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We propose a new method to determine the spatially or impact-parameter dependent nuclear parton
distribution functions (nPDFs) using the double parton scattering (DPS) processes in high-energy heavy-
ion (proton-nucleus and nucleus-nucleus) collisions. We derive a simple generic DPS formula in nuclear
collisions by accommodating both the nuclear collision geometry and the spatially dependent nuclear
modification effect, under the assumption that the impact-parameter dependence of nPDFs is only related to
the nuclear thickness function. While the geometric effect is widely adopted, the impact of the spatially
dependent nuclear modification on DPS cross sections has been overlooked so far, which can, however, be
significant when the initial nuclear modification is large. In turn, the DPS cross sections in heavy-ion
collisions can provide useful information on the spatial dependence of nPDFs. They can be, in general,
obtained in minimum-bias nuclear collisions, featuring the virtue of independence of Glauber modeling.
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I. INTRODUCTION

Multiple particle production at high-energy hadron
colliders, such as at the LHC, is dominated by simultaneous
multiple interactions between partons from the initial
hadrons. Such multiple-parton interactions (MPIs) are
indispensable in scrutinizing many event activities and
hadron multiplicities at colliders. One particularly interest-
ing case is that, when more-than-one reactions in a collision
are lying at hard scales, the perturbative QCD approach
based on the factorization theorem [1] or conjecture applies.
The studies of the so-called hard multiple-parton scattering
processes can deepen our understanding of QCD and the
possible multiple-parton correlations in a nucleon (see, e.g.,
Refs. [2–6]). They provide new means to access the
information of the nonperturbative structure of hadrons,
which is complementary to the one obtained from nucleon
one-body distributions. Because of the power counting of the
cross sections, the leading multiple-parton scattering mecha-
nism is the double parton scattering (DPS), where only two
partonic scattering subprocesses happen at the same time.
In the LHC era, we have witnessed rapid theoretical

developments [1–36], vast phenomenological applications
[37–68], and impressive experimental measurements
[69–85] of DPS, and even triple parton scattering in the

last decade, concentrating on proton-proton (pp) colli-
sions. Moreover, following the pioneering work [86] by
Strikman and Treleani, it is suggested that DPS cross
sections in proton-nucleus (pA) and nucleus-nucleus (AB
or AA) collisions will be largely enhanced thanks to
collision geometry. The DPS pA cross sections scale by
3 times the number of nucleons A in a nucleus [87–90],
while the single parton scattering (SPS) cross sections in
pA only scale by the nuclear mass number A (modulo other
nuclear matter effects). The geometrical enhancement is
more pronounced in nucleus-nucleus collisions. The DPS
cross sections in AA collisions scale as A3.3=5 [91,92],
while those for SPS are scaling as A2. However, one should
bear in mind that such quantitative estimates are based on
the assumption that the nuclear matter effects (thermal or
nonthermal) are independent of the collision geometry,
which is, in fact, not always justified. One counterexample
is the nuclear modification of the initial parton flux encoded
in the nuclear parton distribution functions (nPDFs).
Although the additional geometric effect from the nuclear
modifications for DPS is insignificant anyway if the sizes
of such modifications are small, the nuclear parton densities
can deviate significantly from their free-nucleon counter-
parts at a scale of a few GeV (see, e.g., Refs. [93–95]).
Therefore, the existing DPS formula in heavy-ion collisions
should be revised in order to incorporate the extra geo-
metric/spatial effect from nPDFs.1
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1To the best of our knowledge, none of the existing DPS
phenomenological applications in heavy-ion collisions [89–92,
96–104] considers such an effect.
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In addition, the understanding of the spatial (or impact-
parameter) dependence of nPDFs is also essential to
interpret the nuclear observables measured in different
centrality classes, where one usually has to use the (optical
or Monte Carlo) Glauber model to link the impact param-
eter and the centrality. Given the modest amount of
available nuclear hard-reaction-process data available in
the global fits, almost all considered nPDFs [105–117]
nowadays are only spatially averaged. They can only be
directly used in minimum-bias nuclear collisions. The only
one exception is that the authors of Ref. [118] determined
the two impact-parameter dependent nPDFs2 from the A
dependencies of the two spatially averaged nPDFs. New
means of extracting the spatial dependencies of the nPDFs
from experimental data are therefore desired not only
because the spatially dependent nPDFs in Ref. [118] are
more-or-less obsolete, but also due to the fact that a second
independent validation is always valuable.
The primary goal of the paper is to derive the generic

expression for the DPS cross section in heavy-ion collisions
by accommodating both the nuclear collision geometry and
the spatially dependent nuclear modification effect.
Additionally, we also suggest that the measurements of
the DPS processes in minimum-bias collisions are able to
constrain the impact-parameter dependent nPDFs. The
remainder of the context is organized as follows. After
introducing the nucleon density and the thickness function
in Sec. II, we derive a new generic formula for the DPS
cross section in nucleus-nucleus collisions in Sec. III. We
explore the possibility of using the DPS cross sections in
pA to determine the spatial dependence of the nPDFs in
Sec. IV. A short summary is presented in Sec. V. Finally,
Appendix A discusses the transverse parton profile and the
overlap function, and Appendix B considers the case when
the transverse position dependencies of protons and neu-
trons are different in a nucleus.

