
 

Heavy quark transport in a viscous semi-QGP
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We study the effect of shear and bulk viscosities on the heavy quark transport coefficient within the
matrix model of semi-QGP. Dissipative effects are incorporated through the first-order viscous correction in
the quark/antiquark and gluon distribution function. It is observed that while the shear viscosity effects
reduce the drag of heavy quark the bulk viscosity effects increase the drag and the diffusion coefficients of
heavy quark. For finite values of η=s and ξ=s, the Polyakov loop further decreases the drag coefficient and
enhances the momentum diffusion coefficient as compared to perturbative QCD. It is also observed that
with increases in η=s and ξ=s spatial diffusion coefficient decreases.
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I. INTRODUCTION

The aim of heavy ion collision (HIC) experiments is to
characterize the properties of the deconfined state of matter
namely the quark-gluon plasma (QGP) which is being
created in these collisions. In order to characterize the QGP,
well-calibrated probes are required. In this context, the
transport properties of heavy quark (HQ); especially charm
and bottom; in the bulk of light thermal partons is
considered as one of the promising probes. The interaction
of heavy quarks with the thermal partons in the QGP
medium reflects in the transverse momentum (pT) spectra
of open heavy flavor (HF) meson such as D-meson for
charm quark, and in the elliptic flow v2 of open meson for a
noncentral collision [1–7].
Heavy quarks are produced in the initial stages of the

collisions during the hard scatterings governed by pertur-
bative quantum chromodynamics (pQCD) mostly through
gluon fusion [8–10]. Because of the large mass of HQ as
compared to the temperature ranges accessible in the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC) energies, the thermal production of
HQ is negligible. Hence, once produced in the hard
collisions, HQ propagates throughout the space-time evo-
lution of the medium and interact with the light thermal
partons of the bulk medium. The resulting effect of the
interaction of HQ with the bulk medium modifies the
spectra of HF hadrons. The interaction of HQ with the bulk
medium is described by the scattering of HQ with the light

thermal partons of the medium. At low momenta, the
dominant contribution to the HQ scattering off of light
quark and gluon in the thermal medium arises from the
elastic scatterings and can be described by the diffusion
process akin to Brownian motion. In addition, the thermali-
zation of HQ in the bulk medium is also slowed down due
to its large mass. Hence, the transport of nonequilibrated
HQ in the thermalized medium of light quark and gluons
yield valuable information about the medium throughout its
propagation. In particular, the low momentum interaction
of HQ with the bulk medium is characterized by the spatial
diffusion coefficient.
Perturbative QCD based calculations for HQ transport

coefficients namely the drag and the diffusion cannot
explain the observed suppression and collective flow
[11] so it is required to include the possible nonperturbative
effects. There have been various efforts to incorporate
nonperturbative effects using various phenomenological
models such as the T-matrix model [12,13], the quasipar-
ticle model [14–16], and the resonance model [17] for
estimating the HQ transport coefficients. The most reliable
results for the HQ spatial diffusion comes from the first
principle lattice simulations [18–20]. Indeed, a smaller
value of the spatial diffusion coefficient as compared to the
perturbative QCD is predicted by the lattice simulations
which is essential to explain observed RAA and v2. In
Ref. [21], HQ transport coefficients (the drag and the
momentum diffusion) are evaluated in the T-matrix
approach including nonperturbative effects by employing
the potential interaction of heavy-light quark extracted
from lattice QCD simulations. A good agreement with
the observed RAA and collective flow v2 of this calculation
suggests existence of the strongly interacting nature of
QGP. Recently, based on a Polyakov loop model, heavy
quark drag and the diffusion coefficients have been
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computed for the charm quark in Ref. [22]. The estimation
of the drag coefficient here is observed being rather
somewhat flat with temperature while the diffusion coef-
ficient exhibited a strong temperature dependence similar
to the results obtained in Refs. [12,21]. The consistency in
the results suggest that there could be some model
independent correlations between the results obtained
within the Polyakov loop and other nonperturbative models
from a different perspective.
On the other hand, it may also be mentioned here that

QGP formed in HICs, behaves like almost an ideal fluid
with a very small value for the ratio of shear viscosity to
entropy density η=s. Evidence for such a small η=s is
provided by the large elliptic flow data that requires η=s ∼
0.08–0.2 [23–26]. Viscous coefficients in the QGP as well
as in the hadronic medium have been studied in Refs. [27–
29]. In these studies it was found that the dominant
contribution of dissipation in both the QGP and the
hadronic medium arises from shear viscosity. However,
bulk viscosity is equally important and may dominates near
transition temperature i.e., ξ=s ∼ 1 [30] and can signifi-
cantly affect hadrons pT spectra and elliptic flow v2 [31].
Viscous corrections have also been studied for dilepton
production in QGP [32,33], photon production [34], damp-
ing rate of heavy quark [35], heavy quark radiative energy
loss [36–38], event-plane correlations [39,40] etc. Effect of
shear and bulk viscosities on the HQ drag and diffusion
coefficients have been studied in Ref. [41] using a fugacity
model. In the present study, we intend to include the
viscous corrections (both shear and bulk) along with a
nontrivial Polyakov loop background that is used to
describe the “semi-QGP” within a matrix model. We find
that in the perturbative limit our results are consistent with
the previous results, however, with the inclusion of the
Polyakov loop (ϕ), at low temperature our results are
different from that of Ref. [41]. In this work, we include the
viscous corrections (both shear and bulk) in the single
particle distribution functions of quark and gluon to
estimate the viscous effects on the HQ transport coeffi-
cients. We estimate this using Fokker-Planck equation and
use the matrix model of semi QGP to evaluate the relevant
scattering amplitudes. The single particle distribution
function [see Eqs. (43) and (44)] is modified using second
moment ansatz. In Ref. [36] it was shown that viscous
effects induce a larger energy loss of HQ. So one may
expect that viscous corrections may be important and
significantly affect the transport properties of HQ in the
bulk medium. However, we find that for small shear and
bulk viscosities, the dissipative effects on the drag and the
diffusion coefficients are somewhat weak.
We organize this work as follows: An introduction on the

formalism for evaluation of HQ drag and diffusion coef-
ficients within the matrix model of semi-QGP is discussed
in Sec. II which is followed by the discussion on semi QGP
in Sec. III. In this section, we also discuss some salient

features of the matrix model. In Sec. IV, an ansatz for the
first order viscous correction on quark/gluon distribution is
discussed. In Sec. V, we discuss the interaction of HQ with
the light thermal parton and present matrix element squared
for Coulomb and Compton scatterings within the matrix
model. These matrix element squared are used to evaluate
the drag and diffusion coefficients. Finally, in Sec. VI we
discuss the viscous effects on HQ quark transport and
present the numerical results for the drag and the diffusion
coefficient for constant values of η=s and ξ=s. Finally, we
summarize and give an outlook of the present work in
Sec. VII.

