Þ symmetry [22,23]. It is easy to prove that
each term contains three left and three right quarks with
antisymmetric flavor indices. Thus the term is proportional
to deti;jðqR;jq†L;i þ qL;jq

†
R;iÞ. This is nothing but the deter-

minant interaction, which is known to come from the
instanton-light-quark couplings and breaks the UAð1Þ

symmetry. In fact, by using the Fierz transformation, one
can explicitly show

dR;iΣ
†
ijd

†
L;j ∝ dbR;iðqaR;iq̄aL;jÞdb†L;j

¼ ϵbcdϵipqðqcTR;pCqdR;qÞ
× ϵbefϵjrsðqeTL;rCqfL;sÞ†ðqaR;iq̄aL;jÞ

¼ 12detijðq̄aL;iqaR;jÞ: ð26Þ
It is clear that this term breaks UAð1Þ symmetry as the
numbers of left and right quarks in each term are different.
On the other hand, it keeps SUð3ÞR × SUð3ÞL invariant,
because the flavor determinant is invariant under the SUð3Þ
transform.
Figure 1 shows the chiral properties of the vertices of the

Lagrangian, Eq. (16). The m2
1-term contains a six-quark

vertex induced by the instanton, while them2
2-term does not

break theUAð1Þ symmetry. TheUAð1Þ anomaly effects will
arise to the diquark mass and interaction only when the
chiral symmetry is spontaneously broken.

F. Masses of the singly heavy baryons

As the diquarks are not directly observed, wemay instead
consider a singly heavy baryon, a bound state of a diquark
with a heavy quark Q (charm or bottom) [28,29]. Corres-
ponding baryons are ΛQ, and ΞQ with spin-parity 1=2þ and
1=2−. We write down the effective Lagrangian for the Qqq
baryons with the one-to-one correspondence to Eq. (16), as

LQqq baryons ¼ S̄R;iðiv · ∂ÞSR;i þ S̄L;iðiv · ∂ÞSL;i
−MB0ðS̄R;iSR;i þ S̄L;iSL;iÞ

−
MB1

f
ðS̄R;iΣT

ijSL;j þ S̄L;iΣ
T†
ij SR;jÞ

−
MB2

2f2
ϵijkϵlmnðS̄L;kΣT

liΣT
mjSR;n þ H:c:Þ;

ð27Þ

FIG. 1. Quark line representations of the diquark interaction terms. (a) m2
1-term, (b) m2

1-term with quark condensate, (c) m2
2-term, and

(d) m2
2-term with quark condensate.

1We suppose that this term is included in the meson potential
term in Eq. (16).
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where SL=R;i denotes the effective field for the Qqq baryon
multiplets with the left/right 3̄ representation carrying the
velocity vμ. We note that these SL=R;i fields are the heavy
hadron effective fields for the fluctuation modes satisfying
vμγμSL=R;i ¼ SL=R;i.

2Wemay redefine the fields to eliminate
theMB0-term as SL=R;i → e−iMB0vμxμSL=R;i, but we keep this
term to see the explicit correspondence to the diquark
Lagrangian in Eq. (16). TheMB1-term is the one that breaks
theUAð1Þ symmetry. This termgenerates anomalousmeson-
baryon couplings, the S-wave ΞQð1=2−ÞΞQð1=2þÞπ and
ΞQð1=2þÞΛQð1=2−ÞK couplings. TheMB2-term is invariant
under UAð1Þ symmetry transformation in addition to the
chiral SUð3ÞR × SUð3ÞL symmetry transformation.
As in Eq. (12), the VEVof Σ field causes the spontaneous

chiral-symmetry breaking. Then, from the above
Lagrangian, the masses of the baryons with positive and
negative parities are given by

MBþ ¼ MQ þMB0 −MB1 −MB2;