II. THE NUCLEON DENSITY AND THE
THICKNESS FUNCTION

The nucleon number density in a nucleus is usually
parameterized by a Woods-Saxon nucleon density function

ρAðr⃗Þ ¼ ρ0;A
1þ wAðr=RAÞ2
1þ expðr−RA

aA
Þ ; ð1Þ

where r≡ jr⃗j, ρ0;A corresponds to the nucleon density in
the center of the nucleus, RA is the radius of the nucleus A,
aA is the skin thickness, and wA characterizes deviations
from a spherical shape. The concrete values of these
parameters can be found in, e.g., Ref. [122]. Such a

function should work well for nuclei with A ≥ 4. An
alternative simpler density function is the so-called hard-
sphere model, i.e.,

ρAðr⃗Þ ¼ ρ0;AθðRA − rÞ; ð2Þ

where θðxÞ is the Heaviside function. The normalization for
ρA is Z

d3r⃗ρAðr⃗Þ ¼ A: ð3Þ

For convenience, we also define the nucleon probability

density ρ̂Aðr⃗Þ≡ ρAðr⃗Þ
A , which is normalized to unity. In the

case of a single nucleon, we can write

ρNðr⃗Þ ¼ δ3ðr⃗Þ; ð4Þ

where δnðÞ is an n-dimensional Dirac delta function. For
other A < 4 nuclei, one should utilize other nucleon density
profiles. For instance, a profile for deuteriumwas suggested
in Ref. [118].
Let us consider a heavy-ion collision of A (the target)

and B (the projectile), which is schematically shown in
Fig. 1. Their transverse displacement is a two-dimensional

vector b
⇀
. One considers two flux tubes located at the

transverse displacement s
⇀

and s
⇀ − b

⇀
with respect to the

centers of the target A and the projectile B, respectively. In
our notation, a three-dimensional vector x⃗ can be decom-

posed into a two-dimensional transverse part x
⇀

and the

longitudinal part xz, i.e., x⃗ ¼ ðx⇀; xzÞ. The two-dimensional
nucleon number density or the thickness function is

TAðb
⇀
Þ ¼

Z þ∞

−∞
ρAðb

⇀
; zAÞdzA; ð5Þ

where the nucleon probability density per unit transverse
area is

T̂Aðb
⇀
Þ≡ TAðb

⇀
Þ

A
¼
Z þ∞

−∞
ρ̂Aðb

⇀
; zAÞdzA: ð6Þ

The integrations of TAðb
⇀
Þ and T̂Aðb

⇀
Þ over b

⇀
in the whole

two-dimensional area result in the nucleon number A and

unity. One can define the thickness function TABðb
⇀
Þ and

thickness probability function T̂ABðb
⇀
Þ for AB collisions as

follows:

TABðb
⇀
Þ ¼

Z þ∞

−∞
TAð s⇀ÞTBð s⇀ − b

⇀
Þd2 s⇀;

T̂ABðb
⇀
Þ ¼

Z þ∞

−∞
T̂Að s⇀ÞT̂Bð s⇀ − b

⇀
Þd2 s⇀; ð7Þ

2There are also a few attempts to obtain the spatial form
of the nPDFs based on phenomenological models (see, e.g.,
Refs. [119–121]).
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which are normalized to AB and unity after integrating over the transverse plane b
⇀
. One can interpret the thickness

probability function T̂ABðb
⇀
Þ as the effective overlap area for which a nucleon in A can meet with a nucleon in B, which is a

pure geometrical factor.

III. DPS IN NUCLEUS-NUCLEUS COLLISIONS

The DPS cross section for a generic reaction AB → f1f2 is

σDPSAB→f1f2
¼ 1

1þ δf1f2

X
i;j;k;l

Z
dx1dx2dx01dx

0
2Γ

ij
A ðx1; x2; s

⇀
1; s

⇀
2; u

⇀
1; u

⇀
2Þσ̂f1ik ðx1; x01Þσ̂f2jl ðx2; x02Þ

× Γkl
B ðx01; x02; s

⇀
1 − b

⇀
þ v

⇀
1; s

⇀
2 − b

⇀
þ v

⇀
2; u

⇀
1 − v

⇀
1; u

⇀
2 − v

⇀
2Þd2u⇀1d2u

⇀
2d2v

⇀
1d2v

⇀
2d2 s

⇀
1d2 s

⇀
2d2b

⇀
; ð8Þ

where the relevant geometry is shown in Fig. 1. σ̂f1ik and σ̂f2jl are the two partonic cross sections for ik → f1 and jl → f2 with
the initial partons i, j, k, l being either (anti)quarks or gluons. δf1f2 is the Kronecker delta function to take into account
the symmetry of the final states f1 and f2 in the reaction. There are two contributions for the generalized double parton
distribution (GDPD) of the nucleus A.3 They are

Γij
A ðx1; x2; s

⇀
1; s

⇀
2; u

⇀
1; u

⇀
2Þ ¼ δ2ð s⇀1 − s

⇀
2ÞTAð s⇀1ÞΓij

N=Aðx1; x2; s
⇀

1; u
⇀

1; u
⇀

2Þ

þ A − 1

2A
TAð s⇀1ÞTAð s⇀2Þ½Γi

N=Aðx1; s
⇀

1; u
⇀

1ÞΓj
N=Aðx2; s

⇀
2; u

⇀
2Þ

þ Γi
N=Aðx1; s

⇀
2; u

⇀
1ÞΓj

N=Aðx2; s
⇀

1; u
⇀

2Þ�; ð9Þ

FIG. 1. Schematic representations of the geometry for DPS in nucleus-nucleus collisions from (a) side and (b) beam views. The two
large ellipses (circles) represent the two colliding nuclei, while the four small ellipses (circles) are the nucleons.