II. FORMALISM

The Brownian motion of HF particles can be described
by the Fokker-Planck equation where the interactions of
heavy quark with the bulk of light quarks and gluons are
encoded in the transport coefficient. Assuming that HF
quark of momentum p is traveling in a medium of light
quark and gluon, the Boltzmann equation for phase-space
distribution fQ of heavy quark can be written as [42]

� ∂
∂tþ

p
Ep

∂
∂xþ F

∂
∂p

�
fQðp; x; tÞ ¼ C½fQ�; ð1Þ

where F is the force due to external mean-field such as
chromo electric or magnetic fields present in the initial

stages of the heavy ion-collision, Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Q þ p2
q

is the

energy of heavy quark with mass mQ and C½fQ� is the
collision integral. Neglecting the mean-field effects, Eq. (1)
reduces to

∂
∂t fQðp; tÞ ¼ C½fQ�: ð2Þ

On the right-hand side of Eq. (2), collision integral in terms
of collision rate which change the momentum of HF quark
from p to p − k is written as

C½fQ� ¼
Z

d3k½wðpþ k; kÞfQðpþ kÞ − wðp; kÞfQðpÞ�;

ð3Þ

where w is the transition rate of heavy quark colliding with
heat bath particles of momentum k. The first term in Eq. (3)
is the gain term that describes the transition of HF quark
from a state of momentum pþ k to momentum state p
while the loss term (second term) represents the scattering
out from the momentum state p. Assuming the scatterings
of HF quark with the bulk medium partons is dominated by
small momentum transfer i.e., jkj ≪ jpj, the distribution
function of HQ and transition rate can be expanded up to
second order with respect to k i.e.,

BALBEER SINGH and HIRANMAYA MISHRA PHYS. REV. D 101, 054027 (2020)

054027-2



wðpþ k; kÞfQðpþ kÞ

≃ wðp; kÞfQðpÞ þ k
∂
∂p ½wðp; kÞfQðpÞ�

þ 1

2
kikj

∂2

∂pi∂pj
½wðp; kÞfQðpÞ�: ð4Þ

With this approximation the collision integral simplifies to

C½fQ� ¼
Z

d3k

�
kj

∂
∂pj

þ 1

2
kikj

∂2

∂pi∂pj

�
wðp; kÞfQðpÞ:

ð5Þ

The function w can be expressed in terms of the cross-
section for scattering processes in the heat bath. For,
scattering of HQ with momentum p with the bulk
medium-light thermal parton with momentum q, one finds

wðp; kÞ ¼ γl

Z
d3q
ð2πÞ3 fðqÞljvrelj

dσ
dΩ

ðp; q → p − k; qþ kÞ;

ð6Þ

where fðqÞl is Fermi-Dirac/or Bose-Einstein distribu-
tion function of light thermal partons and γl is degeneracy
factor which is γq ¼ 6 for quarks and γg ¼ 16 for gluons.
Boltzmann equation Eq. (2) can be approximated as
Fokker-Planck equation

∂
∂t fQðp; tÞ ¼

∂
∂pi

�
AiðpÞfQðp; tÞ þ

∂
∂pj

BijðpÞfQðp; tÞ
�
:

ð7Þ

Here Ai and Bij are the drag and diffusion coefficients and
are given as

AiðpÞ ¼
Z

d3kwðp; kÞki ð8Þ

BijðpÞ ¼
1

2

Z
d3kwðp; kÞkikj: ð9Þ

For an isotropic heat bath at local thermal equilibrium one
may define [43]

AiðpÞ ¼ AðpÞpi; ð10Þ

BijðpÞ ¼ B0ðpÞPk
ij þ B1ðpÞP⊥

ij; ð11Þ

where Pk
ij and P

⊥
ij are longitudinal and transverse projection

operators defined as

Pk
ij ¼

pipj

jpj2 ; P⊥
ij ¼ δij −

pipj

jpj2 : ð12Þ

For a process lQ → lQ (where l stands for light quarks and
gluon) the drag and diffusion coefficients of HQ in the
plasma of light quarks and gluons are given by the scalar
integral of form

hXðp0Þi ¼ 1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3p0

ð2πÞ32Ep0

Z
d3q0

ð2πÞ32Eq0
jMj2

× ð2πÞ4δ4ðpþq−p0−q0ÞflðqÞð1�flðqÞÞXðp0Þ;
ð13Þ

where l ¼ q; q̄; g. In the present study, we evaluate scatter-
ing amplitude for relevant 2 → 2 processes within the
matrix model which make the matrix element squared
color dependent. So in the presence of a background gauge
field Eq. (13) becomes

hXðp0Þi ¼ 1

2Ep

Z
d3q

ð2πÞ32Eq

Z
d3p0

ð2πÞ32Ep0

Z
d3q0

ð2πÞ32Eq0

×

�X
a;e

jMqQj2abfaðqÞð1 − feðq0ÞÞ

þ
X
e;f;g;h

jMgQj2efghfefðqÞð1þ fghðq0ÞÞ
�

× ð2πÞ4δ4ðpþ q − p0 − q0ÞXðp0Þ; ð14Þ

where a, e are color indices of incoming and outgoing
light quark and ef, gh are color indices for incoming
and outgoing gluon that interact with HQ, jMqQj2ab and
jMgQj2efgh are matrix element squared respectively for the
processes qaQc → qbQd and gefQa → gghQb. In the nota-
tion as written in Eq. (14), the drag and diffusion coef-
ficients are written as

AðpÞ ¼ h1i − hp · p0i
jpj2 ð15Þ

B0ðpÞ ¼
1

4

�
hjp0j2i − hðp · p0Þ2i

jpj2
�

ð16Þ

B1ðpÞ ¼
1

2

�hðp · p0Þ2i
jpj2 − 2hp · p0i þ jpj2h1i

�
: ð17Þ

In the presence of a nontrivial Polyakov loop background,
apart from the matrix elements, the distribution functions
also become color dependent. We evaluate these scattering
amplitudes in the matrix model of semi-QGP which we
discuss in the next section.