MB− ¼ MQ þMB0 þMB1 þMB2; ð28Þ

where MQ is the heavy-quark mass. As stated above, one
can absorb MB0 into the redefinition of MQ, which implies
that it is impossible to distinguish MB0 and MQ.
Now, let us assume that the binding energies between the

heavy quark Q and the diquark qq are the same for the
baryons with positive and negative parities. Then, the mass
difference between two baryons is determined by the mass
difference of the relevant diquarks. By comparing the
formulas in Eq. (28) with the ones for diquark masses in
Eqs. (20) and (21), the mass difference of chiral partners of
the singly heavy baryons is related to the diquark mass
parameter as

MB− −MBþ ¼ Mð0−Þ −Mð0þÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
1 þm2

2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
1 −m2

2

q
:

ð29Þ

III. QUARK MASSES, SU ð3Þ BREAKING

It is important to include the effects of the explicit
breaking of chiral symmetry due to the quark masses,
ðmu;md;msÞ, which are not zero nor equal. The mass
hierarchies of the light mesons and baryons reflect the
SUð3Þ breaking due to the quark masses. In effective
theories, this effect comes either in the choices of the

parameters, or with extra terms with explicit breaking
or both.

A. Chiral Lagrangian with explicit
symmetry breaking

In the linear sigma model, we consider the effective
quark mass generated by the current quark mass and the
spontaneous chiral-symmetry breaking. Namely, with the
condensation of σ, the quarks acquire an effective mass of
∼300–500 MeV.

−miq̄iqi → −ðmi þ gshσiiiÞq̄iqi ð30Þ
where mi is the current quark mass of the ith flavor and
gsð∼3Þ denotes the coupling of the scalar meson, σ, to
the quark. We choose hσ11i ¼ hσ22i ¼ fπ ∼ 92 MeV and
hσ33i ¼ fs ¼ 2fK − fπ ∼ 128 MeV.
In a more general form, using the quark mass matrix,

M≡ diagðmu;md;msÞ, and the VEV of Σ, we write the
effective mass as

Meff ¼ Mþ gshΣi ≃ ðgsfπÞdiagf1; 1; Ag; ð31Þ

A≡ fs
fπ

�
1þ ms

gsfs

�
> 1: ð32Þ

Here we neglect u and d quark masses ∼2 and 5 MeV,
respectively, as they are much smaller than gsfπ ∼
300 MeV, while for ms ∼ 100–200 MeV, A ∼ 5=3 gives
a significant correction.
Now we consider the symmetry breaking in the inter-

action terms of the Lagrangian, Eq. (16). The above
consideration leads us to a prescription that the explicit
symmetry breaking is introduced by the replacement,

Σ → Σ̃≡ ΣþM=gs: ð33Þ

This is justified because every mass insertion to a quark line
in Feynman diagrams can have chiral-symmetry breaking
hq̄qi condensate in the same line.
Then this prescription gives the Lagrangian that includes

explicit chiral-symmetry breaking as

Lint ¼ −
m2

1

fπ
ðdR;iΣ̃†

ijd
†
L;j þ dL;iΣ̃ijd

†
R;jÞ

−
m2

2

2f2π
ϵijkϵlmnðdR;kΣ̃liΣ̃mjd

†
L;n þ H:c:Þ; ð34Þ

with Σ̃ij ≡ Σij þ 1
gs
Mij.

B. Diquark masses with SUð3Þ breaking
In the chiral-symmetry breaking vacuum, by replac-

ing Σ̃ with its expectation value, hΣ̃i ¼ Meff=gs ¼
fπdiagf1; 1; Ag, in Eq. (34), we can read off the mass
terms, as

2The fields SL=R;i are related to the heavy baryon Dirac field
operators BL=R;i as BL=R;i ¼

P
vμ e

−iMQvμxμBL=R;iðvÞ and SL=R;i ¼
PþBL=R;iðvÞ, where Pþ is the projection operator defined as Pþ ¼
ð1þ vμγμÞ=2 and MQ is the heavy-quark mass.
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Lmass ¼ −m2
0ðdR;id†R;i þ dL;id