3The parton distributions also depend on the factorization scale μF, which we have neglected in our notations since μF will not affect
our discussions.
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where Γij
N=A and Γi

N=A are the isospin-averaged GDPD
and the isospin-averaged generalized single parton distri-
bution (GSPD) for a nucleon in A. The isospin average is
written as

Γij
N=A ¼

X
NA

Γij
NA ¼ 1

A

X
NA

Γij
NA ¼ Z

A
Γij
pA þ A − Z

A
Γij
nA
;

Γi
N=A ¼

X
NA

Γi
NA ¼ 1

A

X
NA

Γi
NA ¼ Z

A
Γi
pA þ A − Z

A
Γi
nA ; ð10Þ

for a nucleus Awith Z protons and A − Z neutrons. We call
Γij
NA and Γi

NA the generalized double parton distribution in a
nucleon and the generalized single parton distribution in a
nucleon, respectively. We have used the bounded nucleon
(bounded proton, bounded neutron) in nucleus A as NA

(pA, nA), while a free nucleon, a free proton, and a free
neutron are denoted as N, p, and n, respectively. The first
term on the right-hand side of Eq. (9) represents the two
partons i and j, which belong to the same nucleon in

nucleus Awith the impact parameter of the nucleon s
⇀

1. The
second term means that the two partons are from two
distinct nucleons, where the prefactor A−1

A takes into
account the difference between the number of nucleon
pairs and the number of different nucleon pairs. Such a
factor is essential to guarantee the correct normalization of
Γij
A , which was first noticed in Refs. [87,89]. If A is a

nucleon (A ¼ 1), the second term is zero because of the
prefactor. Finally, we also have the decomposition for the
GDPD Γkl

B of nucleus B akin to Eq. (9) for nucleus A.
We can use the factorized ansatz for the remaining

nucleon GDPD Γij
NA and the nucleon GSPDs Γi

NA and Γj
NA

as follows:

Γij
NAðx1; x2; s⇀1; u

⇀
1; u

⇀
2Þ

¼ tNAðu⇀1ÞtNAðu⇀2ÞgiNAðx1; s⇀1ÞgjNAðx2; s⇀1Þ;
Γi
NAðx1; s⇀1; u

⇀
1Þ ¼ tNAðu⇀1ÞgiNAðx1; s⇀1Þ;

Γj
NAðx2; s⇀2; u

⇀
2Þ ¼ tNAðu⇀2ÞgjNAðx2; s⇀2Þ; ð11Þ

where we have used tNAðu⇀Þ as the transverse parton profile
in the bounded nucleon NA and giNAðx; s⇀Þ the impact-

parameter s
⇀

dependent nPDF for the parton i. A similar
factorized ansatz is widely used in DPS processes in (free)
nucleon-nucleon collisions. It assumes the vanishing par-
ton-parton correlations in DPS and yields the well-known
“pocket formula” for the cross section in nucleon-nucleon
N1N2 collisions

σDPSN1N2→f1f2
¼ 1

1þ δf1f2

σN1N2→f1σN1N2→f2

σeff;N1N2

; ð12Þ

with the effective cross section as

σeff;N1N2
¼
�Z

FN1N2
ðv⇀Þd2v⇀

�
−1

ð13Þ

and the overlap function

FN1N2
ðv⇀Þ ¼

Z
tN1

ðu⇀ÞtN2
ðu⇀ − v

⇀Þd2u⇀: ð14Þ

Usually, one assumes that the transverse parton profile

tNðu⇀Þ is independent of the type of the free-nucleon N,
which is either a proton or a neutron. Then, we are
left with one single effective cross section parameter
σeff;N1N2

¼ σeff;pp; ∀ Ni ∈ fp; ng. In addition, it is rea-
sonable to assume that the transverse parton profile is not
affected by the surrounding nucleons in a nucleus, i.e.,

tNAðu⇀Þ ¼ tNðu⇀Þ. In the following, we will use such two
simplifications and retain only one tp and one Fpp as the
unique transverse parton profile and the overlap function.
Further discussions about these two functions can be found
in Appendix A.
Motivated by the shadowing at small x and the Gribov-

Glauber modeling [119,123,124] of the nPDFs, we can
assume the nuclear matter effects encoded in nPDFs are
only depending on the thickness function TA. We can
introduce the general expression as

gi
NAðx; s⇀Þ
giNðxÞ

− 1 ¼
�
gi
NAðxÞ
giNðxÞ

− 1

�
G

 
TAð s⇀Þ
TAð0

⇀Þ

!
; ð15Þ

where giNðxÞ is the free-nucleon N PDF for parton i and
gi
NAðxÞ is the spatially averaged nucleon N PDF for parton i
in A. GðÞ can be an arbitrary function4 with the normali-
zation condition

Z
TAð s⇀ÞG

 
TAð s⇀Þ
TAð0

⇀Þ

!
d2 s

⇀ ¼ A: ð16Þ

The simple form GðTAð s⇀Þ
TAð0

⇀
Þ
Þ ¼ ATAð s⇀Þ

TAAð0
⇀
Þ
is the most frequently

used one in the literature [125–131] and also in the HIJING

event generator [132]. However, such a simple form
conflicts with the A dependence of the nPDF global fit
[118]. A study based on the A dependencies of the nPDFs
reveals that a polynomial function GðÞ with terms up to

ðTAð s⇀Þ
TAð0

⇀Þ
Þ4 can reproduce the nPDF A dependence over the

entire x range. In the following, for simplicity, we will

4A reasonable constraint one can impose is

limj s⇀j→þ∞ G
�
TAð s⇀Þ
TAð0

⇀Þ

�
¼ 0. This can be understood because, at

sufficiently large distance, the nucleons would behave like
free particles. We, however, will not use such a constraint
in the following discussions.
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use the abbreviations GA;1ð s⇀Þ≡GðTAð s⇀Þ
TAð0

⇀Þ
Þ, GA;2ð s⇀Þ≡

1 − GA;1ð s⇀Þ, gi
NA;1

ðxÞ≡ gi
NAðxÞ, and gi

NA;2
ðxÞ≡ giNðxÞ.