III. SEMI-QGP

At high temperature, the density of colored particles like
quarks and gluon are large and can be calculated using
perturbative QCD. However, at low temperature, colored
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particles are statistically suppressed and are measured by
the small value of the Polyakov loop, e.g., at chiral cross-
over temperature Tc ∼ 170 MeV, ϕ ¼ 0.2 [44] which is
way smaller from its asymptotic value i.e., ϕ ¼ 1. Because
of the suppression of colored particles, the region near
chiral cross-over is termed as semi-QGP [45]. Semi-QGP is
characterized by the Polyakov loop as defined in Eq. (24).
For the calculational purpose, we shall use double line
notation which is quite useful in the matrix model of semi
QGP. In the double line basis, quark carries one color index
say a ¼ 1; 2;…; N and gluons carry double index say
ab ¼ 1; 2; ::; N2. For SUðNÞ group such N2 pairs lead to
N2 generators and the basis is overcomplete by one
generator. The overcomplete basis is compensated by
introducing the projection operator defined as [46–48]

Pab
cd ¼ Pba;cd ¼ Pab;dc ¼ δacδ

b
d −

1

N
δabδcd ð18Þ

hence the generator is given by

ðtabÞcd ¼
1ffiffiffi
2

p Pab
cd: ð19Þ

The trace over two generators does not vanish but rather is
again a projection operator, i.e.,

TrðtabtcdÞ ¼ 1

2
Pabcd: ð20Þ

This is due to the presence of extra generator as compared
to generators in an orthonormal basis. The structure
constant of the group in the double line basis is given by

fab;cd;ef ¼ iffiffiffi
2

p ðδadδcfδeb − δafδcbδedÞ: ð21Þ

In the mean-field approximation, the constant background
field is defined as A0

μ ¼ 1
g δμ0Q

a with Qa ¼ 2πqaT. Since
A0 is traceless so sum over Q’s vanishes i.e.,

P
a Q

a ¼ 0.
For an SUð3Þ group, Qa ¼ ð−Qi;−Qi−1;…0; Qi−1; QiÞ,
where i ¼ N=2 if N is even and ðN − 1Þ=2 if N is odd. In
the temporal direction, the Wilson line is written as

P ¼ P exp

�
ig
Z

β

0

dτA0ðx0; xÞ
�

ð22Þ

where P stands for the ordering of imaginary time and τ is
imaginary time. Polyakov loop, which is the trace of
Wilson line, in the constant background gauge field can
be written as

ϕ ¼ 1

N

XN
a¼1

expði2πqaÞ: ð23Þ

For an SUð3Þ group, where qa ¼ ð−q; 0; qÞ Eq. (23) is
simplified to

ϕ ¼ 1

3
ð1þ 2 cosð2πqÞÞ: ð24Þ

The background gauge field acts as an imaginary chemical
potential for colored particles so the statistical distribution
function of quark/antiquark and the gluon are

f0aðEÞ¼
1

eβðE−iQaÞ þ1
; f̃0aðEÞ¼

1

eβðEþiQaÞ þ1
; ð25Þ

f0abðEÞ ¼
1

eβðE−iðQa−QbÞÞ − 1
; ð26Þ

where the single and double indices are for quark/antiquark
and gluon. For a background field and given Qa these
distribution functions are complex so are unphysical.
Physical meaning comes when one integrates over all
distributions of Qa. The resummed gluon propagator
in the presence of a static background gauge field is given
as [49]

Dμν; abcdðKÞ ¼ PL
μν

k2

K2
DL

abcdðKÞ þ PT
μνDT

abcdðKÞ; ð27Þ

where PT
μν ¼ gμið−gij − kikj

K2 Þgjν and PL
μν ¼ −gμν þ kμkν

K2 −
PT
μν are the longitudinal and the transverse projection

operators. The longitudinal and the transverse gluon
propagators are written as

DL
μν;abcdðKÞ ¼

�
i

K2 þ F

�
abcd

; ð28Þ

DT
μν;abcdðKÞ ¼

�
i

K2 −G

�
abcd

; ð29Þ

where

F ¼ 2M2

�
1 −

y
2
ln

�
yþ 1

y − 1

��
; ð30Þ

G ¼ M2

�
y2 þ yð1 − y2Þ

2
ln

�
yþ 1

y − 1

��
; ð31Þ

with y ¼ k0
jkj and M2 ¼ ðM2Þabcd is the thermal mass of the

gluon. For the drag and the diffusion of HQ studied here, the
momentum transfer is small so only longitudinal propagator
contributes to the squared matrix elements [43,50].
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IV. VISCOUS CORRECTIONS IN THE
DISTRIBUTION FUNCTIONS

In this section, we briefly describe the first order viscous
corrections on the thermal distribution function of quarks
and gluons. We start with the energy-momentum tensor of a
nonideal fluid which is given as [31]

Tμν ¼ ðϵþ PÞuμuν þ Pgμν þ πμν þ Π∇μν; ð32Þ

where ϵ, P, uμ are the energy density, pressure density and
four-velocity of the fluid. For metric tensor, we use the
convention gμν ¼ diagð−1;þ1;þ1;þ1Þ so that uμuμ ¼ −1
and the term ∇μν ¼ gμν þ uμuν. The first two terms at the
right hand side of Eq. (32) describes the energy-momentum
tensor for an ideal fluid and the rest two terms are part of
viscous corrections that summarizes the effect of shear and
bulk viscosities respectively. The dissipative terms are
constructed from the derivatives Δα ¼ ∇αβ∂β and ∇μν.
In the first-order approximation, the symmetric tensor πμν

satisfying the condition uμπμν ¼ 0, in the local rest frame is
given as

πμν ¼ −η
�
Δμuν þ Δνuμ −

2

3
∇μνΔαuα

�
ð33Þ

and the bulk viscosity dependent term

Π ¼ −ξΔαuα: ð34Þ

Dissipative effects can be incorporated in the color depen-
dent distribution functions fa=abðEÞ which contains the
ideal part as well as viscous corrections. For this purpose,
we write fa=abðEÞ ¼ f0a=abðEÞ þ δfa=abðEÞ (f0a=abðEÞ is
equilibrium distribution function of quark/antiquark
and gluon) and use the second-moment ansatz as in
Refs. [31,51,52], so that

δfðEÞa=ab ¼
1

T3s
fðEÞ0a=abð1þ fðEÞ0a=abÞpμpν

×

�
A
2
πμν þ

B
5
Π∇μν

�
ð35Þ

where A and B are constants. Constrain on δfa=ab comes
from the continuity of stress-energy tensor across the
freeze-out hypersurface [52] i.e.,