†
L;iÞ

− ðm2
1 þ Am2

2ÞðdR;1d†L;1 þ dL;1d
†
R;1

þ dR;2d
†
L;2 þ dL;2d

†
R;2Þ

− ðAm2
1 þm2

2ÞðdR;3d†L;3 þ dL;3d
†
R;3Þ: ð35Þ

The mass eigenstates are obtained by diagonalizing the
mass matrix for each flavor,

ðM2Þ1;2 ¼
�

m2
0 m2

1 þ Am2
2

m2
1 þ Am2

2 m2
0

�
; ð36Þ

ðM2Þ3 ¼
�

m2
0 Am2

1 þm2
2

Am2
1 þm2

2 m2
0:

�
ð37Þ

The eigenstates coincide with the scalar (Si, 0þ) and
pseudoscalar (Pi, 0−) diquarks again and their masses
are given by

M1ð0þÞ ¼ M2ð0þÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −m2
1 − Am2

2

q
; ð38Þ

M3ð0þÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − Am2
1 −m2

2

q
; ð39Þ

M1ð0−Þ ¼ M2ð0−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
1 þ Am2

2

q
; ð40Þ

M3ð0−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ Am2
1 þm2

2

q
: ð41Þ

Now one sees nontrivial hierarchy structures of the
diquark masses. From Eqs. (38)–(41), one obtains

½M1;2ð0þÞ�2 − ½M3ð0þÞ�2 ¼ ½M3ð0−Þ�2 − ½M1;2ð0−Þ�2
¼ ðA − 1Þðm2

1 −m2
2Þ: ð42Þ

Note that the i ¼ 1 (ds) and i ¼ 2 (su) diquarks are the
ones with the strange quark, while the i ¼ 3 (ud) diquark is
nonstrange.
Suppose that the ðudÞ scalar diquark is lighter than the

ðdsÞ and ðsuÞ diquarks. This is a natural assumption which
can be confirmed from the spectrum of the singly heavy
baryons, MðΞQ ¼ Qsu;QdsÞ > MðΛQ ¼ QudÞ. As M1

and M2 correspond to the isodoublet diquarks, we need
to have a mass hierarchy, M1ð0þÞ ¼ M2ð0þÞ > M3ð0þÞ.
Now from Eq. (42) and A > 1, m2

1 > m2
2 is required. Then

for the negative-parity diquarks, we will have M1ð0−Þ ¼
M2ð0−Þ < M3ð0−Þ. This is an inverse hierarchy, because
for the negative-parity diquarks, the strange ones (i ¼ 1, 2)
are lighter than the nonstrange (i ¼ 3) one.

IV. NUMERICAL ESTIMATES

In order to determine the parameters of the effective
Lagrangian, we need to have a few inputs. Ideally, the
masses of the diquarks are useful. There are several
attempts of computing the diquark masses and spectrum
in lattice QCD [11–15]. As the diquark is not a color-singlet
state, we need either fixing the gauge on the lattice and
measure the diquark masses, or placing a heavy color
source to compensate the color of the diquark and measure
the mass (energy) differences of the different diquark states.
Both the methods give qualitatively consistent results, in
particular for the mass difference between the scalar
diquark (0þ) and the axial-vector diquark (1þ), which is
about 150–200 MeV.
The other possible inputs are the masses of singly heavy

baryons. The bound states of a spin-0 diquark and a charm
quark form charmed baryons, such as Λþ

c (cud, 1=2�) and
Ξþ;0
c (csu or csd, 1=2�) [38–44]. Assuming that the charm

quark is a spectator, we can estimate the mass differences
among the diquarks from those of the baryons.
Here we present two methods of determining the

parameters, Method I (from lattice QCD) and II (from
heavy baryon masses), in the following.