Therefore, Eq. (15) can be reformulated as

gi
NAðx; s⇀Þ ¼

X2
m¼1

gi
NA;m

ðxÞGA;mð s⇀Þ: ð17Þ

After applying the ansatzEq. (11) and the relationEq. (17)
into Eq. (8), we arrive at the main result of the paper

σDPSAB→f1f2
¼ 1

1þ δf1f2

×
X

NA
1
;NA

2
;NB

1
;NB

2

X2
m1;m2;m3;m4¼1

ðσm1m3

NA
1
NB

1
→f1

σm2m4

NA
2
NB

2
→f2

Þ

×

�
δNA

1
NA

2
δNB

1
NB

2

T̂A;m1m2
T̂B;m3m4

σeff;pp

þ δNB
1
NB

2

A − 1

A
T̂ð2Þ
nA;m1m2

T̂B;m3m4

þ δNA
1
NA

2

B − 1

B
T̂A;m1m2

T̂ð2Þ
nB;m3m4

þ ðA − 1ÞðB − 1Þ
AB

T̂ð2Þ
nAB;m1m2m3m4

�
; ð18Þ

where we have used

σm1m3

NA
1
NB

1
→f1

¼
X
i;k

Z
dx1dx01g

i
NA

1
;m1

ðx1ÞgkNB
1
;m3

ðx01Þσ̂f1ik ðx1; x01Þ;

σm2m4

NA
2
NB

2
→f2

¼
X
j;l

Z
dx2dx02g

j
NA

2
;m2

ðx2ÞglNB
2
;m4

ðx02Þσ̂f2jl ðx2; x02Þ:

ð19Þ
In addition, the symbols T̂ are defined as

T̂A;m1m2
¼
Z

T̂Aðb
⇀
ÞGA;m1

ðb
⇀
ÞGA;m2

ðb
⇀
Þd2b

⇀
;

T̂ð2Þ
nA;m1m2

¼
Z

ðT̂nA;m1
ðb
⇀
ÞT̂nA;m2

ðb
⇀
ÞÞd2b

⇀
;

T̂ð2Þ
nAB;m1m2m3m4

¼ 1

2

Z
½T̂nAB;m1m3

ðb
⇀
ÞT̂nAB;m2m4

ðb
⇀
Þ

þ T̂nAB;m1m4
ðb
⇀
ÞT̂nAB;m2m3

ðb
⇀
Þ�d2b

⇀
;

T̂nA;mðb
⇀
Þ ¼

Z
Fppðv⇀ÞT̂Aðv⇀ − b

⇀
ÞGA;mðv⇀ − b

⇀
Þd2v⇀;

T̂nAB;m1m2
ðb
⇀
Þ ¼

Z
Fppðv⇀ÞT̂AB;m1m2

ðb
⇀
− v

⇀Þd2v⇀;

T̂AB;m1m2
ðb
⇀
Þ ¼

Z
½T̂Að s⇀ÞGA;m1

ð s⇀Þ

× T̂Bð s⇀ − b
⇀
ÞGB;m2

ð s⇀ − b
⇀
Þ�d2 s⇀: ð20Þ

Because of the normalization relations, we have

T̂A;12 ¼ T̂A;21 ¼ −T̂A;22 ¼ 1 − T̂A;11: ð21Þ

The interpretation of the four terms in thebrackets ofEq. (18)
is straightforward. They represent three different DPS
contributions from nucleus-nucleus interactions. The first
term is from the two pairs of the colliding partons belonging
to the same pair of incident nucleons. The second and the
third termsoriginate from the twopartons fromanucleon in a
nucleus interaction with the two partons from two different
nucleons in another nucleus. The last term is the contribution
of the two pairs of partons belonging to two different
nucleons from both nuclei.
A few special situations are worth being explored. When

we take the identity of the impact-parameter dependent
nPDF gi

NAðx; s⇀Þ and the spatially averaged nPDF gi
NAðxÞ

via GA;1ð s⇀Þ ¼ 1 and GA;2ð s⇀Þ ¼ 0, we can recover the
well-known DPS formula in AB collisions [see, e.g.,
Eqs. (1) and (2) in Ref. [102] ], which, however, does
not take into account the spatially dependent initial nuclear
modifications. Moreover, if we set gi

NAðxÞ ¼ giNðxÞ
(i.e., zero nuclear modification), we have gi

NA;1
ðxÞ ¼

gi
NA;2

ðxÞ ¼ giNðxÞ. The final expression is independent of
GðÞ, as it must be. Finally, if we take nucleus B as a proton,

which amounts to setting B ¼ 1, GB;1ð s⇀Þ ¼ 1, and

GB;2ð s⇀Þ ¼ 0, Eq. (18) is reduced to

σDPSAp→f1f2
¼ 1

1þ δf1f2

X
NA

1
;NA

2

X2
m1;m2¼1

�
σm11

NA
1
p→f1

σm21

NA
2
p→f2

�

×

�
δNA

1
NA

2

T̂A;m1m2

σeff;pp
þ A − 1

A
T̂ð2Þ
nA;m1m2

�
: ð22Þ

This gives rise to a DPS formula in pA (or Ap) collisions.
If A ≫ 1, we can impose a good approximation

Fppðv⇀Þ ≈ δ2ðv⇀Þ. This can be understood because a
nucleon in a heavy nucleus looks like a point in space.
Then,

T̂nA;mðb
⇀
Þ ≈ T̂Aðb

⇀
ÞGA;mðb

⇀
Þ;

T̂nAB;m1m2
ðb
⇀
Þ ≈ T̂AB;m1m2

ðb
⇀
Þ: ð23Þ

With such a simplification, the transverse parton profile tp
will only enter into σeff;pp in Eqs. (18) and (22). The
goodness for the above approximation will be validated in

Appendix A with a few concrete modelings of Fppðv⇀Þ.
Finally, it would be useful to consider a few exceptional

cases in which our assumptions do not hold. The first case
is when our factorization ansatz (15) is violated by,
for instance, the existence of strong correlations [133].
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The concrete formulas (18) and (22) for DPS cross sections
should be revised depending on the new ansatz. Our general
idea of using DPS cross sections in minimum-bias nuclear
collisions as a sensitive probe of the transverse position
dependence of the nuclear modification of parton densities
is, however, still valid. For simplicity, we have not
discriminated the possible different transverse position
dependencies of protons and neutrons in nuclei, also known
as the neutron skin effect (see, e.g., in Refs. [134–136]).
Since the first sums in Eqs. (18) and (22) run over all
possible (bounded) nucleons, it is easy to incorporate such
an effect, which can be found in Appendix B.