δTμν ¼
Z

d3k
ð2πÞ3

kμkν

Ek
δfa=abðEÞ: ð36Þ

The choice of δfa=ab is not unique, as pointed out in
Ref. [53], δfa=ab can have linearly increasing form with
momentum and also quadratically increasing with momen-
tum or anything in between linear to quadratic increasing
behavior. However, we will continue with the form as in

Refs. [31,52]. In the local rest frame of the fluid, i.e.,
u0 ¼ 1, ui ¼ 0, ∂μu0 ¼ 0 and ∂μui ≠ 0, the deviation in
distribution function can be written as [31,52]

δfðEÞa=ab ¼
1

T3s
fðEÞ0a=abð1 ∓ fðEÞ0a=abÞpμpν

×

�
1

2
πμν þ

1

5
Π∇μν

�
: ð37Þ

The first term of Eq. (37), i.e., the shear viscosity dependent
term is

pμpνπμν¼−pμpνη

�
ΔμuνþΔνuμ−

2

3
∇μνð∂αþuαuβ∂βÞuα

�
:

ð38Þ
One can use the normalization condition uμuμ ¼ −1 and
differentiating this relation leads to uμ∂νuν ¼ 0. Using this
and the relation Δμ ¼ ∇μνuν one obtains

pμpνπμν ¼ −η
�
pμpνð∂μuν þ ∂νuμÞ þ 2ðp · uÞpνuβ∂βuν

−
2

3
ðp2 − ðp · uÞ2Þ∂αuα

�
: ð39Þ

Now, one can further use the relations ∂μuν¼ðg̃μν−uμuνÞ=
τ and ∂αuα ¼ 1=τ [54], where τ is the proper time so that in
the local rest frame of the fluid, Eq. (39) reduces to [36]

pμpνπμν ¼
2η

τ

�
−p2

z þ
p2

3

�
: ð40Þ

Similarly, the bulk viscosity dependent term can be
written as

pμpν∇μνΠ ¼ −ξpμpνðgμν þ uμuνÞΔαuα: ð41Þ
Using the same relations as for the case of shear viscosity,
Eq. (41) can be written as

pμpν∇μνΠ ¼ ξ

τ
p2: ð42Þ

Thus the distribution functions of quarks and gluons of
Eq. (37) with the effect of shear and bulk viscosities can be
written as

fðEÞa¼fðEÞ0aþ
fðEÞ0að1−fðEÞ0aÞ

T3τ

�
η

s

�
−p2

zþ
p2

3

�
þξ

s
p2

5

�

ð43Þ

fðEÞab ¼ fðEÞ0ab þ
fðEÞ0abð1þ fðEÞ0abÞ

T3τ

×

�
η

s

�
−p2

z þ
p2

3

�
þ ξ

s
p2

5

�
: ð44Þ
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In the present investigation, for evaluating drag and dif-
fusion coefficients, we shall use Eqs. (43) and (44) for quark/
antiquark and gluon distribution function in Eq. (14).

V. SCATTERING AMPLITUDES WITHIN
MATRIX MODEL

In this section, We shall discuss the scattering of HQ of
mass M and energy E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
with the light thermal

partons in the bulk medium and we shall also compute the
scattering amplitude squared within the matrix model of
semi QGP. To compute the drag and the diffusion coef-
ficients of HQ transport we shall follow a similar approach
to include screening effects as in Refs. [42,50]. For the
elastic collision, there are two types of scattering processes
that contributes to the drag and the diffusion coefficient of
HQ. One is Coulomb scattering, i.e., scattering off of HQ
with light quark and another is Compton scattering, i.e.,
scattering off of HQ with gluons. In the following we
present these in detail.

A. Coulomb scattering

The Feynman diagram for the Coulomb scattering of HQ
and a light quark is shown on the left side of Fig. 1. Here a,
c, b, d are the color indices of initial and final quarks. In the
double line notation, the scattering amplitude for this
process is

iMqQ ¼ ðigÞ2
ðtþ ðm2

DÞmljkÞ
ðtjkÞabðtmlÞcd½ūbðq0ÞγμuaðqÞ�

× ½ūdðp0ÞγμucðpÞ�; ð45Þ

where g is coupling constant, t is Mandelstam variable and
m, l, j, k are the color indices of gluon propagator. In the
limit of soft momentum transfer, only timelike component
of the propagator contributes and the propagators simply
become Debye screened propagator with 1=t→ 1=ðtþm2

DÞ
[42,50] where m2

D is color dependent Debye mass and can
be given as

ðm2
DÞabcd ¼

g2

6

�
δadδbc

�X3
e¼1

ðDðQaeÞ þDðQebÞÞ − NfðD̃ðQaÞ þ D̃ðQbÞÞ
�

− 2δabδcd

�
DðQacÞ −

Nf

N
ðD̃ðQaÞ þ D̃ðQcÞÞ þ

Nf

N2

X3
e¼1

D̃ðQeÞ
��

; ð46Þ

where

DðQaÞ ¼
3

π2

Z
∞

0

dEE

�
1

eβðEþiQaÞ − 1
þ 1

eβðE−iQaÞ − 1

�
; ð47Þ

and D̃ðQaÞ ¼ DðQa þ πTÞ. In the perturbative limit, Eq. (45) can be written as

iMqQ ¼ −
g2

t
ðtjkÞabðtjkÞcd½ūbðq0ÞγμuaðqÞ�½ūdðp0ÞγμucðpÞ�; ð48Þ

and the product of projection operator with open color index a; b can be written as

Pjk
abP

jk
cdP

j0k0
ba P

j0k0
dc ¼ ðN − 1Þ

�
1 −

δba
N

�
: ð49Þ

However, for the computation of the drag and the diffusion coefficient, we shall use Eq. (45). Simplifying Eq. (45) for
massless light quark and massive heavy quark by summing and averaging over final and initial spins, the scattering
amplitude squared (jMqQj2) can be written as

jMqQj2 ¼
g4

16N2
c
Pjk

abP
ml
cdP

j0k0
ba P

m0l0
dc

ð8ðs −M2Þ2 þ 8ðu −M2Þ2 þ 16M2tÞ
ðtþ ðm2

DÞmljkÞðtþ ðm2
DÞm0l0j0k0 Þ

ð50Þ

FIG. 1. Coulomb scattering (left) of HQ (bold solid line) and
light quark/antiquark (thin solid line). t-channel Compton scat-
tering (right). The curly line represent a gluon.
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Let us note here that the drag and the diffusion coefficient of HQ as defined in Eqs. (15) and (16) depends on the color of
incoming and outgoing light quark, i.e., Qa and Qb in the distribution functions; see Eq. (14). So to compute the color-
averaged quantity, the color index a and b in Eq. (50) will be summed with the distribution function. With the distribution
function as defined in Eq. (43), for Coulomb scattering the bracketed quantity in Eq. (14) becomes