A. Method I

First, we take the diquark masses from a recent lattice
QCD calculation for the Landau gauge in full QCD [15],

M3ð0þÞ ¼ 725 MeV; ð43Þ

M3ð0−Þ ¼ 1265 MeV; ð44Þ

M1;2ð0þÞ ¼ 906 MeV: ð45Þ

Then from Eq. (42), we obtain

M1;2ð0−Þ ¼ 1142 MeV: ð46Þ

By using the observed Λcð1=2þÞ mass [given in Eq. (48)]
as an input, we estimate the mass of Ξcð1=2þÞ as

MðΞc; 1=2þÞjtheo ¼ MðΛc; 1=2þÞ þ ðM1;2ð0þÞ −M3ð0þÞÞ
¼ 2467 MeV;

which beautifully agrees with the experimental value [given
in Eq. (49)]. Similarly, the masses of Λcð1=2−Þ and
Ξcð1=2−Þ are predicted as
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MðΛc; 1=2−Þjtheo ¼ MðΛc; 1=2þÞ þ ðM3ð0−Þ −M3ð0þÞÞ
¼ 2826 MeV;

MðΞc; 1=2−Þjtheo ¼ MðΛc; 1=2þÞ þ ðM1;2ð0−Þ −M3ð0þÞÞ
¼ 2704 MeV:

Note that the above results are independent from the
choice of A. We, however, have to fix A to determine the
Lagrangian parameters m2

1 and m2
2. By assuming A ¼ 5=3,

m2
0 ¼ ð1031 MeVÞ2;

m2
1 ¼ ð606.3 MeVÞ2;

m2
2 ¼ −ð274.4 MeVÞ2: ð47Þ

It should be noted here that the value of m2
2 happens to be

negative, but it is perfectly all right because this is a
parameter of the Lagrangian whose sign is not constrained.

B. Method II

As an alternative, we may use the charmed baryon
masses to determine the mass differences of the diquarks.
In order to determine the diquark masses, we need the
masses of MðΛc; 1=2þÞ, MðΞc; 1=2þÞ and MðΛc; 1=2−Þ.
The first two are experimentally given as [45]

MðΛc; 1=2þÞ ¼ 2286.46 MeV; ð48Þ

MðΞc; 1=2þÞ ¼
1

2
ðMðΞþ

c Þ þMðΞ0
cÞÞ ¼ 2469.42 MeV:

ð49Þ

However, the masses of the negative-parity states have not
been determined by experiment. Λcð1=2−Þ observed at
2592 MeV is not a 0− diquark bound state, but is rather a
P-wave bound state of the 0þ diquark (see discussions in
Sec. IV C). Then the bound state of a 0− diquark and a
charm quark is the second (ρ-mode) 1=2− state and we do
not have experimental data yet. Therefore we here use a
quark model prediction of the second Λcð1=2−Þ from
Ref. [25],

MðΛc; 1=2−Þ ¼ 2890 MeV: ð50Þ

Using these data, we find

M1ð0þÞ −M3ð0þÞ ¼ MðΞc; 1=2þÞ −MðΛc; 1=2þÞ
¼ 183 MeV: ð51Þ

M3ð0−Þ −M3ð0þÞ ¼ MðΛc; 1=2−Þ −MðΛc; 1=2þÞ
¼ 604 MeV: ð52Þ

By using the lattice data for the lightest diquark mass as
an input,

M3ð0þÞ ¼ 725 MeV; ð53Þ

we obtain, from Eqs. (51), (52) and (42),

M1ð0þÞ ¼ 906 MeV; ð54Þ

M3ð0−Þ ¼ 1329 MeV; ð55Þ

M1ð0−Þ ¼ 1212 MeV: ð56Þ

Then the masses of the 1=2− charmed baryons are
predicted as

MðΞc; 1=2−Þjtheo ¼ 2772 MeV: ð57Þ

Again, the above results are independent from the choice
of A, while we can determine the parameters of the
Lagrangian for the Method II, by setting A ¼ 5=3, as

m2
0 ¼ ð1070 MeVÞ2;