IV. IMPACT-PARAMETER DEPENDENT
NUCLEAR PDF FROM DPS

From Eqs. (18) and (22), we know that the DPS cross
sections in nuclear collisions depend on the function GðÞ
characterizing the impact-parameter dependence of nPDFs,
as introduced in Eq. (15). In turn, we can view DPS as a
probe to determine the spatial dependence GðÞ. The task of
DPS cross section extraction from experimental data is,
however, far from nontrivial due to the presence of the
contamination from the SPS contribution. An ideal case is
to look for a process in which the SPS contribution
is suppressed. A few such examples are same-sign open
charm [79], J=ψ þ charm [79], ϒþ charm [80],5 and
J=ψ þϒ [41,74] production. In order to avoid the com-
plications from the final-state nuclear effects, we only take
the pA collisions as an example here. The above mentioned
processes are dominated by gluon-gluon initial state at the
LHC energies, which is blind with the isospin effect. For
these gluon-induced processes, Eq. (22) can be further
simplified. The nuclear modification factor is expressed as

RDPS
pA→f1f2

≡ σDPSpA→f1f2

AσDPSpp→f1f2

¼
X2
i;j¼1

ðT̂A;ij þ ðA − 1Þσeff;ppT̂ð2Þ
nA;ijÞ

× ðRf1
pAÞ2−iðRf2

pAÞ2−j; ð24Þ

with Rf
pA ≡ σpA→f

Aσpp→f
in the minimum-bias collisions.

One reasonable approximation we can take is that
the nucleon number density follows the hard-sphere
form of Eq. (2). Then, the thickness function is

TAðb
⇀
Þ ¼ 3A

2πR2
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jb

⇀
j2=R2

A

q
θðRA − jb

⇀
jÞ. For illustration

purposes only, we consider GðxÞ as a monomial in the
argument x only here, although its practical form can
be sufficiently complicated. Therefore, the analytical

expression of GA;1 is GA;1ðb
⇀
Þ ¼ aþ3

3
ðTAðb

⇀
Þ

TAð0
⇀Þ
Þ
a
. Then, we

can derive

T̂A;11 ≈
31−2aðaþ 3Þ2a

2aþ 3
;

T̂ð2Þ
nA;11 ≈

91−aðaþ 3Þ2a
4ðaþ 2ÞπR2

A
;

T̂ð2Þ
nA;12 ¼ T̂ð2Þ

nA;21 ≈
32−aðaþ 3Þa
2ðaþ 4ÞπR2

A
−
91−aðaþ 3Þ2a
4ðaþ 2ÞπR2

A
;

T̂ð2Þ
nA;22 ≈

9

8πR2
A
−
32−aðaþ 3Þa
ðaþ 4ÞπR2

A
þ 91−aðaþ 3Þ2a

4ðaþ 2ÞπR2
A
: ð25Þ

In such a case, the nuclear modification factor becomes

RDPS
pA→f1f2

≈ Rf1
pAR

f2
pA

�
31−2aðaþ 3Þ2a

2aþ 3
þ σeff;pp

ðA − 1Þ91−aðaþ 3Þ2a
4ðaþ 2ÞπR2

A

�

þ ðRf1
pA þ Rf2

pAÞ
�
1 −

31−2aðaþ 3Þ2a
2aþ 3

þ σeff;ppðA − 1Þ
�
32−aðaþ 3Þa
2ðaþ 4ÞπR2

A
−
91−aðaþ 3Þ2a
4ðaþ 2ÞπR2

A

��

þ
�
31−2aðaþ 3Þ2a

2aþ 3
− 1þ σeff;ppðA − 1Þ

�
9

8πR2
A
þ 91−aðaþ 3Þ2a

4ðaþ 2ÞπR2
A
−
32−aðaþ 3Þa
ðaþ 4ÞπR2

A

��
: ð26Þ

It is easy to check that, when a ¼ 0 (zero spatial depend-
ence), we are left with the first term proportional to
Rf1
pAR

f2
pA.

Let us take the lead (Pb) beam with A ¼ 208,
RA ¼ 6.624 fm, and σeff;pp ¼ 15 mb as a special example.
Such a beam is available at the LHC. Different numbers of

the power a in GðxÞ ∝ xa predict quite different values of
the nuclear modification factor RDPS

pA→f1f2
, as reported in

Fig. 2. The curves corresponding to five different values of
Rf
pA ¼ Rf1

pA ¼ Rf2
pA are displayed. RDPS

pA→f1f2
dramatically

increases when a > 1.5, 2.0, 3.0, and 1.0 for Rf
pA ¼ 0.4,

0.6, 0.8, and 1.2. As anticipated, the curve of Rf
pA ¼ 1.0 (no

nuclear modification) is independent of GðxÞ (or a). As
realistic examples, Rf

pA from the single-f inclusive proc-
esses, with f being either the open charm or J=ψ mesons at

5A recent calculation based on kT factorization [137] shows
that SPS is very big in ϒþ charm production.
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the LHC proton-lead collisions were precisely measured
to be close to 0.6 in the forward rapidity region (see,
e.g., Fig. 1 in Ref. [93]). The a ¼ 0, 1, 2, and 3 predict
RDPS
pA→f1f2

¼ 1.27, 1.22, 1.07, and 7.26 in the same kin-
ematic regime. These numbers can be refined by using the
Woods-Saxon density [cf. Eq. (1)] and with a concrete

parton overlap function Fppðv⇀Þ [cf. Eq. (14)]. The
numerical differences with respect to what we have shown
should be minor though. From this example, we have
clearly shown that the nuclear modification factors
of J=ψ plus open charm and same-sign charm produc-
tion in proton-lead collisions will provide precious
inputs for determining the impact-parameter dependent
nPDFs. Such measurements are independent of the cen-
trality-based measurements, where the latter ones are
crucially dependent on Glauber modeling (see, e.g.,

Refs. [138,139]) and are subject to large uncertainties,
particularly in proton-nucleus collisions.