hXðp0Þi¼ 1

2Ep

X
abcd

Z
d3q

2Eqð2πÞ3
d3p0

2Ep0 ð2πÞ3
d3q0

2Eq0 ð2πÞ3
X
jkj0k0

X
mlm0l0

jMqQj2ðf0aðqÞþδfaðqÞÞð1−f0bðq0Þ−δfbðq0ÞÞhXðp0Þi ð51Þ

B. Compton scattering

There are three types of scatterings (s, t, and u channels)
that contribute to the Compton scattering, i.e., scattering off
of a gluon from a quark. For s and u channel scatterings, the
corresponding Feynman diagrams are shown in Fig. 2 and
for the t channel scattering the relevant diagram is shown in
right side of Fig. 1. We shall evaluate the scattering
amplitude for Compton scattering below.

C. s-channel

The relevant diagram for this channel is shown on the left
side of Fig. 2 where efðghÞ, aðbÞ are color indices of
incoming (outgoing) gluon and quark. In the double line
notation, the scattering amplitude for the process is given as

iMs ¼ iðigÞ2ðtefÞacðtghÞcb
�
ūbðp0Þ=ϵð=pþ =qþMÞ=ϵuaðpÞ

s −M2

�
:

ð52Þ

where s is Mandelstam variable and M is the mass of HQ.
Note here that unlike Coulomb scattering there is no color
dependence on the HQ propagator. This is because of the
large mass of heavy quark. For massive quark and massless
gluon the matrix element squared for s-channel Compton
scattering can be written as

jMsj2 ¼
8g4

16NcðN2
c − 1ÞP

ef
acP

ef
ac0P

gh
cbP

gh
c0b

×

�
M2ðM2 − u − 3sÞ − us

ðs −M2Þ2
�
: ð53Þ

Note that the scattering amplitude depends on the color of
quarks and gluons. For the evaluation of the transport
coefficients one needs to perform a color sum. Same as in

the case of Coulomb scattering, the color indices of
incoming and outgoing gluon (ef, gh) in Eq. (53) will
be summed with the distribution functions appearing
in Eq. (14).

D. u channel

The corresponding Feynman diagram for u channel
Compton scattering is illustrated at the right side of
Fig. 2. Scattering amplitude that depends on the color of
incoming and outgoing color particles can be written as

iMu ¼ iðigÞ2ðtefÞcbðtghÞac
�
ūbðp0Þ=ϵð=p − =q0 þMÞ=ϵuaðpÞ

u −M2

�
:

ð54Þ

Simplifying Eq. (54) with the polarization sum of massless
gluon and spin sum and average over heavy quark gives

jMuj2 ¼
8g4

16NcðN2
c − 1ÞP

gh
acP

gh
ac0P

ef
cbP

ef
c0b

×

�
M2ðM2 − 3u − sÞ − us

ðu −M2Þ2
�
: ð55Þ

In the Eq. (55), the product of projection operator can be
simplified by summing over the color indices a, b and c.
However, the color indices of initial and final gluon should
be summed with the distribution function in Eq. (14).
Keeping ef, gh as open indices, the product of the
projection operators can be simplified to

Pgh
acP

gh
ac0P

ef
cbP

ef
c0b ¼ δeh−

1

Nc
ð2δefδfhδehþδghδegδehÞ

þ 1

N2
c
ðδefþδefδgfδehδghþδefδfhδegδgh

þδehδfgδefδghþδghÞ

−
1

N3
c
ðδefδghþδefδehδghÞ: ð56Þ

E. t channel

The relevant Feynman diagram for the t channel
Compton scattering is shown on the right side of Fig. 1.
For the color dependent scattering amplitude one can write

FIG. 2. s-channel Compton scattering (left). u-channel Comp-
ton scattering (right).
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iMt¼ðigÞ2ðtmlÞabfcd;ef;gh

×

�
ϵμðqÞϵ�νðq0ÞCμανðq−q0;−q;−q0Þūbðp0ÞγαuaðpÞ

ðtþðm2
DÞmlcdÞ

�
;

ð57Þ

where

Cμνρðk1;k2;k3Þ
¼ ½ðk1−k2Þρgμνþðk2−k3Þμgνρþðk3−k1Þνgμρ�: ð58Þ

In Eq. (57), fcd;ef;gh is structure constant as defined in
Eq. (21) and ϵμðqÞ, ϵ�νðq0Þ are the polarization vectors for
incoming and outgoing gluon. The matrix element squared
can be obtained by performing appropriate polarization
sum for gluons and spin sum and average for heavy quark.
Doing so, matrix element squared becomes

jMtj2 ¼
16g4

8NðN2 − 1ÞP
ml
abP

l0m0
ba fcd;ef;ghfd

0c0;fe;hg

×

�
−ðM2 − sÞðM2 − uÞ

ðtþ ðm2
DÞmlcdÞðtþ ðm2

DÞm0l0c0d0 Þ
�
: ð59Þ

The corresponding interference terms among Compton
scatterings are given in the Appendix A. To that the total
scattering amplitude of Compton scattering that enters
in Eq. (14) for evaluation of the drag and the diffusion
coefficients is jMgQj2efgh ¼ jMsj2 þ jMuj2 þ jMtj2 þ
jMsj†jMuj þ jMuj†jMjs þ jMsj†jMtj þ jMtj†jMjsjþ
jMtj†jMuj þ jMuj†jMjt. For computational simplifica-
tion, we shall use the leading order contribution in the
Debye mass that appears in the t channel scatterings.