m2
1 ¼ ð632 MeVÞ2;

m2
2 ¼ −ð213 MeVÞ2: ð58Þ

C. Discussions

The results obtained from the two methods are summa-
rized in Table III. One immediately sees that the two
methods give almost identical results. This simply indicates
that our scheme works very well with the diquark masses
given by the lattice QCD calculation.
A prominent feature of the mass spectrum is the inverse

ordering of Λcð1=2−Þ and Ξcð1=2−Þ. This is anomalous
from the quark model viewpoint because Ξc ¼ ðcsqÞ
contains a strange quark and is expected to be heavier
than ΛcðcqqÞ for the same quantum numbers. A naive
estimate would conclude MðΞcÞ ∼MðΛcÞ þ 200 (MeV),

TABLE III. Parameters of the chiral effective theory and the
predicted diquark and baryon masses. The asterisk is for the input
values. The experimental value of the Ξc mass is the (charge)
average of Ξ0

c and Ξþ
c .

Method I Method II Experiment

M3ð0þÞ (MeV) 725* 725*
M1;2ð0þÞ (MeV) 906* 906
M3ð0−Þ (MeV) 1265* 1329
M1;2ð0−Þ (MeV) 1142 1212
MðΛc; 1=2þÞ (MeV) 2286* 2286* 2286.46
MðΞc; 1=2þÞ (MeV) 2467 2469* 2469.42
MðΛc; 1=2−Þ (MeV) 2826 2890* 2592
MðΞc; 1=2−Þ (MeV) 2704 2772 2793
m2

0 (MeV2) ð1031Þ2 ð1070Þ2
m2

1 (MeV2) ð606Þ2 ð631Þ2
m2

2 (MeV2) −ð274Þ2 −ð210Þ2
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while the present chiral dynamics predicts MðΞcÞ ∼
MðΛcÞ − 120 (MeV) for the 1=2− states. The difference
comes from the combination of the UAð1Þ anomaly term
and the second-order chiral-symmetry breaking term as is
seen in Eq. (42).
The PDG [45] reports a Λcð1=2−Þ state at 2592 MeVand

a Ξcð1=2−Þ state at 2793 MeV (Table III). However, they
may not directly be compared with our predictions. There
are two competing structures for the negative parity 1=2−

baryon resonances, either a bound state of 0þ diquark and a
charm in P wave (L ¼ 1) (λ-mode), or a bound state of 0−

and a charm in S wave (ρ-mode). Our diquark picture
assumes the ρ-mode excited states, where the diquark itself
is excited. In the quark model analysis, the ρ-mode states
are in general heavier than the λ-mode states [46]. In fact,
Λcð2592Þ fits to the λ-mode in the quark model very
well [25].
On the other hand, because of the inverse ordering, our

prediction of Ξcð1=2−Þ comes as low as the observed state,
Ξcð2793Þ, while, in the quark model, Ξcð2793Þ would be
assigned to the λ-mode excitation. It is interesting to see
whether Ξcð2793Þ is possible to be the ρ-mode excitation.
If so, we expect to have two Ξcð1=2−Þ states in the same
energy region.
In the present numerical analysis, the parameter A is

fixed to 5=3 ∼ 1.67. This value comes from the conven-
tional wisdom in the quark model that the ratio of the
constituent quark masses of s and u=d is given by

A ¼ MeffðsÞ
Meffðu=dÞ

∼
5

3
: ð59Þ

Let us estimate A according to the definition, Eq. (32).
First, fs ¼ 128 MeV, and fπ ¼ 92 MeV are determined
from the weak decays of the pseudoscalar mesons. gs is
the coupling constant of the pion to the u, d quark. It can
be related to the πNN coupling constant, i.e., gs ¼
1
3
gπNN ∼ 4.2, Here we use gπNN ¼ 12.5, which is deter-

mined from the Goldberger-Treiman relation. Finally ms is
the current strange quark mass determined in the chiral
perturbation theory, ms ∼ 85–105 MeV [45]. From these
values, we obtain A ∼ 1.61–1.67, which agrees with our
choice.
While this estimate is plausible, we check how the results

depend on the value of A. We recalculate the Lagrangian
parameters for A ¼ 1.5 and 2 for the Method II. Noting that
m2