V. SUMMARY

In this paper, for the first time, we have considered both
the nuclear collision geometry and the impact-parameter
dependent nuclear modification in the nPDFs for DPS
processes in heavy-ion collisions. A simple generic equa-
tion (18) has been derived for evaluating the DPS cross
sections in nucleus-nucleus collisions, while its pA
counterpart is given in Eq. (22). Both of the above effects
are important in scrutinizing the DPS heavy-ion data. The
latter is particular relevant when the nuclear modification
encoded in the nPDFs is significant (e.g., the open/hidden
charm and beauty production [93] at the LHC). In turn, we
can also extract the spatial dependence of the nPDFs by
measuring DPS cross sections in minimum-bias nuclear
collisions. We take the gluon-induced charm and beauty
production processes as an example. σeff;pp can be deter-

mined from their pp data (e.g., Ref. [79]), and Rf1
pA and R

f2
pA

are measured in their single inclusive processes. The
measurements of the DPS nuclear modification factor
RDPS
pA→f1f2

can be readily used to pin down the spatial
function GðÞ entering into the impact-parameter dependent
nPDFs. Such an approach has the virtue of independence of
Glauber modeling.
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APPENDIX A: THE TRANSVERSE PARTON
PROFILE AND THE OVERLAP FUNCTION

Several empirical functional forms of the transverse
parton profile tpðu⇀Þ in a nucleon were suggested in the

R
pA

→
f 1

f 2
D

P
S

a

A=208
RA=6.624 fm
σeff,pp=15 mb

RpA
f   =0.4

RpA
f   =0.6

RpA
f   =0.8

RpA
f   =1.0

RpA
f   =1.2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4

FIG. 2. RDPS
pA→f1f2

dependence of a, where a is the power of x in
GðxÞ via GðxÞ ∝ xa. Five different exemplified values Rf

pA ¼
Rf1
pA ¼ Rf2

pA are shown.

TABLE I. A summary of the transverse parton profile in a nucleon.

Full name Acronym Functional form

Hard sphere HS
tpðu⇀Þ ¼ 3

2πr2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ju⇀j2=r20

q
θðr0 − ju⇀jÞ

Gaussian G tpðu⇀Þ ¼ 1
2πr2

0

exp ð− ju⇀j2
2r2

0

Þ
Double Gaussian DG tpðu⇀Þ ¼ 1−β

πr2
0;1
exp ð− ju⇀j2

r2
0;1
Þ þ β

πr2
0;2
exp ð− ju⇀j2

r2
0;2
Þ

Top hat TH tpðu⇀Þ ¼ 1
πr2

0

θðr0 − ju⇀jÞ
Dipole D tpðu⇀Þ ¼ R d2Δ

⇀

4π2
eiΔ

⇀
·u
⇀ðjΔ

⇀
j2=m2

g þ 1Þ−2

¼ R jΔ⇀jdjΔ⇀j
2π J0ðjΔ

⇀
jju⇀jÞðjΔ

⇀
j2=m2

g þ 1Þ−2 ¼ m2
g

2π
mgju⇀j
2

K1ðmgju⇀jÞ
Exponential E

tpðu⇀Þ ¼ R dz
8πr3

0

exp ð−
ffiffiffiffiffiffiffiffiffiffiffiffi
ju⇀j2þz2

p
r0

Þ ¼ 1
2πr2

0

ju⇀j
2r0

K1ðju
⇀j
r0
Þ
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literature [140–143]. They are collected in Table I. The
“dipole” profile is equivalent to the “exponential” profile
as long as we take r−10 ¼ mg. Both of them are proportional
to the modified Bessel function K1ðÞ. The analytical
expressions of the mean three-dimensional radius squared

hr⃗2i and the mean two-dimensional radius squared hu⇀2i
can be found in Table II. Due to the spatial symmetry, we

always have hr⃗2i ¼ 3
2
hu⇀2i. We have also evaluated the

analytic functions of the overlap function Fppðv⇀Þ and of
σeff;pp for all these profiles in Table III.
As an illustration, in the following, we take the hr⃗2i ¼

ð0.875 fmÞ2 for all profiles, where 0.875 fm is the proton
charge radius. Note that such values do not necessarily
agree with other tunings. For instance, Ref. [141] took
m2

g ¼ 1.1 GeV2 from the analysis of the exclusive J=ψ
photoproduction (or electroproduction). Such a value

results in the value of
ffiffiffiffiffiffiffiffi
hr⃗2i

p
1.5 times smaller than

0.875 fm. For the “double Gaussian” profile, we adopt
the values of β ¼ 0.5, r0;1r0;2

¼ 5, as suggested in Ref. [140]. In

such a circumstance, we can predict the numerical values of
σeff;pp shown in the second column of Table IV. The setup
results in pretty large values of σeff;pp, ranging from 35 mb
with double Gaussian to 70 mb with “top hat.”
Alternatively, we can also fix the value of σeff;pp to extract

the parameters. The predicted
ffiffiffiffiffiffiffiffi
hr⃗2i

p
are displayed in the

third column of Table IV by using σeff;pp ¼ 15 mb. Theffiffiffiffiffiffiffiffi
hr⃗2i

p
values are generally 1.5–2.0 times smaller than

0.875 fm.
In Fig. 3, we have shown the comparisons between

T̂nAðb
⇀
Þ≡ R Fppðv⇀ÞT̂Aðv⇀ − b

⇀
Þd2v⇀ and T̂Aðb

⇀
Þ for the lead

TABLE II. The mean three-dimensional radius squared and the
mean two-dimensional radius squared.