VI. RESULTS AND DISCUSSIONS

With the scattering amplitude for the processes lQ → lQ
(where l stands for light quark/antiquark and gluon and Q
stands for HQ) as evaluated in the previous section, we
numerically compute the drag and the diffusion coefficients
using Eq. (14) and incorporate the dissipative effects in the
quark/antiquark and gluon color distribution functions as
defined in Eqs. (43) and (44). For this purpose, we use
charm quark mass M ¼ 1.27 GeV and the two loop
running coupling constant [55]

αs ¼
1

4π

1

2β0 ln πT
Λ þ β1

β0
lnð2 lnðπTΛ ÞÞ

ð60Þ

where

β0 ¼
1

16π2

�
11 −

2Nf

3

�
ð61Þ

β1 ¼
1

ð16π2Þ2
�
102 −

38Nf

3

�
ð62Þ

with Λ ¼ 260 MeV and light quark flavor Nf ¼ 2. We also
evaluate theHQ transport coefficients in pQCDbyevaluating
scattering amplitude squared within the pQCD framework.
In general, there are two factors that essentially affect the

heavy quark transport properties. One is the Debye mass
that appears in the evaluation of the matrix elements and the
other is the Polyakov loop dependent distribution functions
of quark/anti-quark and gluon. At low temperature, a lower
value of the Debye mass increases the transport coeffi-
cients. On the other hand, the distribution function with the
nontrivial ϕ tend to reduce it. Apart from these, a third
factor that plays an important role here is the momentum
dependence of departure δfa=ab in Eqs. (43) and (44) of the
distribution function from the equilibrium distribution
function. Now let us examine the results in some detail.
In Fig. 3, we show the dependence of the drag coefficient as
a function of temperature. In the left panel, we have plotted
the drag coefficient [Eq. (15)] for a constant value of η=s
and ξ=s ¼ 0 normalized to the drag coefficient for η=s ¼ 0,
ξ=s ¼ 0 i.e., AðηÞ=Aðη ¼ 0Þ. In both the figures of Fig. 3,
we have taken τ ¼ 0.3 fm−1 and the HQ momentum
p ¼ 1 GeV. The blue curve corresponds to the pQCD
results and the red curve corresponds to the effect of the
Polyakov loop within the matrix model. It is clear that at
low temperature, for η=s ¼ 0.1 and τ ¼ 0.3 fm−1, the drag
coefficient is small within the matrix model compared to
pQCD. As the temperature increases the suppression in the
drag coefficient decreases and approaches the perturbative
value at high temperature beyond which it decreases similar
to the perturbative results. This nonmonotonic behavior is
mainly because of the negative contribution from the
momentum factor (q2=3 − q2z) in δfa=ab and can be under-
stood as follows. In the Polyakov loop background, a
smaller value of the Debye mass at low temperature lead to
more negative contribution due to the momentum factor in
δfa=ab and hence smaller drag coefficient with finite η=s.
Another reason for more suppression in the drag coefficient
within the matrix model is due to the distribution function
i.e., colored particles are suppressed due to small value of
Polyakov loop compared to pQCD. In the right panel of
Fig. 3, the temperature behavior of the normalized drag
coefficient (AðξÞ=Aðξ ¼ 0Þ) is shown for ξ=s ¼ 0.03 and
η=s ¼ 0. It can be observed that with the inclusion of the
bulk viscosity the drag coefficient is large compared to
the ξ=s ¼ 0 case. The drag coefficient within the matrix
model is large compared to pQCD. This is because the ξ=s
term in δfa=ab is always positive so the smaller value of the
Debye mass within the matrix model enhances the drag
coefficient.
The ratio AðηÞ=Aðη ¼ 0Þ of the drag coefficient as

defined in Eq. (15) is plotted as a function of temperature
for HQ momentum p ¼ 1 GeV in Fig. 4 for various value
of η=s and τ to see the effect of both (η=s, τ) the quantities.
Here the scattering amplitude squared for the relevant
scatterings are evaluated within the matrix model. As
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anticipated from the effect of phase space (momentum
dependent term in δfa=ab), Polyakov loop dependent
distribution functions of quark/antiquark and gluon, and
the Debye mass, with an increase in η=s the HQ drag
coefficient decreases as shown by the black dashed and the
blue curves on the left panel of Fig. 4. Here the blue line is
for η=s ¼ 0.1 and black dashed line for η=s ¼ 0.17 with
τ ¼ 0.3 fm−1. With increase in the proper time the drag
coefficient increases which is shown by the red and the blue
curve of the same figure. This can be understood from 1=τ
factor in Eqs. (25) and (26). It is also observed that, for
small value of η=s and sufficiently large value of τ, the
effect of η=s on the HQ drag coefficient is weak. On the

right panel of Fig.(4), the effect of ξ=s and τ on the drag
coefficient is shown. As expected, with an increase in ξ=s,
the drag coefficient increases as shown by a dashed black
and the blue curve i.e., ξ=s ¼ 0.015 (dashed black lines)
and ξ=s ¼ 0.03 (blue lines) for τ ¼ 0.3 fm−1. Same as
earlier, with an increase in τ, the drag coefficient decreases.
Drag coefficient AðηÞ normalized with Aðη ¼ 0Þ as a

function of HQ momentum p for T ¼ 220 MeV is shown
in Fig. 5. Here, we have also shown the results for HQ
momenta p ∼M. The extrapolated results for higher
momenta will not be reliable as we have not taken
contribution from gluon radiation. As may be observed
from the left panel of the same figure, for finite η=s, the

FIG. 4. Left panel: The ratio AðηÞ=Aðη ¼ 0Þ as a function of temperature for HQ momentum p ¼ 1 GeV and ξ=s ¼ 0. The topmost
curve is for η=s ¼ 0.1, τ ¼ 0.3 fm−1, bottom-most, i.e., dashed black curve is for η=s ¼ 0.17, τ ¼ 0.3 fm−1 and the blue curve is for
η=s ¼ 0.1, τ ¼ 0.5 fm−1. Right panel: The ratio of the drag coefficient AðξÞ=Aðξ ¼ 0Þ as a function of temperature for HQ momentum
p ¼ 1 GeV and η=s ¼ 0. The blue curve corresponds to ξ=s ¼ 0.03, τ ¼ 0.3 fm−1, the red curve corresponds to ξ=s ¼ 0.03, τ ¼
0.5 fm−1 and the dashed black curve corresponds to ξ=s ¼ 0.015, τ ¼ 0.3 fm−1.

FIG. 3. Left panel: The ratio of the drag coefficient i.e., AðηÞ=Aðη ¼ 0Þ is shown as a function of temperature for p ¼ 1 GeV,
η=s ¼ 0.1, τ ¼ 0.3 fm−1 and ξ=s ¼ 0. The blue curve represents the perturbative QCD result while the red curve corresponds to
including Polyakov loop within the matrix model. Right panel: The ratio AðξÞ=Aðξ ¼ 0Þ is shown as a function of temperature for
ξ=s ¼ 0.03, p ¼ 1 GeV, τ ¼ 0.3 fm−1 and η=s ¼ 0. Similar to the left panel, the blue curve corresponds to pQCD results and the red
curve corresponds to including Polyakov loop within the matrix model.
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drag coefficient increases with an increase in the HQ
momentum. However, with an increase in η=s, the drag
coefficient decreases as shown by the black dashed curve
(η=s ¼ 0.17) and the blue curve (η=s ¼ 0.1). As earlier,
this behavior can be explained by taking account of phase
space suppression (momentum dependent term in δfa=ab).
Same as earlier, with an increase in τ, the drag coefficient
decreases. On the right panel of the same figure, the effect
of bulk viscosity on the HQ drag coefficient is shown. Here,
the drag coefficient decreases with an increases in the HQ
momentum. Note that unlike η=s, with increase in ξ=s, the
drag coefficient increases. Same as earlier, with an
increases in τ the drag coefficient decreases.