0 does not depend on A, we obtain

m2
1 ¼ ð696 MeVÞ2;

m2
2 ¼ −ð328 MeVÞ2; ð60Þ

for A ¼ 1.5 and

m2
1 ¼ ð552 MeVÞ2;

m2
2 ¼ ð96 MeVÞ2; ð61Þ

for A ¼ 2.
We summarize the A dependence in Table IV. It is found

that the value of m2
2 is sensitive to the choice of A. In fact,

we can fit to the charmed baryon masses without m2
2-term

for A ¼ 1.91. On the other hand, the UAð1Þ anomaly term,
m2

1, is more stable and is consistently dominant.

V. CONCLUSION

In this paper, we have proposed a chiral effective theory
of scalar and pseudoscalar diquarks. Based on the linear
representations, we find that the color 3̄, flavor 3̄ and spin-
parity 0þ diquark, S, and the 0− diquark, P, with the same
color and flavor, form a chiral ð3̄; 1Þ þ ð1; 3̄Þ representa-
tion. Their mass difference comes from spontaneous chiral
symmetry breaking (SCSB).
A linear-sigma-model Lagrangian is constructed with

three mass parameters, m2
0, m

2
1 and m2

2. Among them, m2
0

represents the chiral invariant mass. On the other hand, the
m2

1- and m2
2-terms yield masses under SCSB. Furthermore,

the m2
1-term breaks the axial UAð1Þ symmetry and thus

represents the UAð1Þ anomaly. It is shown that the m2
0 mass

is diagonal in the chirality of the diquark, while the m2
1

and m2
2 masses are off-diagonal, connecting the left and

right diquarks. The scalar and pseudoscalar diquarks are
mass eigenstates and their mass difference is given by m2

1

and m2
2. We also find that the coupling of the pseudoscalar

octet mesons to the diquarks satisfies the generalized
Goldberger-Trieman relation.
By introducing the finite quark mass effects, we find

that the contributions of the UAð1Þ anomaly mass m2
1

depend on the quark mass in a reversed manner com-
pared to the m2

2 contributions. As a result, we find the
inverse mass ordering of the negative-parity diquarks,
Mðus=ds; 0−Þ < Mðud; 0−Þ.
In order to estimate the coupling constants in the

effective Lagrangian, we take into account the results of
lattice QCD calculations of diquark masses and also the
masses of the bound states of a charm quark and a diquark,
i.e., singly charmed baryons. We propose two methods of
determining the parameters, which give similar results. The

TABLE IV. A dependences of the parameters,m2
1 andm

2
2 for the

Method II.

A m2
1 (MeV2) m2

2 (MeV2)

1.50 ð696Þ2 −ð328Þ2
1.67 ð631Þ2 −ð210Þ2
1.91 ð569Þ2 0
2.00 ð552Þ2 ð96Þ2
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most prominent feature of the diquark picture of the
charmed baryon is the reversed ordering of Λcð1=2−Þ
and Ξcð1=2−Þ. We predict a lower mass for Ξcð1=2−Þ.
This inversion is caused by the UAð1Þ anomaly term. A
similar mass inversion was seen also in the scalar meson
spectrum in a chiral effective theory approach [36].
Numerical values of the parameters in the effective

Lagrangian show that the UAð1Þ anomaly term is dominant
for the mass difference between the positive- and negative-
parity diquarks.
So far, we have introduced only the scalar and pseudo-

scalar diquarks. It is interesting to extend this approach
to vector and axial-vector diquarks. Considering finite

temperature and baryon density is another direction to
explore, as the diquark masses might change due to
restoration of the chiral-symmetry breaking. These are
subjects of future studies.
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