Profile hr⃗2i hu⇀2i
HS 3

5
r20

2
5
r20

G 3r20 2r20
DG 3

2
½ð1 − βÞr20;1 þ βr20;2� ð1 − βÞr20;1 þ βr20;2

TH 3
4
r20

1
2
r20

D 12
m2

g

8
m2

g

E 12r20 8r20

TABLE III. The analytical expressions of the overlap function Fppðv⇀Þ and σeff;pp.

Profile Overlap function σeff;pp

HS
Fppðv⇀Þ ¼ 9

512πr6
0

"
4r0ð8r20 þ jv⇀j2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20 − jv⇀j2

q 1400π
9ð179−128 ln 2Þ r

2
0

þjv⇀j2ð16r20 − jv⇀j2Þ ln 2r0−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2

0
−jv⇀j2

p
2r0þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2

0
−jv⇀j2

p
#
θð2r0 − jv⇀jÞ

G Fppðv⇀Þ ¼ 1
4πr2

0

exp ð− jv⇀j2
4r2

0

Þ 8πr20

DG
Fppðv⇀Þ ¼ ð1−βÞ2

2πr2
0;1

e
−j v⇀j2
2r2
0;1 þ β2

2πr2
0;2
e
−j v⇀j2
2r2
0;2

πP
4

i¼0
4!

i!ð4−iÞ!
ð1−βÞiβ4−i

ir2
0;1

þð4−iÞr2
0;2

þ 2βð1−βÞ
πðr2

0;1þr2
0;2Þ

e
− j v⇀j2
r2
0;1

þr2
0;2

TH Fppðv⇀Þ ¼ 1
π2r4

0

½2r20 arccosðjv
⇀j
2r0
Þ − v

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r20 − v2

p
�θð2r0 − jv⇀jÞ 3π3r2

0

3π2−16

D Fppðv⇀Þ ¼ m4
g jv⇀j2
32π K0ðmgjv⇀jÞ þ m3

g jv⇀jð6þm2
g jv⇀j2Þ

96π K1ðmgjv⇀jÞ
28π
m2

g

þ m4
g jv⇀j2
96π K2ðmgjv⇀jÞ

E
Fppðv⇀Þ ¼ jv⇀j2

32πr4
0

K0ðjv
⇀j
r0
Þ þ jv⇀jð6r2

0
þjv⇀j2Þ

96πr5
0

K1ðjv
⇀j
r0
Þ 28πr20

þ jv⇀j2
96πr4

0

K2ðjv
⇀j
r0
Þ

TABLE IV. The predictions of σeff;pp after imposing the mean
three-dimensional radius squared 0.8752 fm2 (second column)
and the values of the square root of the mean three-dimensional
radius squared by fixing σeff;pp ¼ 15 mb (third column).

σeff;pp (mb)
ffiffiffiffiffiffiffiffi
hr⃗2i

p
(fm)

Profile (
ffiffiffiffiffiffiffiffi
hr⃗2i

p
¼ 0.875 fm) (σeff;pp ¼ 15 mb)

HS 69 0.41
G 64 0.42
DG 35 0.58
TH 70 0.41
D 56 0.45
E 56 0.45
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A ¼ 208. Both the Woods-Saxon and hard-sphere ρA
have been used with the parameters RA ¼ 6.624 fm,
a ¼ 0.549 fm, and w ¼ 0. We have tried the two transverse

parton profiles for HS and D. The approximation T̂nAðb
⇀
Þ ≈

T̂Aðb
⇀
Þ is verified to be very good except where b≡ jb

⇀
j is

close to the spherical surface (b ≃ RA) in the hard-sphere ρA
case. Such a conclusion is quite general and should be
independent of the functional form of the profile tp for
nucleons in heavy nuclei. In particular, the consideration of
the event-by-event fluctuation effect [cf., e.g., Eq. (13) in
Ref. [144] ] in nucleons will not impact our results (bar the
concrete value of σeff;pp). The details of the subnucelon
structure, however, could be relevant in a description of
light nuclei.

APPENDIX B: THE CASE OF MUTUALLY
DIFFERENT SPATIAL DISTRIBUTIONS OF
PROTON AND NEUTRON INSIDE NUCLEI

In this Appendix, we consider generalizing Eq. (18) for
the case when the thickness functions for protons and
neutrons in nuclei are different, e.g., because of the well-
known neutron skin effect [134–136] in nuclear physics.
Such a generalization can be done by introducing the
normalized proton and neutron thickness functions

T̂pA

A ðb
⇀
Þ≡ T̂p

Aðb
⇀
Þ and T̂nA

A ðb
⇀
Þ≡ T̂n

Aðb
⇀
Þ, while the thick-

ness function is expressed as TAðb
⇀
Þ ¼PNA T̂NA

A ðb
⇀
Þ.