On the left panel of Fig. 6, the effect of both the bulk
viscosity (ξ=s) and the shear viscosity (η=s) for τ¼
0.3 fm−1 on the normalized drag coefficient (Aðη; ξÞ=
Aðη ¼ 0; ξ ¼ 0Þ) as a function of temperature is shown.
At low temperature, shear viscosity dominates due to the
phase space suppression so the drag coefficient decreases.
At moderate temperature, i.e., around 250 MeV, the bulk
viscosity dominates so the drag coefficient increases, again
at high temperature, i.e., around 320 MeV, as seen earlier in
Fig. 4, both η=s and ξ=s decreases the drag coefficient. As
can be noted, for a smaller value of η=s and ξ=s e.g.,
η=s ¼ 0.1, ξ=s ¼ 0.01, the dependence of the drag coef-
ficient on temperature is somewhat weak, however, the

FIG. 5. Left panel: Variation of AðηÞ=Aðη ¼ 0Þ as a function of momentum for ξ=s ¼ 0 and T ¼ 220 MeV. The red curve corresponds
to η=s ¼ 0.1, τ ¼ 0.5 fm−1, the blue curve corresponds to η=s ¼ 0.1, τ ¼ 0.3 fm−1 and the dashed black curve corresponds to
η=s ¼ 0.17, τ ¼ 0.3 fm−1. Right panel: Variation of AðξÞ=Aðξ ¼ 0Þ as a function of momentum for η=s ¼ 0 and T ¼ 220 MeV. The
blue curve corresponds to ξ=s ¼ 0.03, τ ¼ 0.3 fm−1, the red curve corresponds to ξ=s ¼ 0.03, τ ¼ 0.5 fm−1 and the dashed black curve
corresponds to ξ=s ¼ 0.01, τ ¼ 0.3 fm−1.

FIG. 6. Left panel: The ratio Aðη; ξÞ=Aðη ¼ 0; ξ ¼ 0Þ as a function of temperature for HQ momentum p ¼ 1 GeV and τ ¼ 0.3 fm−1.
The blue curve corresponds to η=s ¼ 0.2, ξ=s ¼ 0.035, the red curve corresponds to η=s ¼ 0.15, ξ=s ¼ 0.020, and the black curve
corresponds to η=s ¼ 0.1, ξ=s ¼ 0.01. Right panel: The ratio Aðη; ξÞ=Aðη ¼ 0; ξ ¼ 0Þ as a function of heavy quark momentum for
T ¼ 220 MeV and τ ¼ 0.3 fm−1. The blue curve corresponds to η=s ¼ 0.1, ξ=s ¼ 0.01, the red curve corresponds to η=s ¼ 0.15,
ξ=s ¼ 0.020, and the black curve corresponds to η=s ¼ 0.22, ξ=s ¼ 0.04.
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dependence is strong for a larger value of η=s and ξ=s. On
the right panel of Fig. 6 the same ratio as a function of
momentum is plotted. Similar to the case of temperature
behavior, for smaller values of η=s and ξ=s the drag
coefficient is somewhat weakly dependent on the HQ
momentum (see blue curve; η=s ¼ 0.1, ξ=s ¼ 0.01), how-
ever, it strongly depends on the same for larger values η=s
and ξ=s. Also note that at low momentum, for finite value
of η=s and ξ=s, the drag coefficient is small and increases
with an increase in the HQ momentum.
The ratio B0ðη; ξÞ=B0ðη ¼ 0; ξ ¼ 0Þ of diffusion coef-

ficients as defined in Eq. (16) is plotted as a function of
temperature and momentum in Fig. 7. On the left panel of
Fig. 7, the black curve corresponds to η=s ¼ 0.2,
ξ=s ¼ 0.05, the red curve corresponds to η=s ¼ 0.15,
ξ=s ¼ 0.03 and the blue curve corresponds to η=s ¼ 0.1,
ξ=s ¼ 0.01. Here, we have taken τ ¼ 0.3 fm−1 and the HQ
momentum p ¼ 1 GeV. It is observed that with an increase
in η=s, ξ=s and temperature, the diffusion coefficient
increases. However, for smaller values of η=s and ξ=s
e.g., η=s ¼ 0.1, ξ=s ¼ 0.01, the diffusion coefficient is not
affected much. Note also that at low temperature for a
smaller value of η=s and ξ=s, e.g., blue curve, the diffusion
coefficient is smaller as compared to the case of η=s ¼ 0,
ξ=s ¼ 0. Similarly, as can be seen in the right panel of the
same figure, with as increase in the HQ momentum the
diffusion coefficient decreases. For the HQ momentum
p ≪ M, with an increase in η=s and ξ=s, the diffusion
coefficient increases. In pQCD, the results for the drag and
the diffusion coefficients for various values of η=s, ξ=s, τ as
a function of temperature and momentum that are presented
here are similar as pointed out in Ref. [41]. However, the
differences are due to the effect of the Polyakov loop.
It may be noted that with the Fokker-Planck formalism,

one can relate the momentum diffusion coefficient B0ðpÞ as

estimated here to the spatial diffusion coefficient Dx that
appears, e.g., in the Ficks diffusion law. The diffusion
coefficient Dx is also estimated in the lattice QCD
simulation. The two coefficients are related as [56]

Dx ¼
T2

B0ðp → 0Þ : ð63Þ

In Fig. 8, we have plotted the quantity 2πDxT from leading
order (LO) pQCD along with the lattice simulations and

FIG. 7. Left panel: The ratio B0ðη; ξÞ=B0ðη ¼ 0; ξ ¼ 0Þ of diffusion coefficient as a function of temperature for HQ momentum
p ¼ 1 GeV and τ ¼ 0.3 fm−1. The black curve corresponds to η=s ¼ 0.1, ξ=s ¼ 0.01, the red curve corresponds to η=s ¼ 0.15,
ξ=s ¼ 0.03, and the blue curve corresponds to η=s ¼ 0.2, ξ=s ¼ 0.05. Right panel: The ratio B0ðη; ξÞ=B0ðη ¼ 0; ξ ¼ 0Þ of diffusion
coefficient as a function of HQmomentum for temperature T ¼ 220 MeV and τ ¼ 0.3 fm−1. The black curve corresponds to η=s ¼ 0.1,
ξ=s ¼ 0.01, the red curve corresponds to η=s ¼ 0.15, ξ=s ¼ 0.03, and the blue curve corresponds to η=s ¼ 0.2, ξ=s ¼ 0.05.