Similar to Eq. (7), we can introduce

T̂NANB

AB ðb
⇀
Þ≡

Z þ∞

−∞
T̂NA

A ð s⇀ÞT̂NB

B ð s⇀ − b
⇀
Þd2 s⇀; ðB1Þ

and we have

TABðb
⇀
Þ ¼

X
NA;NB

T̂NANB

AB ðb
⇀
Þ: ðB2Þ

The GPDP in Eq. (9) can be rewritten as

Γij
A ðx1; x2; s

⇀
1; s

⇀
2; u

⇀
1; u

⇀
2Þ

¼ δ2ð s⇀1 − s
⇀

2ÞΓ̃ij
A ðx1; x2; s

⇀
1; u

⇀
1; u

⇀
2Þ

þ A − 1

2A
½Γ̃i

Aðx1; s
⇀

1; u
⇀

1ÞΓ̃j
Aðx2; s

⇀
2; u

⇀
2Þ

þ Γ̃i
Aðx1; s

⇀
2; u

⇀
1ÞΓ̃j

Aðx2; s
⇀

1; u
⇀

2Þ�; ðB3Þ

with

Γ̃ij
A ðx1; x2; s

⇀
; u
⇀

1; u
⇀

2Þ≡
X
NA

T̂NA

A ð s⇀ÞΓij
NAðx1; x2; s⇀; u

⇀
1; u

⇀
2Þ

¼ ZT̂pA

A Γij
pA þ ðA − ZÞT̂nA

A Γij
nA
;

Γ̃i
Aðx; s

⇀
; u
⇀Þ≡X

NA

T̂NA

A ð s⇀ÞΓi
NAðx; s⇀; u

⇀Þ

¼ ZT̂pA

A Γi
pA þ ðA − ZÞT̂nA

A Γi
nA : ðB4Þ

The transverse position function appearing in Eq. (15)

becomes G
�
T̂NA
A ð s⇀Þ

T̂NA
A ð0

⇀
Þ

�
, with the shorthand notations

GNA

A;1ð s
⇀Þ≡G

�
T̂NA
A ð s⇀Þ

T̂NA
A ð0⇀Þ

�
and GNA

A;2ð s
⇀Þ≡ 1 −GNA

A;1ð s
⇀Þ.

Then, Eq. (18) can be generalized by extending the
indices mi in the transverse position symbols T̂ to tuples
ðmi; NA

i Þ when i ∈ f1; 2g and ðmi; NB
i Þ when i ∈ f3; 4g. In

other words, we have

σDPSAB→f1f2

¼ 1

1þ δf1f2

X
NA

1
;NA

2
;NB

1
;NB

2

X2
m1;m2;m3;m4¼1

ðσm1m3

NA
1
NB

1
→f1

σm2m4

NA
2
NB

2
→f2

Þ

×

�
δNA

1
NA

2
δNB

1
NB

2

T̂A;ðm1;NA
1
Þðm2;NA

2
ÞT̂B;ðm3;NB

3
Þðm4;NB

4
Þ

σeff;pp

þ δNB
1
NB

2

A − 1

A
T̂ð2Þ
nA;ðm1;NA

1
Þðm2;NA

2
ÞT̂B;ðm3;NB

3
Þðm4;NB

4
Þ

þ δNA
1
NA

2

B − 1

B
T̂A;ðm1;NA

1
Þðm2;NA

2
ÞT̂

ð2Þ
nB;ðm3;NB

3
Þðm4;NB

4
Þ

þ ðA − 1ÞðB − 1Þ
AB

T̂ð2Þ
nAB;ðm1;NA

1
Þðm2;NA

2
Þðm3;NB

3
Þðm4;NB

4
Þ

�
:

ðB5Þ

The new symbols are defined as

T^ nA
(b

) 
   

 [f
m

-2
]

b [fm]

A=208

r0=0.529 fm

mg=1.515 GeV

RA=6.624 fm

a=0.549 fm

w=0
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T
^

A

T
^

nA
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T
^

nA
D
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FIG. 3. The comparisons of T̂nAðb
⇀
Þ and T̂Aðb

⇀
Þ for lead

A ¼ 208.
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T̂A;ðm1;NA
1
Þðm2;NA

2
Þ ≡

Z
T̂
NA

1

A ðb
⇀
ÞGNA

1

A;m1
ðb
⇀
ÞGNA

2

A;m2
ðb
⇀
Þd2b

⇀
;

T̂ð2Þ
nA;ðm1;NA

1
Þðm2;NA

2
Þ ≡

Z
ðT̂nA;ðm1;NA

1
Þðb

⇀
ÞT̂nA;ðm2;NA

2
Þðb

⇀
ÞÞd2b

⇀
;

T̂ð2Þ
nAB;ðm1;NA

1
Þðm2;NA

2
Þðm3;NB

3
Þðm4;NB

4
Þ ≡

1

2

Z
½T̂nAB;ðm1;NA

1
Þðm3;NB

3
Þðb

⇀
ÞT̂nAB;ðm2;NA

2
Þðm4;NB

4
Þðb

⇀
Þ

þ T̂nAB;ðm1;NA
1
Þðm4;NB

4
Þðb

⇀
ÞT̂nAB;ðm2;NA

2
Þðm3;NB

3
Þðb
⇀
Þ�d2b

⇀
;

T̂nA;ðm;NAÞðb
⇀
Þ≡

Z
Fppðv⇀ÞT̂NA

A ðv⇀ − b
⇀
ÞGNA

A;mðv
⇀ − b

⇀
Þd2v⇀;

T̂nAB;ðm1;NA
1
Þðm3;NB

3
Þðb

⇀
Þ≡

Z
Fppðv⇀ÞT̂AB;ðm1;NA

1
Þðm3;NB

3
Þðb

⇀
− v

⇀Þd2v⇀;

T̂AB;ðm1;NA
1
Þðm3;NB

3
Þðb

⇀
Þ≡

Z
½T̂NA

1

A ð s⇀ÞGNA
1

A;m1
ð s⇀ÞT̂NB

3

B ð s⇀ − b
⇀
ÞGNB

3

B;m2
ð s⇀ − b

⇀
Þ�d2 s⇀: ðB6Þ

The Ap counterpart (22) can be generalized as

σDPSAp→f1f2
¼ 1

1þ δf1f2
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