FIG. 8. The spatial diffusion 2πDxT as a function of temper-
ature scaled by Tc and τ ¼ 0.3 fm−1. The blue curve (dashed
dotted) corresponds to η=s ¼ 0.0, ξ=s ¼ 0.0, the red curve
(dashed) corresponds to η=s ¼ 0.1, ξ=s ¼ 0.01, and the black
curve (solid) corresponds to η=s ¼ 0.2, ξ=s ¼ 0.04. Here, the
lattice data for Polyakov loop is taken from Ref. [44] and
the QCD running coupling constant αs as defined in Eq. (60).
The brown curve (dotted) are LO pQCD results for constant
coupling αs ¼ 0.4 [43] and the green (dots) are lattice results
taken from the Ref. [18].
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within the matrix model for various values of η=s, ξ=s and
τ ¼ 0.3 fm−1 as a function of T=Tc. The brown dotted line
is LO pQCD result for constant coupling αs ¼ 0.4. The
blue (dashed dotted), red (dashed) and black (solid) lines
are within the matrix model respectively for η=s ¼ 0, 0.1,
0.2 and ξ=s ¼ 0, 0.01, 0.05. The green dots are the lattice
results from Ref. [18]. The main observations in this
figure are the following. The spatial diffusion coefficient
is smaller compared to the perturbative QCD estimate.
Inclusion of the viscous effect makes the coefficient even
smaller. However, even with the inclusion of viscous effects
as well as Polyakov loop, the spatial diffusion coefficient is
still larger being almost about three times the correspond-
ing lattice estimate. This indicates that there could be other
nonperturbative effects possibly the contribution of finite
light quark mass and also the radiative corrections for the
estimation of diffusion coefficients.

VII. SUMMARY

In the present work, we have computed the corrections
due to the effects of the shear and the bulk viscosities on the
HQ drag and diffusion coefficients within the matrix model
of semi-QGP. To incorporate the viscous corrections we
first write the distribution function of quark and gluon
(fa=cd ¼ f0a=cd þ δfa=cd, where f0a=cd is equilibrium distri-
bution function and δfa=cd summarizes the effect of shear
and bulk viscosities) as defined in Eqs. (43) and (44). We
next calculate the color dependent scattering amplitudes of

HQ from the light thermal partons in the bulk medium
within the matrix model of semi QGP. Nonperturbative
effects are included via the Polyakov loop in quark/
antiquark and gluon distribution functions as well as in
the Debye mass. In all the calculations, we have taken the
constant values for the viscosity to entropy density ratio,
i.e., without their temperature dependence. With a reason-
able constant value of η=s for the temperature range we
have considered, we find that the drag coefficient within the
matrix model is small compared to that of perturbative
QCD. Similarly, for a constant value of ξ=s, the drag
coefficients is large within the matrix model compared the
pQCD results. Furthermore, with an increase in temper-
ature and momentum the drag coefficient increases, how-
ever, the diffusion coefficient increases with an increase in
temperature and decreases with an increase in momentum.
The spatial diffusion coefficient decreases with increase in
the η=s and ξ=s. For a small value of η=s and ξ=s, both the
drag and the diffusion coefficients have a weak dependence
on temperature and momentum for all range of temperature
and momentum considered here.

APPENDIX: INTERFERENCE TERMS IN THE
SCATTERING AMPLITUDE

In this section, we shall discuss the interference ampli-
tudes of s, t, and u channel scatterings contributing to
Compton scattering. For s and u channel of the scatterings,
the interference term can be written as

MsMu
†¼ g4ðtefÞacðtghÞcbðtghÞac0 ðtefÞc0b

�
Tr½ðp 0 þMÞγνð=pþ=qþMÞγμð=pþMÞγαð=p−q 0 þMÞγβ�ϵμðqÞϵβðqÞϵ�νðq0Þϵ�αðq0Þ

ðs−M2Þðu−M2Þ
�

ðA1Þ

where the trace is over Dirac matrices and the terms like ðtabÞcd are generators of the group which can be written in terms of
projection operators as given in Eq. (19). Using the polarization sum for massless gluons, and spin sum/average of final/
initial quark, one can simplify Eq. (A1) to yield

MsMu
† ¼ g4

16NcðN2
c − 1ÞP

ef
acP

gh
cbP

gh
ac0P

ef
c0b

�
−8M2ðt − 4M2Þ
ðs −M2Þðu −M2Þ

�
: ðA2Þ

As earlier, color index ef=gh of incoming/outgoing gluon will be summed with the statistical distribution function while
evaluating the drag and the diffusion coefficients using Eq. (14). Similarly, another term that contributes to the amplitude,
i.e., M†

sMu of the interference of the same scattering channels is given as

M†
sMu ¼

g4

16NcðN2
c − 1ÞP

ef
acP

gh
cbP

gh
ac0P

ef
c0b

�
−8M2ðt − 4M2Þ
ðs −M2Þðu −M2Þ

�
: ðA3Þ

For s and t channel scatterings, the matrix element squared of the interference term can be given as

MsMt
† ¼ g4ðtefÞacðtghÞcbðtlmÞbafdc;fe;hg

�
Tr½ðp 0 þMÞγνð=pþ =qþMÞγμð=pþMÞγλCαβσðq − q0;−p; p0Þgαβ�ϵμϵαϵ�νϵ�σ

ðs −M2Þðtþ ðm2
DÞmlcdÞ

�
;

ðA4Þ
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where Cμνσ is defined in Eq. (58). With the polarization sum of massless gluon and trace over Dirac space, the scattering
amplitude can be simplified to

MsMt
† ¼ M†

sMt ¼
g4

ffiffiffi
2

p

16NcðN2
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�
: ðA5Þ

The last term contributing to the scattering amplitude of the interfering diagrams comes from the u and s channel scatterings
and can be given as

MuMt
† ¼ g4ðtghÞacðtefÞcbðtlmÞbafdc;fe;hg

�
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�
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Similar to Eqs. (A1) and (A4), Eq. (A6) can be simplified to

MuMt
† ¼ M†

uMt ¼
g4
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